Added refiner (for minor landmarks)
This commit is contained in:
@@ -120,15 +120,18 @@ def remove_duplicates(L: List[Landmark]) -> List[Landmark] :
|
||||
Returns:
|
||||
List[Landmark]: A list of unique Landmark objects based on their names.
|
||||
"""
|
||||
|
||||
L_clean = []
|
||||
names = []
|
||||
coords = []
|
||||
|
||||
for landmark in L :
|
||||
if landmark.name in names :
|
||||
if landmark.name in names and landmark.location in coords:
|
||||
continue
|
||||
else :
|
||||
names.append(landmark.name)
|
||||
L_clean.append(landmark)
|
||||
coords.append(tuple((round(landmark.location[0], 3), round(landmark.location[0], 3))))
|
||||
|
||||
return L_clean
|
||||
|
||||
|
@@ -308,6 +308,7 @@ def add_time_to_reach(order: List[Landmark], landmarks: List[Landmark])->List[La
|
||||
elem = landmarks[order[j]]
|
||||
if elem != prev :
|
||||
elem.time_to_reach = get_distance(elem.location, prev.location, detour, speed)[1]
|
||||
elem.must_do = True
|
||||
L.append(elem)
|
||||
prev = elem
|
||||
j += 1
|
||||
|
51
backend/src/refiner.py
Normal file
51
backend/src/refiner.py
Normal file
@@ -0,0 +1,51 @@
|
||||
from shapely import buffer, LineString, Point, Polygon
|
||||
from typing import List
|
||||
from math import pi
|
||||
|
||||
from structs.landmarks import Landmark
|
||||
|
||||
|
||||
def create_corridor(landmarks: List[Landmark], width: float) :
|
||||
|
||||
corrected_width = (180*width)/(6371000*pi)
|
||||
|
||||
path = create_linestring(landmarks)
|
||||
obj = buffer(path, corrected_width, join_style="mitre", cap_style="square", mitre_limit=2)
|
||||
|
||||
return obj
|
||||
|
||||
|
||||
def create_linestring(landmarks: List[Landmark])->List[Point] :
|
||||
|
||||
points = []
|
||||
|
||||
for landmark in landmarks :
|
||||
points.append(Point(landmark.location))
|
||||
|
||||
return LineString(points)
|
||||
|
||||
|
||||
"""def is_in_area_ring(area: Polygon, coordinates) -> bool :
|
||||
|
||||
point = Point(coordinates)
|
||||
if area.contains(point) :
|
||||
t = area.interiors[0]
|
||||
return not t.contains(point)
|
||||
"""
|
||||
|
||||
|
||||
def is_in_area(area: Polygon, coordinates) -> bool :
|
||||
|
||||
point = Point(coordinates)
|
||||
return point.within(area)
|
||||
|
||||
def get_minor_landmarks(all_landmarks: List[Landmark], visited_landmarks: List[Landmark], width: float) -> List[Landmark] :
|
||||
|
||||
second_order_landmarks = []
|
||||
area = create_corridor(visited_landmarks, width)
|
||||
|
||||
for landmark in all_landmarks :
|
||||
if is_in_area(area, landmark.location) and landmark not in visited_landmarks:
|
||||
second_order_landmarks.append(landmark)
|
||||
|
||||
return second_order_landmarks
|
@@ -5,13 +5,14 @@ from landmarks_manager import generate_landmarks
|
||||
from fastapi.encoders import jsonable_encoder
|
||||
|
||||
from optimizer import solve_optimization
|
||||
from refiner import get_minor_landmarks
|
||||
from structs.landmarks import Landmark
|
||||
from structs.landmarktype import LandmarkType
|
||||
from structs.preferences import Preferences, Preference
|
||||
|
||||
|
||||
# Helper function to create a .txt file with results
|
||||
def write_data(L: List[Landmark]):
|
||||
def write_data(L: List[Landmark], file_name: str):
|
||||
|
||||
data = pd.DataFrame()
|
||||
i = 0
|
||||
@@ -20,7 +21,7 @@ def write_data(L: List[Landmark]):
|
||||
data[i] = jsonable_encoder(landmark)
|
||||
i += 1
|
||||
|
||||
data.to_json('landmarks.txt', indent = 2, force_ascii=False)
|
||||
data.to_json(file_name, indent = 2, force_ascii=False)
|
||||
|
||||
def test3(city_country: str) -> List[Landmark]:
|
||||
|
||||
@@ -59,6 +60,9 @@ def test3(city_country: str) -> List[Landmark]:
|
||||
visiting_list = solve_optimization(test, max_walking_time*60, True)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def test4(coordinates: tuple[float, float]) -> List[Landmark]:
|
||||
|
||||
|
||||
@@ -79,8 +83,7 @@ def test4(coordinates: tuple[float, float]) -> List[Landmark]:
|
||||
city_country = None
|
||||
|
||||
landmarks, landmarks_short = generate_landmarks(preferences=preferences, city_country=city_country, coordinates=coordinates)
|
||||
|
||||
write_data(landmarks)
|
||||
#write_data(landmarks, "landmarks.txt")
|
||||
|
||||
|
||||
start = Landmark(name='start', type=LandmarkType(landmark_type='start'), location=(48.8375946, 2.2949904), osm_type='start', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
|
||||
@@ -91,12 +94,24 @@ def test4(coordinates: tuple[float, float]) -> List[Landmark]:
|
||||
test.insert(0, start)
|
||||
test.append(finish)
|
||||
|
||||
max_walking_time = 4 # hours
|
||||
max_walking_time = 4 # hours
|
||||
detour = 30 # minutes
|
||||
|
||||
visiting_list = solve_optimization(test, max_walking_time*60, True)
|
||||
visited_list = solve_optimization(test, max_walking_time*60, True)
|
||||
#visited_list = [Landmark(name='start', type=LandmarkType(landmark_type='start'), location=(48.8375946, 2.2949904), osm_type='start', osm_id=0, attractiveness=0, must_do=True, n_tags=0, time_to_reach=0), Landmark(name='Palais du Louvre', type=LandmarkType(landmark_type='sightseeing'), location=(48.8614768, 2.3351677), osm_type='relation', osm_id=3262297, attractiveness=32, must_do=False, n_tags=32, time_to_reach=85), Landmark(name='Musée du Louvre', type=LandmarkType(landmark_type='sightseeing'), location=(48.8611474, 2.3358637), osm_type='relation', osm_id=7515426, attractiveness=34, must_do=False, n_tags=33, time_to_reach=1), Landmark(name='Bourse de Commerce — Pinault Collection', type=LandmarkType(landmark_type='sightseeing'), location=(48.8628167, 2.3428183), osm_type='way', osm_id=19856722, attractiveness=32, must_do=False, n_tags=32, time_to_reach=12), Landmark(name='Centre Georges Pompidou', type=LandmarkType(landmark_type='sightseeing'), location=(48.8605235, 2.3524395), osm_type='way', osm_id=55503397, attractiveness=43, must_do=False, n_tags=43, time_to_reach=15), Landmark(name='Tour Saint-Jacques', type=LandmarkType(landmark_type='sightseeing'), location=(48.8579983, 2.3489178), osm_type='way', osm_id=20326709, attractiveness=33, must_do=False, n_tags=31, time_to_reach=8), Landmark(name='Hôtel de Ville', type=LandmarkType(landmark_type='sightseeing'), location=(48.8564265, 2.352527), osm_type='relation', osm_id=284089, attractiveness=34, must_do=False, n_tags=32, time_to_reach=7), Landmark(name='Cathédrale Notre-Dame de Paris', type=LandmarkType(landmark_type='sightseeing'), location=(48.8529372, 2.3498701), osm_type='way', osm_id=201611261, attractiveness=55, must_do=False, n_tags=54, time_to_reach=9), Landmark(name='Sainte-Chapelle', type=LandmarkType(landmark_type='sightseeing'), location=(48.8553966, 2.3450136), osm_type='relation', osm_id=3344870, attractiveness=57, must_do=False, n_tags=54, time_to_reach=10), Landmark(name='finish', type=LandmarkType(landmark_type='finish'), location=(48.8375946, 2.2949904), osm_type='finish', osm_id=0, attractiveness=0, must_do=True, n_tags=0, time_to_reach=90)]
|
||||
|
||||
|
||||
return visiting_list
|
||||
minor_landmarks = get_minor_landmarks(landmarks, visited_list, 200)
|
||||
#write_data(minor_landmarks, 'minor_landmarks.txt')
|
||||
print("There are " + str(len(minor_landmarks)) + " minor landmarks around the predicted path")
|
||||
|
||||
|
||||
fuller_list = minor_landmarks + visited_list
|
||||
|
||||
new_visit = solve_optimization(fuller_list, max_walking_time*60+detour, True)
|
||||
|
||||
|
||||
return visited_list
|
||||
|
||||
|
||||
test4(tuple((48.8795156, 2.3660204)))
|
||||
|
Reference in New Issue
Block a user