fixed cluster names
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m54s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 4m19s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s

This commit is contained in:
2025-02-11 07:34:50 +01:00
parent 9002483036
commit 81330e5eb3
9 changed files with 34 additions and 30 deletions

View File

@@ -1,6 +1,6 @@
"""Find clusters of interest to add more general areas of visit to the tour."""
import logging
from typing import Literal
from typing import Literal, Tuple
import numpy as np
from sklearn.cluster import DBSCAN
@@ -33,7 +33,7 @@ class Cluster(BaseModel):
"""
type: Literal['street', 'area']
importance: int
centroid: tuple
centroid: Tuple[float, float]
# start: Optional[list] = None # for later use if we want to have streets as well
# end: Optional[list] = None
@@ -178,11 +178,12 @@ class ClusterManager:
# Calculate the centroid as the mean of the points
centroid = np.mean(current_cluster, axis=0)
centroid = tuple((round(centroid[0], 7), round(centroid[1], 7)))
if self.cluster_type == 'shopping' :
score = len(current_cluster)*2
score = len(current_cluster)*3
else :
score = len(current_cluster)*8
score = len(current_cluster)*15
locations.append(Cluster(
type='area',
centroid=centroid,
@@ -215,7 +216,7 @@ class ClusterManager:
"""
# Define the bounding box for a given radius around the coordinates
bbox = create_bbox(cluster.centroid, 1000)
bbox = create_bbox(cluster.centroid, 300)
# Query neighborhoods and shopping malls
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"']
@@ -223,10 +224,10 @@ class ClusterManager:
if self.cluster_type == 'shopping' :
selectors.append('"shop"="mall"')
new_name = 'Shopping Area'
t = 40
t = 30
else :
new_name = 'Neighborhood'
t = 15
t = 20
min_dist = float('inf')
osm_id = 0
@@ -238,7 +239,7 @@ class ClusterManager:
result = self.overpass.send_query(bbox = bbox,
osm_types = osm_types,
selector = sel,
out = 'ids center'
out = 'ids center tags'
)
except Exception as e:
self.logger.error(f"Error fetching clusters: {e}")
@@ -259,9 +260,9 @@ class ClusterManager:
d = get_distance(cluster.centroid, coords)
if d < min_dist :
min_dist = d
new_name = name
osm_type = osm_type # Add type: 'way' or 'relation'
osm_id = id # Add OSM id
new_name = name # add name
osm_type = osm_type # add type: 'way' or 'relation'
osm_id = id # add OSM id
return Landmark(
name=new_name,

View File

@@ -39,7 +39,6 @@ class LandmarkManager:
self.overall_coeff = parameters['overall_coeff']
self.tag_exponent = parameters['tag_exponent']
self.image_bonus = parameters['image_bonus']
self.name_bonus = parameters['name_bonus']
self.wikipedia_bonus = parameters['wikipedia_bonus']
self.viewpoint_bonus = parameters['viewpoint_bonus']
self.pay_bonus = parameters['pay_bonus']
@@ -147,6 +146,8 @@ class LandmarkManager:
score *= self.wikipedia_bonus
if landmark.is_place_of_worship :
score *= self.church_coeff
if landmark.is_viewpoint :
score *= self.viewpoint_bonus
if landmarktype == 'nature' :
score *= self.nature_coeff
@@ -201,7 +202,7 @@ class LandmarkManager:
return_list += self._to_landmarks(result, landmarktype, preference_level)
self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
# self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
return return_list
@@ -267,7 +268,7 @@ class LandmarkManager:
landmark.image_url = value
if key == 'website' :
landmark.website_url = value
if key == 'place_of_worship' :
if value == 'place_of_worship' :
landmark.is_place_of_worship = True
if key == 'wikipedia' :
landmark.wiki_url = value