cluster recognition added to backend pipeline
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 3m0s
Run linting on the backend code / Build (pull_request) Failing after 29s
Run testing on the backend code / Build (pull_request) Failing after 2m9s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 15s
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 3m0s
Run linting on the backend code / Build (pull_request) Failing after 29s
Run testing on the backend code / Build (pull_request) Failing after 2m9s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 15s
This commit is contained in:
@@ -5,6 +5,7 @@ from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
||||
from ..structs.preferences import Preferences
|
||||
from ..structs.landmark import Landmark
|
||||
from .take_most_important import take_most_important
|
||||
from .cluster_processing import ShoppingManager
|
||||
|
||||
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
|
||||
|
||||
@@ -94,10 +95,19 @@ class LandmarkManager:
|
||||
if preferences.shopping.score != 0:
|
||||
score_function = lambda score: score * 10 * preferences.shopping.score / 5
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function)
|
||||
|
||||
# set time for all shopping activites :
|
||||
for landmark in current_landmarks : landmark.duration = 30
|
||||
all_landmarks.update(current_landmarks)
|
||||
|
||||
# special pipeline for shopping malls
|
||||
shopping_manager = ShoppingManager(bbox)
|
||||
if shopping_manager.valid :
|
||||
shopping_clusters = shopping_manager.generate_shopping_landmarks()
|
||||
for landmark in shopping_clusters : landmark.duration = 45
|
||||
all_landmarks.update(shopping_clusters)
|
||||
|
||||
|
||||
|
||||
landmarks_constrained = take_most_important(all_landmarks, self.N_important)
|
||||
self.logger.info(f'Generated {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.')
|
||||
@@ -353,7 +363,6 @@ class LandmarkManager:
|
||||
return return_list
|
||||
|
||||
|
||||
|
||||
def dict_to_selector_list(d: dict) -> list:
|
||||
"""
|
||||
Convert a dictionary of key-value pairs to a list of Overpass query strings.
|
||||
|
Reference in New Issue
Block a user