cleanup path handling for easier dockerization
This commit is contained in:
parent
bec1827891
commit
49ce8527a3
@ -2,6 +2,8 @@ on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- backend/**
|
||||
|
||||
name: Build and push docker image
|
||||
|
@ -6,6 +6,11 @@ COPY Pipfile Pipfile.lock .
|
||||
RUN pip install pipenv
|
||||
RUN pipenv install --deploy --system
|
||||
|
||||
COPY . /src
|
||||
COPY src src
|
||||
|
||||
CMD ["pipenv", "run", "python", "/app/src/main.py"]
|
||||
EXPOSE 8000
|
||||
|
||||
# Set environment variables used by the deployment. These can be overridden by the user using this image.
|
||||
ENV NUM_WORKERS=1
|
||||
|
||||
CMD ["pipenv", "run", "fastapi", "run", "src/main.py", '--port 8000', '--workers $NUM_WORKERS']
|
||||
|
9
backend/src/constants.py
Normal file
9
backend/src/constants.py
Normal file
@ -0,0 +1,9 @@
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
PARAMETERS_DIR = Path('src/parameters')
|
||||
AMENITY_SELECTORS_PATH = PARAMETERS_DIR / 'amenity_selectors.yaml'
|
||||
LANDMARK_PARAMETERS_PATH = PARAMETERS_DIR / 'landmark_parameters.yaml'
|
||||
OPTIMIZER_PARAMETERS_PATH = PARAMETERS_DIR / 'optimizer_parameters.yaml'
|
||||
|
||||
OSM_CACHE_DIR = Path('cache')
|
@ -1,9 +1,11 @@
|
||||
import math as m
|
||||
import json, os
|
||||
import yaml
|
||||
|
||||
from typing import List, Tuple, Optional
|
||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
||||
|
||||
import constants
|
||||
from structs.landmarks import Landmark, LandmarkType
|
||||
from structs.preferences import Preferences, Preference
|
||||
|
||||
@ -13,34 +15,40 @@ NATURE = LandmarkType(landmark_type='nature')
|
||||
SHOPPING = LandmarkType(landmark_type='shopping')
|
||||
|
||||
|
||||
|
||||
# Include the json here
|
||||
# Create a list of all things to visit given some preferences and a city. Ready for the optimizer
|
||||
def generate_landmarks(preferences: Preferences, coordinates: Tuple[float, float]) :
|
||||
with constants.AMENITY_SELECTORS_PATH.open('r') as f:
|
||||
amenity_selectors = yaml.safe_load(f)
|
||||
|
||||
with constants.LANDMARK_PARAMETERS_PATH.open('r') as f:
|
||||
# even though we don't use the parameters here, we already load them to avoid unnecessary io operations
|
||||
parameters = yaml.safe_load(f)
|
||||
|
||||
l_sights, l_nature, l_shop = get_amenities()
|
||||
L = []
|
||||
|
||||
# List for sightseeing
|
||||
if preferences.sightseeing.score != 0 :
|
||||
L1 = get_landmarks(l_sights, SIGHTSEEING, coordinates=coordinates)
|
||||
L1 = get_landmarks(amenity_selectors['sightseeing'], SIGHTSEEING, coordinates, parameters)
|
||||
correct_score(L1, preferences.sightseeing)
|
||||
L += L1
|
||||
|
||||
# List for nature
|
||||
if preferences.nature.score != 0 :
|
||||
L2 = get_landmarks(l_nature, NATURE, coordinates=coordinates)
|
||||
L2 = get_landmarks(amenity_selectors['nature'], NATURE, coordinates, parameters)
|
||||
correct_score(L2, preferences.nature)
|
||||
L += L2
|
||||
|
||||
# List for shopping
|
||||
if preferences.shopping.score != 0 :
|
||||
L3 = get_landmarks(l_shop, SHOPPING, coordinates=coordinates)
|
||||
L3 = get_landmarks(amenity_selectors['shopping'], SHOPPING, coordinates, parameters)
|
||||
correct_score(L3, preferences.shopping)
|
||||
L += L3
|
||||
|
||||
L = remove_duplicates(L)
|
||||
|
||||
return L, take_most_important(L)
|
||||
return L, take_most_important(L, parameters)
|
||||
|
||||
|
||||
"""def generate_landmarks(preferences: Preferences, city_country: str = None, coordinates: Tuple[float, float] = None) -> Tuple[List[Landmark], List[Landmark]] :
|
||||
@ -69,37 +77,8 @@ def generate_landmarks(preferences: Preferences, coordinates: Tuple[float, float
|
||||
return remove_duplicates(L), take_most_important(L)
|
||||
"""
|
||||
# Helper function to gather the amenities list
|
||||
def get_amenities() -> List[List[str]] :
|
||||
|
||||
# Get the list of amenities from the files
|
||||
sightseeing = get_list('/amenities/sightseeing.am')
|
||||
nature = get_list('/amenities/nature.am')
|
||||
shopping = get_list('/amenities/shopping.am')
|
||||
|
||||
return sightseeing, nature, shopping
|
||||
|
||||
|
||||
# Helper function to read a .am file and generate the corresponding list
|
||||
def get_list(path: str) -> List[str] :
|
||||
|
||||
with open(os.path.dirname(os.path.abspath(__file__)) + path) as f :
|
||||
content = f.readlines()
|
||||
|
||||
amenities = []
|
||||
for line in content :
|
||||
amenities.append(line.strip('\n'))
|
||||
|
||||
return amenities
|
||||
|
||||
|
||||
# Take the most important landmarks from the list
|
||||
def take_most_important(L: List[Landmark], N = 0) -> List[Landmark] :
|
||||
|
||||
# Read the parameters from the file
|
||||
with open (os.path.dirname(os.path.abspath(__file__)) + '/parameters/landmarks_manager.params', "r") as f :
|
||||
parameters = json.loads(f.read())
|
||||
N_important = parameters['N important']
|
||||
|
||||
def take_most_important(L: List[Landmark], parameters: dict, N: int = 0) -> List[Landmark]:
|
||||
L_copy = []
|
||||
L_clean = []
|
||||
scores = [0]*len(L)
|
||||
@ -127,7 +106,8 @@ def take_most_important(L: List[Landmark], N = 0) -> List[Landmark] :
|
||||
for i, elem in enumerate(L_copy) :
|
||||
scores[i] = elem.attractiveness
|
||||
|
||||
res = sorted(range(len(scores)), key = lambda sub: scores[sub])[-(N_important-N):]
|
||||
|
||||
res = sorted(range(len(scores)), key = lambda sub: scores[sub])[-(parameters['N_important']-N):]
|
||||
|
||||
for i, elem in enumerate(L_copy) :
|
||||
if i in res :
|
||||
@ -220,19 +200,25 @@ def create_bbox(coordinates: Tuple[float, float], side_length: int) -> Tuple[flo
|
||||
return min_lat, min_lon, max_lat, max_lon
|
||||
|
||||
|
||||
def get_landmarks(list_amenity: list, landmarktype: LandmarkType, coordinates: Tuple[float, float]) -> List[Landmark] :
|
||||
def get_landmarks(
|
||||
list_amenity: list,
|
||||
landmarktype: LandmarkType,
|
||||
coordinates: Tuple[float, float],
|
||||
parameters: dict
|
||||
) -> List[Landmark]:
|
||||
|
||||
# Read the parameters from the file
|
||||
with open (os.path.dirname(os.path.abspath(__file__)) + '/parameters/landmarks_manager.params', "r") as f :
|
||||
parameters = json.loads(f.read())
|
||||
tag_coeff = parameters['tag coeff']
|
||||
park_coeff = parameters['park coeff']
|
||||
church_coeff = parameters['church coeff']
|
||||
radius = parameters['radius close to']
|
||||
bbox_side = parameters['city bbox side']
|
||||
|
||||
# # Read the parameters from the file
|
||||
# with open (os.path.dirname(os.path.abspath(__file__)) + '/parameters/landmarks_manager.params', "r") as f :
|
||||
# parameters = json.loads(f.read())
|
||||
# tag_coeff = parameters['tag coeff']
|
||||
# park_coeff = parameters['park coeff']
|
||||
# church_coeff = parameters['church coeff']
|
||||
# radius = parameters['radius close to']
|
||||
# bbox_side = parameters['city bbox side']
|
||||
|
||||
# Create bbox around start location
|
||||
bbox = create_bbox(coordinates, bbox_side)
|
||||
bbox = create_bbox(coordinates, parameters['city_bbox_side'])
|
||||
|
||||
# Initialize some variables
|
||||
N = 0
|
||||
@ -269,11 +255,11 @@ def get_landmarks(list_amenity: list, landmarktype: LandmarkType, coordinates: T
|
||||
|
||||
# Add score of given landmark based on the number of surrounding elements. Penalty for churches as there are A LOT
|
||||
if amenity == "'amenity'='place_of_worship'" :
|
||||
score = int((count_elements_within_radius(location, radius) + n_tags*tag_coeff )*church_coeff)
|
||||
score = int((count_elements_within_radius(location, parameters['radius_close_to']) + n_tags*parameters['tag_coeff'] )*parameters['church_coeff'])
|
||||
elif amenity == "'leisure'='park'" :
|
||||
score = int((count_elements_within_radius(location, radius) + n_tags*tag_coeff )*park_coeff)
|
||||
score = int((count_elements_within_radius(location, parameters['radius_close_to']) + n_tags*parameters['tag_coeff'] )*parameters['park_coeff'])
|
||||
else :
|
||||
score = count_elements_within_radius(location, radius) + n_tags*tag_coeff
|
||||
score = count_elements_within_radius(location, parameters['radius_close_to']) + n_tags*parameters['tag_coeff']
|
||||
|
||||
if score is not None :
|
||||
# Generate the landmark and append it to the list
|
||||
|
@ -1,23 +0,0 @@
|
||||
import fastapi
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
||||
@dataclass
|
||||
class Destination:
|
||||
name: str
|
||||
location: tuple
|
||||
attractiveness: int
|
||||
|
||||
|
||||
|
||||
d = Destination()
|
||||
|
||||
|
||||
|
||||
def get_route() -> list[Destination]:
|
||||
return {"route": "Hello World"}
|
||||
|
||||
endpoint = ("/get_route", get_route)
|
||||
end
|
||||
if __name__ == "__main__":
|
||||
fastapi.run()
|
@ -1,13 +1,13 @@
|
||||
import numpy as np
|
||||
import json, os
|
||||
import yaml
|
||||
|
||||
from typing import List, Tuple
|
||||
from scipy.optimize import linprog
|
||||
from math import radians, sin, cos, acos
|
||||
from shapely import Polygon
|
||||
|
||||
from structs.landmarks import Landmark
|
||||
|
||||
import constants
|
||||
|
||||
# Function to print the result
|
||||
def print_res(L: List[Landmark], L_tot):
|
||||
@ -161,10 +161,11 @@ def get_distance(p1: Tuple[float, float], p2: Tuple[float, float], detour: float
|
||||
# We want to maximize the sightseeing : max(c) st. A*x < b and A_eq*x = b_eq
|
||||
def init_ub_dist(landmarks: List[Landmark], max_steps: int):
|
||||
|
||||
with open (os.path.dirname(os.path.abspath(__file__)) + '/parameters/optimizer.params', "r") as f :
|
||||
parameters = json.loads(f.read())
|
||||
detour = parameters['detour factor']
|
||||
speed = parameters['average walking speed']
|
||||
# Read the parameters from the file
|
||||
with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
detour = parameters['detour_factor']
|
||||
speed = parameters['average_walking_speed']
|
||||
|
||||
# Objective function coefficients. a*x1 + b*x2 + c*x3 + ...
|
||||
c = []
|
||||
@ -194,9 +195,9 @@ def respect_number(L:int, A_ub, b_ub):
|
||||
b_ub.append(1)
|
||||
|
||||
# Read the parameters from the file
|
||||
with open (os.path.dirname(os.path.abspath(__file__)) + '/parameters/optimizer.params', "r") as f :
|
||||
parameters = json.loads(f.read())
|
||||
max_landmarks = parameters['max landmarks']
|
||||
with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
max_landmarks = parameters['max_landmarks']
|
||||
|
||||
A_ub = np.vstack((A_ub, ones*L))
|
||||
b_ub.append(max_landmarks+1)
|
||||
@ -300,13 +301,14 @@ def respect_order(N: int, A_eq, b_eq):
|
||||
|
||||
|
||||
# Computes the time to reach from each landmark to the next
|
||||
def link_list(order: List[int], landmarks: List[Landmark])->List[Landmark] :
|
||||
def link_list(order: List[int], landmarks: List[Landmark]) -> List[Landmark]:
|
||||
|
||||
# Read the parameters from the file
|
||||
with open (os.path.dirname(os.path.abspath(__file__)) + '/parameters/optimizer.params', "r") as f :
|
||||
parameters = json.loads(f.read())
|
||||
detour_factor = parameters['detour factor']
|
||||
speed = parameters['average walking speed']
|
||||
with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
|
||||
detour_factor = parameters['detour_factor']
|
||||
speed = parameters['average_walking_speed']
|
||||
|
||||
L = []
|
||||
j = 0
|
||||
@ -329,10 +331,11 @@ def link_list(order: List[int], landmarks: List[Landmark])->List[Landmark] :
|
||||
def link_list_simple(ordered_visit: List[Landmark])-> List[Landmark] :
|
||||
|
||||
# Read the parameters from the file
|
||||
with open (os.path.dirname(os.path.abspath(__file__)) + '/parameters/optimizer.params', "r") as f :
|
||||
parameters = json.loads(f.read())
|
||||
detour_factor = parameters['detour factor']
|
||||
speed = parameters['average walking speed']
|
||||
with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
|
||||
detour_factor = parameters['detour_factor']
|
||||
speed = parameters['average_walking_speed']
|
||||
|
||||
L = []
|
||||
j = 0
|
||||
|
26
backend/src/parameters/amenity_selectors.yaml
Normal file
26
backend/src/parameters/amenity_selectors.yaml
Normal file
@ -0,0 +1,26 @@
|
||||
nature:
|
||||
- "'leisure'='park'"
|
||||
- "geological"
|
||||
- "'natural'='geyser'"
|
||||
- "'natural'='hot_spring'"
|
||||
- "'natural'='arch'"
|
||||
- "'natural'='volcano'"
|
||||
- "'natural'='stone'"
|
||||
- "'tourism'='alpine_hut'"
|
||||
- "'tourism'='viewpoint'"
|
||||
- "'tourism'='zoo'"
|
||||
- "'waterway'='waterfall'"
|
||||
|
||||
shopping:
|
||||
- "'shop'='department_store'"
|
||||
- "'shop'='mall'"
|
||||
|
||||
sightseeing:
|
||||
- "'tourism'='museum'"
|
||||
- "'tourism'='attraction'"
|
||||
- "'tourism'='gallery'"
|
||||
- "historic"
|
||||
- "'amenity'='planetarium'"
|
||||
- "'amenity'='place_of_worship'"
|
||||
- "'amenity'='fountain'"
|
||||
- "'water'='reflecting_pool'"
|
6
backend/src/parameters/landmark_parameters.yaml
Normal file
6
backend/src/parameters/landmark_parameters.yaml
Normal file
@ -0,0 +1,6 @@
|
||||
city_bbox_side: 10
|
||||
radius_close_to: 27.5
|
||||
church_coeff: 0.6
|
||||
park_coeff: 1.5
|
||||
tag_coeff: 100
|
||||
N_important: 40
|
@ -1,8 +0,0 @@
|
||||
{
|
||||
"city bbox side" : 10,
|
||||
"radius close to" : 27.5,
|
||||
"church coeff" : 0.6,
|
||||
"park coeff" : 1.5,
|
||||
"tag coeff" : 100,
|
||||
"N important" : 40
|
||||
}
|
@ -1,5 +0,0 @@
|
||||
{
|
||||
"detour factor" : 1.4,
|
||||
"average walking speed" : 4.8,
|
||||
"max landmarks" : 10
|
||||
}
|
3
backend/src/parameters/optimizer_parameters.yaml
Normal file
3
backend/src/parameters/optimizer_parameters.yaml
Normal file
@ -0,0 +1,3 @@
|
||||
detour_factor: 1.4
|
||||
average_walking_speed: 4.8
|
||||
max_landmarks: 10
|
@ -1,7 +1,8 @@
|
||||
from collections import defaultdict
|
||||
from heapq import heappop, heappush
|
||||
from itertools import permutations
|
||||
import os, json
|
||||
import os
|
||||
import yaml
|
||||
|
||||
from shapely import buffer, LineString, Point, Polygon, MultiPoint, convex_hull, concave_hull, LinearRing
|
||||
from typing import List, Tuple
|
||||
@ -10,6 +11,7 @@ from math import pi
|
||||
from structs.landmarks import Landmark
|
||||
from landmarks_manager import take_most_important
|
||||
from optimizer import solve_optimization, link_list_simple, print_res, get_distance
|
||||
import constants
|
||||
|
||||
|
||||
def create_corridor(landmarks: List[Landmark], width: float) :
|
||||
@ -122,12 +124,12 @@ def total_path_distance(path: List[Landmark], detour, speed) -> float:
|
||||
|
||||
|
||||
def find_shortest_path_through_all_landmarks(landmarks: List[Landmark]) -> List[Landmark]:
|
||||
|
||||
# Read from data
|
||||
with open (os.path.dirname(os.path.abspath(__file__)) + '/parameters/optimizer.params', "r") as f :
|
||||
parameters = json.loads(f.read())
|
||||
detour = parameters['detour factor']
|
||||
speed = parameters['average walking speed']
|
||||
# Read the parameters from the file
|
||||
with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
|
||||
detour = parameters['detour_factor']
|
||||
speed = parameters['average_walking_speed']
|
||||
|
||||
# Step 1: Find 'start' and 'finish' landmarks
|
||||
start_idx = next(i for i, lm in enumerate(landmarks) if lm.name == 'start')
|
||||
@ -174,8 +176,10 @@ def get_minor_landmarks(all_landmarks: List[Landmark], visited_landmarks: List[L
|
||||
for landmark in all_landmarks :
|
||||
if is_in_area(area, landmark.location) and landmark.name not in visited_names:
|
||||
second_order_landmarks.append(landmark)
|
||||
|
||||
return take_most_important(second_order_landmarks, len(visited_landmarks))
|
||||
|
||||
with constants.LANDMARK_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
return take_most_important(second_order_landmarks, parameters, len(visited_landmarks))
|
||||
|
||||
|
||||
|
||||
@ -195,10 +199,10 @@ def get_minor_landmarks(all_landmarks: List[Landmark], visited_landmarks: List[L
|
||||
|
||||
def refine_optimization(landmarks: List[Landmark], base_tour: List[Landmark], max_time: int, print_infos: bool) -> List[Landmark] :
|
||||
|
||||
# Read from the file
|
||||
with open (os.path.dirname(os.path.abspath(__file__)) + '/parameters/optimizer.params', "r") as f :
|
||||
parameters = json.loads(f.read())
|
||||
max_landmarks = parameters['max landmarks']
|
||||
# Read the parameters from the file
|
||||
with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
max_landmarks = parameters['max_landmarks']
|
||||
|
||||
if len(base_tour)-2 >= max_landmarks :
|
||||
return base_tour
|
||||
|
Loading…
x
Reference in New Issue
Block a user