corrected symmetry cosntraint
This commit is contained in:
		| @@ -10,11 +10,44 @@ class landmark : | ||||
|         self.attractiveness = attractiveness | ||||
|         self.loc = loc | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| def untangle2(resx: list) : | ||||
|     N = len(resx)                   # length of res | ||||
|     L = int(np.sqrt(N))             # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def. | ||||
|     n_edges = resx.sum()      # number of edges | ||||
|  | ||||
|     order = [] | ||||
|     nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0] | ||||
|  | ||||
|     nonzero_tup = np.unravel_index(nonzeroind, (L,L)) | ||||
|  | ||||
|     indx = nonzero_tup[0].tolist() | ||||
|     indy = nonzero_tup[1].tolist() | ||||
|  | ||||
|     vert = (indx[0], indy[0]) | ||||
|  | ||||
|     order.append(vert[0]) | ||||
|     order.append(vert[1]) | ||||
|      | ||||
|     while len(order) < n_edges + 1 : | ||||
|         ind = indx.index(vert[1]) | ||||
|  | ||||
|         vert = (indx[ind], indy[ind]) | ||||
|  | ||||
|         order.append(vert[1]) | ||||
|  | ||||
|     return order | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| # Convert the result (edges from j to k like d_25 = edge between vertex 2 and vertex 5) into the list of indices corresponding to the landmarks | ||||
| def untangle(res: list) : | ||||
|     N = len(res)                # length of res | ||||
| def untangle(resx: list) : | ||||
|     N = len(resx)                # length of res | ||||
|     L = int(np.sqrt(N))         # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def. | ||||
|     n_landmarks = res.sum()     # number of visited landmarks | ||||
|     n_landmarks = resx.sum()     # number of edges | ||||
|     visit_order = [] | ||||
|     cnt = 0 | ||||
|  | ||||
| @@ -40,47 +73,67 @@ def untangle(res: list) : | ||||
|     return visit_order | ||||
|  | ||||
| # Just to print the result | ||||
| def print_res(res: list, P) : | ||||
| def print_res(res: list, landmarks: list, P) : | ||||
|     X = abs(res.x) | ||||
|     order = untangle(X) | ||||
|  | ||||
|     N = int(np.sqrt(len(X))) | ||||
|     for i in range(N): | ||||
|         print(X[i*N:i*N+N]) | ||||
|  | ||||
|     order = untangle2(X) | ||||
|  | ||||
|     order_ideal = [0, 0, 0, 0, 0, 0, 1, 0] | ||||
|  | ||||
|     # print("Optimal value:", -res.fun)  # Minimization, so we negate to get the maximum | ||||
|     # print("Optimal point:", res.x) | ||||
|     # N = int(np.sqrt(len(X))) | ||||
|     # for i in range(N): | ||||
|     #     print(X[i*N:i*N+N]) | ||||
|     # print(order) | ||||
|      | ||||
|     #for i,x in enumerate(X) : X[i] = round(x,0) | ||||
|      | ||||
|     #print(order) | ||||
|  | ||||
|     if (X.sum()+1)**2 == len(X) :  | ||||
|         print('\nAll landmarks can be visited within max_steps, the following order is most likely not the fastest') | ||||
|     else : | ||||
|         print('Could not visit all the landmarks, the following order could be the fastest but not sure') | ||||
|     print("Order of visit :") | ||||
|     for i, elem in enumerate(landmarks) :  | ||||
|         if i in order : print('- ' + elem.name) | ||||
|     for idx in order :  | ||||
|         print('- ' + landmarks[idx].name) | ||||
|  | ||||
|     steps = path_length(P, abs(res.x)) | ||||
|     print("\nSteps walked : " + str(steps)) | ||||
|  | ||||
| # Constraint to use only the upper triangular indices for travel | ||||
| def break_sym(landmarks, A_eq, b_eq): | ||||
| # Constraint to not have d14 and d41 simultaneously | ||||
| def break_sym(landmarks, A_ub, b_ub): | ||||
|     L = len(landmarks) | ||||
|     l = [0]*L*L | ||||
|     for i in range(L) : | ||||
|         for j in range(L) : | ||||
|             if i >= j : | ||||
|                 l[j+i*L] = 1 | ||||
|     upper_ind = np.triu_indices(L,0,L) | ||||
|  | ||||
|     A_eq = np.vstack((A_eq,l)) | ||||
|     b_eq.append(0) | ||||
|     up_ind_x = upper_ind[0] | ||||
|     up_ind_y = upper_ind[1] | ||||
|  | ||||
|     return A_eq, b_eq | ||||
|     for i, _ in enumerate(up_ind_x) : | ||||
|         l = [0]*L*L | ||||
|         if up_ind_x[i] != up_ind_y[i] : | ||||
|             l[up_ind_x[i]*L + up_ind_y[i]] = 1 | ||||
|             l[up_ind_y[i]*L + up_ind_x[i]] = 1 | ||||
|  | ||||
|             A_ub = np.vstack((A_ub,l)) | ||||
|             b_ub.append(1) | ||||
|  | ||||
|             """for i in range(7): | ||||
|                 print(l[i*7:i*7+7]) | ||||
|             print("\n")""" | ||||
|  | ||||
|     return A_ub, b_ub | ||||
|  | ||||
| # Constraint to respect max number of travels | ||||
| def respect_number(landmarks, A_ub, b_ub): | ||||
|     h = [] | ||||
|     for i in range(len(landmarks)) : h.append([1]*len(landmarks)) | ||||
|     T = block_diag(*h) | ||||
|     """for l in T : | ||||
|         for i in range(7): | ||||
|             print(l[i*7:i*7+7]) | ||||
|         print("\n")""" | ||||
|     return np.vstack((A_ub, T)), b_ub + [1]*len(landmarks) | ||||
|  | ||||
| # Constraint to tie the problem together and have a connected path | ||||
| @@ -99,6 +152,10 @@ def respect_order(landmarks: list, A_eq, b_eq): | ||||
|             A_eq = np.vstack((A_eq,l)) | ||||
|             b_eq.append(0) | ||||
|  | ||||
|             for i in range(7): | ||||
|                 print(l[i*7:i*7+7]) | ||||
|             print("\n") | ||||
|  | ||||
|     return A_eq, b_eq | ||||
|  | ||||
| # Compute manhattan distance between 2 locations | ||||
| @@ -111,12 +168,19 @@ def manhattan_distance(loc1: tuple, loc2: tuple): | ||||
| def init_eq_not_stay(landmarks):  | ||||
|     L = len(landmarks) | ||||
|     l = [0]*L*L | ||||
|  | ||||
|  | ||||
|     for i in range(L) : | ||||
|         for j in range(L) : | ||||
|             if j == i : | ||||
|                 l[j + i*L] = 1 | ||||
|     l[L-1] = 1      # cannot skip from start to finish | ||||
|     #A_eq = np.array([np.array(xi) for xi in A_eq])                  # Must convert A_eq into an np array | ||||
|     l = np.array(np.array(l)) | ||||
|  | ||||
|     """for i in range(7): | ||||
|         print(l[i*7:i*7+7])""" | ||||
|  | ||||
|     return [l], [0] | ||||
|  | ||||
| # Initialize A and c. Compute the distances from all landmarks to each other and store attractiveness | ||||
| @@ -135,24 +199,37 @@ def init_ub_dist(landmarks: list, max_steps: int): | ||||
|     c = c*len(landmarks) | ||||
|     A_ub = [] | ||||
|     for line in A : | ||||
|         #print(line) | ||||
|         A_ub += line | ||||
|     return c, A_ub, [max_steps] | ||||
|  | ||||
| # Go through the landmarks and force the optimizer to use landmarks where attractiveness is set to -1 | ||||
| def respect_user_mustsee(landmarks: list, A_eq: list, b_eq: list) : | ||||
|     L = len(landmarks) | ||||
|     H = 0       # sort of heuristic to get an idea of the number of steps needed | ||||
|     for i in landmarks :  | ||||
|         if i.name == "départ" : elem_prev = i              # list of all matches | ||||
|     for i, elem in enumerate(landmarks) : | ||||
|         if elem.attractiveness == -1 : | ||||
|             l = [0]*L*L | ||||
|             if elem.name != "arrivée" : | ||||
|                 for j in range(L) : | ||||
|                     l[j +i*L] = 1 | ||||
|                      | ||||
|             else :                          # This ensures we go to goal | ||||
|                 for k in range(L-1) : | ||||
|                         l[k*L+L-1] = 1 | ||||
|                         l[k*L+L-1] = 1   | ||||
|  | ||||
|             H += manhattan_distance(elem.loc, elem_prev.loc) | ||||
|             elem_prev = elem | ||||
|  | ||||
|             """for i in range(7): | ||||
|                 print(l[i*7:i*7+7]) | ||||
|             print("\n")""" | ||||
|  | ||||
|             A_eq = np.vstack((A_eq,l)) | ||||
|             b_eq.append(1) | ||||
|     return A_eq, b_eq | ||||
|     return A_eq, b_eq, H | ||||
|  | ||||
| # Computes the path length given path matrix (dist_table) and a result | ||||
| def path_length(P: list, resx: list) : | ||||
| @@ -161,27 +238,30 @@ def path_length(P: list, resx: list) : | ||||
| # Initialize all landmarks (+ start and goal). Order matters here | ||||
| landmarks = [] | ||||
| landmarks.append(landmark("départ", -1, (0, 0))) | ||||
| landmarks.append(landmark("concorde", -1, (5,5))) | ||||
| landmarks.append(landmark("tour eiffel", 99, (1,1)))                           # PUT IN JSON | ||||
| landmarks.append(landmark("arc de triomphe", 99, (2,3))) | ||||
| landmarks.append(landmark("louvre", 70, (4,2))) | ||||
| landmarks.append(landmark("montmartre", 20, (0,2))) | ||||
| landmarks.append(landmark("tour eiffel", 99, (0,2)))                           # PUT IN JSON | ||||
| landmarks.append(landmark("arc de triomphe", 99, (0,4))) | ||||
| landmarks.append(landmark("louvre", 99, (0,6))) | ||||
| landmarks.append(landmark("montmartre", 99, (0,10))) | ||||
| landmarks.append(landmark("concorde", 99, (0,8))) | ||||
| landmarks.append(landmark("arrivée", -1, (0, 0))) | ||||
|  | ||||
|  | ||||
|  | ||||
| # CONSTRAINT TO RESPECT MAX NUMBER OF STEPS | ||||
| max_steps = 25 | ||||
| max_steps = 16 | ||||
|  | ||||
| # SET CONSTRAINTS FOR INEQUALITY | ||||
| c, A_ub, b_ub = init_ub_dist(landmarks, max_steps)              # Add the distances from each landmark to the other | ||||
| P = A_ub                                                        # store the paths for later. Needed to compute path length | ||||
| A_ub, b_ub = respect_number(landmarks, A_ub, b_ub)              # Respect max number of visits.  | ||||
|  | ||||
| # TODO : Problems with circular symmetry | ||||
| A_ub, b_ub = break_sym(landmarks, A_ub, b_ub)                  # break the symmetry. Only use the upper diagonal values | ||||
|  | ||||
| # SET CONSTRAINTS FOR EQUALITY | ||||
| A_eq, b_eq = init_eq_not_stay(landmarks)                       # Force solution not to stay in same place | ||||
| A_eq, b_eq = respect_user_mustsee(landmarks, A_eq, b_eq)       # Check if there are user_defined must_see. Also takes care of start/goal | ||||
| A_eq, b_eq = break_sym(landmarks, A_eq, b_eq)                  # break the symmetry. Only use the upper diagonal values | ||||
| A_eq, b_eq, H = respect_user_mustsee(landmarks, A_eq, b_eq)       # Check if there are user_defined must_see. Also takes care of start/goal | ||||
|  | ||||
| A_eq, b_eq = respect_order(landmarks, A_eq, b_eq)              # Respect order of visit (only works when max_steps is limiting factor) | ||||
|  | ||||
| # Bounds for variables (x can only be 0 or 1) | ||||
| @@ -192,10 +272,17 @@ res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, | ||||
|  | ||||
| # Raise error if no solution is found | ||||
| if not res.success : | ||||
|     raise ValueError("No solution has been found, please adapt your max steps") | ||||
|     print(f"No solution has been found within given timeframe.\nMinimum steps to visit all must_see is : {H}") | ||||
|     # Override the max_steps using the heuristic | ||||
|     for i, val in enumerate(b_ub) : | ||||
|         if val == max_steps : b_ub[i] = H | ||||
|  | ||||
|     # Solve problem again : | ||||
|     res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3) | ||||
|  | ||||
|  | ||||
| # Print result | ||||
| print_res(res, P) | ||||
| print_res(res, landmarks, P) | ||||
|  | ||||
|  | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user