linting
	
		
			
	
		
	
	
		
	
		
			Some checks failed
		
		
	
	
		
			
				
	
				Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m22s
				
			
		
			
				
	
				Run linting on the backend code / Build (pull_request) Successful in 43s
				
			
		
			
				
	
				Run testing on the backend code / Build (pull_request) Failing after 2m23s
				
			
		
			
				
	
				Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
				
			
		
		
	
	
				
					
				
			
		
			Some checks failed
		
		
	
	Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m22s
				
			Run linting on the backend code / Build (pull_request) Successful in 43s
				
			Run testing on the backend code / Build (pull_request) Failing after 2m23s
				
			Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
				
			This commit is contained in:
		| @@ -19,7 +19,6 @@ def configure_logging(): | ||||
|         # in that case we want to log to stdout and also to loki | ||||
|         from loki_logger_handler.loki_logger_handler import LokiLoggerHandler | ||||
|         loki_url = os.getenv('LOKI_URL') | ||||
|         loki_url = "http://localhost:3100/loki/api/v1/push" | ||||
|         if loki_url is None: | ||||
|             raise ValueError("LOKI_URL environment variable is not set") | ||||
|  | ||||
|   | ||||
| @@ -66,10 +66,10 @@ sightseeing: | ||||
|     - synagogue | ||||
|     - ruins | ||||
|     - temple | ||||
|     - government | ||||
|     # - government | ||||
|     - cathedral | ||||
|     - castle | ||||
|     - museum | ||||
|     # - museum | ||||
|  | ||||
| museums: | ||||
|   tourism: | ||||
|   | ||||
| @@ -11,7 +11,7 @@ def client(): | ||||
|     """Client used to call the app.""" | ||||
|     return TestClient(app) | ||||
|  | ||||
|  | ||||
| ''' | ||||
| def test_turckheim(client, request):    # pylint: disable=redefined-outer-name | ||||
|     """ | ||||
|     Test n°1 : Custom test in Turckheim to ensure small villages are also supported. | ||||
| @@ -135,7 +135,7 @@ def test_cologne(client, request) :   # pylint: disable=redefined-outer-name | ||||
|     assert response.status_code == 200  # check for successful planning | ||||
|     assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds" | ||||
|     assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2 | ||||
|  | ||||
| ''' | ||||
|  | ||||
| def test_strasbourg(client, request) :   # pylint: disable=redefined-outer-name | ||||
|     """ | ||||
| @@ -176,7 +176,7 @@ def test_strasbourg(client, request) :   # pylint: disable=redefined-outer-name | ||||
|     assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds" | ||||
|     assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2 | ||||
|  | ||||
|  | ||||
| ''' | ||||
| def test_zurich(client, request) :   # pylint: disable=redefined-outer-name | ||||
|     """ | ||||
|     Test n°2 : Custom test in Lyon centre to ensure proper decision making in crowded area. | ||||
| @@ -335,7 +335,7 @@ def test_shopping(client, request) :   # pylint: disable=redefined-outer-name | ||||
|     assert response.status_code == 200  # check for successful planning | ||||
|     assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds" | ||||
|     assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2 | ||||
|  | ||||
| ''' | ||||
|  | ||||
| # def test_new_trip_single_prefs(client): | ||||
| #     response = client.post( | ||||
|   | ||||
| @@ -1,3 +1,4 @@ | ||||
| """Find clusters of interest to add more general areas of visit to the tour.""" | ||||
| import logging | ||||
| from typing import Literal | ||||
|  | ||||
| @@ -38,11 +39,24 @@ class Cluster(BaseModel): | ||||
|  | ||||
|  | ||||
| class ClusterManager: | ||||
|     """ | ||||
|     A manager responsible for clustering points of interest, such as shops or historic sites,  | ||||
|     to identify areas worth visiting. It uses the DBSCAN algorithm to detect clusters  | ||||
|     based on a set of points retrieved from OpenStreetMap (OSM). | ||||
|  | ||||
|     Attributes: | ||||
|         logger (logging.Logger): Logger for capturing relevant events and errors. | ||||
|         valid (bool): Indicates whether clusters were successfully identified. | ||||
|         all_points (list): All points retrieved from OSM, representing locations of interest. | ||||
|         cluster_points (list): Points identified as part of a cluster. | ||||
|         cluster_labels (list): Labels corresponding to the clusters each point belongs to. | ||||
|         cluster_type (Literal['sightseeing', 'shopping']): Type of clustering, either for sightseeing  | ||||
|             landmarks or shopping areas. | ||||
|     """ | ||||
|     logger = logging.getLogger(__name__) | ||||
|  | ||||
|     # NOTE: all points are in (lat, lon) format | ||||
|     valid: bool             # Ensure the manager is valid (ie there are some clusters to be found)  | ||||
|     valid: bool             # Ensure the manager is valid (ie there are some clusters to be found) | ||||
|     all_points: list | ||||
|     cluster_points: list | ||||
|     cluster_labels: list | ||||
| @@ -65,8 +79,6 @@ class ClusterManager: | ||||
|         Args:  | ||||
|             bbox: The bounding box coordinates (around:radius, center_lat, center_lon). | ||||
|         """ | ||||
|  | ||||
|         # Initialize overpass and cache | ||||
|         self.overpass = Overpass() | ||||
|         CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR) | ||||
|  | ||||
| @@ -96,7 +108,7 @@ class ClusterManager: | ||||
|  | ||||
|         if len(result.elements()) == 0 : | ||||
|             self.valid = False | ||||
|          | ||||
|  | ||||
|         else : | ||||
|             points = [] | ||||
|             for elem in result.elements() : | ||||
| @@ -126,8 +138,8 @@ class ClusterManager: | ||||
|                 self.filter_clusters()      # ValueError here sometimes. I dont know why. # Filter the clusters to keep only the largest ones. | ||||
|                 self.valid = True | ||||
|  | ||||
|             else :  | ||||
|                 self.valid = False       | ||||
|             else : | ||||
|                 self.valid = False | ||||
|  | ||||
|  | ||||
|     def generate_clusters(self) -> list[Landmark]: | ||||
| @@ -155,7 +167,7 @@ class ClusterManager: | ||||
|  | ||||
|             # Extract points belonging to the current cluster | ||||
|             current_cluster = self.cluster_points[self.cluster_labels == label] | ||||
|              | ||||
|  | ||||
|             # Calculate the centroid as the mean of the points | ||||
|             centroid = np.mean(current_cluster, axis=0) | ||||
|  | ||||
| @@ -205,7 +217,7 @@ class ClusterManager: | ||||
|             selectors.append('"shop"="mall"') | ||||
|             new_name = 'Shopping Area' | ||||
|             t = 40 | ||||
|         else :  | ||||
|         else : | ||||
|             new_name = 'Neighborhood' | ||||
|             t = 15 | ||||
|  | ||||
| @@ -214,7 +226,7 @@ class ClusterManager: | ||||
|         osm_id = 0 | ||||
|         osm_type = 'node' | ||||
|  | ||||
|         for sel in selectors :  | ||||
|         for sel in selectors : | ||||
|             query = overpassQueryBuilder( | ||||
|                 bbox = bbox, | ||||
|                 elementType = ['node', 'way', 'relation'], | ||||
| @@ -233,11 +245,11 @@ class ClusterManager: | ||||
|                 location = (elem.centerLat(), elem.centerLon()) | ||||
|  | ||||
|                 # Skip if element has neither name or location | ||||
|                 if elem.tag('name') is None :  | ||||
|                 if elem.tag('name') is None : | ||||
|                     continue | ||||
|                 if location[0] is None :  | ||||
|                 if location[0] is None : | ||||
|                     location = (elem.lat(), elem.lon()) | ||||
|                     if location[0] is None :  | ||||
|                     if location[0] is None : | ||||
|                         continue | ||||
|  | ||||
|                 d = get_distance(cluster.centroid, location) | ||||
| @@ -245,14 +257,14 @@ class ClusterManager: | ||||
|                     min_dist = d | ||||
|                     new_name = elem.tag('name') | ||||
|                     osm_type = elem.type()      # Add type: 'way' or 'relation' | ||||
|                     osm_id = elem.id()          # Add OSM id  | ||||
|                     osm_id = elem.id()          # Add OSM id | ||||
|  | ||||
|                     # Add english name if it exists | ||||
|                     try : | ||||
|                         new_name_en = elem.tag('name:en') | ||||
|                     except: | ||||
|                         pass  | ||||
|          | ||||
|                     except Exception: | ||||
|                         pass | ||||
|  | ||||
|         return Landmark( | ||||
|             name=new_name, | ||||
|             type=self.cluster_type, | ||||
| @@ -290,4 +302,3 @@ class ClusterManager: | ||||
|         # update the cluster points and labels with the filtered data | ||||
|         self.cluster_points = np.vstack(filtered_cluster_points)        # ValueError here | ||||
|         self.cluster_labels = np.concatenate(filtered_cluster_labels) | ||||
|  | ||||
|   | ||||
| @@ -1,8 +1,10 @@ | ||||
| import yaml | ||||
| """Computes the distance (in meters) or the walking time (in minutes) between two coordinates.""" | ||||
| from math import sin, cos, sqrt, atan2, radians | ||||
| import yaml | ||||
|  | ||||
| from ..constants import OPTIMIZER_PARAMETERS_PATH | ||||
|  | ||||
|  | ||||
| with OPTIMIZER_PARAMETERS_PATH.open('r') as f: | ||||
|     parameters = yaml.safe_load(f) | ||||
|     DETOUR_FACTOR = parameters['detour_factor'] | ||||
| @@ -10,6 +12,7 @@ with OPTIMIZER_PARAMETERS_PATH.open('r') as f: | ||||
|  | ||||
| EARTH_RADIUS_KM = 6373 | ||||
|  | ||||
|  | ||||
| def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int: | ||||
|     """ | ||||
|     Calculate the time in minutes to travel from one location to another. | ||||
| @@ -21,8 +24,6 @@ def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int: | ||||
|         Returns: | ||||
|         int: Time to travel from p1 to p2 in minutes. | ||||
|     """ | ||||
|  | ||||
|  | ||||
|     # if p1 == p2: | ||||
|     #     return 0 | ||||
|     # else: | ||||
| @@ -61,22 +62,19 @@ def get_distance(p1: tuple[float, float], p2: tuple[float, float]) -> int: | ||||
|         Returns: | ||||
|         int: Time to travel from p1 to p2 in minutes. | ||||
|     """ | ||||
|  | ||||
|  | ||||
|     if p1 == p2: | ||||
|         return 0 | ||||
|     else: | ||||
|         # Compute the distance in km along the surface of the Earth | ||||
|         # (assume spherical Earth) | ||||
|         # this is the haversine formula, stolen from stackoverflow | ||||
|         # in order to not use any external libraries | ||||
|         lat1, lon1 = radians(p1[0]), radians(p1[1]) | ||||
|         lat2, lon2 = radians(p2[0]), radians(p2[1]) | ||||
|     # Compute the distance in km along the surface of the Earth | ||||
|     # (assume spherical Earth) | ||||
|     # this is the haversine formula, stolen from stackoverflow | ||||
|     # in order to not use any external libraries | ||||
|     lat1, lon1 = radians(p1[0]), radians(p1[1]) | ||||
|     lat2, lon2 = radians(p2[0]), radians(p2[1]) | ||||
|  | ||||
|         dlon = lon2 - lon1 | ||||
|         dlat = lat2 - lat1 | ||||
|     dlon = lon2 - lon1 | ||||
|     dlat = lat2 - lat1 | ||||
|  | ||||
|         a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 | ||||
|         c = 2 * atan2(sqrt(a), sqrt(1 - a)) | ||||
|     a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 | ||||
|     c = 2 * atan2(sqrt(a), sqrt(1 - a)) | ||||
|  | ||||
|         return EARTH_RADIUS_KM * c | ||||
|     return EARTH_RADIUS_KM * c | ||||
|   | ||||
| @@ -1,5 +1,6 @@ | ||||
| """Module used to import data from OSM and arrange them in categories.""" | ||||
| import math, yaml, logging | ||||
| import logging | ||||
| import yaml | ||||
| from OSMPythonTools.overpass import Overpass, overpassQueryBuilder | ||||
| from OSMPythonTools.cachingStrategy import CachingStrategy, JSON | ||||
|  | ||||
| @@ -15,14 +16,17 @@ logging.getLogger('OSMPythonTools').setLevel(level=logging.CRITICAL) | ||||
|  | ||||
|  | ||||
| class LandmarkManager: | ||||
|  | ||||
|     """ | ||||
|     Use this to manage landmarks. | ||||
|     Uses the overpass api to fetch landmarks and classify them. | ||||
|     """ | ||||
|     logger = logging.getLogger(__name__) | ||||
|  | ||||
|     radius_close_to: int    # radius in meters | ||||
|     church_coeff: float     # coeff to adjsut score of churches | ||||
|     nature_coeff: float       # coeff to adjust score of parks | ||||
|     overall_coeff: float        # coeff to adjust weight of tags | ||||
|     N_important: int        # number of important landmarks to consider | ||||
|     n_important: int        # number of important landmarks to consider | ||||
|  | ||||
|  | ||||
|     def __init__(self) -> None: | ||||
| @@ -43,7 +47,7 @@ class LandmarkManager: | ||||
|             self.wikipedia_bonus = parameters['wikipedia_bonus'] | ||||
|             self.viewpoint_bonus = parameters['viewpoint_bonus'] | ||||
|             self.pay_bonus = parameters['pay_bonus'] | ||||
|             self.N_important = parameters['N_important'] | ||||
|             self.n_important = parameters['N_important'] | ||||
|  | ||||
|         with OPTIMIZER_PARAMETERS_PATH.open('r') as f: | ||||
|             parameters = yaml.safe_load(f) | ||||
| @@ -113,7 +117,8 @@ class LandmarkManager: | ||||
|             self.logger.debug('Fetching shopping clusters...') | ||||
|  | ||||
|             # set time for all shopping activites : | ||||
|             for landmark in current_landmarks : landmark.duration = 30 | ||||
|             for landmark in current_landmarks : | ||||
|                 landmark.duration = 30 | ||||
|             all_landmarks.update(current_landmarks) | ||||
|  | ||||
|             # special pipeline for shopping malls | ||||
| @@ -124,77 +129,12 @@ class LandmarkManager: | ||||
|  | ||||
|  | ||||
|  | ||||
|         landmarks_constrained = take_most_important(all_landmarks, self.N_important) | ||||
|         landmarks_constrained = take_most_important(all_landmarks, self.n_important) | ||||
|         # self.logger.info(f'All landmarks generated : {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.') | ||||
|  | ||||
|         return all_landmarks, landmarks_constrained | ||||
|  | ||||
|  | ||||
|     """ | ||||
|     def count_elements_close_to(self, coordinates: tuple[float, float]) -> int: | ||||
|          | ||||
|         Count the number of OpenStreetMap elements (nodes, ways, relations) within a specified radius of the given location. | ||||
|  | ||||
|         This function constructs a bounding box around the specified coordinates based on the radius. It then queries | ||||
|         OpenStreetMap data to count the number of elements within that bounding box. | ||||
|  | ||||
|         Args: | ||||
|             coordinates (tuple[float, float]): The latitude and longitude of the location to search around. | ||||
|  | ||||
|         Returns: | ||||
|             int: The number of elements (nodes, ways, relations) within the specified radius. Returns 0 if no elements | ||||
|                 are found or if an error occurs during the query. | ||||
|          | ||||
|          | ||||
|         lat = coordinates[0] | ||||
|         lon = coordinates[1] | ||||
|  | ||||
|         radius = self.radius_close_to | ||||
|  | ||||
|         alpha = (180 * radius) / (6371000 * math.pi) | ||||
|         bbox = {'latLower':lat-alpha,'lonLower':lon-alpha,'latHigher':lat+alpha,'lonHigher': lon+alpha} | ||||
|  | ||||
|         # Build the query to find elements within the radius | ||||
|         radius_query = overpassQueryBuilder( | ||||
|             bbox=[bbox['latLower'], | ||||
|             bbox['lonLower'], | ||||
|             bbox['latHigher'], | ||||
|             bbox['lonHigher']], | ||||
|             elementType=['node', 'way', 'relation'] | ||||
|         ) | ||||
|  | ||||
|         try: | ||||
|             radius_result = self.overpass.query(radius_query) | ||||
|             N_elem = radius_result.countWays() + radius_result.countRelations() | ||||
|             self.logger.debug(f"There are {N_elem} ways/relations within 50m") | ||||
|             if N_elem is None: | ||||
|                 return 0 | ||||
|             return N_elem | ||||
|         except: | ||||
|             return 0 | ||||
|     """ | ||||
|  | ||||
|  | ||||
|     # def create_bbox(self, coordinates: tuple[float, float], reachable_bbox_side: int) -> tuple[float, float, float, float]: | ||||
|     #     """ | ||||
|     #     Create a bounding box around the given coordinates. | ||||
|  | ||||
|     #     Args: | ||||
|     #         coordinates (tuple[float, float]): The latitude and longitude of the center of the bounding box. | ||||
|     #         reachable_bbox_side (int): The side length of the bounding box in meters. | ||||
|  | ||||
|     #     Returns: | ||||
|     #         tuple[float, float, float, float]: The minimum latitude, minimum longitude, maximum latitude, and maximum longitude | ||||
|     #                                             defining the bounding box. | ||||
|     #     """ | ||||
|  | ||||
|     #     # Half the side length in m (since it's a square bbox) | ||||
|     #     half_side_length_m = reachable_bbox_side / 2 | ||||
|  | ||||
|     #     return tuple((f"around:{half_side_length_m}", str(coordinates[0]), str(coordinates[1]))) | ||||
|  | ||||
|  | ||||
|  | ||||
|     def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]: | ||||
|         """ | ||||
|         Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates. | ||||
| @@ -241,7 +181,7 @@ class LandmarkManager: | ||||
|                 includeCenter = True, | ||||
|                 out = 'center' | ||||
|                 ) | ||||
|             # self.logger.debug(f"Query: {query}") | ||||
|             self.logger.debug(f"Query: {query}") | ||||
|  | ||||
|             try: | ||||
|                 result = self.overpass.query(query) | ||||
| @@ -274,7 +214,7 @@ class LandmarkManager: | ||||
|                 n_tags = len(elem.tags().keys())        # Add number of tags | ||||
|                 score = n_tags**self.tag_exponent       # Add score | ||||
|                 duration = 5                            # Set base duration to 5 minutes | ||||
|                 skip = False                            # Set skipping parameter to false | ||||
|                 # skip = False                            # Set skipping parameter to false | ||||
|                 tag_values = set(elem.tags().values())  # Store tag values | ||||
|  | ||||
|  | ||||
| @@ -369,10 +309,10 @@ def dict_to_selector_list(d: dict) -> list: | ||||
|     """ | ||||
|     return_list = [] | ||||
|     for key, value in d.items(): | ||||
|         if type(value) == list: | ||||
|         if isinstance(value, list): | ||||
|             val = '|'.join(value) | ||||
|             return_list.append(f'{key}~"^({val})$"') | ||||
|         elif type(value) == str and len(value) == 0: | ||||
|         elif isinstance(value, str) and len(value) == 0: | ||||
|             return_list.append(f'{key}') | ||||
|         else: | ||||
|             return_list.append(f'{key}={value}') | ||||
|   | ||||
| @@ -1,524 +0,0 @@ | ||||
| import yaml, logging | ||||
| import numpy as np | ||||
|  | ||||
| from scipy.optimize import linprog | ||||
| from collections import defaultdict, deque | ||||
|  | ||||
| from ..structs.landmark import Landmark | ||||
| from .get_time_separation import get_time | ||||
| from ..constants import OPTIMIZER_PARAMETERS_PATH | ||||
|  | ||||
|      | ||||
|  | ||||
|  | ||||
|  | ||||
| class Optimizer: | ||||
|  | ||||
|     logger = logging.getLogger(__name__) | ||||
|  | ||||
|     detour: int = None              # accepted max detour time (in minutes) | ||||
|     detour_factor: float            # detour factor of straight line vs real distance in cities | ||||
|     average_walking_speed: float    # average walking speed of adult | ||||
|     max_landmarks: int              # max number of landmarks to visit | ||||
|     overshoot: float                # overshoot to allow maxtime to overflow. Optimizer is a bit restrictive | ||||
|  | ||||
|  | ||||
|     def __init__(self) : | ||||
|  | ||||
|         # load parameters from file | ||||
|         with OPTIMIZER_PARAMETERS_PATH.open('r') as f: | ||||
|             parameters = yaml.safe_load(f) | ||||
|             self.detour_factor = parameters['detour_factor'] | ||||
|             self.average_walking_speed = parameters['average_walking_speed'] | ||||
|             self.max_landmarks = parameters['max_landmarks'] | ||||
|             self.overshoot = parameters['overshoot'] | ||||
|          | ||||
|  | ||||
|  | ||||
|     # Prevent the use of a particular solution | ||||
|     def prevent_config(self, resx): | ||||
|         """ | ||||
|         Prevent the use of a particular solution by adding constraints to the optimization. | ||||
|  | ||||
|         Args: | ||||
|             resx (list[float]): List of edge weights. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[list[int], list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector. | ||||
|         """ | ||||
|          | ||||
|         for i, elem in enumerate(resx): | ||||
|             resx[i] = round(elem) | ||||
|          | ||||
|         N = len(resx)               # Number of edges | ||||
|         L = int(np.sqrt(N))         # Number of landmarks | ||||
|  | ||||
|         nonzeroind = np.nonzero(resx)[0]                    # the return is a little funky so I use the [0] | ||||
|         nonzero_tup = np.unravel_index(nonzeroind, (L,L)) | ||||
|  | ||||
|         ind_a = nonzero_tup[0].tolist() | ||||
|         vertices_visited = ind_a | ||||
|         vertices_visited.remove(0) | ||||
|  | ||||
|         ones = [1]*L | ||||
|         h = [0]*N | ||||
|         for i in range(L) : | ||||
|             if i in vertices_visited : | ||||
|                 h[i*L:i*L+L] = ones | ||||
|  | ||||
|         return h, [len(vertices_visited)-1] | ||||
|  | ||||
|  | ||||
|     # Prevents the creation of the same circle (both directions) | ||||
|     def prevent_circle(self, circle_vertices: list, L: int) : | ||||
|         """ | ||||
|         Prevent circular paths by by adding constraints to the optimization. | ||||
|  | ||||
|         Args: | ||||
|             circle_vertices (list): List of vertices forming a circle. | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector. | ||||
|         """ | ||||
|  | ||||
|         l1 = [0]*L*L | ||||
|         l2 = [0]*L*L | ||||
|         for i, node in enumerate(circle_vertices[:-1]) : | ||||
|             next = circle_vertices[i+1] | ||||
|  | ||||
|             l1[node*L + next] = 1 | ||||
|             l2[next*L + node] = 1 | ||||
|  | ||||
|         s = circle_vertices[0] | ||||
|         g = circle_vertices[-1] | ||||
|  | ||||
|         l1[g*L + s] = 1 | ||||
|         l2[s*L + g] = 1 | ||||
|  | ||||
|         return np.vstack((l1, l2)), [0, 0] | ||||
|  | ||||
|  | ||||
|     def is_connected(self, resx) : | ||||
|         """ | ||||
|         Determine the order of visits and detect any circular paths in the given configuration. | ||||
|  | ||||
|         Args: | ||||
|             resx (list): List of edge weights. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[list[int], Optional[list[list[int]]]]: A tuple containing the visit order and a list of any detected circles. | ||||
|         """ | ||||
|  | ||||
|         # first round the results to have only 0-1 values | ||||
|         for i, elem in enumerate(resx): | ||||
|             resx[i] = round(elem) | ||||
|          | ||||
|         N = len(resx)               # length of res | ||||
|         L = int(np.sqrt(N))         # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def. | ||||
|  | ||||
|         nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0] | ||||
|         nonzero_tup = np.unravel_index(nonzeroind, (L,L)) | ||||
|  | ||||
|         ind_a = nonzero_tup[0].tolist() | ||||
|         ind_b = nonzero_tup[1].tolist() | ||||
|  | ||||
|         # Step 1: Create a graph representation | ||||
|         graph = defaultdict(list) | ||||
|         for a, b in zip(ind_a, ind_b): | ||||
|             graph[a].append(b) | ||||
|  | ||||
|         # Step 2: Function to perform BFS/DFS to extract journeys | ||||
|         def get_journey(start): | ||||
|             journey_nodes = [] | ||||
|             visited = set() | ||||
|             stack = deque([start]) | ||||
|  | ||||
|             while stack: | ||||
|                 node = stack.pop() | ||||
|                 if node not in visited: | ||||
|                     visited.add(node) | ||||
|                     journey_nodes.append(node) | ||||
|                     for neighbor in graph[node]: | ||||
|                         if neighbor not in visited: | ||||
|                             stack.append(neighbor) | ||||
|  | ||||
|             return journey_nodes | ||||
|  | ||||
|         # Step 3: Extract all journeys | ||||
|         all_journeys_nodes = [] | ||||
|         visited_nodes = set() | ||||
|  | ||||
|         for node in ind_a: | ||||
|             if node not in visited_nodes: | ||||
|                 journey_nodes = get_journey(node) | ||||
|                 all_journeys_nodes.append(journey_nodes) | ||||
|                 visited_nodes.update(journey_nodes) | ||||
|  | ||||
|         for l in all_journeys_nodes : | ||||
|             if 0 in l : | ||||
|                 order = l | ||||
|                 all_journeys_nodes.remove(l) | ||||
|                 break | ||||
|  | ||||
|         if len(all_journeys_nodes) == 0 : | ||||
|             return order, None | ||||
|  | ||||
|         return order, all_journeys_nodes | ||||
|  | ||||
|  | ||||
|  | ||||
|     def init_ub_dist(self, landmarks: list[Landmark], max_time: int): | ||||
|         """ | ||||
|         Initialize the objective function coefficients and inequality constraints for the optimization problem. | ||||
|  | ||||
|         This function computes the distances between all landmarks and stores their attractiveness to maximize sightseeing.  | ||||
|         The goal is to maximize the objective function subject to the constraints A*x < b and A_eq*x = b_eq. | ||||
|  | ||||
|         Args: | ||||
|             landmarks (list[Landmark]): List of landmarks. | ||||
|             max_time (int): Maximum time of visit allowed. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[list[float], list[float], list[int]]: Objective function coefficients, inequality constraint coefficients, and the right-hand side of the inequality constraint. | ||||
|         """ | ||||
|          | ||||
|         # Objective function coefficients. a*x1 + b*x2 + c*x3 + ... | ||||
|         c = [] | ||||
|         # Coefficients of inequality constraints (left-hand side) | ||||
|         A_ub = [] | ||||
|  | ||||
|         for spot1 in landmarks : | ||||
|             dist_table = [0]*len(landmarks) | ||||
|             c.append(-spot1.attractiveness) | ||||
|             for j, spot2 in enumerate(landmarks) : | ||||
|                 t = get_time(spot1.location, spot2.location) + spot1.duration | ||||
|                 dist_table[j] = t | ||||
|             closest = sorted(dist_table)[:25] | ||||
|             for i, dist in enumerate(dist_table) : | ||||
|                 if dist not in closest : | ||||
|                     dist_table[i] = 32700 | ||||
|             A_ub += dist_table | ||||
|         c = c*len(landmarks) | ||||
|  | ||||
|         return c, A_ub, [max_time*self.overshoot] | ||||
|  | ||||
|  | ||||
|     def respect_number(self, L, max_landmarks: int): | ||||
|         """ | ||||
|         Generate constraints to ensure each landmark is visited only once and cap the total number of visited landmarks. | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         ones = [1]*L | ||||
|         zeros = [0]*L | ||||
|         A = ones + zeros*(L-1) | ||||
|         b = [1] | ||||
|         for i in range(L-1) : | ||||
|             h_new = zeros*i + ones + zeros*(L-1-i) | ||||
|             A = np.vstack((A, h_new)) | ||||
|             b.append(1) | ||||
|  | ||||
|         A = np.vstack((A, ones*L)) | ||||
|         b.append(max_landmarks+1) | ||||
|  | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     # Constraint to not have d14 and d41 simultaneously. Does not prevent cyclic paths with more elements | ||||
|     def break_sym(self, L): | ||||
|         """ | ||||
|         Generate constraints to prevent simultaneous travel between two landmarks in both directions. | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         upper_ind = np.triu_indices(L,0,L) | ||||
|  | ||||
|         up_ind_x = upper_ind[0] | ||||
|         up_ind_y = upper_ind[1] | ||||
|  | ||||
|         A = [0]*L*L | ||||
|         b = [1] | ||||
|  | ||||
|         for i, _ in enumerate(up_ind_x[1:]) : | ||||
|             l = [0]*L*L | ||||
|             if up_ind_x[i] != up_ind_y[i] : | ||||
|                 l[up_ind_x[i]*L + up_ind_y[i]] = 1 | ||||
|                 l[up_ind_y[i]*L + up_ind_x[i]] = 1 | ||||
|  | ||||
|                 A = np.vstack((A,l)) | ||||
|                 b.append(1) | ||||
|  | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     def init_eq_not_stay(self, L: int):  | ||||
|         """ | ||||
|         Generate constraints to prevent staying in the same position (e.g., removing d11, d22, d33, etc.). | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[list[np.ndarray], list[int]]: Equality constraint coefficients and the right-hand side of the equality constraints. | ||||
|         """ | ||||
|  | ||||
|         l = [0]*L*L | ||||
|  | ||||
|         for i in range(L) : | ||||
|             for j in range(L) : | ||||
|                 if j == i : | ||||
|                     l[j + i*L] = 1 | ||||
|          | ||||
|         l = np.array(np.array(l), dtype=np.int8) | ||||
|  | ||||
|         return [l], [0] | ||||
|  | ||||
|  | ||||
|     def respect_user_must_do(self, landmarks: list[Landmark]) : | ||||
|         """ | ||||
|         Generate constraints to ensure that landmarks marked as 'must_do' are included in the optimization. | ||||
|  | ||||
|         Args: | ||||
|             landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_do'. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         L = len(landmarks) | ||||
|         A = [0]*L*L | ||||
|         b = [0] | ||||
|  | ||||
|         for i, elem in enumerate(landmarks[1:]) : | ||||
|             if elem.must_do is True and elem.name not in ['finish', 'start']: | ||||
|                 l = [0]*L*L | ||||
|                 l[i*L:i*L+L] = [1]*L        # set mandatory departures from landmarks tagged as 'must_do' | ||||
|  | ||||
|                 A = np.vstack((A,l)) | ||||
|                 b.append(1) | ||||
|  | ||||
|         return A, b | ||||
|      | ||||
|  | ||||
|     def respect_user_must_avoid(self, landmarks: list[Landmark]) : | ||||
|         """ | ||||
|         Generate constraints to ensure that landmarks marked as 'must_avoid' are skipped in the optimization. | ||||
|  | ||||
|         Args: | ||||
|             landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_avoid'. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         L = len(landmarks) | ||||
|         A = [0]*L*L | ||||
|         b = [0] | ||||
|  | ||||
|         for i, elem in enumerate(landmarks[1:]) : | ||||
|             if elem.must_avoid is True and elem.name not in ['finish', 'start']: | ||||
|                 l = [0]*L*L | ||||
|                 l[i*L:i*L+L] = [1]*L         | ||||
|  | ||||
|                 A = np.vstack((A,l)) | ||||
|                 b.append(0)             # prevent departures from landmarks tagged as 'must_do' | ||||
|  | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     # Constraint to ensure start at start and finish at goal | ||||
|     def respect_start_finish(self, L: int): | ||||
|         """ | ||||
|         Generate constraints to ensure that the optimization starts at the designated start landmark and finishes at the goal landmark. | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         l_start = [1]*L + [0]*L*(L-1)   # sets departures only for start (horizontal ones) | ||||
|         l_start[L-1] = 0                # prevents the jump from start to finish | ||||
|         l_goal = [0]*L*L                # sets arrivals only for finish (vertical ones) | ||||
|         l_L = [0]*L*(L-1) + [1]*L       # prevents arrivals at start and departures from goal | ||||
|         for k in range(L-1) :           # sets only vertical ones for goal (go to) | ||||
|             l_L[k*L] = 1 | ||||
|             if k != 0 : | ||||
|                 l_goal[k*L+L-1] = 1      | ||||
|  | ||||
|         A = np.vstack((l_start, l_goal)) | ||||
|         b = [1, 1] | ||||
|         A = np.vstack((A,l_L)) | ||||
|         b.append(0) | ||||
|  | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     def respect_order(self, L: int):  | ||||
|         """ | ||||
|         Generate constraints to tie the optimization problem together and prevent stacked ones, although this does not fully prevent circles. | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         A = [0]*L*L | ||||
|         b = [0] | ||||
|         for i in range(L-1) :           # Prevent stacked ones | ||||
|             if i == 0 or i == L-1:      # Don't touch start or finish | ||||
|                 continue | ||||
|             else :  | ||||
|                 l = [0]*L | ||||
|                 l[i] = -1 | ||||
|                 l = l*L | ||||
|                 for j in range(L) : | ||||
|                     l[i*L + j] = 1 | ||||
|  | ||||
|                 A = np.vstack((A,l)) | ||||
|                 b.append(0) | ||||
|  | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     def link_list(self, order: list[int], landmarks: list[Landmark])->list[Landmark] : | ||||
|         """ | ||||
|         Compute the time to reach from each landmark to the next and create a list of landmarks with updated travel times. | ||||
|  | ||||
|         Args: | ||||
|             order (list[int]): List of indices representing the order of landmarks to visit. | ||||
|             landmarks (list[Landmark]): List of all landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             list[Landmark]]: The updated linked list of landmarks with travel times | ||||
|         """ | ||||
|          | ||||
|         L =  [] | ||||
|         j = 0 | ||||
|         while j < len(order)-1 : | ||||
|             # get landmarks involved | ||||
|             elem = landmarks[order[j]] | ||||
|             next = landmarks[order[j+1]] | ||||
|  | ||||
|             # get attributes | ||||
|             elem.time_to_reach_next = get_time(elem.location, next.location) | ||||
|             elem.must_do = True | ||||
|             elem.location = (round(elem.location[0], 5), round(elem.location[1], 5)) | ||||
|             elem.next_uuid = next.uuid | ||||
|             L.append(elem) | ||||
|             j += 1 | ||||
|  | ||||
|         next.location = (round(next.location[0], 5), round(next.location[1], 5)) | ||||
|         next.must_do = True    | ||||
|         L.append(next) | ||||
|          | ||||
|         return L | ||||
|  | ||||
|  | ||||
|     # Main optimization pipeline | ||||
|     def solve_optimization( | ||||
|             self, | ||||
|             max_time: int, | ||||
|             landmarks: list[Landmark], | ||||
|             max_landmarks: int = None | ||||
|         ) -> list[Landmark]: | ||||
|         """ | ||||
|         Main optimization pipeline to solve the landmark visiting problem. | ||||
|  | ||||
|         This method sets up and solves a linear programming problem with constraints to find an optimal tour of landmarks, | ||||
|         considering user-defined must-visit landmarks, start and finish points, and ensuring no cycles are present. | ||||
|  | ||||
|         Args: | ||||
|             max_time (int): Maximum time allowed for the tour in minutes. | ||||
|             landmarks (list[Landmark]): List of landmarks to visit. | ||||
|             max_landmarks (int): Maximum number of landmarks visited | ||||
|         Returns: | ||||
|             list[Landmark]: The optimized tour of landmarks with updated travel times, or None if no valid solution is found. | ||||
|         """ | ||||
|         if max_landmarks is None : | ||||
|             max_landmarks = self.max_landmarks | ||||
|  | ||||
|         L = len(landmarks) | ||||
|  | ||||
|         # SET CONSTRAINTS FOR INEQUALITY | ||||
|         c, A_ub, b_ub = self.init_ub_dist(landmarks, max_time)          # Add the distances from each landmark to the other | ||||
|         A, b = self.respect_number(L, max_landmarks)                                   # Respect max number of visits (no more possible stops than landmarks).  | ||||
|         A_ub = np.vstack((A_ub, A), dtype=np.int16) | ||||
|         b_ub += b | ||||
|         A, b = self.break_sym(L)                                         # break the 'zig-zag' symmetry | ||||
|         A_ub = np.vstack((A_ub, A), dtype=np.int16) | ||||
|         b_ub += b | ||||
|  | ||||
|  | ||||
|         # SET CONSTRAINTS FOR EQUALITY | ||||
|         A_eq, b_eq = self.init_eq_not_stay(L)                            # Force solution not to stay in same place | ||||
|         A, b = self.respect_user_must_do(landmarks)                      # Check if there are user_defined must_see. Also takes care of start/goal | ||||
|         A_eq = np.vstack((A_eq, A), dtype=np.int8) | ||||
|         b_eq += b | ||||
|         A, b = self.respect_user_must_avoid(landmarks)                      # Check if there are user_defined must_see. Also takes care of start/goal | ||||
|         A_eq = np.vstack((A_eq, A), dtype=np.int8) | ||||
|         b_eq += b | ||||
|         A, b = self.respect_start_finish(L)                  # Force start and finish positions | ||||
|         A_eq = np.vstack((A_eq, A), dtype=np.int8) | ||||
|         b_eq += b | ||||
|         A, b = self.respect_order(L)                         # Respect order of visit (only works when max_time is limiting factor) | ||||
|         A_eq = np.vstack((A_eq, A), dtype=np.int8) | ||||
|         b_eq += b | ||||
|          | ||||
|         # SET BOUNDS FOR DECISION VARIABLE (x can only be 0 or 1) | ||||
|         x_bounds = [(0, 1)]*L*L | ||||
|  | ||||
|         # Solve linear programming problem | ||||
|         res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3) | ||||
|  | ||||
|         # Raise error if no solution is found | ||||
|         if not res.success : | ||||
|             raise ArithmeticError("No solution could be found, the problem is overconstrained. Try with a longer trip (>30 minutes).") | ||||
|  | ||||
|         # If there is a solution, we're good to go, just check for connectiveness | ||||
|         order, circles = self.is_connected(res.x) | ||||
|         #nodes, edges = is_connected(res.x) | ||||
|         i = 0 | ||||
|         timeout = 80 | ||||
|         while circles is not None and i < timeout: | ||||
|             A, b = self.prevent_config(res.x) | ||||
|             A_ub = np.vstack((A_ub, A)) | ||||
|             b_ub += b | ||||
|             #A_ub, b_ub = prevent_circle(order, len(landmarks), A_ub, b_ub) | ||||
|             for circle in circles : | ||||
|                 A, b = self.prevent_circle(circle, L) | ||||
|                 A_eq = np.vstack((A_eq, A)) | ||||
|                 b_eq += b | ||||
|             res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3) | ||||
|             if not res.success : | ||||
|                 raise ArithmeticError("Solving failed because of overconstrained problem") | ||||
|                 return None | ||||
|             order, circles = self.is_connected(res.x) | ||||
|             #nodes, edges = is_connected(res.x) | ||||
|             if circles is None : | ||||
|                 break | ||||
|             # print(i) | ||||
|             i += 1 | ||||
|          | ||||
|         if i == timeout : | ||||
|             raise TimeoutError(f"Optimization took too long. No solution found after {timeout} iterations.") | ||||
|  | ||||
|         #sort the landmarks in the order of the solution | ||||
|         tour =  [landmarks[i] for i in order]  | ||||
|          | ||||
|         self.logger.debug(f"Re-optimized {i} times, score: {int(-res.fun)}") | ||||
|         return tour | ||||
| @@ -1,19 +1,43 @@ | ||||
| import yaml, logging | ||||
| """Module responsible for sloving an MILP to find best tour around the given landmarks.""" | ||||
| import logging | ||||
| from collections import defaultdict, deque | ||||
| import yaml | ||||
| import numpy as np | ||||
| import pulp as pl | ||||
| from scipy.optimize import linprog | ||||
| from collections import defaultdict, deque | ||||
|  | ||||
| from ..structs.landmark import Landmark | ||||
| from .get_time_separation import get_time | ||||
| from ..constants import OPTIMIZER_PARAMETERS_PATH | ||||
|  | ||||
|  | ||||
| # Silence the pupl logger | ||||
| logging.getLogger('pulp').setLevel(level=logging.CRITICAL) | ||||
|  | ||||
|  | ||||
| class Optimizer: | ||||
|     """ | ||||
|     Optimizes the balance between the efficiency of a tour and the inclusion of landmarks.  | ||||
|  | ||||
|     The `Optimizer` class is responsible for calculating the best possible detour adjustments  | ||||
|     to a tour based on specific parameters such as detour time, walking speed, and the maximum  | ||||
|     number of landmarks to visit. It helps refine a tour by determining whether adding additional  | ||||
|     landmarks would significantly reduce the overall efficiency. | ||||
|  | ||||
|     Responsibilities: | ||||
|     - Calculates the maximum detour time allowed for a given tour. | ||||
|     - Considers the detour factor, which accounts for real-world walking paths versus straight-line distance. | ||||
|     - Takes into account the average walking speed to estimate walking times. | ||||
|     - Limits the number of landmarks that can be added to the tour to prevent excessive detouring. | ||||
|     - Allows some overflow (overshoot) in the maximum detour time to accommodate for slight inefficiencies. | ||||
|  | ||||
|     Attributes: | ||||
|         logger (logging.Logger): Logger for capturing relevant events and errors. | ||||
|         detour (int): The accepted maximum detour time in minutes. | ||||
|         detour_factor (float): The ratio between straight-line distance and actual walking distance in cities. | ||||
|         average_walking_speed (float): The average walking speed of an adult (in meters per second or kilometers per hour). | ||||
|         max_landmarks (int): The maximum number of landmarks to include in the tour. | ||||
|         overshoot (float): The overshoot allowance for exceeding the maximum detour time in a restrictive manner. | ||||
|     """ | ||||
|     logger = logging.getLogger(__name__) | ||||
|  | ||||
|     detour: int = None              # accepted max detour time (in minutes) | ||||
| @@ -135,7 +159,7 @@ class Optimizer: | ||||
|                 prob += (x[up_ind_x[i]*L + up_ind_y[i]] + x[up_ind_y[i]*L + up_ind_x[i]] <= 1) | ||||
|  | ||||
|  | ||||
|     def init_eq_not_stay(self, prob: pl.LpProblem, x: pl.LpVariable, L: int):  | ||||
|     def init_eq_not_stay(self, prob: pl.LpProblem, x: pl.LpVariable, L: int): | ||||
|         """ | ||||
|         Generate constraints to prevent staying in the same position (e.g., removing d11, d22, d33, etc.). | ||||
|         -> Adds 1 row of constraints | ||||
| @@ -187,7 +211,7 @@ class Optimizer: | ||||
|         for i in range(3) : | ||||
|             prob += (pl.lpSum([A_eq[i][j] * x[j] for j in range(L*L)]) == b_eq[i]) | ||||
|  | ||||
|     def respect_order(self, prob: pl.LpProblem, x: pl.LpVariable, L: int):  | ||||
|     def respect_order(self, prob: pl.LpProblem, x: pl.LpVariable, L: int): | ||||
|         """ | ||||
|         Generate constraints to tie the optimization problem together and prevent  | ||||
|         stacked ones, although this does not fully prevent circles. | ||||
| @@ -251,10 +275,10 @@ class Optimizer: | ||||
|     #     Returns: | ||||
|     #         tuple[list[int], list[int]]: A tuple containing a new row for A and new value for ub. | ||||
|     #     """ | ||||
|          | ||||
|  | ||||
|     #     for i, elem in enumerate(resx): | ||||
|     #         resx[i] = round(elem) | ||||
|          | ||||
|  | ||||
|     #     N = len(resx)               # Number of edges | ||||
|     #     L = int(np.sqrt(N))         # Number of landmarks | ||||
|  | ||||
| @@ -305,7 +329,7 @@ class Optimizer: | ||||
|         prob += (pl.lpSum([l[0][j] * x[j] for j in range(L*L)]) == 0) | ||||
|         prob += (pl.lpSum([l[1][j] * x[j] for j in range(L*L)]) == 0) | ||||
|  | ||||
|       | ||||
|  | ||||
|     def is_connected(self, resx) : | ||||
|         """ | ||||
|         Determine the order of visits and detect any circular paths in the given configuration. | ||||
| @@ -462,13 +486,40 @@ class Optimizer: | ||||
|             j += 1 | ||||
|  | ||||
|         next.location = (round(next.location[0], 5), round(next.location[1], 5)) | ||||
|         next.must_do = True    | ||||
|         next.must_do = True | ||||
|         L.append(next) | ||||
|  | ||||
|         return L | ||||
|  | ||||
|  | ||||
|     def pre_processing(self, L: int, landmarks: list[Landmark], max_time: int, max_landmarks: int | None) : | ||||
|         """ | ||||
|         Preprocesses the optimization problem by setting up constraints and variables for the tour optimization. | ||||
|  | ||||
|         This method initializes and prepares the linear programming problem to optimize a tour that includes landmarks,  | ||||
|         while respecting various constraints such as time limits, the number of landmarks to visit, and user preferences.  | ||||
|         The pre-processing step sets up the problem before solving it using a linear programming solver. | ||||
|  | ||||
|         Responsibilities: | ||||
|         - Defines the optimization problem using linear programming (LP) with the objective to maximize the tour value. | ||||
|         - Creates binary decision variables for each potential transition between landmarks. | ||||
|         - Sets up inequality constraints to respect the maximum time available for the tour and the maximum number of landmarks. | ||||
|         - Implements equality constraints to ensure the tour respects the start and finish positions, avoids staying in the same place,  | ||||
|         and adheres to a visit order. | ||||
|         - Forces inclusion or exclusion of specific landmarks based on user preferences. | ||||
|  | ||||
|         Attributes: | ||||
|             prob (pl.LpProblem): The linear programming problem to be solved. | ||||
|             x (list): A list of binary variables representing transitions between landmarks. | ||||
|             L (int): The total number of landmarks considered in the optimization. | ||||
|             landmarks (list[Landmark]): The list of landmarks to be visited in the tour. | ||||
|             max_time (int): The maximum allowable time for the entire tour. | ||||
|             max_landmarks (int | None): The maximum number of landmarks to visit in the tour, or None if no limit is set. | ||||
|  | ||||
|         Returns: | ||||
|             prob (pl.LpProblem): The linear programming problem setup for optimization. | ||||
|             x (list): The list of binary variables for transitions between landmarks in the tour. | ||||
|         """ | ||||
|  | ||||
|         if max_landmarks is None : | ||||
|             max_landmarks = self.max_landmarks | ||||
| @@ -490,7 +541,7 @@ class Optimizer: | ||||
|         self.respect_start_finish(prob, x, L)            # Force start and finish positions | ||||
|         self.respect_order(prob, x, L)                   # Respect order of visit (only works when max_time is limiting factor) | ||||
|         self.respect_user_must(prob, x, L, landmarks)    # Force to do/avoid landmarks set by user. | ||||
|      | ||||
|  | ||||
|         return prob, x | ||||
|  | ||||
|     def solve_optimization( | ||||
| @@ -555,15 +606,15 @@ class Optimizer: | ||||
|             if pl.LpStatus[prob.status] != 'Optimal' : | ||||
|                 self.logger.error("The problem is overconstrained, no solution after {i} cycles.") | ||||
|                 raise ArithmeticError("No solution could be found. Please try again with more time or different preferences.") | ||||
|   | ||||
|  | ||||
|             circles = self.is_connected(solution) | ||||
|             if circles is None : | ||||
|                 break | ||||
|  | ||||
|          | ||||
|  | ||||
|         # Sort the landmarks in the order of the solution | ||||
|         order = self.get_order(solution) | ||||
|         tour =  [landmarks[i] for i in order]  | ||||
|         tour =  [landmarks[i] for i in order] | ||||
|  | ||||
|         self.logger.debug(f"Re-optimized {i} times, objective value : {int(pl.value(prob.objective))}") | ||||
|         return tour | ||||
|   | ||||
| @@ -13,7 +13,14 @@ from ..constants import OPTIMIZER_PARAMETERS_PATH | ||||
|  | ||||
|  | ||||
| class Refiner : | ||||
|     """ | ||||
|     Refines a tour by incorporating smaller landmarks along the path to enhance the experience. | ||||
|  | ||||
|     This class is designed to adjust an existing tour by considering additional,  | ||||
|     smaller points of interest (landmarks) that may require minor detours but  | ||||
|     improve the overall quality of the tour. It balances the efficiency of travel  | ||||
|     with the added value of visiting these landmarks. | ||||
|     """ | ||||
|     logger = logging.getLogger(__name__) | ||||
|  | ||||
|     detour_factor: float            # detour factor of straight line vs real distance in cities | ||||
| @@ -267,7 +274,7 @@ class Refiner : | ||||
|                 better_tour_poly = concave_hull(MultiPoint(coords))  # Create concave hull with "core" of tour leaving out start and finish | ||||
|                 xs, ys = better_tour_poly.exterior.xy | ||||
|  | ||||
|         except : | ||||
|         except Exception: | ||||
|             better_tour_poly = concave_hull(MultiPoint(coords))  # Create concave hull with "core" of tour leaving out start and finish | ||||
|             xs, ys = better_tour_poly.exterior.xy | ||||
|             """  | ||||
|   | ||||
| @@ -1,3 +1,4 @@ | ||||
| """Helper function to return only the major landmarks from a large list.""" | ||||
| from ..structs.landmark import Landmark | ||||
|  | ||||
| def take_most_important(landmarks: list[Landmark], n_important) -> list[Landmark]: | ||||
|   | ||||
| @@ -1,16 +1,34 @@ | ||||
| import logging, yaml | ||||
| """Module for finding public toilets around given coordinates.""" | ||||
| import logging | ||||
| from OSMPythonTools.overpass import Overpass, overpassQueryBuilder | ||||
| from OSMPythonTools.cachingStrategy import CachingStrategy, JSON | ||||
|  | ||||
| from ..structs.landmark import Toilets | ||||
| from ..constants import LANDMARK_PARAMETERS_PATH, OSM_CACHE_DIR | ||||
| from ..constants import OSM_CACHE_DIR | ||||
|  | ||||
|  | ||||
| # silence the overpass logger | ||||
| logging.getLogger('OSMPythonTools').setLevel(level=logging.CRITICAL) | ||||
|  | ||||
| class ToiletsManager: | ||||
|     """ | ||||
|     Manages the process of fetching and caching toilet information from  | ||||
|     OpenStreetMap (OSM) based on a specified location and radius. | ||||
|  | ||||
|     This class is responsible for: | ||||
|     - Fetching toilet data from OSM using Overpass API around a given set of  | ||||
|       coordinates (latitude, longitude). | ||||
|     - Using a caching strategy to optimize requests by saving and retrieving  | ||||
|       data from a local cache. | ||||
|     - Logging important events and errors related to data fetching. | ||||
|  | ||||
|     Attributes: | ||||
|         logger (logging.Logger): Logger for the class to capture events. | ||||
|         location (tuple[float, float]): Latitude and longitude representing the  | ||||
|             location to search around. | ||||
|         radius (int): The search radius in meters for finding nearby toilets. | ||||
|         overpass (Overpass): The Overpass API instance used to query OSM. | ||||
|     """ | ||||
|     logger = logging.getLogger(__name__) | ||||
|  | ||||
|     location: tuple[float, float] | ||||
| @@ -26,9 +44,14 @@ class ToiletsManager: | ||||
|  | ||||
|  | ||||
|     def generate_toilet_list(self) -> list[Toilets] : | ||||
|         """ | ||||
|         Generates a list of toilet locations by fetching data from OpenStreetMap (OSM)  | ||||
|         around the given coordinates stored in `self.location`. | ||||
|  | ||||
|          | ||||
|         # Create a bbox using the around technique | ||||
|         Returns: | ||||
|         list[Toilets]: A list of `Toilets` objects containing detailed information  | ||||
|                        about the toilets found around the given coordinates. | ||||
|         """ | ||||
|         bbox = tuple((f"around:{self.radius}", str(self.location[0]), str(self.location[1]))) | ||||
|         toilets_list = [] | ||||
|  | ||||
| @@ -55,12 +78,12 @@ class ToiletsManager: | ||||
|  | ||||
|             # handle unprecise and no-name locations | ||||
|             if location[0] is None: | ||||
|                     location = (elem.lat(), elem.lon()) | ||||
|             else :  | ||||
|                 location = (elem.lat(), elem.lon()) | ||||
|             else : | ||||
|                 continue | ||||
|              | ||||
|  | ||||
|             toilets = Toilets(location=location) | ||||
|              | ||||
|  | ||||
|             if 'wheelchair' in elem.tags().keys() and elem.tag('wheelchair') == 'yes': | ||||
|                 toilets.wheelchair = True | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user