style corrections, documentation, duplicate removal, flow improvement
This commit is contained in:
365
backend/src/utils/landmarks_manager.py
Normal file
365
backend/src/utils/landmarks_manager.py
Normal file
@@ -0,0 +1,365 @@
|
||||
import math as m
|
||||
import yaml
|
||||
import logging
|
||||
|
||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
||||
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
||||
from pywikibot import ItemPage, Site
|
||||
from pywikibot import config
|
||||
config.put_throttle = 0
|
||||
config.maxlag = 0
|
||||
|
||||
from structs.preferences import Preferences, Preference
|
||||
from structs.landmark import Landmark
|
||||
from .take_most_important import take_most_important
|
||||
import constants
|
||||
|
||||
|
||||
SIGHTSEEING = 'sightseeing'
|
||||
NATURE = 'nature'
|
||||
SHOPPING = 'shopping'
|
||||
|
||||
|
||||
|
||||
class LandmarkManager:
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
city_bbox_side: int # bbox side in meters
|
||||
radius_close_to: int # radius in meters
|
||||
church_coeff: float # coeff to adjsut score of churches
|
||||
park_coeff: float # coeff to adjust score of parks
|
||||
tag_coeff: float # coeff to adjust weight of tags
|
||||
N_important: int # number of important landmarks to consider
|
||||
|
||||
|
||||
def __init__(self) -> None:
|
||||
|
||||
with constants.AMENITY_SELECTORS_PATH.open('r') as f:
|
||||
self.amenity_selectors = yaml.safe_load(f)
|
||||
|
||||
with constants.LANDMARK_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
self.city_bbox_side = parameters['city_bbox_side']
|
||||
self.radius_close_to = parameters['radius_close_to']
|
||||
self.church_coeff = parameters['church_coeff']
|
||||
self.park_coeff = parameters['park_coeff']
|
||||
self.tag_coeff = parameters['tag_coeff']
|
||||
self.N_important = parameters['N_important']
|
||||
|
||||
self.overpass = Overpass()
|
||||
CachingStrategy.use(JSON, cacheDir=constants.OSM_CACHE_DIR)
|
||||
|
||||
|
||||
def generate_landmarks_list(self, center_coordinates: tuple[float, float], preferences: Preferences) -> tuple[list[Landmark], list[Landmark]]:
|
||||
"""
|
||||
Generate and prioritize a list of landmarks based on user preferences.
|
||||
|
||||
This method fetches landmarks from various categories (sightseeing, nature, shopping) based on the user's preferences
|
||||
and current location. It scores and corrects these landmarks, removes duplicates, and then selects the most important
|
||||
landmarks based on a predefined criterion.
|
||||
|
||||
Parameters:
|
||||
center_coordinates (tuple[float, float]): The latitude and longitude of the center location around which to search.
|
||||
preferences (Preferences): The user's preference settings that influence the landmark selection.
|
||||
|
||||
Returns:
|
||||
tuple[list[Landmark], list[Landmark]]:
|
||||
- A list of all existing landmarks.
|
||||
- A list of the most important landmarks based on the user's preferences.
|
||||
"""
|
||||
|
||||
L = []
|
||||
bbox = self.create_bbox(center_coordinates)
|
||||
# list for sightseeing
|
||||
if preferences.sightseeing.score != 0:
|
||||
score_function = lambda loc, n_tags: int((self.count_elements_close_to(loc) + ((n_tags**1.2)*self.tag_coeff) )*self.church_coeff)
|
||||
L1 = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], SIGHTSEEING, score_function)
|
||||
self.correct_score(L1, preferences.sightseeing)
|
||||
L += L1
|
||||
|
||||
# list for nature
|
||||
if preferences.nature.score != 0:
|
||||
score_function = lambda loc, n_tags: int((self.count_elements_close_to(loc) + ((n_tags**1.2)*self.tag_coeff) )*self.park_coeff)
|
||||
L2 = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], NATURE, score_function)
|
||||
self.correct_score(L2, preferences.nature)
|
||||
L += L2
|
||||
|
||||
# list for shopping
|
||||
if preferences.shopping.score != 0:
|
||||
score_function = lambda loc, n_tags: int(self.count_elements_close_to(loc) + ((n_tags**1.2)*self.tag_coeff))
|
||||
L3 = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], SHOPPING, score_function)
|
||||
self.correct_score(L3, preferences.shopping)
|
||||
L += L3
|
||||
|
||||
L = self.remove_duplicates(L)
|
||||
L_constrained = take_most_important(L, self.N_important)
|
||||
self.logger.info(f'Generated {len(L)} landmarks around {center_coordinates}, and constrained to {len(L_constrained)} most important ones.')
|
||||
|
||||
return L, L_constrained
|
||||
|
||||
|
||||
def remove_duplicates(self, landmarks: list[Landmark]) -> list[Landmark]:
|
||||
"""
|
||||
Removes duplicate landmarks based on their names from the given list. Only retains the landmark with highest score
|
||||
|
||||
Parameters:
|
||||
landmarks (list[Landmark]): A list of Landmark objects.
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of unique Landmark objects based on their names.
|
||||
"""
|
||||
|
||||
L_clean = []
|
||||
names = []
|
||||
|
||||
for landmark in landmarks:
|
||||
if landmark.name in names:
|
||||
continue
|
||||
else:
|
||||
names.append(landmark.name)
|
||||
L_clean.append(landmark)
|
||||
|
||||
return L_clean
|
||||
|
||||
|
||||
def correct_score(self, landmarks: list[Landmark], preference: Preference):
|
||||
"""
|
||||
Adjust the attractiveness score of each landmark in the list based on user preferences.
|
||||
|
||||
This method updates the attractiveness of each landmark by scaling it according to the user's preference score.
|
||||
The score adjustment is computed using a simple linear transformation based on the preference score.
|
||||
|
||||
Args:
|
||||
landmarks (list[Landmark]): A list of landmarks whose scores need to be corrected.
|
||||
preference (Preference): The user's preference settings that influence the attractiveness score adjustment.
|
||||
|
||||
Raises:
|
||||
TypeError: If the type of any landmark in the list does not match the expected type in the preference.
|
||||
"""
|
||||
|
||||
if len(landmarks) == 0:
|
||||
return
|
||||
|
||||
if landmarks[0].type != preference.type:
|
||||
raise TypeError(f"LandmarkType {preference.type} does not match the type of Landmark {landmarks[0].name}")
|
||||
|
||||
for elem in landmarks:
|
||||
elem.attractiveness = int(elem.attractiveness*preference.score/5) # arbitrary computation
|
||||
|
||||
|
||||
def count_elements_close_to(self, coordinates: tuple[float, float]) -> int:
|
||||
"""
|
||||
Count the number of OpenStreetMap elements (nodes, ways, relations) within a specified radius of the given location.
|
||||
|
||||
This function constructs a bounding box around the specified coordinates based on the radius. It then queries
|
||||
OpenStreetMap data to count the number of elements within that bounding box.
|
||||
|
||||
Args:
|
||||
coordinates (tuple[float, float]): The latitude and longitude of the location to search around.
|
||||
|
||||
Returns:
|
||||
int: The number of elements (nodes, ways, relations) within the specified radius. Returns 0 if no elements
|
||||
are found or if an error occurs during the query.
|
||||
"""
|
||||
|
||||
lat = coordinates[0]
|
||||
lon = coordinates[1]
|
||||
|
||||
radius = self.radius_close_to
|
||||
|
||||
alpha = (180*radius) / (6371000*m.pi)
|
||||
bbox = {'latLower':lat-alpha,'lonLower':lon-alpha,'latHigher':lat+alpha,'lonHigher': lon+alpha}
|
||||
|
||||
# Build the query to find elements within the radius
|
||||
radius_query = overpassQueryBuilder(
|
||||
bbox=[bbox['latLower'],
|
||||
bbox['lonLower'],
|
||||
bbox['latHigher'],
|
||||
bbox['lonHigher']],
|
||||
elementType=['node', 'way', 'relation']
|
||||
)
|
||||
|
||||
try:
|
||||
radius_result = self.overpass.query(radius_query)
|
||||
N_elem = radius_result.countWays() + radius_result.countRelations()
|
||||
self.logger.debug(f"There are {N_elem} ways/relations within 50m")
|
||||
if N_elem is None:
|
||||
return 0
|
||||
return N_elem
|
||||
except:
|
||||
return 0
|
||||
|
||||
|
||||
def create_bbox(self, coordinates: tuple[float, float]) -> tuple[float, float, float, float]:
|
||||
"""
|
||||
Create a bounding box around the given coordinates.
|
||||
|
||||
Args:
|
||||
coordinates (tuple[float, float]): The latitude and longitude of the center of the bounding box.
|
||||
|
||||
Returns:
|
||||
tuple[float, float, float, float]: The minimum latitude, minimum longitude, maximum latitude, and maximum longitude
|
||||
defining the bounding box.
|
||||
"""
|
||||
|
||||
lat = coordinates[0]
|
||||
lon = coordinates[1]
|
||||
|
||||
# Half the side length in km (since it's a square bbox)
|
||||
half_side_length_km = self.city_bbox_side / 2 / 1000
|
||||
|
||||
# Convert distance to degrees
|
||||
lat_diff = half_side_length_km / 111 # 1 degree latitude is approximately 111 km
|
||||
lon_diff = half_side_length_km / (111 * m.cos(m.radians(lat))) # Adjust for longitude based on latitude
|
||||
|
||||
# Calculate bbox
|
||||
min_lat = lat - lat_diff
|
||||
max_lat = lat + lat_diff
|
||||
min_lon = lon - lon_diff
|
||||
max_lon = lon + lon_diff
|
||||
|
||||
return min_lat, min_lon, max_lat, max_lon
|
||||
|
||||
|
||||
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]:
|
||||
"""
|
||||
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
|
||||
|
||||
Args:
|
||||
bbox (tuple[float, float, float, float]): The bounding box coordinates (min_lat, min_lon, max_lat, max_lon).
|
||||
amenity_selector (dict): The Overpass API query selector for the desired landmark type.
|
||||
landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping').
|
||||
score_function (callable): The function to compute the score of the landmark based on its attributes.
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of Landmark objects that were fetched and filtered based on the provided criteria.
|
||||
|
||||
Notes:
|
||||
- Landmarks are fetched using Overpass API queries.
|
||||
- Selectors are translated from the dictionary to the Overpass query format. (e.g., 'amenity'='place_of_worship')
|
||||
- Landmarks are filtered based on various conditions including tags and type.
|
||||
- Scores are assigned to landmarks based on their attributes and surrounding elements.
|
||||
"""
|
||||
return_list = []
|
||||
|
||||
# caution, when applying a list of selectors, overpass will search for elements that match ALL selectors simultaneously
|
||||
# we need to split the selectors into separate queries and merge the results
|
||||
for sel in dict_to_selector_list(amenity_selector):
|
||||
self.logger.debug(f"Current selector: {sel}")
|
||||
query = overpassQueryBuilder(
|
||||
bbox = bbox,
|
||||
elementType = ['way', 'relation'],
|
||||
selector = sel,
|
||||
# conditions = [],
|
||||
includeCenter = True,
|
||||
out = 'body'
|
||||
)
|
||||
|
||||
try:
|
||||
result = self.overpass.query(query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
return
|
||||
|
||||
for elem in result.elements():
|
||||
|
||||
name = elem.tag('name') # Add name
|
||||
location = (elem.centerLat(), elem.centerLon()) # Add coordinates (lat, lon)
|
||||
|
||||
# TODO: exclude these from the get go
|
||||
# skip if unprecise location
|
||||
if name is None or location[0] is None:
|
||||
continue
|
||||
|
||||
# skip if unused
|
||||
if 'disused:leisure' in elem.tags().keys():
|
||||
continue
|
||||
|
||||
# skip if part of another building
|
||||
if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes':
|
||||
continue
|
||||
|
||||
osm_type = elem.type() # Add type: 'way' or 'relation'
|
||||
osm_id = elem.id() # Add OSM id
|
||||
elem_type = landmarktype # Add the landmark type as 'sightseeing,
|
||||
n_tags = len(elem.tags().keys()) # Add number of tags
|
||||
|
||||
# remove specific tags
|
||||
skip = False
|
||||
for tag in elem.tags().keys():
|
||||
if "pay" in tag:
|
||||
n_tags -= 1 # discard payment options for tags
|
||||
|
||||
if "disused" in tag:
|
||||
skip = True # skip disused amenities
|
||||
break
|
||||
|
||||
if "wikipedia" in tag:
|
||||
n_tags += 3 # wikipedia entries count more
|
||||
|
||||
if tag == "wikidata":
|
||||
Q = elem.tag('wikidata')
|
||||
site = Site("wikidata", "wikidata")
|
||||
item = ItemPage(site, Q)
|
||||
item.get()
|
||||
n_languages = len(item.labels)
|
||||
n_tags += n_languages/10
|
||||
|
||||
if elem_type != "nature":
|
||||
if "leisure" in tag and elem.tag('leisure') == "park":
|
||||
elem_type = "nature"
|
||||
|
||||
if landmarktype != SHOPPING:
|
||||
if "shop" in tag:
|
||||
skip = True
|
||||
break
|
||||
|
||||
if tag == "building" and elem.tag('building') in ['retail', 'supermarket', 'parking']:
|
||||
skip = True
|
||||
break
|
||||
|
||||
if skip:
|
||||
continue
|
||||
|
||||
score = score_function(location, n_tags)
|
||||
if score != 0:
|
||||
# Generate the landmark and append it to the list
|
||||
landmark = Landmark(
|
||||
name=name,
|
||||
type=elem_type,
|
||||
location=location,
|
||||
osm_type=osm_type,
|
||||
osm_id=osm_id,
|
||||
attractiveness=score,
|
||||
must_do=False,
|
||||
n_tags=int(n_tags)
|
||||
)
|
||||
return_list.append(landmark)
|
||||
|
||||
self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
|
||||
|
||||
return return_list
|
||||
|
||||
|
||||
|
||||
def dict_to_selector_list(d: dict) -> list:
|
||||
"""
|
||||
Convert a dictionary of key-value pairs to a list of Overpass query strings.
|
||||
|
||||
Args:
|
||||
d (dict): A dictionary of key-value pairs representing the selector.
|
||||
|
||||
Returns:
|
||||
list: A list of strings representing the Overpass query selectors.
|
||||
"""
|
||||
return_list = []
|
||||
for key, value in d.items():
|
||||
if type(value) == list:
|
||||
val = '|'.join(value)
|
||||
return_list.append(f'{key}~"{val}"')
|
||||
elif type(value) == str and len(value) == 0:
|
||||
return_list.append(f'{key}')
|
||||
else:
|
||||
return_list.append(f'{key}={value}')
|
||||
return return_list
|
Reference in New Issue
Block a user