better timing
All checks were successful
Build and push docker image / Build (pull_request) Successful in 1m49s
Build and release APK / Build APK (pull_request) Successful in 5m3s

This commit is contained in:
Kilian PC 2024-09-10 18:12:17 +02:00
parent d1c53e08bb
commit 1ade92aed3
4 changed files with 9 additions and 9 deletions

View File

@ -2,5 +2,5 @@ detour_factor: 1.4
detour_corridor_width: 300
average_walking_speed: 4.8
max_landmarks: 10
max_landmarks_refiner: 20
overshoot: 1.4
max_landmarks_refiner: 30
overshoot: 1.8

View File

@ -24,8 +24,8 @@ def test(start_coords: tuple[float, float], finish_coords: tuple[float, float] =
nature=Preference(type='nature', score = 5),
shopping=Preference(type='shopping', score = 5),
max_time_minute=180,
detour_tolerance_minute=10
max_time_minute=100,
detour_tolerance_minute=0
)
# Create start and finish
@ -63,7 +63,7 @@ def test(start_coords: tuple[float, float], finish_coords: tuple[float, float] =
logger.info("Optimized route : ")
for l in linked_tour :
logger.info(f"{l}")
logger.info(f"Estimated length of tour : {linked_tour.total_time}")
logger.info(f"Estimated length of tour : {linked_tour.total_time} mintutes and visiting {len(linked_tour._landmarks)} landmarks.")
# with open('linked_tour.yaml', 'w') as f:
# yaml.dump(linked_tour.asdict(), f)
@ -74,6 +74,6 @@ def test(start_coords: tuple[float, float], finish_coords: tuple[float, float] =
# test(tuple((48.8344400, 2.3220540))) # Café Chez César
# test(tuple((48.8375946, 2.2949904))) # Point random
# test(tuple((47.377859, 8.540585))) # Zurich HB
test(tuple((45.758217, 4.831814))) # Lyon Bellecour
# test(tuple((48.5848435, 7.7332974))) # Strasbourg Gare
# test(tuple((45.758217, 4.831814))) # Lyon Bellecour
test(tuple((48.5848435, 7.7332974))) # Strasbourg Gare
# test(tuple((48.2067858, 16.3692340))) # Vienne

View File

@ -195,7 +195,7 @@ class Optimizer:
for j, spot2 in enumerate(landmarks) :
t = get_time(spot1.location, spot2.location) + spot1.duration
dist_table[j] = t
closest = sorted(dist_table)[:20]
closest = sorted(dist_table)[:25]
for i, dist in enumerate(dist_table) :
if dist not in closest :
dist_table[i] = 32700

View File

@ -214,7 +214,7 @@ class Refiner :
if self.is_in_area(area, landmark.location) and landmark.name not in visited_names:
second_order_landmarks.append(landmark)
return take_most_important.take_most_important(second_order_landmarks, len(visited_landmarks))
return take_most_important.take_most_important(second_order_landmarks, int(self.max_landmarks_refiner*0.75))
# Try fix the shortest path using shapely