better structure
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m45s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 45s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 25s
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m45s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 45s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 25s
This commit is contained in:
300
backend/src/landmarks/cluster_manager.py
Normal file
300
backend/src/landmarks/cluster_manager.py
Normal file
@@ -0,0 +1,300 @@
|
||||
"""Find clusters of interest to add more general areas of visit to the tour."""
|
||||
import logging
|
||||
from typing import Literal, Tuple
|
||||
|
||||
import numpy as np
|
||||
from sklearn.cluster import DBSCAN
|
||||
from pydantic import BaseModel
|
||||
|
||||
from ..overpass.overpass import Overpass, get_base_info
|
||||
from ..structs.landmark import Landmark
|
||||
from ..utils.get_time_distance import get_distance
|
||||
from ..utils.bbox import create_bbox
|
||||
|
||||
|
||||
|
||||
# silence the overpass logger
|
||||
logging.getLogger('Overpass').setLevel(level=logging.CRITICAL)
|
||||
|
||||
|
||||
class Cluster(BaseModel):
|
||||
""""
|
||||
A class representing an interesting area for shopping or sightseeing.
|
||||
|
||||
It can represent either a general area or a specifc route with start and end point.
|
||||
The importance represents the number of shops found in this cluster.
|
||||
|
||||
Attributes:
|
||||
type : either a 'street' or 'area' (representing a denser field of shops).
|
||||
importance : size of the cluster (number of points).
|
||||
centroid : center of the cluster.
|
||||
start : if the type is a street it goes from here...
|
||||
end : ...to here
|
||||
"""
|
||||
type: Literal['street', 'area']
|
||||
importance: int
|
||||
centroid: Tuple[float, float]
|
||||
# start: Optional[list] = None # for later use if we want to have streets as well
|
||||
# end: Optional[list] = None
|
||||
|
||||
|
||||
class ClusterManager:
|
||||
"""
|
||||
A manager responsible for clustering points of interest, such as shops or historic sites,
|
||||
to identify areas worth visiting. It uses the DBSCAN algorithm to detect clusters
|
||||
based on a set of points retrieved from OpenStreetMap (OSM).
|
||||
|
||||
Attributes:
|
||||
logger (logging.Logger): Logger for capturing relevant events and errors.
|
||||
valid (bool): Indicates whether clusters were successfully identified.
|
||||
all_points (list): All points retrieved from OSM, representing locations of interest.
|
||||
cluster_points (list): Points identified as part of a cluster.
|
||||
cluster_labels (list): Labels corresponding to the clusters each point belongs to.
|
||||
cluster_type (Literal['sightseeing', 'shopping']): Type of clustering, either for sightseeing
|
||||
landmarks or shopping areas.
|
||||
"""
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# NOTE: all points are in (lat, lon) format
|
||||
valid: bool # Ensure the manager is valid (ie there are some clusters to be found)
|
||||
all_points: list
|
||||
cluster_points: list
|
||||
cluster_labels: list
|
||||
cluster_type: Literal['sightseeing', 'shopping']
|
||||
|
||||
def __init__(self, bbox: tuple, cluster_type: Literal['sightseeing', 'shopping']) -> None:
|
||||
"""
|
||||
Upon intialization, generate the point cloud used for cluster detection.
|
||||
The points represent bag/clothes shops and general boutiques.
|
||||
If the first step is successful, it applies the DBSCAN clustering algorithm with different
|
||||
parameters depending on the size of the city (number of points).
|
||||
It filters out noise points and keeps only the largest clusters.
|
||||
|
||||
A successful initialization updates:
|
||||
- `self.cluster_points`: The points belonging to clusters.
|
||||
- `self.cluster_labels`: The labels for the points in clusters.
|
||||
|
||||
The method also calls `filter_clusters()` to retain only the largest clusters.
|
||||
|
||||
Args:
|
||||
bbox: The bounding box coordinates (around:radius, center_lat, center_lon).
|
||||
"""
|
||||
# Setup the caching in the Overpass class.
|
||||
self.overpass = Overpass()
|
||||
|
||||
self.cluster_type = cluster_type
|
||||
if cluster_type == 'shopping' :
|
||||
osm_types = ['node']
|
||||
sel = '"shop"~"^(bag|boutique|clothes)$"'
|
||||
out = 'ids center'
|
||||
elif cluster_type == 'sightseeing' :
|
||||
osm_types = ['way']
|
||||
sel = '"historic"~"^(monument|building|yes)$"'
|
||||
out = 'ids center'
|
||||
else :
|
||||
raise NotImplementedError("Please choose only an available option for cluster detection")
|
||||
|
||||
# Initialize the points for cluster detection
|
||||
try:
|
||||
result = self.overpass.send_query(
|
||||
bbox = bbox,
|
||||
osm_types = osm_types,
|
||||
selector = sel,
|
||||
out = out
|
||||
)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching clusters: {e}")
|
||||
|
||||
if result is None :
|
||||
self.logger.debug(f"Found no {cluster_type} clusters, overpass query returned no datapoints.")
|
||||
self.valid = False
|
||||
|
||||
else :
|
||||
points = []
|
||||
for elem in result:
|
||||
osm_type = elem.get('type')
|
||||
|
||||
# Get coordinates and append them to the points list
|
||||
_, coords = get_base_info(elem, osm_type)
|
||||
if coords is not None :
|
||||
points.append(coords)
|
||||
|
||||
if points :
|
||||
self.all_points = np.array(points)
|
||||
|
||||
# Apply DBSCAN to find clusters. Choose different settings for different cities.
|
||||
if self.cluster_type == 'shopping' and len(self.all_points) > 200 :
|
||||
dbscan = DBSCAN(eps=0.00118, min_samples=15, algorithm='kd_tree') # for large cities
|
||||
elif self.cluster_type == 'sightseeing' :
|
||||
dbscan = DBSCAN(eps=0.0025, min_samples=15, algorithm='kd_tree') # for historic neighborhoods
|
||||
else :
|
||||
dbscan = DBSCAN(eps=0.00075, min_samples=10, algorithm='kd_tree') # for small cities
|
||||
|
||||
labels = dbscan.fit_predict(self.all_points)
|
||||
|
||||
# Check that there are is least 1 cluster
|
||||
if len(set(labels)) > 1 :
|
||||
self.logger.info(f"Found {len(set(labels))} different {cluster_type} clusters.")
|
||||
# Separate clustered points and noise points
|
||||
self.cluster_points = self.all_points[labels != -1]
|
||||
self.cluster_labels = labels[labels != -1]
|
||||
self.filter_clusters() # ValueError here sometimes. I dont know why. # Filter the clusters to keep only the largest ones.
|
||||
self.valid = True
|
||||
|
||||
else :
|
||||
self.logger.info(f"Found 0 {cluster_type} clusters.")
|
||||
self.valid = False
|
||||
|
||||
else :
|
||||
self.logger.debug(f"Detected 0 {cluster_type} clusters.")
|
||||
self.valid = False
|
||||
|
||||
|
||||
def generate_clusters(self) -> list[Landmark]:
|
||||
"""
|
||||
Generate a list of landmarks based on identified clusters.
|
||||
|
||||
This method iterates over the different clusters, calculates the centroid
|
||||
(as the mean of the points within each cluster), and assigns an importance
|
||||
based on the size of the cluster.
|
||||
|
||||
The generated shopping locations are stored in `self.clusters`
|
||||
as a list of `Cluster` objects, each with:
|
||||
- `type`: Set to 'area'.
|
||||
- `centroid`: The calculated centroid of the cluster.
|
||||
- `importance`: The number of points in the cluster.
|
||||
"""
|
||||
|
||||
if not self.valid :
|
||||
return [] # Return empty list if no clusters were found
|
||||
|
||||
locations = []
|
||||
|
||||
# loop through the different clusters
|
||||
for label in set(self.cluster_labels):
|
||||
|
||||
# Extract points belonging to the current cluster
|
||||
current_cluster = self.cluster_points[self.cluster_labels == label]
|
||||
|
||||
# Calculate the centroid as the mean of the points
|
||||
centroid = np.mean(current_cluster, axis=0)
|
||||
centroid = tuple((round(centroid[0], 7), round(centroid[1], 7)))
|
||||
|
||||
if self.cluster_type == 'shopping' :
|
||||
score = len(current_cluster)*3
|
||||
else :
|
||||
score = len(current_cluster)*15
|
||||
locations.append(Cluster(
|
||||
type='area',
|
||||
centroid=centroid,
|
||||
importance = score
|
||||
))
|
||||
|
||||
# Transform the locations in landmarks and return the list
|
||||
cluster_landmarks = []
|
||||
for cluster in locations :
|
||||
cluster_landmarks.append(self.create_landmark(cluster))
|
||||
|
||||
return cluster_landmarks
|
||||
|
||||
|
||||
def create_landmark(self, cluster: Cluster) -> Landmark:
|
||||
"""
|
||||
Create a Landmark object based on the given shopping location.
|
||||
|
||||
This method queries the Overpass API for nearby neighborhoods and shopping malls
|
||||
within a 1000m radius around the shopping location centroid. It selects the closest
|
||||
result and creates a landmark with the associated details such as name, type, and OSM ID.
|
||||
|
||||
Parameters:
|
||||
shopping_location (Cluster): A Cluster object containing
|
||||
the centroid and importance of the area.
|
||||
|
||||
Returns:
|
||||
Landmark: A Landmark object containing details such as the name, type,
|
||||
location, attractiveness, and OSM details.
|
||||
"""
|
||||
|
||||
# Define the bounding box for a given radius around the coordinates
|
||||
bbox = create_bbox(cluster.centroid, 300)
|
||||
|
||||
# Query neighborhoods and shopping malls
|
||||
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"']
|
||||
|
||||
if self.cluster_type == 'shopping' :
|
||||
selectors.append('"shop"="mall"')
|
||||
new_name = 'Shopping Area'
|
||||
t = 30
|
||||
else :
|
||||
new_name = 'Neighborhood'
|
||||
t = 20
|
||||
|
||||
min_dist = float('inf')
|
||||
osm_id = 0
|
||||
osm_type = 'node'
|
||||
osm_types = ['node', 'way', 'relation']
|
||||
|
||||
for sel in selectors :
|
||||
try:
|
||||
result = self.overpass.send_query(bbox = bbox,
|
||||
osm_types = osm_types,
|
||||
selector = sel,
|
||||
out = 'ids center tags'
|
||||
)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching clusters: {e}")
|
||||
continue
|
||||
|
||||
if result is None :
|
||||
self.logger.error(f"Error fetching clusters: {e}")
|
||||
continue
|
||||
|
||||
for elem in result:
|
||||
# Get basic info
|
||||
id, coords, name = get_base_info(elem, elem.get('type'), with_name=True)
|
||||
if name is None or coords is None :
|
||||
continue
|
||||
|
||||
d = get_distance(cluster.centroid, coords)
|
||||
if d < min_dist :
|
||||
min_dist = d
|
||||
new_name = name # add name
|
||||
osm_type = elem.get('type') # add type: 'way' or 'relation'
|
||||
osm_id = id # add OSM id
|
||||
|
||||
return Landmark(
|
||||
name=new_name,
|
||||
type=self.cluster_type,
|
||||
location=cluster.centroid, # later: use the fact the we can also recognize streets.
|
||||
attractiveness=cluster.importance,
|
||||
n_tags=0,
|
||||
osm_id=osm_id,
|
||||
osm_type=osm_type,
|
||||
duration=t
|
||||
)
|
||||
|
||||
|
||||
def filter_clusters(self):
|
||||
"""
|
||||
Filter clusters to retain only the 5 largest clusters by point count.
|
||||
|
||||
This method calculates the size of each cluster and filters out all but the
|
||||
5 largest clusters. It then updates the cluster points and labels to reflect
|
||||
only those from the top 5 clusters.
|
||||
"""
|
||||
label_counts = np.bincount(self.cluster_labels)
|
||||
|
||||
# Step 3: Get the indices (labels) of the 5 largest clusters
|
||||
top_5_labels = np.argsort(label_counts)[-5:] # Get the largest 5 clusters
|
||||
|
||||
# Step 4: Filter points to keep only the points in the top 5 clusters
|
||||
filtered_cluster_points = []
|
||||
filtered_cluster_labels = []
|
||||
|
||||
for label in top_5_labels:
|
||||
filtered_cluster_points.append(self.cluster_points[self.cluster_labels == label])
|
||||
filtered_cluster_labels.append(np.full((label_counts[label],), label)) # Replicate the label
|
||||
|
||||
# update the cluster points and labels with the filtered data
|
||||
self.cluster_points = np.vstack(filtered_cluster_points) # ValueError here
|
||||
self.cluster_labels = np.concatenate(filtered_cluster_labels)
|
409
backend/src/landmarks/landmarks_manager.py
Normal file
409
backend/src/landmarks/landmarks_manager.py
Normal file
@@ -0,0 +1,409 @@
|
||||
"""Module used to import data from OSM and arrange them in categories."""
|
||||
import logging
|
||||
import yaml
|
||||
|
||||
from ..structs.preferences import Preferences
|
||||
from ..structs.landmark import Landmark
|
||||
from ..utils.take_most_important import take_most_important
|
||||
from .cluster_manager import ClusterManager
|
||||
from ..overpass.overpass import Overpass, get_base_info
|
||||
from ..utils.bbox import create_bbox
|
||||
|
||||
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH
|
||||
|
||||
|
||||
class LandmarkManager:
|
||||
"""
|
||||
Use this to manage landmarks.
|
||||
Uses the overpass api to fetch landmarks and classify them.
|
||||
"""
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
radius_close_to: int # radius in meters
|
||||
church_coeff: float # coeff to adjsut score of churches
|
||||
nature_coeff: float # coeff to adjust score of parks
|
||||
overall_coeff: float # coeff to adjust weight of tags
|
||||
n_important: int # number of important landmarks to consider
|
||||
|
||||
|
||||
def __init__(self) -> None:
|
||||
|
||||
with AMENITY_SELECTORS_PATH.open('r') as f:
|
||||
self.amenity_selectors = yaml.safe_load(f)
|
||||
|
||||
with LANDMARK_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
self.max_bbox_side = parameters['max_bbox_side']
|
||||
self.church_coeff = parameters['church_coeff']
|
||||
self.nature_coeff = parameters['nature_coeff']
|
||||
self.overall_coeff = parameters['overall_coeff']
|
||||
self.tag_exponent = parameters['tag_exponent']
|
||||
self.image_bonus = parameters['image_bonus']
|
||||
self.wikipedia_bonus = parameters['wikipedia_bonus']
|
||||
self.viewpoint_bonus = parameters['viewpoint_bonus']
|
||||
self.pay_bonus = parameters['pay_bonus']
|
||||
self.n_important = parameters['N_important']
|
||||
|
||||
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
self.walking_speed = parameters['average_walking_speed']
|
||||
self.detour_factor = parameters['detour_factor']
|
||||
|
||||
# Setup the caching in the Overpass class.
|
||||
self.overpass = Overpass()
|
||||
|
||||
self.logger.info('LandmakManager successfully initialized.')
|
||||
|
||||
|
||||
def generate_landmarks_list(self, center_coordinates: tuple[float, float], preferences: Preferences) -> tuple[list[Landmark], list[Landmark]]:
|
||||
"""
|
||||
Generate and prioritize a list of landmarks based on user preferences.
|
||||
|
||||
This method fetches landmarks from various categories (sightseeing, nature, shopping) based on the user's preferences
|
||||
and current location. It scores and corrects these landmarks, removes duplicates, and then selects the most important
|
||||
landmarks based on a predefined criterion.
|
||||
|
||||
Args:
|
||||
center_coordinates (tuple[float, float]): The latitude and longitude of the center location around which to search.
|
||||
preferences (Preferences): The user's preference settings that influence the landmark selection.
|
||||
|
||||
Returns:
|
||||
tuple[list[Landmark], list[Landmark]]:
|
||||
- A list of all existing landmarks.
|
||||
- A list of the most important landmarks based on the user's preferences.
|
||||
"""
|
||||
self.logger.debug('Starting to fetch landmarks...')
|
||||
max_walk_dist = int((preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor)
|
||||
radius = min(max_walk_dist, int(self.max_bbox_side/2))
|
||||
|
||||
# use set to avoid duplicates, this requires some __methods__ to be set in Landmark
|
||||
all_landmarks = set()
|
||||
|
||||
# Create a bbox using the around technique, tuple of strings
|
||||
bbox = create_bbox(center_coordinates, radius)
|
||||
|
||||
# list for sightseeing
|
||||
if preferences.sightseeing.score != 0:
|
||||
self.logger.debug('Fetching sightseeing landmarks...')
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, preferences.sightseeing.score)
|
||||
all_landmarks.update(current_landmarks)
|
||||
self.logger.info(f'Found {len(current_landmarks)} sightseeing landmarks')
|
||||
|
||||
# special pipeline for historic neighborhoods
|
||||
neighborhood_manager = ClusterManager(bbox, 'sightseeing')
|
||||
historic_clusters = neighborhood_manager.generate_clusters()
|
||||
all_landmarks.update(historic_clusters)
|
||||
|
||||
# list for nature
|
||||
if preferences.nature.score != 0:
|
||||
self.logger.debug('Fetching nature landmarks...')
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, preferences.nature.score)
|
||||
all_landmarks.update(current_landmarks)
|
||||
self.logger.info(f'Found {len(current_landmarks)} nature landmarks')
|
||||
|
||||
|
||||
# list for shopping
|
||||
if preferences.shopping.score != 0:
|
||||
self.logger.debug('Fetching shopping landmarks...')
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, preferences.shopping.score)
|
||||
self.logger.info(f'Found {len(current_landmarks)} shopping landmarks')
|
||||
|
||||
# set time for all shopping activites :
|
||||
for landmark in current_landmarks :
|
||||
landmark.duration = 30
|
||||
all_landmarks.update(current_landmarks)
|
||||
|
||||
# special pipeline for shopping malls
|
||||
shopping_manager = ClusterManager(bbox, 'shopping')
|
||||
shopping_clusters = shopping_manager.generate_clusters()
|
||||
all_landmarks.update(shopping_clusters)
|
||||
|
||||
|
||||
landmarks_constrained = take_most_important(all_landmarks, self.n_important)
|
||||
# self.logger.info(f'All landmarks generated : {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.')
|
||||
|
||||
return all_landmarks, landmarks_constrained
|
||||
|
||||
def set_landmark_score(self, landmark: Landmark, landmarktype: str, preference_level: int) :
|
||||
"""
|
||||
Calculate and set the attractiveness score for a given landmark.
|
||||
|
||||
This method evaluates the landmark's attractiveness based on its properties
|
||||
(number of tags, presence of Wikipedia URL, image, website, and whether it's
|
||||
a place of worship) and adjusts the score using the user's preference level.
|
||||
|
||||
Args:
|
||||
landmark (Landmark): The landmark object to score.
|
||||
landmarktype (str): The type of the landmark (currently unused).
|
||||
preference_level (int): The user's preference level for this landmark type.
|
||||
"""
|
||||
score = landmark.n_tags**self.tag_exponent
|
||||
if landmark.wiki_url :
|
||||
score *= self.wikipedia_bonus
|
||||
if landmark.image_url :
|
||||
score *= self.image_bonus
|
||||
if landmark.website_url :
|
||||
score *= self.wikipedia_bonus
|
||||
if landmark.is_place_of_worship :
|
||||
score *= self.church_coeff
|
||||
if landmark.is_viewpoint :
|
||||
score *= self.viewpoint_bonus
|
||||
if landmarktype == 'nature' :
|
||||
score *= self.nature_coeff
|
||||
|
||||
landmark.attractiveness = int(score * preference_level * 2)
|
||||
|
||||
|
||||
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, preference_level: int) -> list[Landmark]:
|
||||
"""
|
||||
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
|
||||
|
||||
Args:
|
||||
bbox (tuple[float, float, float, float]): The bounding box coordinates (around:radius, center_lat, center_lon).
|
||||
amenity_selector (dict): The Overpass API query selector for the desired landmark type.
|
||||
landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping').
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of Landmark objects that were fetched and filtered based on the provided criteria.
|
||||
|
||||
Notes:
|
||||
- Landmarks are fetched using Overpass API queries.
|
||||
- Selectors are translated from the dictionary to the Overpass query format. (e.g., 'amenity'='place_of_worship')
|
||||
- Landmarks are filtered based on various conditions including tags and type.
|
||||
"""
|
||||
return_list = []
|
||||
|
||||
if landmarktype == 'nature' : query_conditions = None
|
||||
else : query_conditions = ['count_tags()>5']
|
||||
|
||||
# caution, when applying a list of selectors, overpass will search for elements that match ALL selectors simultaneously
|
||||
# we need to split the selectors into separate queries and merge the results
|
||||
for sel in dict_to_selector_list(amenity_selector):
|
||||
# self.logger.debug(f"Current selector: {sel}")
|
||||
|
||||
osm_types = ['way', 'relation']
|
||||
|
||||
if 'viewpoint' in sel :
|
||||
query_conditions = None
|
||||
osm_types.append('node')
|
||||
|
||||
# Send the overpass query
|
||||
try:
|
||||
result = self.overpass.send_query(
|
||||
bbox = bbox,
|
||||
osm_types = osm_types,
|
||||
selector = sel,
|
||||
conditions = query_conditions, # except for nature....
|
||||
out = 'ids center tags'
|
||||
)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {str(e)}")
|
||||
continue
|
||||
|
||||
return_list += self._to_landmarks(result, landmarktype, preference_level)
|
||||
|
||||
# self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
|
||||
|
||||
return return_list
|
||||
|
||||
|
||||
def _to_landmarks(self, elements: list, landmarktype, preference_level) -> list[Landmark]:
|
||||
"""
|
||||
Parse the Overpass API result and extract landmarks.
|
||||
|
||||
This method processes the JSON elements returned by the Overpass API and
|
||||
extracts landmarks of types 'node', 'way', and 'relation'. It retrieves
|
||||
relevant information such as name, coordinates, and tags, and converts them
|
||||
into Landmark objects.
|
||||
|
||||
Args:
|
||||
elements (list): The elements of json response from Overpass API.
|
||||
elem_type (str): The type of landmark (e.g., node, way, relation).
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of Landmark objects extracted from the JSON data.
|
||||
"""
|
||||
if elements is None :
|
||||
return []
|
||||
|
||||
landmarks = []
|
||||
for elem in elements:
|
||||
osm_type = elem.get('type')
|
||||
|
||||
id, coords, name = get_base_info(elem, osm_type, with_name=True)
|
||||
|
||||
if name is None or coords is None :
|
||||
continue
|
||||
|
||||
tags = elem.get('tags')
|
||||
|
||||
# Convert this to Landmark object
|
||||
landmark = Landmark(name=name,
|
||||
type=landmarktype,
|
||||
location=coords,
|
||||
osm_id=id,
|
||||
osm_type=osm_type,
|
||||
attractiveness=0,
|
||||
n_tags=len(tags))
|
||||
|
||||
# Browse through tags to add information to landmark.
|
||||
for key, value in tags.items():
|
||||
|
||||
# Skip this landmark if not suitable.
|
||||
if key == 'building:part' and value == 'yes' :
|
||||
break
|
||||
if 'disused:' in key :
|
||||
break
|
||||
if 'boundary:' in key :
|
||||
break
|
||||
if 'shop' in key and landmarktype != 'shopping' :
|
||||
break
|
||||
# if value == 'apartments' :
|
||||
# break
|
||||
|
||||
# Fill in the other attributes.
|
||||
if key == 'image' :
|
||||
landmark.image_url = value
|
||||
if key == 'website' :
|
||||
landmark.website_url = value
|
||||
if value == 'place_of_worship' :
|
||||
landmark.is_place_of_worship = True
|
||||
if key == 'wikipedia' :
|
||||
landmark.wiki_url = value
|
||||
if key == 'name:en' :
|
||||
landmark.name_en = value
|
||||
if 'building:' in key or 'pay' in key :
|
||||
landmark.n_tags -= 1
|
||||
|
||||
|
||||
# Set the duration.
|
||||
if value in ['museum', 'aquarium', 'planetarium'] :
|
||||
landmark.duration = 60
|
||||
elif value == 'viewpoint' :
|
||||
landmark.is_viewpoint = True
|
||||
landmark.duration = 10
|
||||
elif value == 'cathedral' :
|
||||
landmark.is_place_of_worship = False
|
||||
landmark.duration = 10
|
||||
|
||||
landmark.description, landmark.keywords = self.description_and_keywords(tags)
|
||||
self.set_landmark_score(landmark, landmarktype, preference_level)
|
||||
landmarks.append(landmark)
|
||||
|
||||
continue
|
||||
|
||||
|
||||
return landmarks
|
||||
|
||||
|
||||
def description_and_keywords(self, tags: dict):
|
||||
"""
|
||||
"""
|
||||
# Extract relevant fields
|
||||
name = tags.get('name')
|
||||
importance = tags.get('importance', None)
|
||||
n_visitors = tags.get('tourism:visitors', None)
|
||||
height = tags.get('height')
|
||||
place_type = self.get_place_type(tags)
|
||||
date = self.get_date(tags)
|
||||
|
||||
if place_type is None :
|
||||
return None, None
|
||||
|
||||
# Start the description.
|
||||
if importance is None :
|
||||
if len(tags.keys()) < 5 :
|
||||
return None, None
|
||||
elif len(tags.keys()) < 10 :
|
||||
description = f"{name} is a well known {place_type}."
|
||||
elif len(tags.keys()) < 17 :
|
||||
importance = 'national'
|
||||
description = f"{name} is a {place_type} of national importance."
|
||||
else :
|
||||
importance = 'international'
|
||||
description = f"{name} is an internationally famous {place_type}."
|
||||
else :
|
||||
description = f"{name} is a {place_type} of {importance} importance."
|
||||
|
||||
if height is not None and date is not None :
|
||||
description += f" This {place_type} was constructed in {date} and is ca. {height} meters high."
|
||||
elif height is not None :
|
||||
description += f" This {place_type} stands ca. {height} meters tall."
|
||||
elif date is not None:
|
||||
description += f" It was constructed in {date}."
|
||||
|
||||
# Format the visitor number
|
||||
if n_visitors is not None :
|
||||
n_visitors = int(n_visitors)
|
||||
if n_visitors < 1000000 :
|
||||
description += f" It welcomes {int(n_visitors/1000)} thousand visitors every year."
|
||||
else :
|
||||
description += f" It welcomes {round(n_visitors/1000000, 1)} million visitors every year."
|
||||
|
||||
# Set the keywords.
|
||||
keywords = {"importance": importance,
|
||||
"height": height,
|
||||
"place_type": place_type,
|
||||
"date": date}
|
||||
|
||||
return description, keywords
|
||||
|
||||
|
||||
def get_place_type(self, data):
|
||||
amenity = data.get('amenity', None)
|
||||
building = data.get('building', None)
|
||||
historic = data.get('historic', None)
|
||||
leisure = data.get('leisure')
|
||||
|
||||
if historic and historic != "yes":
|
||||
return historic
|
||||
if building and building not in ["yes", "civic", "government", "apartments", "residential", "commericial", "industrial", "retail", "religious", "public", "service"]:
|
||||
return building
|
||||
if amenity:
|
||||
return amenity
|
||||
if leisure:
|
||||
return leisure
|
||||
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_date(self, data):
|
||||
construction_date = data.get('construction_date', None)
|
||||
opening_date = data.get('opening_date', None)
|
||||
start_date = data.get('start_date', None)
|
||||
year_of_construction = data.get('year_of_construction', None)
|
||||
|
||||
# Prioritize based on availability
|
||||
if construction_date:
|
||||
return construction_date
|
||||
if start_date:
|
||||
return start_date
|
||||
if year_of_construction:
|
||||
return year_of_construction
|
||||
if opening_date:
|
||||
return opening_date
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def dict_to_selector_list(d: dict) -> list:
|
||||
"""
|
||||
Convert a dictionary of key-value pairs to a list of Overpass query strings.
|
||||
|
||||
Args:
|
||||
d (dict): A dictionary of key-value pairs representing the selector.
|
||||
|
||||
Returns:
|
||||
list: A list of strings representing the Overpass query selectors.
|
||||
"""
|
||||
return_list = []
|
||||
for key, value in d.items():
|
||||
if isinstance(value, list):
|
||||
val = '|'.join(value)
|
||||
return_list.append(f'{key}~"^({val})$"')
|
||||
elif isinstance(value, str) and len(value) == 0:
|
||||
return_list.append(f'{key}')
|
||||
else:
|
||||
return_list.append(f'{key}={value}')
|
||||
return return_list
|
Reference in New Issue
Block a user