Cleanup and created main
Some checks failed
Test code / Test code (push) Failing after 2s

This commit is contained in:
Kilian Scheidecker 2024-05-22 10:16:33 +02:00
parent 82a864e57f
commit 2b31ce5f6b
4 changed files with 100 additions and 115 deletions

Binary file not shown.

View File

@ -1,23 +1,26 @@
import fastapi
from dataclasses import dataclass
from optimizer import solve_optimization
from optimizer import landmark
def main():
# CONSTRAINT TO RESPECT MAX NUMBER OF STEPS
max_steps = 16
@dataclass
class Destination:
name: str
location: tuple
attractiveness: int
# Initialize all landmarks (+ start and goal). Order matters here
landmarks = []
landmarks.append(landmark("départ", -1, (0, 0)))
landmarks.append(landmark("tour eiffel", 99, (0,2))) # PUT IN JSON
landmarks.append(landmark("arc de triomphe", 99, (0,4)))
landmarks.append(landmark("louvre", 99, (0,6)))
landmarks.append(landmark("montmartre", 99, (0,10)))
landmarks.append(landmark("concorde", 99, (0,8)))
landmarks.append(landmark("arrivée", -1, (0, 0)))
visiting_order = solve_optimization(landmarks, max_steps, True)
d = Destination()
def get_route() -> list[Destination]:
return {"route": "Hello World"}
endpoint = ("/get_route", get_route)
end
if __name__ == "__main__":
fastapi.run()
main()

View File

@ -0,0 +1,23 @@
import fastapi
from dataclasses import dataclass
@dataclass
class Destination:
name: str
location: tuple
attractiveness: int
d = Destination()
def get_route() -> list[Destination]:
return {"route": "Hello World"}
endpoint = ("/get_route", get_route)
end
if __name__ == "__main__":
fastapi.run()

View File

@ -11,9 +11,8 @@ class landmark :
self.loc = loc
def untangle2(resx: list) :
# Convert the solution of the optimization into the list of edges to follow. Order is taken into account
def untangle(resx: list) :
N = len(resx) # length of res
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
n_edges = resx.sum() # number of edges
@ -40,65 +39,31 @@ def untangle2(resx: list) :
return order
# Convert the result (edges from j to k like d_25 = edge between vertex 2 and vertex 5) into the list of indices corresponding to the landmarks
def untangle(resx: list) :
N = len(resx) # length of res
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
n_landmarks = resx.sum() # number of edges
visit_order = []
cnt = 0
if n_landmarks % 2 == 1 : # if odd number of visited checkpoints
for i in range(L) :
for j in range(L) :
if res[i*L + j] == 1 : # if index is 1
cnt += 1 # increment counter
if cnt % 2 == 1 : # if counter odd
visit_order.append(i)
visit_order.append(j)
else : # if even number of ones
for i in range(L) :
for j in range(L) :
if res[i*L + j] == 1 : # if index is one
cnt += 1 # increment counter
if j % (L-1) == 0 : # if last node
visit_order.append(j) # append only the last index
return visit_order # return
if cnt % 2 == 1 :
visit_order.append(i)
visit_order.append(j)
return visit_order
# Just to print the result
def print_res(res: list, landmarks: list, P) :
def print_res(res, landmarks: list, P) :
X = abs(res.x)
order = untangle(X)
N = int(np.sqrt(len(X)))
"""N = int(np.sqrt(len(X)))
for i in range(N):
print(X[i*N:i*N+N])
order = untangle2(X)
order_ideal = [0, 0, 0, 0, 0, 0, 1, 0]
# print("Optimal value:", -res.fun) # Minimization, so we negate to get the maximum
# print("Optimal point:", res.x)
#for i,x in enumerate(X) : X[i] = round(x,0)
#print(order)
print("Optimal value:", -res.fun) # Minimization, so we negate to get the maximum
print("Optimal point:", res.x)
for i,x in enumerate(X) : X[i] = round(x,0)
print(order)"""
if (X.sum()+1)**2 == len(X) :
print('\nAll landmarks can be visited within max_steps, the following order is most likely not the fastest')
print('\nAll landmarks can be visited within max_steps, the following order is suggested : ')
else :
print('Could not visit all the landmarks, the following order could be the fastest but not sure')
print("Order of visit :")
print('Could not visit all the landmarks, the following order is suggested : ')
for idx in order :
print('- ' + landmarks[idx].name)
steps = path_length(P, abs(res.x))
print("\nSteps walked : " + str(steps))
return order
# Checks for cases of circular symmetry in the result
def has_circle(resx: list) :
@ -164,8 +129,8 @@ def break_sym(landmarks, A_ub, b_ub):
return A_ub, b_ub
def prevent_circle(landmarks, A_ub, b_ub, circle) :
# Constraint to not have circular paths. Want to go from start -> finish without unconnected loops
def break_circle(landmarks, A_ub, b_ub, circle) :
N = len(landmarks)
l = [0]*N*N
@ -195,7 +160,7 @@ def respect_number(landmarks, A_ub, b_ub):
print("\n")"""
return np.vstack((A_ub, T)), b_ub + [1]*len(landmarks)
# Constraint to tie the problem together and have a connected path
# Constraint to tie the problem together. Necessary but not sufficient to avoid circles
def respect_order(landmarks: list, A_eq, b_eq):
N = len(landmarks)
for i in range(N-1) : # Prevent stacked ones
@ -294,68 +259,62 @@ def respect_user_mustsee(landmarks: list, A_eq: list, b_eq: list) :
def path_length(P: list, resx: list) :
return np.dot(P, resx)
# Initialize all landmarks (+ start and goal). Order matters here
landmarks = []
landmarks.append(landmark("départ", -1, (0, 0)))
landmarks.append(landmark("tour eiffel", 99, (0,2))) # PUT IN JSON
landmarks.append(landmark("arc de triomphe", 99, (0,4)))
landmarks.append(landmark("louvre", 99, (0,6)))
landmarks.append(landmark("montmartre", 99, (0,10)))
landmarks.append(landmark("concorde", 99, (0,8)))
landmarks.append(landmark("arrivée", -1, (0, 0)))
# Main optimization pipeline
def solve_optimization (landmarks, max_steps, printing) :
# SET CONSTRAINTS FOR INEQUALITY
c, A_ub, b_ub = init_ub_dist(landmarks, max_steps) # Add the distances from each landmark to the other
P = A_ub # store the paths for later. Needed to compute path length
A_ub, b_ub = respect_number(landmarks, A_ub, b_ub) # Respect max number of visits.
# TODO : Problems with circular symmetry
A_ub, b_ub = break_sym(landmarks, A_ub, b_ub) # break the symmetry. Only use the upper diagonal values
# CONSTRAINT TO RESPECT MAX NUMBER OF STEPS
max_steps = 16
# SET CONSTRAINTS FOR EQUALITY
A_eq, b_eq = init_eq_not_stay(landmarks) # Force solution not to stay in same place
A_eq, b_eq, H = respect_user_mustsee(landmarks, A_eq, b_eq) # Check if there are user_defined must_see. Also takes care of start/goal
# SET CONSTRAINTS FOR INEQUALITY
c, A_ub, b_ub = init_ub_dist(landmarks, max_steps) # Add the distances from each landmark to the other
P = A_ub # store the paths for later. Needed to compute path length
A_ub, b_ub = respect_number(landmarks, A_ub, b_ub) # Respect max number of visits.
A_eq, b_eq = respect_order(landmarks, A_eq, b_eq) # Respect order of visit (only works when max_steps is limiting factor)
# TODO : Problems with circular symmetry
A_ub, b_ub = break_sym(landmarks, A_ub, b_ub) # break the symmetry. Only use the upper diagonal values
# Bounds for variables (x can only be 0 or 1)
x_bounds = [(0, 1)] * len(c)
# SET CONSTRAINTS FOR EQUALITY
A_eq, b_eq = init_eq_not_stay(landmarks) # Force solution not to stay in same place
A_eq, b_eq, H = respect_user_mustsee(landmarks, A_eq, b_eq) # Check if there are user_defined must_see. Also takes care of start/goal
# Solve linear programming problem
A_eq, b_eq = respect_order(landmarks, A_eq, b_eq) # Respect order of visit (only works when max_steps is limiting factor)
# Bounds for variables (x can only be 0 or 1)
x_bounds = [(0, 1)] * len(c)
# Solve linear programming problem
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
circle = has_circle(res.x)
while len(circle) != 0 :
print("The solution has a circular path. Not interpretable.")
print("Need to add constraints until no circle ")
A_ub, b_ub = prevent_circle(landmarks, A_ub, b_ub, circle)
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
circle = has_circle(res.x)
i = 0
# Break the circular symmetry if needed
while len(circle) != 0 :
A_ub, b_ub = break_circle(landmarks, A_ub, b_ub, circle)
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
circle = has_circle(res.x)
i += 1
# Raise error if no solution is found
if not res.success :
# Raise error if no solution is found
if not res.success :
print(f"No solution has been found within given timeframe.\nMinimum steps to visit all must_see is : {H}")
# Override the max_steps using the heuristic
for i, val in enumerate(b_ub) :
if val == max_steps : b_ub[i] = H
# Override the max_steps using the heuristic
for i, val in enumerate(b_ub) :
if val == max_steps : b_ub[i] = H
# Solve problem again :
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
# Print result
print_res(res, landmarks, P)
# Solve problem again :
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
if not res.success :
raise ValueError("No solution could be found, even when increasing max_steps using the heuristic")
if printing is True :
if i != 0 :
print(f"Neded to recompute paths {i} times because of unconnected loops...")
X = print_res(res, landmarks, P)
return X
else :
return untangle(res.x)