added the optimizer
Some checks failed
Test code / Test code (push) Failing after 16s

This commit is contained in:
Kilian Scheidecker 2024-05-16 17:36:12 +02:00
parent 7f4f707ab5
commit 3f1c16b575

206
backend/src/optimizer.py Normal file
View File

@ -0,0 +1,206 @@
from scipy.optimize import linprog
import numpy as np
from scipy.linalg import block_diag
# Defines the landmark class (aka some place there is to visit)
class landmark :
def __init__(self, name: str, attractiveness: int, loc: tuple):
self.name = name
self.attractiveness = attractiveness
self.loc = loc
# Convert the result (edges from j to k like d_25 = edge between vertex 2 and vertex 5) into the list of indices corresponding to the landmarks
def untangle(res: list) :
N = len(res) # length of res
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
n_landmarks = res.sum() # number of visited landmarks
visit_order = []
cnt = 0
if n_landmarks % 2 == 1 : # if odd number of visited checkpoints
for i in range(L) :
for j in range(L) :
if res[i*L + j] == 1 : # if index is 1
cnt += 1 # increment counter
if cnt % 2 == 1 : # if counter odd
visit_order.append(i)
visit_order.append(j)
else : # if even number of ones
for i in range(L) :
for j in range(L) :
if res[i*L + j] == 1 : # if index is one
cnt += 1 # increment counter
if j % (L-1) == 0 : # if last node
visit_order.append(j) # append only the last index
return visit_order # return
if cnt % 2 == 1 :
visit_order.append(i)
visit_order.append(j)
return visit_order
# Just to print the result
def print_res(res: list, P) :
X = abs(res.x)
order = untangle(X)
# print("Optimal value:", -res.fun) # Minimization, so we negate to get the maximum
# print("Optimal point:", res.x)
# N = int(np.sqrt(len(X)))
# for i in range(N):
# print(X[i*N:i*N+N])
# print(order)
if (X.sum()+1)**2 == len(X) :
print('\nAll landmarks can be visited within max_steps, the following order is most likely not the fastest')
else :
print('Could not visit all the landmarks, the following order could be the fastest but not sure')
print("Order of visit :")
for i, elem in enumerate(landmarks) :
if i in order : print('- ' + elem.name)
steps = path_length(P, abs(res.x))
print("\nSteps walked : " + str(steps))
# Constraint to use only the upper triangular indices for travel
def break_sym(landmarks, A_eq, b_eq):
L = len(landmarks)
l = [0]*L*L
for i in range(L) :
for j in range(L) :
if i >= j :
l[j+i*L] = 1
A_eq = np.vstack((A_eq,l))
b_eq.append(0)
return A_eq, b_eq
# Constraint to respect max number of travels
def respect_number(landmarks, A_ub, b_ub):
h = []
for i in range(len(landmarks)) : h.append([1]*len(landmarks))
T = block_diag(*h)
return np.vstack((A_ub, T)), b_ub + [1]*len(landmarks)
# Constraint to tie the problem together and have a connected path
def respect_order(landmarks: list, A_eq, b_eq):
N = len(landmarks)
for i in range(N-1) : # Prevent stacked ones
if i == 0 :
continue
else :
l = [0]*N
l[i] = -1
l = l*N
for j in range(N) :
l[i*N + j] = 1
A_eq = np.vstack((A_eq,l))
b_eq.append(0)
return A_eq, b_eq
# Compute manhattan distance between 2 locations
def manhattan_distance(loc1: tuple, loc2: tuple):
x1, y1 = loc1
x2, y2 = loc2
return abs(x1 - x2) + abs(y1 - y2)
# Constraint to not stay in position
def init_eq_not_stay(landmarks):
L = len(landmarks)
l = [0]*L*L
for i in range(L) :
for j in range(L) :
if j == i :
l[j + i*L] = 1
#A_eq = np.array([np.array(xi) for xi in A_eq]) # Must convert A_eq into an np array
l = np.array(np.array(l))
return [l], [0]
# Initialize A and c. Compute the distances from all landmarks to each other and store attractiveness
# We want to maximize the sightseeing : max(c) st. A*x < b and A_eq*x = b_eq
def init_ub_dist(landmarks: list, max_steps: int):
# Objective function coefficients. a*x1 + b*x2 + c*x3 + ...
c = []
# Coefficients of inequality constraints (left-hand side)
A = []
for i, spot1 in enumerate(landmarks) :
dist_table = [0]*len(landmarks)
c.append(-spot1.attractiveness)
for j, spot2 in enumerate(landmarks) :
dist_table[j] = manhattan_distance(spot1.loc, spot2.loc)
A.append(dist_table)
c = c*len(landmarks)
A_ub = []
for line in A :
A_ub += line
return c, A_ub, [max_steps]
# Go through the landmarks and force the optimizer to use landmarks where attractiveness is set to -1
def respect_user_mustsee(landmarks: list, A_eq: list, b_eq: list) :
L = len(landmarks)
for i, elem in enumerate(landmarks) :
if elem.attractiveness == -1 :
l = [0]*L*L
if elem.name != "arrivée" :
for j in range(L) :
l[j +i*L] = 1
else : # This ensures we go to goal
for k in range(L-1) :
l[k*L+L-1] = 1
A_eq = np.vstack((A_eq,l))
b_eq.append(1)
return A_eq, b_eq
# Computes the path length given path matrix (dist_table) and a result
def path_length(P: list, resx: list) :
return np.dot(P, resx)
# Initialize all landmarks (+ start and goal). Order matters here
landmarks = []
landmarks.append(landmark("départ", -1, (0, 0)))
landmarks.append(landmark("concorde", -1, (5,5)))
landmarks.append(landmark("tour eiffel", 99, (1,1))) # PUT IN JSON
landmarks.append(landmark("arc de triomphe", 99, (2,3)))
landmarks.append(landmark("louvre", 70, (4,2)))
landmarks.append(landmark("montmartre", 20, (0,2)))
landmarks.append(landmark("arrivée", -1, (0, 0)))
# CONSTRAINT TO RESPECT MAX NUMBER OF STEPS
max_steps = 25
# SET CONSTRAINTS FOR INEQUALITY
c, A_ub, b_ub = init_ub_dist(landmarks, max_steps) # Add the distances from each landmark to the other
P = A_ub # store the paths for later. Needed to compute path length
A_ub, b_ub = respect_number(landmarks, A_ub, b_ub) # Respect max number of visits.
# SET CONSTRAINTS FOR EQUALITY
A_eq, b_eq = init_eq_not_stay(landmarks) # Force solution not to stay in same place
A_eq, b_eq = respect_user_mustsee(landmarks, A_eq, b_eq) # Check if there are user_defined must_see. Also takes care of start/goal
A_eq, b_eq = break_sym(landmarks, A_eq, b_eq) # break the symmetry. Only use the upper diagonal values
A_eq, b_eq = respect_order(landmarks, A_eq, b_eq) # Respect order of visit (only works when max_steps is limiting factor)
# Bounds for variables (x can only be 0 or 1)
x_bounds = [(0, 1)] * len(c)
# Solve linear programming problem
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
# Raise error if no solution is found
if not res.success :
raise ValueError("No solution has been found, please adapt your max steps")
# Print result
print_res(res, P)