Merge pull request 'amazing cache' (#55) from backend/grid-based-cache into main
Reviewed-on: #55
This commit is contained in:
commit
6f54522b8c
@ -28,7 +28,7 @@ jobs:
|
||||
working-directory: backend
|
||||
|
||||
- name: Run Tests
|
||||
run: pipenv run pytest src --html=report.html --self-contained-html --log-cli-level=INFO
|
||||
run: pipenv run pytest src --html=report.html --self-contained-html --log-cli-level=DEBUG
|
||||
working-directory: backend
|
||||
|
||||
- name: Upload HTML report
|
||||
|
@ -445,7 +445,9 @@ disable=raw-checker-failed,
|
||||
logging-fstring-interpolation,
|
||||
duplicate-code,
|
||||
relative-beyond-top-level,
|
||||
invalid-name
|
||||
invalid-name,
|
||||
too-many-arguments,
|
||||
too-many-positional-arguments
|
||||
|
||||
# Enable the message, report, category or checker with the given id(s). You can
|
||||
# either give multiple identifier separated by comma (,) or put this option
|
||||
|
File diff suppressed because one or more lines are too long
@ -2,6 +2,7 @@
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import List, Literal, Tuple
|
||||
|
||||
|
||||
LOCATION_PREFIX = Path('src')
|
||||
@ -14,6 +15,8 @@ OPTIMIZER_PARAMETERS_PATH = PARAMETERS_DIR / 'optimizer_parameters.yaml'
|
||||
cache_dir_string = os.getenv('OSM_CACHE_DIR', './cache')
|
||||
OSM_CACHE_DIR = Path(cache_dir_string)
|
||||
|
||||
OSM_TYPES = List[Literal['way', 'node', 'relation']]
|
||||
BBOX = Tuple[float, float, float, float]
|
||||
|
||||
MEMCACHED_HOST_PATH = os.getenv('MEMCACHED_HOST_PATH', None)
|
||||
if MEMCACHED_HOST_PATH == "none":
|
||||
|
@ -3,7 +3,7 @@
|
||||
import logging
|
||||
import time
|
||||
from contextlib import asynccontextmanager
|
||||
from fastapi import FastAPI, HTTPException, Query
|
||||
from fastapi import FastAPI, HTTPException, BackgroundTasks, Query
|
||||
|
||||
from .logging_config import configure_logging
|
||||
from .structs.landmark import Landmark, Toilets
|
||||
@ -14,8 +14,10 @@ from .utils.landmarks_manager import LandmarkManager
|
||||
from .utils.toilets_manager import ToiletsManager
|
||||
from .optimization.optimizer import Optimizer
|
||||
from .optimization.refiner import Refiner
|
||||
from .overpass.overpass import fill_cache
|
||||
from .cache import client as cache_client
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
manager = LandmarkManager()
|
||||
@ -35,11 +37,11 @@ async def lifespan(app: FastAPI):
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
|
||||
|
||||
|
||||
@app.post("/trip/new")
|
||||
def new_trip(preferences: Preferences,
|
||||
start: tuple[float, float],
|
||||
end: tuple[float, float] | None = None) -> Trip:
|
||||
end: tuple[float, float] | None = None,
|
||||
background_tasks: BackgroundTasks = None) -> Trip:
|
||||
"""
|
||||
Main function to call the optimizer.
|
||||
|
||||
@ -91,6 +93,9 @@ def new_trip(preferences: Preferences,
|
||||
preferences = preferences
|
||||
)
|
||||
|
||||
if len(landmarks) == 0 :
|
||||
raise HTTPException(status_code=500, detail="No landmarks were found.")
|
||||
|
||||
# insert start and finish to the landmarks list
|
||||
landmarks_short.insert(0, start_landmark)
|
||||
landmarks_short.append(end_landmark)
|
||||
@ -114,6 +119,9 @@ def new_trip(preferences: Preferences,
|
||||
refined_tour = refiner.refine_optimization(landmarks, base_tour,
|
||||
preferences.max_time_minute,
|
||||
preferences.detour_tolerance_minute)
|
||||
except TimeoutError as te :
|
||||
logger.error(f'Refiner failed : {str(te)} Using base tour.')
|
||||
refined_tour = base_tour
|
||||
except Exception as exc :
|
||||
raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {str(exc)}") from exc
|
||||
|
||||
@ -127,6 +135,9 @@ def new_trip(preferences: Preferences,
|
||||
# upon creation of the trip, persistence of both the trip and its landmarks is ensured.
|
||||
trip = Trip.from_linked_landmarks(linked_tour, cache_client)
|
||||
logger.info(f'Generated a trip of {trip.total_time} minutes with {len(refined_tour)} landmarks in {round(t_generate_landmarks + t_first_stage + t_second_stage,3)} seconds.')
|
||||
|
||||
background_tasks.add_task(fill_cache)
|
||||
|
||||
return trip
|
||||
|
||||
|
||||
|
@ -55,6 +55,9 @@ class Optimizer:
|
||||
self.average_walking_speed = parameters['average_walking_speed']
|
||||
self.max_landmarks = parameters['max_landmarks']
|
||||
self.overshoot = parameters['overshoot']
|
||||
self.time_limit = parameters['time_limit']
|
||||
self.gap_rel = parameters['gap_rel']
|
||||
self.max_iter = parameters['max_iter']
|
||||
|
||||
|
||||
def init_ub_time(self, prob: pl.LpProblem, x: pl.LpVariable, L: int, landmarks: list[Landmark], max_time: int):
|
||||
@ -490,10 +493,21 @@ class Optimizer:
|
||||
|
||||
|
||||
def warm_start(self, x: list[pl.LpVariable], L: int) :
|
||||
"""
|
||||
This function sets the initial values of the decision variables to a feasible solution.
|
||||
This can help the solver start with a feasible or heuristic solution,
|
||||
potentially speeding up convergence.
|
||||
|
||||
Args:
|
||||
x (list[pl.LpVariable]): A list of PuLP decision variables (binary variables).
|
||||
L (int): The size parameter, representing a dimension (likely related to a grid or matrix).
|
||||
|
||||
Returns:
|
||||
list[pl.LpVariable]: The modified list of PuLP decision variables with initial values set.
|
||||
"""
|
||||
for i in range(L*L) :
|
||||
x[i].setInitialValue(0)
|
||||
|
||||
|
||||
x[1].setInitialValue(1)
|
||||
x[2*L-1].setInitialValue(1)
|
||||
|
||||
@ -573,7 +587,10 @@ class Optimizer:
|
||||
prob, x = self.pre_processing(L, landmarks, max_time, max_landmarks)
|
||||
|
||||
# Solve the problem and extract results.
|
||||
prob.solve(pl.PULP_CBC_CMD(msg=False, gapRel=0.1, timeLimit=10, warmStart=False))
|
||||
try :
|
||||
prob.solve(pl.PULP_CBC_CMD(msg=False, timeLimit=self.time_limit+1, gapRel=self.gap_rel))
|
||||
except Exception as exc :
|
||||
raise Exception(f"No solution found: {exc}") from exc
|
||||
status = pl.LpStatus[prob.status]
|
||||
solution = [pl.value(var) for var in x] # The values of the decision variables (will be 0 or 1)
|
||||
|
||||
@ -588,18 +605,21 @@ class Optimizer:
|
||||
circles = self.is_connected(solution)
|
||||
|
||||
i = 0
|
||||
timeout = 40
|
||||
while circles is not None :
|
||||
i += 1
|
||||
if i == timeout :
|
||||
self.logger.error(f'Timeout: No solution found after {timeout} iterations.')
|
||||
raise TimeoutError(f"Optimization took too long. No solution found after {timeout} iterations.")
|
||||
if i == self.max_iter :
|
||||
self.logger.error(f'Timeout: No solution found after {self.max_iter} iterations.')
|
||||
raise TimeoutError(f"Optimization took too long. No solution found after {self.max_iter} iterations.")
|
||||
|
||||
for circle in circles :
|
||||
self.prevent_circle(prob, x, circle, L)
|
||||
|
||||
# Solve the problem again
|
||||
prob.solve(pl.PULP_CBC_CMD(msg=False))
|
||||
try :
|
||||
prob.solve(pl.PULP_CBC_CMD(msg=False, timeLimit=self.time_limit, gapRel=self.gap_rel))
|
||||
except Exception as exc :
|
||||
raise Exception(f"No solution found: {exc}") from exc
|
||||
|
||||
solution = [pl.value(var) for var in x]
|
||||
|
||||
if pl.LpStatus[prob.status] != 'Optimal' :
|
||||
@ -614,5 +634,5 @@ class Optimizer:
|
||||
order = self.get_order(solution)
|
||||
tour = [landmarks[i] for i in order]
|
||||
|
||||
self.logger.debug(f"Re-optimized {i} times, objective value : {int(pl.value(prob.objective))}")
|
||||
self.logger.info(f"Re-optimized {i} times, objective value : {int(pl.value(prob.objective))}")
|
||||
return tour
|
||||
|
@ -1,9 +1,8 @@
|
||||
"""Module defining the caching strategy for overpass requests."""
|
||||
import os
|
||||
import xml.etree.ElementTree as ET
|
||||
import json
|
||||
import hashlib
|
||||
|
||||
from ..constants import OSM_CACHE_DIR
|
||||
from ..constants import OSM_CACHE_DIR, OSM_TYPES
|
||||
|
||||
|
||||
def get_cache_key(query: str) -> str:
|
||||
@ -17,10 +16,6 @@ def get_cache_key(query: str) -> str:
|
||||
class CachingStrategyBase:
|
||||
"""
|
||||
Base class for implementing caching strategies.
|
||||
|
||||
This class defines the structure for a caching strategy with basic methods
|
||||
that must be implemented by subclasses. Subclasses should define how to
|
||||
retrieve, store, and close the cache.
|
||||
"""
|
||||
def get(self, key):
|
||||
"""Retrieve the cached data associated with the provided key."""
|
||||
@ -30,111 +25,108 @@ class CachingStrategyBase:
|
||||
"""Store data in the cache with the specified key."""
|
||||
raise NotImplementedError('Subclass should implement set')
|
||||
|
||||
def set_hollow(self, key, **kwargs):
|
||||
"""Create a hollow (empty) cache entry with a specific key."""
|
||||
raise NotImplementedError('Subclass should implement set_hollow')
|
||||
|
||||
def close(self):
|
||||
"""Clean up or close any resources used by the caching strategy."""
|
||||
|
||||
|
||||
class XMLCache(CachingStrategyBase):
|
||||
class JSONCache(CachingStrategyBase):
|
||||
"""
|
||||
A caching strategy that stores and retrieves data in XML format.
|
||||
|
||||
This class provides methods to cache data as XML files in a specified directory.
|
||||
The directory is automatically suffixed with '_XML' to distinguish it from other
|
||||
caching strategies. The data is stored and retrieved using XML serialization.
|
||||
|
||||
Args:
|
||||
cache_dir (str): The base directory where XML cache files will be stored.
|
||||
Defaults to 'OSM_CACHE_DIR' with a '_XML' suffix.
|
||||
|
||||
Methods:
|
||||
get(key): Retrieve cached data from a XML file associated with the given key.
|
||||
set(key, value): Store data in a XML file with the specified key.
|
||||
A caching strategy that stores and retrieves data in JSON format.
|
||||
"""
|
||||
def __init__(self, cache_dir=OSM_CACHE_DIR):
|
||||
# Add the class name as a suffix to the directory
|
||||
self._cache_dir = f'{cache_dir}_XML'
|
||||
self._cache_dir = f'{cache_dir}'
|
||||
if not os.path.exists(self._cache_dir):
|
||||
os.makedirs(self._cache_dir)
|
||||
|
||||
def _filename(self, key):
|
||||
return os.path.join(self._cache_dir, f'{key}.xml')
|
||||
return os.path.join(self._cache_dir, f'{key}.json')
|
||||
|
||||
def get(self, key):
|
||||
"""Retrieve XML data from the cache and parse it as an ElementTree."""
|
||||
"""Retrieve JSON data from the cache and parse it as an ElementTree."""
|
||||
filename = self._filename(key)
|
||||
if os.path.exists(filename):
|
||||
try:
|
||||
# Parse and return the cached XML data
|
||||
tree = ET.parse(filename)
|
||||
return tree.getroot() # Return the root element of the parsed XML
|
||||
except ET.ParseError:
|
||||
# print(f"Error parsing cached XML file: {filename}")
|
||||
return None
|
||||
# Open and parse the cached JSON data
|
||||
with open(filename, 'r', encoding='utf-8') as file:
|
||||
data = json.load(file)
|
||||
# Return the data as a list of dicts.
|
||||
return data
|
||||
except json.JSONDecodeError:
|
||||
return None # Return None if parsing fails
|
||||
return None
|
||||
|
||||
def set(self, key, value):
|
||||
"""Save the XML data as an ElementTree to the cache."""
|
||||
"""Save the JSON data as an ElementTree to the cache."""
|
||||
filename = self._filename(key)
|
||||
tree = ET.ElementTree(value) # value is expected to be an ElementTree root element
|
||||
try:
|
||||
# Write the XML data to a file
|
||||
with open(filename, 'wb') as file:
|
||||
tree.write(file, encoding='utf-8', xml_declaration=True)
|
||||
# Write the JSON data to the cache file
|
||||
with open(filename, 'w', encoding='utf-8') as file:
|
||||
json.dump(value, file, ensure_ascii=False, indent=4)
|
||||
except IOError as e:
|
||||
raise IOError(f"Error writing to cache file: {filename} - {e}") from e
|
||||
|
||||
def set_hollow(self, key, cell: tuple, osm_types: list,
|
||||
selector: str, conditions: list=None, out='center'):
|
||||
"""Create an empty placeholder cache entry for a future fill."""
|
||||
hollow_key = f'hollow_{key}'
|
||||
filename = self._filename(hollow_key)
|
||||
|
||||
# Create the hollow JSON structure
|
||||
hollow_data = {
|
||||
"key": key,
|
||||
"cell": list(cell),
|
||||
"osm_types": list(osm_types),
|
||||
"selector": selector,
|
||||
"conditions": conditions,
|
||||
"out": out
|
||||
}
|
||||
# Write the hollow data to the cache file
|
||||
try:
|
||||
with open(filename, 'w', encoding='utf-8') as file:
|
||||
json.dump(hollow_data, file, ensure_ascii=False, indent=4)
|
||||
except IOError as e:
|
||||
raise IOError(f"Error writing hollow cache to file: {filename} - {e}") from e
|
||||
|
||||
def close(self):
|
||||
"""Cleanup method, if needed."""
|
||||
pass
|
||||
|
||||
class CachingStrategy:
|
||||
"""
|
||||
A class to manage different caching strategies.
|
||||
|
||||
This class provides an interface to switch between different caching strategies
|
||||
(e.g., XMLCache, JSONCache) dynamically. It allows caching data in different formats,
|
||||
depending on the strategy being used. By default, it uses the XMLCache strategy.
|
||||
|
||||
Attributes:
|
||||
__strategy (CachingStrategyBase): The currently active caching strategy.
|
||||
__strategies (dict): A mapping between strategy names (as strings) and their corresponding
|
||||
classes, allowing dynamic selection of caching strategies.
|
||||
"""
|
||||
__strategy = XMLCache() # Default caching strategy
|
||||
__strategy = JSONCache() # Default caching strategy
|
||||
__strategies = {
|
||||
'XML': XMLCache,
|
||||
'JSON': JSONCache,
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def use(cls, strategy_name='XML', **kwargs):
|
||||
"""
|
||||
Set the caching strategy based on the strategy_name provided.
|
||||
|
||||
Args:
|
||||
strategy_name (str): The name of the caching strategy (e.g., 'XML').
|
||||
**kwargs: Additional keyword arguments to pass when initializing the strategy.
|
||||
"""
|
||||
# If a previous strategy exists, close it
|
||||
def use(cls, strategy_name='JSON', **kwargs):
|
||||
if cls.__strategy:
|
||||
cls.__strategy.close()
|
||||
|
||||
# Retrieve the strategy class based on the strategy name
|
||||
strategy_class = cls.__strategies.get(strategy_name)
|
||||
|
||||
if not strategy_class:
|
||||
raise ValueError(f"Unknown caching strategy: {strategy_name}")
|
||||
|
||||
# Instantiate the new strategy with the provided arguments
|
||||
cls.__strategy = strategy_class(**kwargs)
|
||||
return cls.__strategy
|
||||
|
||||
@classmethod
|
||||
def get(cls, key):
|
||||
"""Get data from the current strategy's cache."""
|
||||
if not cls.__strategy:
|
||||
raise RuntimeError("Caching strategy has not been set.")
|
||||
return cls.__strategy.get(key)
|
||||
|
||||
@classmethod
|
||||
def set(cls, key, value):
|
||||
"""Set data in the current strategy's cache."""
|
||||
if not cls.__strategy:
|
||||
raise RuntimeError("Caching strategy has not been set.")
|
||||
cls.__strategy.set(key, value)
|
||||
|
||||
@classmethod
|
||||
def set_hollow(cls, key, cell: tuple, osm_types: OSM_TYPES,
|
||||
selector: str, conditions: list=None, out='center'):
|
||||
"""Create a hollow cache entry."""
|
||||
cls.__strategy.set_hollow(key, cell, osm_types, selector, conditions, out)
|
||||
|
@ -1,14 +1,17 @@
|
||||
"""Module allowing connexion to overpass api and fectch data from OSM."""
|
||||
from typing import Literal, List
|
||||
import os
|
||||
import urllib
|
||||
import math
|
||||
import logging
|
||||
import xml.etree.ElementTree as ET
|
||||
import json
|
||||
from typing import List, Tuple
|
||||
|
||||
from .caching_strategy import get_cache_key, CachingStrategy
|
||||
from ..constants import OSM_CACHE_DIR
|
||||
from ..constants import OSM_CACHE_DIR, OSM_TYPES, BBOX
|
||||
|
||||
logger = logging.getLogger('Overpass')
|
||||
osm_types = List[Literal['way', 'node', 'relation']]
|
||||
|
||||
RESOLUTION = 0.05
|
||||
CELL = Tuple[int, int]
|
||||
|
||||
|
||||
class Overpass :
|
||||
@ -16,7 +19,10 @@ class Overpass :
|
||||
Overpass class to manage the query building and sending to overpass api.
|
||||
The caching strategy is a part of this class and initialized upon creation of the Overpass object.
|
||||
"""
|
||||
def __init__(self, caching_strategy: str = 'XML', cache_dir: str = OSM_CACHE_DIR) :
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def __init__(self, caching_strategy: str = 'JSON', cache_dir: str = OSM_CACHE_DIR) :
|
||||
"""
|
||||
Initialize the Overpass instance with the url, headers and caching strategy.
|
||||
"""
|
||||
@ -25,17 +31,109 @@ class Overpass :
|
||||
self.caching_strategy = CachingStrategy.use(caching_strategy, cache_dir=cache_dir)
|
||||
|
||||
|
||||
@classmethod
|
||||
def build_query(self, area: tuple, osm_types: osm_types,
|
||||
selector: str, conditions=[], out='center') -> str:
|
||||
def send_query(self, bbox: BBOX, osm_types: OSM_TYPES,
|
||||
selector: str, conditions: list=None, out='center') -> List[dict]:
|
||||
"""
|
||||
Sends the Overpass QL query to the Overpass API and returns the parsed json response.
|
||||
|
||||
Args:
|
||||
bbox (tuple): Bounding box for the query.
|
||||
osm_types (list[str]): List of OSM element types (e.g., 'node', 'way').
|
||||
selector (str): Key or tag to filter OSM elements (e.g., 'highway').
|
||||
conditions (list): Optional list of additional filter conditions in Overpass QL format.
|
||||
out (str): Output format ('center', 'body', etc.). Defaults to 'center'.
|
||||
|
||||
Returns:
|
||||
list: Parsed json response from the Overpass API, or cached data if available.
|
||||
"""
|
||||
# Determine which grid cells overlap with this bounding box.
|
||||
overlapping_cells = Overpass._get_overlapping_cells(bbox)
|
||||
|
||||
# Retrieve cached data and identify missing cache entries
|
||||
cached_responses, non_cached_cells = self._retrieve_cached_data(overlapping_cells, osm_types, selector, conditions, out)
|
||||
|
||||
self.logger.info(f'Cache hit for {len(overlapping_cells)-len(non_cached_cells)}/{len(overlapping_cells)} quadrants.')
|
||||
|
||||
# If there is no missing data, return the cached responses after filtering.
|
||||
if not non_cached_cells :
|
||||
return Overpass._filter_landmarks(cached_responses, bbox)
|
||||
|
||||
# If there is no cached data, fetch all from Overpass.
|
||||
elif not cached_responses :
|
||||
query_str = Overpass.build_query(bbox, osm_types, selector, conditions, out)
|
||||
return self.fetch_data_from_api(query_str)
|
||||
|
||||
# Hybrid cache: some data from Overpass, some data from cache.
|
||||
else :
|
||||
# Resize the bbox for smaller search area and build new query string.
|
||||
non_cached_bbox = Overpass._get_non_cached_bbox(non_cached_cells, bbox)
|
||||
query_str = Overpass.build_query(non_cached_bbox, osm_types, selector, conditions, out)
|
||||
non_cached_responses = self.fetch_data_from_api(query_str)
|
||||
return Overpass._filter_landmarks(cached_responses, bbox) + non_cached_responses
|
||||
|
||||
|
||||
def fetch_data_from_api(self, query_str: str) -> List[dict]:
|
||||
"""
|
||||
Fetch data from the Overpass API and return the json data.
|
||||
|
||||
Args:
|
||||
query_str (str): The Overpass query string.
|
||||
|
||||
Returns:
|
||||
dict: Combined cached and fetched data.
|
||||
"""
|
||||
try:
|
||||
data = urllib.parse.urlencode({'data': query_str}).encode('utf-8')
|
||||
request = urllib.request.Request(self.overpass_url, data=data, headers=self.headers)
|
||||
|
||||
with urllib.request.urlopen(request) as response:
|
||||
response_data = response.read().decode('utf-8') # Convert the HTTPResponse to a string
|
||||
data = json.loads(response_data) # Load the JSON from the string
|
||||
elements = data.get('elements', [])
|
||||
# self.logger.debug(f'Query = {query_str}')
|
||||
return elements
|
||||
|
||||
except urllib.error.URLError as e:
|
||||
self.logger.error(f"Error connecting to Overpass API: {e}")
|
||||
raise ConnectionError(f"Error connecting to Overpass API: {e}") from e
|
||||
except Exception as exc :
|
||||
raise Exception(f'An unexpected error occured: {str(exc)}') from exc
|
||||
|
||||
|
||||
def fill_cache(self, json_data: dict) :
|
||||
"""
|
||||
Fill cache with data by using a hollow cache entry's information.
|
||||
"""
|
||||
query_str, cache_key = Overpass._build_query_from_hollow(json_data)
|
||||
try:
|
||||
data = urllib.parse.urlencode({'data': query_str}).encode('utf-8')
|
||||
request = urllib.request.Request(self.overpass_url, data=data, headers=self.headers)
|
||||
|
||||
with urllib.request.urlopen(request) as response:
|
||||
|
||||
# Convert the HTTPResponse to a string and load data
|
||||
response_data = response.read().decode('utf-8')
|
||||
data = json.loads(response_data)
|
||||
|
||||
# Get elements and set cache
|
||||
elements = data.get('elements', [])
|
||||
self.caching_strategy.set(cache_key, elements)
|
||||
self.logger.debug(f'Cache set for {cache_key}')
|
||||
except urllib.error.URLError as e:
|
||||
raise ConnectionError(f"Error connecting to Overpass API: {e}") from e
|
||||
except Exception as exc :
|
||||
raise Exception(f'An unexpected error occured: {str(exc)}') from exc
|
||||
|
||||
|
||||
@staticmethod
|
||||
def build_query(bbox: BBOX, osm_types: OSM_TYPES,
|
||||
selector: str, conditions: list=None, out='center') -> str:
|
||||
"""
|
||||
Constructs a query string for the Overpass API to retrieve OpenStreetMap (OSM) data.
|
||||
|
||||
Args:
|
||||
area (tuple): A tuple representing the geographical search area, typically in the format
|
||||
(radius, latitude, longitude). The first element is a string like "around:2000"
|
||||
specifying the search radius, and the second and third elements represent
|
||||
the latitude and longitude as floats or strings.
|
||||
bbox (tuple): A tuple representing the geographical search area, typically in the format
|
||||
(lat_min, lon_min, lat_max, lon_max).
|
||||
osm_types (list[str]): A list of OSM element types to search for. Must be one or more of
|
||||
'Way', 'Node', or 'Relation'.
|
||||
selector (str): The key or tag to filter the OSM elements (e.g., 'amenity', 'highway', etc.).
|
||||
@ -52,82 +150,203 @@ class Overpass :
|
||||
Notes:
|
||||
- If no conditions are provided, the query will just use the `selector` to filter the OSM
|
||||
elements without additional constraints.
|
||||
- The search area must always formatted as "(radius, lat, lon)".
|
||||
"""
|
||||
if not isinstance(conditions, list) :
|
||||
conditions = [conditions]
|
||||
if not isinstance(osm_types, list) :
|
||||
osm_types = [osm_types]
|
||||
query = '[out:json];('
|
||||
|
||||
query = '('
|
||||
# convert the bbox to string.
|
||||
bbox_str = f"({','.join(map(str, bbox))})"
|
||||
|
||||
# Round the radius to nearest 50 and coordinates to generate less queries
|
||||
if area[0] > 500 :
|
||||
search_radius = round(area[0] / 50) * 50
|
||||
loc = tuple((round(area[1], 2), round(area[2], 2)))
|
||||
else :
|
||||
search_radius = round(area[0] / 25) * 25
|
||||
loc = tuple((round(area[1], 3), round(area[2], 3)))
|
||||
|
||||
search_area = f"(around:{search_radius}, {str(loc[0])}, {str(loc[1])})"
|
||||
|
||||
if conditions :
|
||||
if conditions is not None and len(conditions) > 0:
|
||||
conditions = '(if: ' + ' && '.join(conditions) + ')'
|
||||
else :
|
||||
conditions = ''
|
||||
|
||||
for elem in osm_types :
|
||||
query += elem + '[' + selector + ']' + conditions + search_area + ';'
|
||||
query += elem + '[' + selector + ']' + conditions + bbox_str + ';'
|
||||
|
||||
query += ');' + f'out {out};'
|
||||
|
||||
return query
|
||||
|
||||
|
||||
def send_query(self, query: str) -> ET:
|
||||
def _retrieve_cached_data(self, overlapping_cells: CELL, osm_types: OSM_TYPES,
|
||||
selector: str, conditions: list, out: str) -> Tuple[List[dict], list[CELL]]:
|
||||
"""
|
||||
Sends the Overpass QL query to the Overpass API and returns the parsed JSON response.
|
||||
Retrieve cached data and identify missing cache quadrants.
|
||||
|
||||
Args:
|
||||
query (str): The Overpass QL query to be sent to the Overpass API.
|
||||
overlapping_cells (list): Cells to check for cached data.
|
||||
osm_types (list): OSM types (e.g., 'node', 'way').
|
||||
selector (str): Key or tag to filter OSM elements.
|
||||
conditions (list): Additional conditions to apply.
|
||||
out (str): Output format.
|
||||
|
||||
Returns:
|
||||
dict: The parsed JSON response from the Overpass API, or None if the request fails.
|
||||
tuple: A tuple containing:
|
||||
- cached_responses (list): List of cached data found.
|
||||
- non_cached_cells (list(tuple)): List of cells with missing data.
|
||||
"""
|
||||
cell_key_dict = {}
|
||||
for cell in overlapping_cells :
|
||||
for elem in osm_types :
|
||||
key_str = f"{elem}[{selector}]{conditions}({','.join(map(str, cell))})"
|
||||
|
||||
cell_key_dict[cell] = get_cache_key(key_str)
|
||||
|
||||
cached_responses = []
|
||||
non_cached_cells = []
|
||||
|
||||
# Retrieve the cached data and mark the missing entries as hollow
|
||||
for cell, key in cell_key_dict.items():
|
||||
cached_data = self.caching_strategy.get(key)
|
||||
if cached_data is not None :
|
||||
cached_responses += cached_data
|
||||
else:
|
||||
self.caching_strategy.set_hollow(key, cell, osm_types, selector, conditions, out)
|
||||
non_cached_cells.append(cell)
|
||||
|
||||
return cached_responses, non_cached_cells
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _build_query_from_hollow(json_data: dict) -> Tuple[str, str]:
|
||||
"""
|
||||
Build query string using information from a hollow cache entry.
|
||||
"""
|
||||
# Extract values from the JSON object
|
||||
key = json_data.get('key')
|
||||
cell = tuple(json_data.get('cell'))
|
||||
bbox = Overpass._get_bbox_from_grid_cell(cell)
|
||||
osm_types = json_data.get('osm_types')
|
||||
selector = json_data.get('selector')
|
||||
conditions = json_data.get('conditions')
|
||||
out = json_data.get('out')
|
||||
|
||||
|
||||
query_str = Overpass.build_query(bbox, osm_types, selector, conditions, out)
|
||||
return query_str, key
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _get_overlapping_cells(query_bbox: tuple) -> List[CELL]:
|
||||
"""
|
||||
Returns a set of all grid cells that overlap with the given bounding box.
|
||||
"""
|
||||
# Extract location from the query bbox
|
||||
lat_min, lon_min, lat_max, lon_max = query_bbox
|
||||
|
||||
min_lat_cell, min_lon_cell = Overpass._get_grid_cell(lat_min, lon_min)
|
||||
max_lat_cell, max_lon_cell = Overpass._get_grid_cell(lat_max, lon_max)
|
||||
|
||||
overlapping_cells = set()
|
||||
for lat_idx in range(min_lat_cell, max_lat_cell + 1):
|
||||
for lon_idx in range(min_lon_cell, max_lon_cell + 1):
|
||||
overlapping_cells.add((lat_idx, lon_idx))
|
||||
|
||||
return overlapping_cells
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _get_grid_cell(lat: float, lon: float) -> CELL:
|
||||
"""
|
||||
Returns the grid cell coordinates for a given latitude and longitude.
|
||||
Each grid cell is 0.05°lat x 0.05°lon resolution in size.
|
||||
"""
|
||||
lat_index = math.floor(lat / RESOLUTION)
|
||||
lon_index = math.floor(lon / RESOLUTION)
|
||||
return (lat_index, lon_index)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _get_bbox_from_grid_cell(cell: CELL) -> BBOX:
|
||||
"""
|
||||
Returns the bounding box for a given grid cell index.
|
||||
Each grid cell is resolution x resolution in size.
|
||||
|
||||
The bounding box is returned as (min_lat, min_lon, max_lat, max_lon).
|
||||
"""
|
||||
# Calculate the southwest (min_lat, min_lon) corner of the bounding box
|
||||
min_lat = round(cell[0] * RESOLUTION, 2)
|
||||
min_lon = round(cell[1] * RESOLUTION, 2)
|
||||
|
||||
# Calculate the northeast (max_lat, max_lon) corner of the bounding box
|
||||
max_lat = round((cell[0] + 1) * RESOLUTION, 2)
|
||||
max_lon = round((cell[1] + 1) * RESOLUTION, 2)
|
||||
|
||||
return (min_lat, min_lon, max_lat, max_lon)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _get_non_cached_bbox(non_cached_cells: List[CELL], original_bbox: BBOX):
|
||||
"""
|
||||
Calculate the non-cached bounding box by excluding cached cells.
|
||||
|
||||
Args:
|
||||
non_cached_cells (list): The list of cells that were not found in the cache.
|
||||
original_bbox (tuple): The original bounding box (min_lat, min_lon, max_lat, max_lon).
|
||||
|
||||
Returns:
|
||||
tuple: The new bounding box that excludes cached cells, or None if all cells are cached.
|
||||
"""
|
||||
if not non_cached_cells:
|
||||
return None # All cells were cached
|
||||
|
||||
# Initialize the non-cached bounding box with extreme values
|
||||
min_lat, min_lon, max_lat, max_lon = float('inf'), float('inf'), float('-inf'), float('-inf')
|
||||
|
||||
# Iterate over non-cached cells to find the new bounding box
|
||||
for cell in non_cached_cells:
|
||||
cell_min_lat, cell_min_lon, cell_max_lat, cell_max_lon = Overpass._get_bbox_from_grid_cell(cell)
|
||||
|
||||
min_lat = min(min_lat, cell_min_lat)
|
||||
min_lon = min(min_lon, cell_min_lon)
|
||||
max_lat = max(max_lat, cell_max_lat)
|
||||
max_lon = max(max_lon, cell_max_lon)
|
||||
|
||||
# If no update to bounding box, return the original
|
||||
if min_lat == float('inf') or min_lon == float('inf'):
|
||||
return None
|
||||
|
||||
return (max(min_lat, original_bbox[0]),
|
||||
max(min_lon, original_bbox[1]),
|
||||
min(max_lat, original_bbox[2]),
|
||||
min(max_lon, original_bbox[3]))
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _filter_landmarks(elements: List[dict], bbox: BBOX) -> List[dict]:
|
||||
"""
|
||||
Filters elements based on whether their coordinates are inside the given bbox.
|
||||
|
||||
Args:
|
||||
- elements (list of dict): List of elements containing coordinates.
|
||||
- bbox (tuple): A bounding box defined as (min_lat, min_lon, max_lat, max_lon).
|
||||
|
||||
Returns:
|
||||
- list: A list of elements whose coordinates are inside the bounding box.
|
||||
"""
|
||||
|
||||
# Generate a cache key for the current query
|
||||
cache_key = get_cache_key(query)
|
||||
filtered_elements = []
|
||||
min_lat, min_lon, max_lat, max_lon = bbox
|
||||
|
||||
# Try to fetch the result from the cache
|
||||
cached_response = self.caching_strategy.get(cache_key)
|
||||
if cached_response is not None :
|
||||
logger.debug("Cache hit.")
|
||||
return cached_response
|
||||
for elem in elements:
|
||||
# Extract coordinates based on the 'type' of element
|
||||
if elem.get('type') != 'node':
|
||||
center = elem.get('center', {})
|
||||
lat = float(center.get('lat', 0))
|
||||
lon = float(center.get('lon', 0))
|
||||
else:
|
||||
lat = float(elem.get('lat', 0))
|
||||
lon = float(elem.get('lon', 0))
|
||||
|
||||
# Prepare the data to be sent as POST request, encoded as bytes
|
||||
data = urllib.parse.urlencode({'data': query}).encode('utf-8')
|
||||
# Check if the coordinates fall within the given bounding box
|
||||
if min_lat <= lat <= max_lat and min_lon <= lon <= max_lon:
|
||||
filtered_elements.append(elem)
|
||||
|
||||
try:
|
||||
# Create a Request object with the specified URL, data, and headers
|
||||
request = urllib.request.Request(self.overpass_url, data=data, headers=self.headers)
|
||||
|
||||
# Send the request and read the response
|
||||
with urllib.request.urlopen(request) as response:
|
||||
# Read and decode the response
|
||||
response_data = response.read().decode('utf-8')
|
||||
root = ET.fromstring(response_data)
|
||||
|
||||
# Cache the response data as an ElementTree root
|
||||
self.caching_strategy.set(cache_key, root)
|
||||
logger.debug("Response data added to cache.")
|
||||
|
||||
return root
|
||||
|
||||
except urllib.error.URLError as e:
|
||||
raise ConnectionError(f"Error connecting to Overpass API: {e}") from e
|
||||
return filtered_elements
|
||||
|
||||
|
||||
def get_base_info(elem: ET.Element, osm_type: osm_types, with_name=False) :
|
||||
def get_base_info(elem: dict, osm_type: OSM_TYPES, with_name=False) :
|
||||
"""
|
||||
Extracts base information (coordinates, OSM ID, and optionally a name) from an OSM element.
|
||||
|
||||
@ -136,7 +355,7 @@ def get_base_info(elem: ET.Element, osm_type: osm_types, with_name=False) :
|
||||
extracting coordinates either directly or from a center tag, depending on the element type.
|
||||
|
||||
Args:
|
||||
elem (ET.Element): The XML element representing the OSM entity.
|
||||
elem (dict): The JSON element representing the OSM entity.
|
||||
osm_type (str): The type of the OSM entity (e.g., 'node', 'way'). If 'node', the coordinates
|
||||
are extracted directly from the element; otherwise, from the 'center' tag.
|
||||
with_name (bool): Whether to extract and return the name of the element. If True, it attempts
|
||||
@ -150,7 +369,7 @@ def get_base_info(elem: ET.Element, osm_type: osm_types, with_name=False) :
|
||||
"""
|
||||
# 1. extract coordinates
|
||||
if osm_type != 'node' :
|
||||
center = elem.find('center')
|
||||
center = elem.get('center')
|
||||
lat = float(center.get('lat'))
|
||||
lon = float(center.get('lon'))
|
||||
|
||||
@ -165,7 +384,31 @@ def get_base_info(elem: ET.Element, osm_type: osm_types, with_name=False) :
|
||||
|
||||
# 3. Extract name if specified and return
|
||||
if with_name :
|
||||
name = elem.find("tag[@k='name']").get('v') if elem.find("tag[@k='name']") is not None else None
|
||||
name = elem.get('tags', {}).get('name')
|
||||
return osm_id, coords, name
|
||||
else :
|
||||
return osm_id, coords
|
||||
|
||||
|
||||
def fill_cache():
|
||||
"""
|
||||
Scans the specified cache directory for files starting with 'hollow_' and attempts to load
|
||||
their contents as JSON to fill the cache of the Overpass system.
|
||||
"""
|
||||
overpass = Overpass()
|
||||
|
||||
with os.scandir(OSM_CACHE_DIR) as it:
|
||||
for entry in it:
|
||||
if entry.is_file() and entry.name.startswith('hollow_'):
|
||||
|
||||
try :
|
||||
# Read the whole file content as a string
|
||||
with open(entry.path, 'r') as f:
|
||||
# load data and fill the cache with the query and key
|
||||
json_data = json.load(f)
|
||||
overpass.fill_cache(json_data)
|
||||
# Now delete the file as the cache is filled
|
||||
os.remove(entry.path)
|
||||
|
||||
except Exception as exc :
|
||||
overpass.logger.error(f'An error occured while parsing file {entry.path} as .json file')
|
||||
|
@ -1,4 +1,4 @@
|
||||
city_bbox_side: 7500 #m
|
||||
max_bbox_side: 4000 #m
|
||||
radius_close_to: 50
|
||||
church_coeff: 0.55
|
||||
nature_coeff: 1.4
|
||||
@ -8,5 +8,5 @@ image_bonus: 1.1
|
||||
viewpoint_bonus: 5
|
||||
wikipedia_bonus: 1.25
|
||||
name_bonus: 3
|
||||
N_important: 40
|
||||
N_important: 60
|
||||
pay_bonus: -1
|
||||
|
@ -4,3 +4,6 @@ average_walking_speed: 4.8
|
||||
max_landmarks: 10
|
||||
max_landmarks_refiner: 20
|
||||
overshoot: 0.0016
|
||||
time_limit: 1
|
||||
gap_rel: 0.05
|
||||
max_iter: 40
|
@ -2,7 +2,7 @@
|
||||
|
||||
from typing import Optional, Literal
|
||||
from uuid import uuid4, UUID
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
|
||||
# Output to frontend
|
||||
@ -144,8 +144,4 @@ class Toilets(BaseModel) :
|
||||
"""
|
||||
return f'Toilets @{self.location}'
|
||||
|
||||
class Config:
|
||||
"""
|
||||
This allows us to easily convert the model to and from dictionaries
|
||||
"""
|
||||
from_attributes = True
|
||||
model_config = ConfigDict(from_attributes=True)
|
||||
|
@ -27,11 +27,13 @@ def test_turckheim(client, request): # pylint: disable=redefined-outer-name
|
||||
"/trip/new",
|
||||
json={
|
||||
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
|
||||
"nature": {"type": "nature", "score": 5},
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
"nature": {"type": "nature", "score": 0},
|
||||
"shopping": {"type": "shopping", "score": 0},
|
||||
"max_time_minute": duration_minutes,
|
||||
"detour_tolerance_minute": 0},
|
||||
"start": [48.084588, 7.280405]
|
||||
# "start": [48.084588, 7.280405]
|
||||
# "start": [45.74445023349939, 4.8222687890538865]
|
||||
"start": [45.75156398104873, 4.827154464827647]
|
||||
}
|
||||
)
|
||||
result = response.json()
|
||||
@ -51,11 +53,11 @@ def test_turckheim(client, request): # pylint: disable=redefined-outer-name
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert isinstance(landmarks, list) # check that the return type is a list
|
||||
assert len(landmarks) > 2 # check that there is something to visit
|
||||
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
|
||||
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
|
||||
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
|
||||
# assert 2!= 3
|
||||
|
||||
|
||||
def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°2 : Custom test in Lyon centre to ensure proper decision making in crowded area.
|
||||
@ -97,10 +99,9 @@ def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
|
||||
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
|
||||
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
|
||||
|
||||
|
||||
def test_cologne(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°2 : Custom test in Lyon centre to ensure proper decision making in crowded area.
|
||||
Test n°3 : Custom test in Cologne to ensure proper decision making in crowded area.
|
||||
|
||||
Args:
|
||||
client:
|
||||
@ -141,7 +142,7 @@ def test_cologne(client, request) : # pylint: disable=redefined-outer-name
|
||||
|
||||
def test_strasbourg(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°2 : Custom test in Lyon centre to ensure proper decision making in crowded area.
|
||||
Test n°4 : Custom test in Strasbourg to ensure proper decision making in crowded area.
|
||||
|
||||
Args:
|
||||
client:
|
||||
@ -182,7 +183,7 @@ def test_strasbourg(client, request) : # pylint: disable=redefined-outer-name
|
||||
|
||||
def test_zurich(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°2 : Custom test in Lyon centre to ensure proper decision making in crowded area.
|
||||
Test n°5 : Custom test in Zurich to ensure proper decision making in crowded area.
|
||||
|
||||
Args:
|
||||
client:
|
||||
@ -223,24 +224,24 @@ def test_zurich(client, request) : # pylint: disable=redefined-outer-name
|
||||
|
||||
def test_paris(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°2 : Custom test in Paris (les Halles) centre to ensure proper decision making in crowded area.
|
||||
Test n°6 : Custom test in Paris (les Halles) centre to ensure proper decision making in crowded area.
|
||||
|
||||
Args:
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
start_time = time.time() # Start timer
|
||||
duration_minutes = 300
|
||||
duration_minutes = 200
|
||||
|
||||
response = client.post(
|
||||
"/trip/new",
|
||||
json={
|
||||
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
|
||||
"nature": {"type": "nature", "score": 5},
|
||||
"nature": {"type": "nature", "score": 0},
|
||||
"shopping": {"type": "shopping", "score": 5},
|
||||
"max_time_minute": duration_minutes,
|
||||
"detour_tolerance_minute": 0},
|
||||
"start": [48.86248803298562, 2.346451131285925]
|
||||
"start": [48.85468881798671, 2.3423925755998374]
|
||||
}
|
||||
)
|
||||
result = response.json()
|
||||
@ -264,7 +265,7 @@ def test_paris(client, request) : # pylint: disable=redefined-outer-name
|
||||
|
||||
def test_new_york(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°2 : Custom test in New York (les Halles) centre to ensure proper decision making in crowded area.
|
||||
Test n°7 : Custom test in New York to ensure proper decision making in crowded area.
|
||||
|
||||
Args:
|
||||
client:
|
||||
@ -305,7 +306,7 @@ def test_new_york(client, request) : # pylint: disable=redefined-outer-name
|
||||
|
||||
def test_shopping(client, request) : # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°3 : Custom test in Lyon centre to ensure shopping clusters are found.
|
||||
Test n°8 : Custom test in Lyon centre to ensure shopping clusters are found.
|
||||
|
||||
Args:
|
||||
client:
|
||||
@ -334,11 +335,11 @@ def test_shopping(client, request) : # pylint: disable=redefined-outer-name
|
||||
# Add details to report
|
||||
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
|
||||
|
||||
for elem in landmarks :
|
||||
print(elem)
|
||||
# for elem in landmarks :
|
||||
# print(elem)
|
||||
|
||||
# checks :
|
||||
assert response.status_code == 200 # check for successful planning
|
||||
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
|
||||
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
|
||||
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
|
||||
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
|
@ -9,7 +9,8 @@ from pydantic import BaseModel
|
||||
from ..overpass.overpass import Overpass, get_base_info
|
||||
from ..structs.landmark import Landmark
|
||||
from .get_time_distance import get_distance
|
||||
from ..constants import OSM_CACHE_DIR
|
||||
from .utils import create_bbox
|
||||
|
||||
|
||||
|
||||
# silence the overpass logger
|
||||
@ -79,8 +80,7 @@ class ClusterManager:
|
||||
bbox: The bounding box coordinates (around:radius, center_lat, center_lon).
|
||||
"""
|
||||
# Setup the caching in the Overpass class.
|
||||
self.overpass = Overpass(caching_strategy='XML', cache_dir=OSM_CACHE_DIR)
|
||||
|
||||
self.overpass = Overpass()
|
||||
|
||||
self.cluster_type = cluster_type
|
||||
if cluster_type == 'shopping' :
|
||||
@ -95,32 +95,29 @@ class ClusterManager:
|
||||
raise NotImplementedError("Please choose only an available option for cluster detection")
|
||||
|
||||
# Initialize the points for cluster detection
|
||||
query = self.overpass.build_query(
|
||||
area = bbox,
|
||||
try:
|
||||
result = self.overpass.send_query(
|
||||
bbox = bbox,
|
||||
osm_types = osm_types,
|
||||
selector = sel,
|
||||
out = out
|
||||
)
|
||||
self.logger.debug(f"Cluster query: {query}")
|
||||
|
||||
try:
|
||||
result = self.overpass.send_query(query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
self.logger.error(f"Error fetching clusters: {e}")
|
||||
|
||||
if result is None :
|
||||
self.logger.error(f"Error fetching {cluster_type} clusters, overpass query returned None.")
|
||||
self.logger.debug(f"Found no {cluster_type} clusters, overpass query returned no datapoints.")
|
||||
self.valid = False
|
||||
|
||||
else :
|
||||
points = []
|
||||
for osm_type in osm_types :
|
||||
for elem in result.findall(osm_type):
|
||||
|
||||
# Get coordinates and append them to the points list
|
||||
_, coords = get_base_info(elem, osm_type)
|
||||
if coords is not None :
|
||||
points.append(coords)
|
||||
for elem in result:
|
||||
osm_type = elem.get('type')
|
||||
|
||||
# Get coordinates and append them to the points list
|
||||
_, coords = get_base_info(elem, osm_type)
|
||||
if coords is not None :
|
||||
points.append(coords)
|
||||
|
||||
if points :
|
||||
self.all_points = np.array(points)
|
||||
@ -137,7 +134,7 @@ class ClusterManager:
|
||||
|
||||
# Check that there are is least 1 cluster
|
||||
if len(set(labels)) > 1 :
|
||||
self.logger.debug(f"Found {len(set(labels))} different clusters.")
|
||||
self.logger.info(f"Found {len(set(labels))} different {cluster_type} clusters.")
|
||||
# Separate clustered points and noise points
|
||||
self.cluster_points = self.all_points[labels != -1]
|
||||
self.cluster_labels = labels[labels != -1]
|
||||
@ -145,7 +142,7 @@ class ClusterManager:
|
||||
self.valid = True
|
||||
|
||||
else :
|
||||
self.logger.debug(f"Detected 0 {cluster_type} clusters.")
|
||||
self.logger.info(f"Found 0 {cluster_type} clusters.")
|
||||
self.valid = False
|
||||
|
||||
else :
|
||||
@ -218,9 +215,8 @@ class ClusterManager:
|
||||
"""
|
||||
|
||||
# Define the bounding box for a given radius around the coordinates
|
||||
lat, lon = cluster.centroid
|
||||
bbox = (1000, lat, lon)
|
||||
|
||||
bbox = create_bbox(cluster.centroid, 1000)
|
||||
|
||||
# Query neighborhoods and shopping malls
|
||||
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"']
|
||||
|
||||
@ -238,37 +234,34 @@ class ClusterManager:
|
||||
osm_types = ['node', 'way', 'relation']
|
||||
|
||||
for sel in selectors :
|
||||
query = self.overpass.build_query(
|
||||
area = bbox,
|
||||
osm_types = osm_types,
|
||||
selector = sel,
|
||||
out = 'ids center'
|
||||
)
|
||||
|
||||
try:
|
||||
result = self.overpass.send_query(query)
|
||||
result = self.overpass.send_query(bbox = bbox,
|
||||
osm_types = osm_types,
|
||||
selector = sel,
|
||||
out = 'ids center'
|
||||
)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
self.logger.error(f"Error fetching clusters: {e}")
|
||||
continue
|
||||
|
||||
if result is None :
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
self.logger.error(f"Error fetching clusters: {e}")
|
||||
continue
|
||||
|
||||
for osm_type in osm_types :
|
||||
for elem in result.findall(osm_type):
|
||||
for elem in result:
|
||||
osm_type = elem.get('type')
|
||||
|
||||
id, coords, name = get_base_info(elem, osm_type, with_name=True)
|
||||
id, coords, name = get_base_info(elem, osm_type, with_name=True)
|
||||
|
||||
if name is None or coords is None :
|
||||
continue
|
||||
if name is None or coords is None :
|
||||
continue
|
||||
|
||||
d = get_distance(cluster.centroid, coords)
|
||||
if d < min_dist :
|
||||
min_dist = d
|
||||
new_name = name
|
||||
osm_type = osm_type # Add type: 'way' or 'relation'
|
||||
osm_id = id # Add OSM id
|
||||
d = get_distance(cluster.centroid, coords)
|
||||
if d < min_dist :
|
||||
min_dist = d
|
||||
new_name = name
|
||||
osm_type = osm_type # Add type: 'way' or 'relation'
|
||||
osm_id = id # Add OSM id
|
||||
|
||||
return Landmark(
|
||||
name=new_name,
|
||||
|
@ -1,19 +1,15 @@
|
||||
"""Module used to import data from OSM and arrange them in categories."""
|
||||
import logging
|
||||
import xml.etree.ElementTree as ET
|
||||
import yaml
|
||||
|
||||
|
||||
from ..structs.preferences import Preferences
|
||||
from ..structs.landmark import Landmark
|
||||
from .take_most_important import take_most_important
|
||||
from .cluster_manager import ClusterManager
|
||||
from ..overpass.overpass import Overpass, get_base_info
|
||||
from .utils import create_bbox
|
||||
|
||||
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
|
||||
|
||||
# silence the overpass logger
|
||||
logging.getLogger('Overpass').setLevel(level=logging.CRITICAL)
|
||||
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH
|
||||
|
||||
|
||||
class LandmarkManager:
|
||||
@ -37,8 +33,7 @@ class LandmarkManager:
|
||||
|
||||
with LANDMARK_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
self.max_bbox_side = parameters['city_bbox_side']
|
||||
self.radius_close_to = parameters['radius_close_to']
|
||||
self.max_bbox_side = parameters['max_bbox_side']
|
||||
self.church_coeff = parameters['church_coeff']
|
||||
self.nature_coeff = parameters['nature_coeff']
|
||||
self.overall_coeff = parameters['overall_coeff']
|
||||
@ -56,7 +51,7 @@ class LandmarkManager:
|
||||
self.detour_factor = parameters['detour_factor']
|
||||
|
||||
# Setup the caching in the Overpass class.
|
||||
self.overpass = Overpass(caching_strategy='XML', cache_dir=OSM_CACHE_DIR)
|
||||
self.overpass = Overpass()
|
||||
|
||||
self.logger.info('LandmakManager successfully initialized.')
|
||||
|
||||
@ -80,39 +75,39 @@ class LandmarkManager:
|
||||
"""
|
||||
self.logger.debug('Starting to fetch landmarks...')
|
||||
max_walk_dist = int((preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor)
|
||||
reachable_bbox_side = min(max_walk_dist, self.max_bbox_side)
|
||||
radius = min(max_walk_dist, int(self.max_bbox_side/2))
|
||||
|
||||
# use set to avoid duplicates, this requires some __methods__ to be set in Landmark
|
||||
all_landmarks = set()
|
||||
|
||||
# Create a bbox using the around technique, tuple of strings
|
||||
bbox = tuple((min(2000, reachable_bbox_side/2), center_coordinates[0], center_coordinates[1]))
|
||||
bbox = create_bbox(center_coordinates, radius)
|
||||
|
||||
# list for sightseeing
|
||||
if preferences.sightseeing.score != 0:
|
||||
self.logger.debug('Fetching sightseeing landmarks...')
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, preferences.sightseeing.score)
|
||||
all_landmarks.update(current_landmarks)
|
||||
self.logger.debug('Fetching sightseeing clusters...')
|
||||
self.logger.info(f'Found {len(current_landmarks)} sightseeing landmarks')
|
||||
|
||||
# special pipeline for historic neighborhoods
|
||||
neighborhood_manager = ClusterManager(bbox, 'sightseeing')
|
||||
historic_clusters = neighborhood_manager.generate_clusters()
|
||||
all_landmarks.update(historic_clusters)
|
||||
self.logger.debug('Sightseeing clusters done')
|
||||
|
||||
# list for nature
|
||||
if preferences.nature.score != 0:
|
||||
self.logger.debug('Fetching nature landmarks...')
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, preferences.nature.score)
|
||||
all_landmarks.update(current_landmarks)
|
||||
self.logger.info(f'Found {len(current_landmarks)} nature landmarks')
|
||||
|
||||
|
||||
# list for shopping
|
||||
if preferences.shopping.score != 0:
|
||||
self.logger.debug('Fetching shopping landmarks...')
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, preferences.shopping.score)
|
||||
self.logger.debug('Fetching shopping clusters...')
|
||||
self.logger.info(f'Found {len(current_landmarks)} shopping landmarks')
|
||||
|
||||
# set time for all shopping activites :
|
||||
for landmark in current_landmarks :
|
||||
@ -123,8 +118,6 @@ class LandmarkManager:
|
||||
shopping_manager = ClusterManager(bbox, 'shopping')
|
||||
shopping_clusters = shopping_manager.generate_clusters()
|
||||
all_landmarks.update(shopping_clusters)
|
||||
self.logger.debug('Shopping clusters done')
|
||||
|
||||
|
||||
|
||||
landmarks_constrained = take_most_important(all_landmarks, self.n_important)
|
||||
@ -179,7 +172,7 @@ class LandmarkManager:
|
||||
"""
|
||||
return_list = []
|
||||
|
||||
if landmarktype == 'nature' : query_conditions = []
|
||||
if landmarktype == 'nature' : query_conditions = None
|
||||
else : query_conditions = ['count_tags()>5']
|
||||
|
||||
# caution, when applying a list of selectors, overpass will search for elements that match ALL selectors simultaneously
|
||||
@ -190,117 +183,115 @@ class LandmarkManager:
|
||||
osm_types = ['way', 'relation']
|
||||
|
||||
if 'viewpoint' in sel :
|
||||
query_conditions = []
|
||||
query_conditions = None
|
||||
osm_types.append('node')
|
||||
|
||||
query = self.overpass.build_query(
|
||||
area = bbox,
|
||||
osm_types = osm_types,
|
||||
selector = sel,
|
||||
conditions = query_conditions, # except for nature....
|
||||
out = 'center'
|
||||
)
|
||||
self.logger.debug(f"Query: {query}")
|
||||
|
||||
# Send the overpass query
|
||||
try:
|
||||
result = self.overpass.send_query(query)
|
||||
result = self.overpass.send_query(
|
||||
bbox = bbox,
|
||||
osm_types = osm_types,
|
||||
selector = sel,
|
||||
conditions = query_conditions, # except for nature....
|
||||
out = 'ids center tags'
|
||||
)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
continue
|
||||
|
||||
return_list += self.xml_to_landmarks(result, landmarktype, preference_level)
|
||||
return_list += self._to_landmarks(result, landmarktype, preference_level)
|
||||
|
||||
self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
|
||||
|
||||
return return_list
|
||||
|
||||
|
||||
def xml_to_landmarks(self, root: ET.Element, landmarktype, preference_level) -> list[Landmark]:
|
||||
def _to_landmarks(self, elements: list, landmarktype, preference_level) -> list[Landmark]:
|
||||
"""
|
||||
Parse the Overpass API result and extract landmarks.
|
||||
|
||||
This method processes the XML root element returned by the Overpass API and
|
||||
This method processes the JSON elements returned by the Overpass API and
|
||||
extracts landmarks of types 'node', 'way', and 'relation'. It retrieves
|
||||
relevant information such as name, coordinates, and tags, and converts them
|
||||
into Landmark objects.
|
||||
|
||||
Args:
|
||||
root (ET.Element): The root element of the XML response from Overpass API.
|
||||
elements (list): The elements of json response from Overpass API.
|
||||
elem_type (str): The type of landmark (e.g., node, way, relation).
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of Landmark objects extracted from the XML data.
|
||||
list[Landmark]: A list of Landmark objects extracted from the JSON data.
|
||||
"""
|
||||
if root is None :
|
||||
if elements is None :
|
||||
return []
|
||||
|
||||
landmarks = []
|
||||
for osm_type in ['node', 'way', 'relation'] :
|
||||
for elem in root.findall(osm_type):
|
||||
for elem in elements:
|
||||
osm_type = elem.get('type')
|
||||
|
||||
id, coords, name = get_base_info(elem, osm_type, with_name=True)
|
||||
|
||||
if name is None or coords is None :
|
||||
continue
|
||||
|
||||
tags = elem.findall('tag')
|
||||
|
||||
# Convert this to Landmark object
|
||||
landmark = Landmark(name=name,
|
||||
type=landmarktype,
|
||||
location=coords,
|
||||
osm_id=id,
|
||||
osm_type=osm_type,
|
||||
attractiveness=0,
|
||||
n_tags=len(tags))
|
||||
|
||||
# Browse through tags to add information to landmark.
|
||||
for tag in tags:
|
||||
key = tag.get('k')
|
||||
value = tag.get('v')
|
||||
|
||||
# Skip this landmark if not suitable.
|
||||
if key == 'building:part' and value == 'yes' :
|
||||
break
|
||||
if 'disused:' in key :
|
||||
break
|
||||
if 'boundary:' in key :
|
||||
break
|
||||
if 'shop' in key and landmarktype != 'shopping' :
|
||||
break
|
||||
# if value == 'apartments' :
|
||||
# break
|
||||
|
||||
# Fill in the other attributes.
|
||||
if key == 'image' :
|
||||
landmark.image_url = value
|
||||
if key == 'website' :
|
||||
landmark.website_url = value
|
||||
if key == 'place_of_worship' :
|
||||
landmark.is_place_of_worship = True
|
||||
if key == 'wikipedia' :
|
||||
landmark.wiki_url = value
|
||||
if key == 'name:en' :
|
||||
landmark.name_en = value
|
||||
if 'building:' in key or 'pay' in key :
|
||||
landmark.n_tags -= 1
|
||||
|
||||
# Set the duration.
|
||||
if value in ['museum', 'aquarium', 'planetarium'] :
|
||||
landmark.duration = 60
|
||||
elif value == 'viewpoint' :
|
||||
landmark.is_viewpoint = True
|
||||
landmark.duration = 10
|
||||
elif value == 'cathedral' :
|
||||
landmark.is_place_of_worship = False
|
||||
landmark.duration = 10
|
||||
|
||||
else:
|
||||
self.set_landmark_score(landmark, landmarktype, preference_level)
|
||||
landmarks.append(landmark)
|
||||
id, coords, name = get_base_info(elem, osm_type, with_name=True)
|
||||
|
||||
if name is None or coords is None :
|
||||
continue
|
||||
|
||||
tags = elem.get('tags')
|
||||
|
||||
# Convert this to Landmark object
|
||||
landmark = Landmark(name=name,
|
||||
type=landmarktype,
|
||||
location=coords,
|
||||
osm_id=id,
|
||||
osm_type=osm_type,
|
||||
attractiveness=0,
|
||||
n_tags=len(tags))
|
||||
|
||||
# self.logger.debug('added landmark.')
|
||||
|
||||
# Browse through tags to add information to landmark.
|
||||
for key, value in tags.items():
|
||||
|
||||
# Skip this landmark if not suitable.
|
||||
if key == 'building:part' and value == 'yes' :
|
||||
break
|
||||
if 'disused:' in key :
|
||||
break
|
||||
if 'boundary:' in key :
|
||||
break
|
||||
if 'shop' in key and landmarktype != 'shopping' :
|
||||
break
|
||||
# if value == 'apartments' :
|
||||
# break
|
||||
|
||||
# Fill in the other attributes.
|
||||
if key == 'image' :
|
||||
landmark.image_url = value
|
||||
if key == 'website' :
|
||||
landmark.website_url = value
|
||||
if key == 'place_of_worship' :
|
||||
landmark.is_place_of_worship = True
|
||||
if key == 'wikipedia' :
|
||||
landmark.wiki_url = value
|
||||
if key == 'name:en' :
|
||||
landmark.name_en = value
|
||||
if 'building:' in key or 'pay' in key :
|
||||
landmark.n_tags -= 1
|
||||
|
||||
# Set the duration.
|
||||
if value in ['museum', 'aquarium', 'planetarium'] :
|
||||
landmark.duration = 60
|
||||
elif value == 'viewpoint' :
|
||||
landmark.is_viewpoint = True
|
||||
landmark.duration = 10
|
||||
elif value == 'cathedral' :
|
||||
landmark.is_place_of_worship = False
|
||||
landmark.duration = 10
|
||||
|
||||
else:
|
||||
self.set_landmark_score(landmark, landmarktype, preference_level)
|
||||
landmarks.append(landmark)
|
||||
|
||||
continue
|
||||
|
||||
return landmarks
|
||||
|
||||
def dict_to_selector_list(d: dict) -> list:
|
||||
|
@ -1,10 +1,9 @@
|
||||
"""Module for finding public toilets around given coordinates."""
|
||||
import logging
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
from ..overpass.overpass import Overpass, get_base_info
|
||||
from ..structs.landmark import Toilets
|
||||
from ..constants import OSM_CACHE_DIR
|
||||
from .utils import create_bbox
|
||||
|
||||
|
||||
# silence the overpass logger
|
||||
@ -41,7 +40,7 @@ class ToiletsManager:
|
||||
self.location = location
|
||||
|
||||
# Setup the caching in the Overpass class.
|
||||
self.overpass = Overpass(caching_strategy='XML', cache_dir=OSM_CACHE_DIR)
|
||||
self.overpass = Overpass()
|
||||
|
||||
|
||||
def generate_toilet_list(self) -> list[Toilets] :
|
||||
@ -53,73 +52,71 @@ class ToiletsManager:
|
||||
list[Toilets]: A list of `Toilets` objects containing detailed information
|
||||
about the toilets found around the given coordinates.
|
||||
"""
|
||||
bbox = tuple((self.radius, self.location[0], self.location[1]))
|
||||
bbox = create_bbox(self.location, self.radius)
|
||||
osm_types = ['node', 'way', 'relation']
|
||||
toilets_list = []
|
||||
|
||||
query = self.overpass.build_query(
|
||||
area = bbox,
|
||||
osm_types = osm_types,
|
||||
selector = '"amenity"="toilets"',
|
||||
out = 'ids center tags'
|
||||
)
|
||||
self.logger.debug(f"Query: {query}")
|
||||
|
||||
query = Overpass.build_query(
|
||||
bbox = bbox,
|
||||
osm_types = osm_types,
|
||||
selector = '"amenity"="toilets"',
|
||||
out = 'ids center tags'
|
||||
)
|
||||
try:
|
||||
result = self.overpass.send_query(query)
|
||||
result = self.overpass.fetch_data_from_api(query_str=query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
return None
|
||||
|
||||
toilets_list = self.xml_to_toilets(result)
|
||||
toilets_list = self.to_toilets(result)
|
||||
|
||||
return toilets_list
|
||||
|
||||
|
||||
def xml_to_toilets(self, root: ET.Element) -> list[Toilets]:
|
||||
def to_toilets(self, elements: list) -> list[Toilets]:
|
||||
"""
|
||||
Parse the Overpass API result and extract landmarks.
|
||||
|
||||
This method processes the XML root element returned by the Overpass API and
|
||||
This method processes the JSON elements returned by the Overpass API and
|
||||
extracts landmarks of types 'node', 'way', and 'relation'. It retrieves
|
||||
relevant information such as name, coordinates, and tags, and converts them
|
||||
into Landmark objects.
|
||||
|
||||
Args:
|
||||
root (ET.Element): The root element of the XML response from Overpass API.
|
||||
list (osm elements): The root element of the JSON response from Overpass API.
|
||||
elem_type (str): The type of landmark (e.g., node, way, relation).
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of Landmark objects extracted from the XML data.
|
||||
list[Landmark]: A list of Landmark objects extracted from the JSON data.
|
||||
"""
|
||||
if root is None :
|
||||
if elements is None :
|
||||
return []
|
||||
|
||||
toilets_list = []
|
||||
for osm_type in ['node', 'way', 'relation'] :
|
||||
for elem in root.findall(osm_type):
|
||||
# Get coordinates and append them to the points list
|
||||
_, coords = get_base_info(elem, osm_type)
|
||||
if coords is None :
|
||||
continue
|
||||
for elem in elements:
|
||||
osm_type = elem.get('type')
|
||||
# Get coordinates and append them to the points list
|
||||
_, coords = get_base_info(elem, osm_type)
|
||||
if coords is None :
|
||||
continue
|
||||
|
||||
toilets = Toilets(location=coords)
|
||||
toilets = Toilets(location=coords)
|
||||
|
||||
# Extract tags as a dictionary
|
||||
tags = {tag.get('k'): tag.get('v') for tag in elem.findall('tag')}
|
||||
# Extract tags as a dictionary
|
||||
tags = elem.get('tags')
|
||||
|
||||
if 'wheelchair' in tags.keys() and tags['wheelchair'] == 'yes':
|
||||
toilets.wheelchair = True
|
||||
if 'wheelchair' in tags.keys() and tags['wheelchair'] == 'yes':
|
||||
toilets.wheelchair = True
|
||||
|
||||
if 'changing_table' in tags.keys() and tags['changing_table'] == 'yes':
|
||||
toilets.changing_table = True
|
||||
if 'changing_table' in tags.keys() and tags['changing_table'] == 'yes':
|
||||
toilets.changing_table = True
|
||||
|
||||
if 'fee' in tags.keys() and tags['fee'] == 'yes':
|
||||
toilets.fee = True
|
||||
if 'fee' in tags.keys() and tags['fee'] == 'yes':
|
||||
toilets.fee = True
|
||||
|
||||
if 'opening_hours' in tags.keys() :
|
||||
toilets.opening_hours = tags['opening_hours']
|
||||
if 'opening_hours' in tags.keys() :
|
||||
toilets.opening_hours = tags['opening_hours']
|
||||
|
||||
toilets_list.append(toilets)
|
||||
toilets_list.append(toilets)
|
||||
|
||||
return toilets_list
|
||||
|
27
backend/src/utils/utils.py
Normal file
27
backend/src/utils/utils.py
Normal file
@ -0,0 +1,27 @@
|
||||
"""Various helper functions"""
|
||||
import math as m
|
||||
|
||||
def create_bbox(coords: tuple[float, float], radius: int):
|
||||
"""
|
||||
Create a bounding box around the given coordinates.
|
||||
|
||||
Args:
|
||||
coords (tuple[float, float]): The latitude and longitude of the center of the bounding box.
|
||||
radius (int): The half-side length of the bounding box in meters.
|
||||
|
||||
Returns:
|
||||
tuple[float, float, float, float]: The minimum latitude, minimum longitude, maximum latitude, and maximum longitude
|
||||
defining the bounding box.
|
||||
"""
|
||||
# Earth's radius in meters
|
||||
R = 6378137
|
||||
lat, lon = coords
|
||||
d_lat = radius / R
|
||||
d_lon = radius / (R * m.cos(m.pi * lat / 180))
|
||||
|
||||
lat_min = lat - d_lat * 180 / m.pi
|
||||
lat_max = lat + d_lat * 180 / m.pi
|
||||
lon_min = lon - d_lon * 180 / m.pi
|
||||
lon_max = lon + d_lon * 180 / m.pi
|
||||
|
||||
return (lat_min, lon_min, lat_max, lon_max)
|
Loading…
x
Reference in New Issue
Block a user