better array handling in the optimizer
	
		
			
	
		
	
	
		
	
		
			Some checks failed
		
		
	
	
		
			
				
	
				Build and deploy the backend to staging / Build and push image (pull_request) Failing after 2m39s
				
			
		
			
				
	
				Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
				
			
		
			
				
	
				Run linting on the backend code / Build (pull_request) Successful in 25s
				
			
		
			
				
	
				Run testing on the backend code / Build (pull_request) Failing after 1m37s
				
			
		
		
	
	
				
					
				
			
		
			Some checks failed
		
		
	
	Build and deploy the backend to staging / Build and push image (pull_request) Failing after 2m39s
				
			Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
				
			Run linting on the backend code / Build (pull_request) Successful in 25s
				
			Run testing on the backend code / Build (pull_request) Failing after 1m37s
				
			This commit is contained in:
		| @@ -100,10 +100,11 @@ def new_trip(preferences: Preferences, | ||||
|     try: | ||||
|         base_tour = optimizer.solve_optimization(preferences.max_time_minute, landmarks_short) | ||||
|     except ArithmeticError as exc: | ||||
|         raise HTTPException(status_code=500, detail="No solution found") from exc | ||||
|         raise HTTPException(status_code=500) from exc | ||||
|     except TimeoutError as exc: | ||||
|         raise HTTPException(status_code=500, detail="Optimzation took too long") from exc | ||||
|  | ||||
|     except Exception as exc: | ||||
|         raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {str(exc)}") from exc | ||||
|     t_first_stage = time.time() - start_time | ||||
|     start_time = time.time() | ||||
|  | ||||
|   | ||||
| @@ -35,8 +35,10 @@ def test_turckheim(client, request):    # pylint: disable=redefined-outer-name | ||||
|             } | ||||
|         ) | ||||
|     result = response.json() | ||||
|     print(result) | ||||
|     landmarks = load_trip_landmarks(client, result['first_landmark_uuid']) | ||||
|  | ||||
|  | ||||
|     # Get computation time | ||||
|     comp_time = time.time() - start_time | ||||
|  | ||||
| @@ -49,7 +51,7 @@ def test_turckheim(client, request):    # pylint: disable=redefined-outer-name | ||||
|     assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2 | ||||
|     assert len(landmarks) > 2           # check that there is something to visit | ||||
|     assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds" | ||||
|  | ||||
|     assert 2==3 | ||||
|  | ||||
| def test_bellecour(client, request) :   # pylint: disable=redefined-outer-name | ||||
|     """ | ||||
| @@ -91,7 +93,88 @@ def test_bellecour(client, request) :   # pylint: disable=redefined-outer-name | ||||
|     assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2 | ||||
|     assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds" | ||||
|  | ||||
| ''' | ||||
|  | ||||
| def test_Paris(client, request) :   # pylint: disable=redefined-outer-name | ||||
|     """ | ||||
|     Test n°2 : Custom test in Paris (les Halles) centre to ensure proper decision making in crowded area. | ||||
|      | ||||
|     Args: | ||||
|         client: | ||||
|         request: | ||||
|     """ | ||||
|     start_time = time.time()  # Start timer | ||||
|     duration_minutes = 300 | ||||
|  | ||||
|     response = client.post( | ||||
|         "/trip/new", | ||||
|         json={ | ||||
|             "preferences": {"sightseeing": {"type": "sightseeing", "score": 5}, | ||||
|                             "nature": {"type": "nature", "score": 5}, | ||||
|                             "shopping": {"type": "shopping", "score": 5}, | ||||
|                             "max_time_minute": duration_minutes, | ||||
|                             "detour_tolerance_minute": 0}, | ||||
|             "start": [48.86248803298562, 2.346451131285925] | ||||
|             } | ||||
|         ) | ||||
|     result = response.json() | ||||
|     landmarks = load_trip_landmarks(client, result['first_landmark_uuid']) | ||||
|  | ||||
|     # Get computation time | ||||
|     comp_time = time.time() - start_time | ||||
|  | ||||
|     # Add details to report | ||||
|     log_trip_details(request, landmarks, result['total_time'], duration_minutes) | ||||
|  | ||||
|     for elem in landmarks : | ||||
|         print(elem) | ||||
|         print(elem.osm_id) | ||||
|  | ||||
|     # checks : | ||||
|     assert response.status_code == 200  # check for successful planning | ||||
|     assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2 | ||||
|     assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds" | ||||
|  | ||||
|  | ||||
| def test_New_York(client, request) :   # pylint: disable=redefined-outer-name | ||||
|     """ | ||||
|     Test n°2 : Custom test in New York (les Halles) centre to ensure proper decision making in crowded area. | ||||
|      | ||||
|     Args: | ||||
|         client: | ||||
|         request: | ||||
|     """ | ||||
|     start_time = time.time()  # Start timer | ||||
|     duration_minutes = 600 | ||||
|  | ||||
|     response = client.post( | ||||
|         "/trip/new", | ||||
|         json={ | ||||
|             "preferences": {"sightseeing": {"type": "sightseeing", "score": 5}, | ||||
|                             "nature": {"type": "nature", "score": 5}, | ||||
|                             "shopping": {"type": "shopping", "score": 5}, | ||||
|                             "max_time_minute": duration_minutes, | ||||
|                             "detour_tolerance_minute": 0}, | ||||
|             "start": [40.72592726802, -73.9920434795] | ||||
|             } | ||||
|         ) | ||||
|     result = response.json() | ||||
|     landmarks = load_trip_landmarks(client, result['first_landmark_uuid']) | ||||
|  | ||||
|     # Get computation time | ||||
|     comp_time = time.time() - start_time | ||||
|  | ||||
|     # Add details to report | ||||
|     log_trip_details(request, landmarks, result['total_time'], duration_minutes) | ||||
|  | ||||
|     for elem in landmarks : | ||||
|         print(elem) | ||||
|         print(elem.osm_id) | ||||
|  | ||||
|     # checks : | ||||
|     assert response.status_code == 200  # check for successful planning | ||||
|     assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2 | ||||
|     assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds" | ||||
|  | ||||
| def test_shopping(client, request) :   # pylint: disable=redefined-outer-name | ||||
|     """ | ||||
| @@ -128,7 +211,7 @@ def test_shopping(client, request) :   # pylint: disable=redefined-outer-name | ||||
|     assert response.status_code == 200  # check for successful planning | ||||
|     assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2 | ||||
|     assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds" | ||||
|  | ||||
| ''' | ||||
| # def test_new_trip_single_prefs(client): | ||||
| #     response = client.post( | ||||
| #         "/trip/new", | ||||
|   | ||||
| @@ -280,6 +280,6 @@ class ClusterManager: | ||||
|             filtered_cluster_labels.append(np.full((label_counts[label],), label))  # Replicate the label | ||||
|  | ||||
|         # update the cluster points and labels with the filtered data | ||||
|         self.cluster_points = np.vstack(filtered_cluster_points) | ||||
|         self.cluster_points = np.vstack(filtered_cluster_points)        # ValueError here | ||||
|         self.cluster_labels = np.concatenate(filtered_cluster_labels) | ||||
|  | ||||
|   | ||||
| @@ -1,3 +1,4 @@ | ||||
| """Module used to import data from OSM and arrange them in categories.""" | ||||
| import math, yaml, logging | ||||
| from OSMPythonTools.overpass import Overpass, overpassQueryBuilder | ||||
| from OSMPythonTools.cachingStrategy import CachingStrategy, JSON | ||||
| @@ -79,7 +80,7 @@ class LandmarkManager: | ||||
|  | ||||
|         # Create a bbox using the around technique | ||||
|         bbox = tuple((f"around:{reachable_bbox_side/2}", str(center_coordinates[0]), str(center_coordinates[1]))) | ||||
|          | ||||
|  | ||||
|         # list for sightseeing | ||||
|         if preferences.sightseeing.score != 0: | ||||
|             score_function = lambda score: score * 10 * preferences.sightseeing.score / 5 | ||||
| @@ -101,7 +102,7 @@ class LandmarkManager: | ||||
|         if preferences.shopping.score != 0: | ||||
|             score_function = lambda score: score * 10 * preferences.shopping.score / 5 | ||||
|             current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function) | ||||
|              | ||||
|  | ||||
|             # set time for all shopping activites : | ||||
|             for landmark in current_landmarks : landmark.duration = 30 | ||||
|             all_landmarks.update(current_landmarks) | ||||
| @@ -110,7 +111,7 @@ class LandmarkManager: | ||||
|             shopping_manager = ClusterManager(bbox, 'shopping') | ||||
|             shopping_clusters = shopping_manager.generate_clusters() | ||||
|             all_landmarks.update(shopping_clusters) | ||||
|              | ||||
|  | ||||
|  | ||||
|  | ||||
|         landmarks_constrained = take_most_important(all_landmarks, self.N_important) | ||||
| @@ -152,7 +153,7 @@ class LandmarkManager: | ||||
|             elementType=['node', 'way', 'relation'] | ||||
|         ) | ||||
|  | ||||
|         try:  | ||||
|         try: | ||||
|             radius_result = self.overpass.query(radius_query) | ||||
|             N_elem = radius_result.countWays() + radius_result.countRelations() | ||||
|             self.logger.debug(f"There are {N_elem} ways/relations within 50m") | ||||
| @@ -242,28 +243,28 @@ class LandmarkManager: | ||||
|                 name = elem.tag('name') | ||||
|                 location = (elem.centerLat(), elem.centerLon()) | ||||
|                 osm_type = elem.type()              # Add type: 'way' or 'relation' | ||||
|                 osm_id = elem.id()                  # Add OSM id  | ||||
|                 osm_id = elem.id()                  # Add OSM id | ||||
|  | ||||
|                 # TODO: exclude these from the get go | ||||
|                 # handle unprecise and no-name locations | ||||
|                 if name is None or location[0] is None: | ||||
|                     if osm_type == 'node' and 'viewpoint' in elem.tags().values():  | ||||
|                     if osm_type == 'node' and 'viewpoint' in elem.tags().values(): | ||||
|                         name = 'Viewpoint' | ||||
|                         name_en = 'Viewpoint' | ||||
|                         location = (elem.lat(), elem.lon()) | ||||
|                     else :  | ||||
|                     else : | ||||
|                         continue | ||||
|  | ||||
|                 # skip if part of another building | ||||
|                 if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes': | ||||
|                     continue | ||||
|              | ||||
|                 elem_type = landmarktype                # Add the landmark type as 'sightseeing,  | ||||
|  | ||||
|                 elem_type = landmarktype                # Add the landmark type as 'sightseeing, | ||||
|                 n_tags = len(elem.tags().keys())        # Add number of tags | ||||
|                 score = n_tags**self.tag_exponent       # Add score | ||||
|                 duration = 5                            # Set base duration to 5 minutes | ||||
|                 skip = False                            # Set skipping parameter to false | ||||
|                 tag_values = set(elem.tags().values())  # Store tag values  | ||||
|                 tag_values = set(elem.tags().values())  # Store tag values | ||||
|  | ||||
|  | ||||
|                 # Retrieve image, name and website : | ||||
| @@ -275,7 +276,7 @@ class LandmarkManager: | ||||
|  | ||||
|                 if elem_type != "nature" and elem.tag('leisure') == "park": | ||||
|                     elem_type = "nature" | ||||
|                  | ||||
|  | ||||
|                 if elem.tag('wikipedia') is not None : | ||||
|                     score += self.wikipedia_bonus | ||||
|  | ||||
| @@ -309,9 +310,9 @@ class LandmarkManager: | ||||
|                 #     continue | ||||
|  | ||||
|                 score = score_function(score) | ||||
|                  | ||||
|  | ||||
|                 if "place_of_worship" in tag_values : | ||||
|                     if 'cathedral' in tag_values :  | ||||
|                     if 'cathedral' in tag_values : | ||||
|                         duration = 10 | ||||
|                     else : | ||||
|                         score *= self.church_coeff | ||||
| @@ -319,7 +320,7 @@ class LandmarkManager: | ||||
|                 elif 'viewpoint' in tag_values : | ||||
|                     # viewpoints must count more | ||||
|                     score = score * self.viewpoint_bonus | ||||
|                  | ||||
|  | ||||
|                 elif "museum" in tag_values or "aquarium" in tag_values or "planetarium" in tag_values: | ||||
|                     duration = 60 | ||||
|  | ||||
| @@ -339,7 +340,7 @@ class LandmarkManager: | ||||
|                     website_url = website_url | ||||
|                 ) | ||||
|                 return_list.append(landmark) | ||||
|          | ||||
|  | ||||
|         self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}") | ||||
|  | ||||
|         return return_list | ||||
|   | ||||
| @@ -29,7 +29,232 @@ class Optimizer: | ||||
|             self.average_walking_speed = parameters['average_walking_speed'] | ||||
|             self.max_landmarks = parameters['max_landmarks'] | ||||
|             self.overshoot = parameters['overshoot'] | ||||
|  | ||||
|  | ||||
|     def init_ub_time(self, landmarks: list[Landmark], max_time: int): | ||||
|         """ | ||||
|         Initialize the objective function coefficients and inequality constraints. | ||||
|         -> Adds 1 row of constraints | ||||
|  | ||||
|                 1 row | ||||
|             + L-1 rows | ||||
|  | ||||
|         -> Pre-allocates A_ub for the rest of the computations | ||||
|  | ||||
|         This function computes the distances between all landmarks and stores | ||||
|         their attractiveness to maximize sightseeing. The goal is to maximize  | ||||
|         the objective function subject to the constraints A*x < b and A_eq*x = b_eq. | ||||
|  | ||||
|         Args: | ||||
|             landmarks (list[Landmark]): List of landmarks. | ||||
|             max_time (int): Maximum time of visit allowed. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[list[float], list[float], list[int]]: Objective function coefficients, inequality | ||||
|             constraint coefficients, and the right-hand side of the inequality constraint. | ||||
|         """ | ||||
|         L = len(landmarks) | ||||
|  | ||||
|         # Objective function coefficients. a*x1 + b*x2 + c*x3 + ... | ||||
|         c = np.zeros(L, dtype=np.int16) | ||||
|  | ||||
|         # Coefficients of inequality constraints (left-hand side) | ||||
|         A_first = np.zeros((L, L), dtype=np.int16) | ||||
|  | ||||
|         for i, spot1 in enumerate(landmarks) : | ||||
|             c[i] = -spot1.attractiveness | ||||
|             for j in range(i+1, L) : | ||||
|                 if i !=j : | ||||
|                     t = get_time(spot1.location, landmarks[j].location) + spot1.duration | ||||
|                     A_first[i,j] = t | ||||
|                     A_first[j,i] = t | ||||
|  | ||||
|         # Now sort and modify A_ub for each row | ||||
|         if L > 22 : | ||||
|             for i in range(L): | ||||
|                 # Get indices of the 20 smallest values in row i | ||||
|                 closest_indices = np.argpartition(A_first[i, :], 20)[:20] | ||||
|  | ||||
|                 # Create a mask for non-closest landmarks | ||||
|                 mask = np.ones(L, dtype=bool) | ||||
|                 mask[closest_indices] = False | ||||
|  | ||||
|                 # Set non-closest landmarks to 32700 | ||||
|                 A_first[i, mask] = 32765 | ||||
|          | ||||
|         # Replicate the objective function 'c' for each decision variable (L times) | ||||
|         c = np.tile(c, L)  # This correctly expands 'c' to L*L | ||||
|  | ||||
|         return c, A_first.flatten(), [max_time*self.overshoot] | ||||
|  | ||||
|  | ||||
|     def respect_number(self, L, max_landmarks: int): | ||||
|         """ | ||||
|         Generate constraints to ensure each landmark is visited only once and cap the total number of visited landmarks. | ||||
|         -> Adds L-1 rows of constraints | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|         # First constraint: each landmark is visited exactly once | ||||
|         A = np.zeros((L-1, L*L), dtype=np.int8) | ||||
|         b = [] | ||||
|         for i in range(1, L-1): | ||||
|             A[i-1, L*i:L*(i+1)] = np.ones(L, dtype=np.int8) | ||||
|             b.append(1) | ||||
|  | ||||
|         # Second constraint: cap the total number of visits | ||||
|         A[-1, :] = np.ones(L*L, dtype=np.int8) | ||||
|         b.append(max_landmarks+2) | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     def break_sym(self, L): | ||||
|         """ | ||||
|         Generate constraints to prevent simultaneous travel between two landmarks | ||||
|         in both directions. Constraint to not have d14 and d41 simultaneously.  | ||||
|         Does not prevent cyclic paths with more elements | ||||
|         -> Adds a variable number of rows of constraints | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]:   Inequality constraint coefficients and  | ||||
|                                             the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|         b = [] | ||||
|         upper_ind = np.triu_indices(L,0,L) | ||||
|         up_ind_x = upper_ind[0] | ||||
|         up_ind_y = upper_ind[1] | ||||
|  | ||||
|         A = np.zeros((len(up_ind_x[1:]),L*L), dtype=np.int8) | ||||
|         for i, _ in enumerate(up_ind_x[1:]) : | ||||
|             if up_ind_x[i] != up_ind_y[i] : | ||||
|                 A[i, up_ind_x[i]*L + up_ind_y[i]] = 1 | ||||
|                 A[i, up_ind_y[i]*L + up_ind_x[i]] = 1 | ||||
|                 b.append(1) | ||||
|  | ||||
|         return A[~np.all(A == 0, axis=1)], b | ||||
|  | ||||
|  | ||||
|     def init_eq_not_stay(self, L: int):  | ||||
|         """ | ||||
|         Generate constraints to prevent staying in the same position (e.g., removing d11, d22, d33, etc.). | ||||
|         -> Adds 1 row of constraints | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[list[np.ndarray], list[int]]: Equality constraint coefficients and the right-hand side of the equality constraints. | ||||
|         """ | ||||
|         l = np.zeros((L, L), dtype=np.int8) | ||||
|          | ||||
|         # Set diagonal elements to 1 (to prevent staying in the same position) | ||||
|         np.fill_diagonal(l, 1) | ||||
|  | ||||
|         return l.flatten(), [0] | ||||
|  | ||||
|  | ||||
|     def respect_user_must_do(self, landmarks: list[Landmark]) : | ||||
|         """ | ||||
|         Generate constraints to ensure that landmarks marked as 'must_do' are included in the optimization. | ||||
|         -> Adds a variable number of rows of constraints BUT CAN BE PRE COMPUTED | ||||
|  | ||||
|  | ||||
|         Args: | ||||
|             landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_do'. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|         L = len(landmarks) | ||||
|         A = np.zeros((L, L*L), dtype=np.int8) | ||||
|         b = [] | ||||
|  | ||||
|         for i, elem in enumerate(landmarks) : | ||||
|             if elem.must_do is True and elem.name not in ['finish', 'start']: | ||||
|                 A[i, i*L:i*L+L] = np.ones(L, dtype=np.int8) | ||||
|                 b.append(1) | ||||
|  | ||||
|         return A[~np.all(A == 0, axis=1)], b | ||||
|      | ||||
|  | ||||
|     def respect_user_must_avoid(self, landmarks: list[Landmark]) : | ||||
|         """ | ||||
|         Generate constraints to ensure that landmarks marked as 'must_avoid' are skipped | ||||
|         in the optimization. | ||||
|         -> Adds a variable number of rows of constraints BUT CAN BE PRE COMPUTED | ||||
|  | ||||
|         Args: | ||||
|             landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_avoid'. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|         L = len(landmarks) | ||||
|         A = np.zeros((L, L*L), dtype=np.int8) | ||||
|         b = [] | ||||
|  | ||||
|         for i, elem in enumerate(landmarks) : | ||||
|             if elem.must_do is True and i not in [0, L-1]: | ||||
|                 A[i, i*L:i*L+L] = np.ones(L, dtype=np.int8) | ||||
|                 b.append(0) | ||||
|  | ||||
|         return A[~np.all(A == 0, axis=1)], b | ||||
|  | ||||
|  | ||||
|     # Constraint to ensure start at start and finish at goal | ||||
|     def respect_start_finish(self, L: int): | ||||
|         """ | ||||
|         Generate constraints to ensure that the optimization starts at the designated | ||||
|         start landmark and finishes at the goal landmark. | ||||
|         -> Adds 3 rows of constraints | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         A = np.zeros((3, L*L), dtype=np.int8) | ||||
|  | ||||
|         A[0, :L] = np.ones(L, dtype=np.int8)        # sets departures only for start (horizontal ones) | ||||
|         for k in range(L-1) : | ||||
|             A[2, k*L] = 1 | ||||
|             if k != 0 : | ||||
|                 A[1, k*L+L-1] = 1                   # sets arrivals only for finish (vertical ones) | ||||
|         A[2, L*(L-1):] = np.ones(L, dtype=np.int8)  # prevents arrivals at start and departures from goal | ||||
|         b = [1, 1, 0] | ||||
|  | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     def respect_order(self, L: int):  | ||||
|         """ | ||||
|         Generate constraints to tie the optimization problem together and prevent  | ||||
|         stacked ones, although this does not fully prevent circles. | ||||
|         -> Adds L-2 rows of constraints | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         A = np.zeros((L-2, L*L), dtype=np.int8) | ||||
|         b = [0]*(L-2) | ||||
|         for i in range(1, L-1) :           # Prevent stacked ones | ||||
|             for j in range(L) : | ||||
|                 A[i-1, i + j*L] = -1 | ||||
|             A[i-1, i*L:(i+1)*L] = np.ones(L, dtype=np.int8) | ||||
|  | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     # Prevent the use of a particular solution | ||||
| @@ -164,236 +389,6 @@ class Optimizer: | ||||
|         return order, all_journeys_nodes | ||||
|  | ||||
|  | ||||
|  | ||||
|     def init_ub_time(self, landmarks: list[Landmark], max_time: int): | ||||
|         """ | ||||
|         Initialize the objective function coefficients and inequality constraints. | ||||
|  | ||||
|         This function computes the distances between all landmarks and stores | ||||
|         their attractiveness to maximize sightseeing. The goal is to maximize  | ||||
|         the objective function subject to the constraints A*x < b and A_eq*x = b_eq. | ||||
|  | ||||
|         Args: | ||||
|             landmarks (list[Landmark]): List of landmarks. | ||||
|             max_time (int): Maximum time of visit allowed. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[list[float], list[float], list[int]]: Objective function coefficients, inequality | ||||
|             constraint coefficients, and the right-hand side of the inequality constraint. | ||||
|         """ | ||||
|          | ||||
|         # Objective function coefficients. a*x1 + b*x2 + c*x3 + ... | ||||
|         c = [] | ||||
|         # Coefficients of inequality constraints (left-hand side) | ||||
|         A_ub = [] | ||||
|  | ||||
|         for spot1 in landmarks : | ||||
|             dist_table = [0]*len(landmarks) | ||||
|             c.append(-spot1.attractiveness) | ||||
|             for j, spot2 in enumerate(landmarks) : | ||||
|                 t = get_time(spot1.location, spot2.location) + spot1.duration | ||||
|                 dist_table[j] = t | ||||
|             closest = sorted(dist_table)[:15] | ||||
|             for i, dist in enumerate(dist_table) : | ||||
|                 if dist not in closest : | ||||
|                     dist_table[i] = 32700 | ||||
|             A_ub += dist_table | ||||
|         c = c*len(landmarks) | ||||
|  | ||||
|         return c, A_ub, [max_time*self.overshoot] | ||||
|  | ||||
|  | ||||
|     def respect_number(self, L, max_landmarks: int): | ||||
|         """ | ||||
|         Generate constraints to ensure each landmark is visited only once and cap the total number of visited landmarks. | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         ones = [1]*L | ||||
|         zeros = [0]*L | ||||
|         A = ones + zeros*(L-1) | ||||
|         b = [1] | ||||
|         for i in range(L-1) : | ||||
|             h_new = zeros*i + ones + zeros*(L-1-i) | ||||
|             A = np.vstack((A, h_new)) | ||||
|             b.append(1) | ||||
|  | ||||
|         A = np.vstack((A, ones*L)) | ||||
|         b.append(max_landmarks+1) | ||||
|  | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     # Constraint to not have d14 and d41 simultaneously. Does not prevent cyclic paths with more elements | ||||
|     def break_sym(self, L): | ||||
|         """ | ||||
|         Generate constraints to prevent simultaneous travel between two landmarks in both directions. | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         upper_ind = np.triu_indices(L,0,L) | ||||
|  | ||||
|         up_ind_x = upper_ind[0] | ||||
|         up_ind_y = upper_ind[1] | ||||
|  | ||||
|         A = [0]*L*L | ||||
|         b = [1] | ||||
|  | ||||
|         for i, _ in enumerate(up_ind_x[1:]) : | ||||
|             l = [0]*L*L | ||||
|             if up_ind_x[i] != up_ind_y[i] : | ||||
|                 l[up_ind_x[i]*L + up_ind_y[i]] = 1 | ||||
|                 l[up_ind_y[i]*L + up_ind_x[i]] = 1 | ||||
|  | ||||
|                 A = np.vstack((A,l)) | ||||
|                 b.append(1) | ||||
|  | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     def init_eq_not_stay(self, L: int):  | ||||
|         """ | ||||
|         Generate constraints to prevent staying in the same position (e.g., removing d11, d22, d33, etc.). | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[list[np.ndarray], list[int]]: Equality constraint coefficients and the right-hand side of the equality constraints. | ||||
|         """ | ||||
|  | ||||
|         l = [0]*L*L | ||||
|  | ||||
|         for i in range(L) : | ||||
|             for j in range(L) : | ||||
|                 if j == i : | ||||
|                     l[j + i*L] = 1 | ||||
|          | ||||
|         l = np.array(np.array(l), dtype=np.int8) | ||||
|  | ||||
|         return [l], [0] | ||||
|  | ||||
|  | ||||
|     def respect_user_must_do(self, landmarks: list[Landmark]) : | ||||
|         """ | ||||
|         Generate constraints to ensure that landmarks marked as 'must_do' are included in the optimization. | ||||
|  | ||||
|         Args: | ||||
|             landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_do'. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         L = len(landmarks) | ||||
|         A = [0]*L*L | ||||
|         b = [0] | ||||
|  | ||||
|         for i, elem in enumerate(landmarks[1:]) : | ||||
|             if elem.must_do is True and elem.name not in ['finish', 'start']: | ||||
|                 l = [0]*L*L | ||||
|                 l[i*L:i*L+L] = [1]*L        # set mandatory departures from landmarks tagged as 'must_do' | ||||
|  | ||||
|                 A = np.vstack((A,l)) | ||||
|                 b.append(1) | ||||
|  | ||||
|         return A, b | ||||
|      | ||||
|  | ||||
|     def respect_user_must_avoid(self, landmarks: list[Landmark]) : | ||||
|         """ | ||||
|         Generate constraints to ensure that landmarks marked as 'must_avoid' are skipped in the optimization. | ||||
|  | ||||
|         Args: | ||||
|             landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_avoid'. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         L = len(landmarks) | ||||
|         A = [0]*L*L | ||||
|         b = [0] | ||||
|  | ||||
|         for i, elem in enumerate(landmarks[1:]) : | ||||
|             if elem.must_avoid is True and elem.name not in ['finish', 'start']: | ||||
|                 l = [0]*L*L | ||||
|                 l[i*L:i*L+L] = [1]*L         | ||||
|  | ||||
|                 A = np.vstack((A,l)) | ||||
|                 b.append(0)             # prevent departures from landmarks tagged as 'must_do' | ||||
|  | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     # Constraint to ensure start at start and finish at goal | ||||
|     def respect_start_finish(self, L: int): | ||||
|         """ | ||||
|         Generate constraints to ensure that the optimization starts at the designated start landmark and finishes at the goal landmark. | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         l_start = [1]*L + [0]*L*(L-1)   # sets departures only for start (horizontal ones) | ||||
|         l_start[L-1] = 0                # prevents the jump from start to finish | ||||
|         l_goal = [0]*L*L                # sets arrivals only for finish (vertical ones) | ||||
|         l_L = [0]*L*(L-1) + [1]*L       # prevents arrivals at start and departures from goal | ||||
|         for k in range(L-1) :           # sets only vertical ones for goal (go to) | ||||
|             l_L[k*L] = 1 | ||||
|             if k != 0 : | ||||
|                 l_goal[k*L+L-1] = 1      | ||||
|  | ||||
|         A = np.vstack((l_start, l_goal)) | ||||
|         b = [1, 1] | ||||
|         A = np.vstack((A,l_L)) | ||||
|         b.append(0) | ||||
|  | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     def respect_order(self, L: int):  | ||||
|         """ | ||||
|         Generate constraints to tie the optimization problem together and prevent stacked ones, although this does not fully prevent circles. | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         A = [0]*L*L | ||||
|         b = [0] | ||||
|         for i in range(L-1) :           # Prevent stacked ones | ||||
|             if i == 0 or i == L-1:      # Don't touch start or finish | ||||
|                 continue | ||||
|             else :  | ||||
|                 l = [0]*L | ||||
|                 l[i] = -1 | ||||
|                 l = l*L | ||||
|                 for j in range(L) : | ||||
|                     l[i*L + j] = 1 | ||||
|  | ||||
|                 A = np.vstack((A,l)) | ||||
|                 b.append(0) | ||||
|  | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     def link_list(self, order: list[int], landmarks: list[Landmark])->list[Landmark] : | ||||
|         """ | ||||
|         Compute the time to reach from each landmark to the next and create a list of landmarks with updated travel times. | ||||
| @@ -455,28 +450,33 @@ class Optimizer: | ||||
|  | ||||
|         # SET CONSTRAINTS FOR INEQUALITY | ||||
|         c, A_ub, b_ub = self.init_ub_time(landmarks, max_time)          # Add the distances from each landmark to the other | ||||
|         A, b = self.respect_number(L, max_landmarks)                                   # Respect max number of visits (no more possible stops than landmarks).  | ||||
|         A_ub = np.vstack((A_ub, A), dtype=np.int16) | ||||
|          | ||||
|         A, b = self.respect_number(L, max_landmarks)                    # Respect max number of visits (no more possible stops than landmarks).  | ||||
|         A_ub = np.vstack((A_ub, A)) | ||||
|         b_ub += b | ||||
|  | ||||
|         A, b = self.break_sym(L)                                         # break the 'zig-zag' symmetry | ||||
|         A_ub = np.vstack((A_ub, A), dtype=np.int16) | ||||
|         A_ub = np.vstack((A_ub, A)) | ||||
|         b_ub += b | ||||
|  | ||||
|  | ||||
|         # SET CONSTRAINTS FOR EQUALITY | ||||
|         A_eq, b_eq = self.init_eq_not_stay(L)                            # Force solution not to stay in same place | ||||
|         A, b = self.respect_user_must_do(landmarks)                      # Check if there are user_defined must_see. Also takes care of start/goal | ||||
|         A_eq = np.vstack((A_eq, A), dtype=np.int8) | ||||
|         b_eq += b | ||||
|         if len(b) > 0 : | ||||
|             A_eq = np.vstack((A_eq, A), dtype=np.int8) | ||||
|             b_eq += b | ||||
|         A, b = self.respect_user_must_avoid(landmarks)                      # Check if there are user_defined must_see. Also takes care of start/goal | ||||
|         A_eq = np.vstack((A_eq, A), dtype=np.int8) | ||||
|         b_eq += b | ||||
|         if len(b) > 0 : | ||||
|             A_eq = np.vstack((A_eq, A), dtype=np.int8) | ||||
|             b_eq += b | ||||
|         A, b = self.respect_start_finish(L)                  # Force start and finish positions | ||||
|         A_eq = np.vstack((A_eq, A), dtype=np.int8) | ||||
|         b_eq += b | ||||
|         A, b = self.respect_order(L)                         # Respect order of visit (only works when max_time is limiting factor) | ||||
|         A_eq = np.vstack((A_eq, A), dtype=np.int8) | ||||
|         b_eq += b | ||||
|         # until here opti | ||||
|          | ||||
|         # SET BOUNDS FOR DECISION VARIABLE (x can only be 0 or 1) | ||||
|         x_bounds = [(0, 1)]*L*L | ||||
| @@ -484,7 +484,7 @@ class Optimizer: | ||||
|         # Solve linear programming problem | ||||
|         res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3) | ||||
|  | ||||
|         # Raise error if no solution is found | ||||
|         # Raise error if no solution is found. FIXME: for now this throws the internal server error | ||||
|         if not res.success : | ||||
|             raise ArithmeticError("No solution could be found, the problem is overconstrained. Try with a longer trip (>30 minutes).") | ||||
|  | ||||
| @@ -505,7 +505,6 @@ class Optimizer: | ||||
|             res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3) | ||||
|             if not res.success : | ||||
|                 raise ArithmeticError("Solving failed because of overconstrained problem") | ||||
|                 return None | ||||
|             order, circles = self.is_connected(res.x) | ||||
|             #nodes, edges = is_connected(res.x) | ||||
|             if circles is None : | ||||
|   | ||||
| @@ -1,7 +1,9 @@ | ||||
| import yaml, logging | ||||
|  | ||||
| from shapely import buffer, LineString, Point, Polygon, MultiPoint, concave_hull | ||||
| """Allows to refine the tour by adding more landmarks and making the path easier to follow.""" | ||||
| import logging | ||||
| from math import pi | ||||
| import yaml | ||||
| from shapely import buffer, LineString, Point, Polygon, MultiPoint, concave_hull | ||||
|  | ||||
|  | ||||
| from ..structs.landmark import Landmark | ||||
| from . import take_most_important, get_time_separation | ||||
| @@ -13,7 +15,7 @@ from ..constants import OPTIMIZER_PARAMETERS_PATH | ||||
| class Refiner : | ||||
|  | ||||
|     logger = logging.getLogger(__name__) | ||||
|      | ||||
|  | ||||
|     detour_factor: float            # detour factor of straight line vs real distance in cities | ||||
|     detour_corridor_width: float    # width of the corridor around the path | ||||
|     average_walking_speed: float    # average walking speed of adult | ||||
| @@ -45,7 +47,7 @@ class Refiner : | ||||
|         """ | ||||
|  | ||||
|         corrected_width = (180*width)/(6371000*pi) | ||||
|          | ||||
|  | ||||
|         path = self.create_linestring(landmarks) | ||||
|         obj = buffer(path, corrected_width, join_style="mitre", cap_style="square", mitre_limit=2) | ||||
|  | ||||
| @@ -70,7 +72,7 @@ class Refiner : | ||||
|         return LineString(points) | ||||
|  | ||||
|  | ||||
|     # Check if some coordinates are in area. Used for the corridor  | ||||
|     # Check if some coordinates are in area. Used for the corridor | ||||
|     def is_in_area(self, area: Polygon, coordinates) -> bool : | ||||
|         """ | ||||
|         Check if a given point is within a specified area. | ||||
| @@ -86,7 +88,7 @@ class Refiner : | ||||
|         return point.within(area) | ||||
|  | ||||
|  | ||||
|     # Function to determine if two landmarks are close to each other  | ||||
|     # Function to determine if two landmarks are close to each other | ||||
|     def is_close_to(self, location1: tuple[float], location2: tuple[float]): | ||||
|         """ | ||||
|         Determine if two locations are close to each other by rounding their coordinates to 3 decimal places. | ||||
| @@ -119,7 +121,7 @@ class Refiner : | ||||
|         Returns: | ||||
|             list[Landmark]: The rearranged list of landmarks with grouped nearby visits. | ||||
|         """ | ||||
|      | ||||
|  | ||||
|         i = 1 | ||||
|         while i < len(tour): | ||||
|             j = i+1 | ||||
| @@ -131,9 +133,9 @@ class Refiner : | ||||
|                         break  # Move to the next i-th element after rearrangement | ||||
|             j += 1 | ||||
|             i += 1 | ||||
|      | ||||
|  | ||||
|         return tour | ||||
|      | ||||
|  | ||||
|     def integrate_landmarks(self, sub_list: list[Landmark], main_list: list[Landmark]) : | ||||
|         """ | ||||
|         Inserts 'sub_list' of Landmarks inside the 'main_list' by leaving the ends untouched. | ||||
| @@ -166,24 +168,24 @@ class Refiner : | ||||
|                                              should be visited, and the second element is a `Polygon` representing  | ||||
|                                              the path connecting all landmarks. | ||||
|         """ | ||||
|              | ||||
|  | ||||
|         # Step 1: Find 'start' and 'finish' landmarks | ||||
|         start_idx = next(i for i, lm in enumerate(landmarks) if lm.type == 'start') | ||||
|         finish_idx = next(i for i, lm in enumerate(landmarks) if lm.type == 'finish') | ||||
|          | ||||
|  | ||||
|         start_landmark = landmarks[start_idx] | ||||
|         finish_landmark = landmarks[finish_idx] | ||||
|          | ||||
|  | ||||
|  | ||||
|         # Step 2: Create a list of unvisited landmarks excluding 'start' and 'finish' | ||||
|         unvisited_landmarks = [lm for i, lm in enumerate(landmarks) if i not in [start_idx, finish_idx]] | ||||
|          | ||||
|  | ||||
|         # Step 3: Initialize the path with the 'start' landmark | ||||
|         path = [start_landmark] | ||||
|         coordinates = [landmarks[start_idx].location] | ||||
|  | ||||
|         current_landmark = start_landmark | ||||
|          | ||||
|  | ||||
|         # Step 4: Use nearest neighbor heuristic to visit all landmarks | ||||
|         while unvisited_landmarks: | ||||
|             nearest_landmark = min(unvisited_landmarks, key=lambda lm: get_time_separation.get_time(current_landmark.location, lm.location)) | ||||
| @@ -224,7 +226,7 @@ class Refiner : | ||||
|  | ||||
|         for visited in visited_landmarks : | ||||
|             visited_names.append(visited.name) | ||||
|          | ||||
|  | ||||
|         for landmark in all_landmarks : | ||||
|             if self.is_in_area(area, landmark.location) and landmark.name not in visited_names: | ||||
|                 second_order_landmarks.append(landmark) | ||||
| @@ -256,7 +258,7 @@ class Refiner : | ||||
|                 coords_dict[landmark.location] = landmark | ||||
|  | ||||
|         tour_poly = Polygon(coords) | ||||
|          | ||||
|  | ||||
|         better_tour_poly = tour_poly.buffer(0) | ||||
|         try : | ||||
|             xs, ys = better_tour_poly.exterior.xy | ||||
| @@ -299,7 +301,7 @@ class Refiner : | ||||
|         # Rearrange only if polygon still not simple | ||||
|         if not better_tour_poly.is_simple : | ||||
|             better_tour = self.rearrange(better_tour) | ||||
|          | ||||
|  | ||||
|         return better_tour | ||||
|  | ||||
|  | ||||
| @@ -330,7 +332,7 @@ class Refiner : | ||||
|         # No need to refine if no detour is taken | ||||
|         # if detour == 0: | ||||
|         #     return base_tour | ||||
|          | ||||
|  | ||||
|         minor_landmarks = self.get_minor_landmarks(all_landmarks, base_tour, self.detour_corridor_width) | ||||
|  | ||||
|         self.logger.debug(f"Using {len(minor_landmarks)} minor landmarks around the predicted path") | ||||
| @@ -341,7 +343,7 @@ class Refiner : | ||||
|         # Generate a new tour with the optimizer. | ||||
|         new_tour = self.optimizer.solve_optimization( | ||||
|             max_time = max_time + detour, | ||||
|             landmarks = full_set,  | ||||
|             landmarks = full_set, | ||||
|             max_landmarks = self.max_landmarks_refiner | ||||
|         ) | ||||
|  | ||||
| @@ -357,7 +359,7 @@ class Refiner : | ||||
|         # Find shortest path using the nearest neighbor heuristic. | ||||
|         better_tour, better_poly = self.find_shortest_path_through_all_landmarks(new_tour) | ||||
|  | ||||
|         # Fix the tour using Polygons if the path looks weird.  | ||||
|         # Fix the tour using Polygons if the path looks weird. | ||||
|         # Conditions : circular trip and invalid polygon. | ||||
|         if base_tour[0].location == base_tour[-1].location and not better_poly.is_valid : | ||||
|             better_tour = self.fix_using_polygon(better_tour) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user