permafixed the optimizer ???

This commit is contained in:
Helldragon67 2024-07-08 02:01:42 +02:00
parent 568e7bfbc4
commit 30ed2bb9ed
3 changed files with 80 additions and 62 deletions

View File

@ -8,5 +8,5 @@ geological
'tourism'='alpine_hut' 'tourism'='alpine_hut'
'tourism'='viewpoint' 'tourism'='viewpoint'
'tourism'='zoo' 'tourism'='zoo'
#'tourism'='artwork' 'tourism'='artwork'
'waterway'='waterfall' 'waterway'='waterfall'

View File

@ -31,7 +31,7 @@ def print_res(L: List[Landmark], L_tot):
# Prevent the use of a particular solution # Prevent the use of a particular solution
def prevent_config(resx, A_ub, b_ub): def prevent_config(resx):
for i, elem in enumerate(resx): for i, elem in enumerate(resx):
resx[i] = round(elem) resx[i] = round(elem)
@ -52,13 +52,10 @@ def prevent_config(resx, A_ub, b_ub):
if i in vertices_visited : if i in vertices_visited :
h[i*L:i*L+L] = ones h[i*L:i*L+L] = ones
A_ub = np.vstack((A_ub, h)) return h, [len(vertices_visited)-1]
b_ub.append(len(vertices_visited)-1)
return A_ub, b_ub
def prevent_circle(circle_vertices: list, L: int, A_eq: list, b_eq: list) : def prevent_circle(circle_vertices: list, L: int) :
l1 = [0]*L*L l1 = [0]*L*L
l2 = [0]*L*L l2 = [0]*L*L
@ -74,12 +71,7 @@ def prevent_circle(circle_vertices: list, L: int, A_eq: list, b_eq: list) :
l1[g*L + s] = 1 l1[g*L + s] = 1
l2[s*L + g] = 1 l2[s*L + g] = 1
A_eq = np.vstack((A_eq, l1)) return np.vstack((l1, l2)), [0, 0]
b_eq.append(0)
A_eq = np.vstack((A_eq, l2))
b_eq.append(0)
return A_eq, b_eq
# Prevent the possibility of a given solution bit # Prevent the possibility of a given solution bit
def break_circle(circle_vertices: list, L: int, A_ub: list, b_ub: list): def break_circle(circle_vertices: list, L: int, A_ub: list, b_ub: list):
@ -340,14 +332,16 @@ def init_ub_dist(landmarks: List[Landmark], max_steps: int):
# Constraint to respect only one travel per landmark. Also caps the total number of visited landmarks # Constraint to respect only one travel per landmark. Also caps the total number of visited landmarks
def respect_number(L: int, A_ub, b_ub, max_landmarks): def respect_number(L: int, max_landmarks: int):
ones = [1]*L ones = [1]*L
zeros = [0]*L zeros = [0]*L
for i in range(L) : A = ones + zeros*(L-1)
h = zeros*i + ones + zeros*(L-1-i) b = [1]
A_ub = np.vstack((A_ub, h)) for i in range(L-1) :
b_ub.append(1) h_new = zeros*i + ones + zeros*(L-1-i)
A = np.vstack((A, h_new))
b.append(1)
if max_landmarks is None : if max_landmarks is None :
# Read the parameters from the file # Read the parameters from the file
@ -355,29 +349,35 @@ def respect_number(L: int, A_ub, b_ub, max_landmarks):
parameters = json.loads(f.read()) parameters = json.loads(f.read())
max_landmarks = parameters['max landmarks'] max_landmarks = parameters['max landmarks']
A_ub = np.vstack((A_ub, ones*L)) A = np.vstack((A, ones*L))
b_ub.append(max_landmarks+1) b.append(max_landmarks+1)
return A_ub, b_ub return A, b
# Constraint to not have d14 and d41 simultaneously. Does not prevent circular symmetry with more elements # Constraint to not have d14 and d41 simultaneously. Does not prevent cyclic paths with more elements
def break_sym(L, A_ub, b_ub): def break_sym(L):
upper_ind = np.triu_indices(L,0,L) upper_ind = np.triu_indices(L,0,L)
up_ind_x = upper_ind[0] up_ind_x = upper_ind[0]
up_ind_y = upper_ind[1] up_ind_y = upper_ind[1]
for i, _ in enumerate(up_ind_x) : A = [0]*L*L # useless row to prevent overhead ? better solution welcomed
# A[up_ind_x[0]*L + up_ind_y[0]] = 1
# A[up_ind_y[0]*L + up_ind_x[0]] = 1
b = [1]
for i, _ in enumerate(up_ind_x[1:]) :
l = [0]*L*L l = [0]*L*L
if up_ind_x[i] != up_ind_y[i] : if up_ind_x[i] != up_ind_y[i] :
l[up_ind_x[i]*L + up_ind_y[i]] = 1 l[up_ind_x[i]*L + up_ind_y[i]] = 1
l[up_ind_y[i]*L + up_ind_x[i]] = 1 l[up_ind_y[i]*L + up_ind_x[i]] = 1
A_ub = np.vstack((A_ub,l)) A = np.vstack((A,l))
b_ub.append(1) b.append(1)
return A_ub, b_ub return A, b
# Constraint to not stay in position. Removes d11, d22, d33, etc. # Constraint to not stay in position. Removes d11, d22, d33, etc.
@ -395,22 +395,24 @@ def init_eq_not_stay(L: int):
# Go through the landmarks and force the optimizer to use landmarks where attractiveness is set to -1 # Go through the landmarks and force the optimizer to use landmarks where attractiveness is set to -1
def respect_user_mustsee(landmarks: List[Landmark], A_eq: list, b_eq: list) : def respect_user_mustsee(landmarks: List[Landmark]) :
L = len(landmarks) L = len(landmarks)
for i, elem in enumerate(landmarks) : A = [0]*L*L
b = [0]
for i, elem in enumerate(landmarks[1:]) :
if elem.must_do is True and elem.name not in ['finish', 'start']: if elem.must_do is True and elem.name not in ['finish', 'start']:
l = [0]*L*L l = [0]*L*L
l[i*L:i*L+L] = [1]*L # set mandatory departures from landmarks tagged as 'must_do' l[i*L:i*L+L] = [1]*L # set mandatory departures from landmarks tagged as 'must_do'
A_eq = np.vstack((A_eq,l)) A = np.vstack((A,l))
b_eq.append(1) b.append(1)
return A_eq, b_eq return A, b
# Constraint to ensure start at start and finish at goal # Constraint to ensure start at start and finish at goal
def respect_start_finish(L: int, A_eq: list, b_eq: list): def respect_start_finish(L: int):
l_start = [1]*L + [0]*L*(L-1) # sets departures only for start (horizontal ones) l_start = [1]*L + [0]*L*(L-1) # sets departures only for start (horizontal ones)
l_start[L-1] = 0 # prevents the jump from start to finish l_start[L-1] = 0 # prevents the jump from start to finish
l_goal = [0]*L*L # sets arrivals only for finish (vertical ones) l_goal = [0]*L*L # sets arrivals only for finish (vertical ones)
@ -421,32 +423,33 @@ def respect_start_finish(L: int, A_eq: list, b_eq: list):
l_goal[k*L+L-1] = 1 l_goal[k*L+L-1] = 1
A_eq = np.vstack((A_eq,l_start)) A = np.vstack((l_start, l_goal))
A_eq = np.vstack((A_eq,l_goal)) b = [1, 1]
A_eq = np.vstack((A_eq,l_L)) A = np.vstack((A,l_L))
b_eq.append(1) b.append(0)
b_eq.append(1)
b_eq.append(0)
return A_eq, b_eq return A, b
# Constraint to tie the problem together. Necessary but not sufficient to avoid circles # Constraint to tie the problem together. Necessary but not sufficient to avoid circles
def respect_order(N: int, A_eq, b_eq): def respect_order(L: int):
for i in range(N-1) : # Prevent stacked ones
if i == 0 or i == N-1: # Don't touch start or finish A = [0]*L*L # useless row to reduce overhead ? better solution is welcome
b = [0]
for i in range(L-1) : # Prevent stacked ones
if i == 0 or i == L-1: # Don't touch start or finish
continue continue
else : else :
l = [0]*N l = [0]*L
l[i] = -1 l[i] = -1
l = l*N l = l*L
for j in range(N) : for j in range(L) :
l[i*N + j] = 1 l[i*L + j] = 1
A_eq = np.vstack((A_eq,l)) A = np.vstack((A,l))
b_eq.append(0) b.append(0)
return A_eq, b_eq return A, b
# Computes the time to reach from each landmark to the next # Computes the time to reach from each landmark to the next
@ -515,14 +518,25 @@ def solve_optimization (landmarks :List[Landmark], max_steps: int, printing_deta
# SET CONSTRAINTS FOR INEQUALITY # SET CONSTRAINTS FOR INEQUALITY
c, A_ub, b_ub = init_ub_dist(landmarks, max_steps) # Add the distances from each landmark to the other c, A_ub, b_ub = init_ub_dist(landmarks, max_steps) # Add the distances from each landmark to the other
A_ub, b_ub = respect_number(L, A_ub, b_ub, max_landmarks) # Respect max number of visits (no more possible stops than landmarks). A, b = respect_number(L, max_landmarks) # Respect max number of visits (no more possible stops than landmarks).
A_ub, b_ub = break_sym(L, A_ub, b_ub) # break the 'zig-zag' symmetry A_ub = np.vstack((A_ub, A))
b_ub += b
A, b = break_sym(L) # break the 'zig-zag' symmetry
A_ub = np.vstack((A_ub, A))
b_ub += b
# SET CONSTRAINTS FOR EQUALITY # SET CONSTRAINTS FOR EQUALITY
A_eq, b_eq = init_eq_not_stay(L) # Force solution not to stay in same place A_eq, b_eq = init_eq_not_stay(L) # Force solution not to stay in same place
A_eq, b_eq = respect_user_mustsee(landmarks, A_eq, b_eq) # Check if there are user_defined must_see. Also takes care of start/goal A, b = respect_user_mustsee(landmarks) # Check if there are user_defined must_see. Also takes care of start/goal
A_eq, b_eq = respect_start_finish(L, A_eq, b_eq) # Force start and finish positions A_eq = np.vstack((A_eq, A))
A_eq, b_eq = respect_order(L, A_eq, b_eq) # Respect order of visit (only works when max_steps is limiting factor) b_eq += b
A, b = respect_start_finish(L) # Force start and finish positions
A_eq = np.vstack((A_eq, A))
b_eq += b
A, b = respect_order(L) # Respect order of visit (only works when max_steps is limiting factor)
A_eq = np.vstack((A_eq, A))
b_eq += b
# SET BOUNDS FOR DECISION VARIABLE (x can only be 0 or 1) # SET BOUNDS FOR DECISION VARIABLE (x can only be 0 or 1)
x_bounds = [(0, 1)]*L*L x_bounds = [(0, 1)]*L*L
@ -541,10 +555,14 @@ def solve_optimization (landmarks :List[Landmark], max_steps: int, printing_deta
i = 0 i = 0
timeout = 80 timeout = 80
while circles is not None and i < timeout: while circles is not None and i < timeout:
A_ub, b_ub = prevent_config(res.x, A_ub, b_ub) A, b = prevent_config(res.x)
A_ub = np.vstack((A_ub, A))
b_ub += b
#A_ub, b_ub = prevent_circle(order, len(landmarks), A_ub, b_ub) #A_ub, b_ub = prevent_circle(order, len(landmarks), A_ub, b_ub)
for circle in circles : for circle in circles :
A_ub, b_ub = prevent_circle(circle, len(landmarks), A_ub, b_ub) A, b = prevent_circle(circle, len(landmarks))
A_eq = np.vstack((A_eq, A))
b_eq += b
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3) res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
order, circles = is_connected2(res.x) order, circles = is_connected2(res.x)
#nodes, edges = is_connected2(res.x) #nodes, edges = is_connected2(res.x)

View File

@ -99,8 +99,8 @@ def test4(coordinates: tuple[float, float]) -> List[Landmark]:
landmarks_short.insert(0, start) landmarks_short.insert(0, start)
landmarks_short.append(finish) landmarks_short.append(finish)
max_walking_time = 120 # minutes max_walking_time = 50 # minutes
detour = 30 # minutes detour = 0 # minutes
# First stage optimization # First stage optimization
base_tour = solve_optimization(landmarks_short, max_walking_time, True) base_tour = solve_optimization(landmarks_short, max_walking_time, True)