better naming and MM
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m22s
Run linting on the backend code / Build (pull_request) Successful in 32s
Run testing on the backend code / Build (pull_request) Failing after 2m15s
Build and release debug APK / Build APK (pull_request) Successful in 7m32s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 17s
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m22s
Run linting on the backend code / Build (pull_request) Successful in 32s
Run testing on the backend code / Build (pull_request) Failing after 2m15s
Build and release debug APK / Build APK (pull_request) Successful in 7m32s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 17s
This commit is contained in:
282
backend/src/utils/cluster_manager.py
Normal file
282
backend/src/utils/cluster_manager.py
Normal file
@@ -0,0 +1,282 @@
|
||||
import logging
|
||||
from typing import Literal
|
||||
|
||||
import numpy as np
|
||||
from sklearn.cluster import DBSCAN
|
||||
from pydantic import BaseModel
|
||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
||||
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
||||
|
||||
from ..structs.landmark import Landmark
|
||||
from ..utils.get_time_separation import get_distance
|
||||
from ..constants import OSM_CACHE_DIR
|
||||
|
||||
|
||||
class Cluster(BaseModel):
|
||||
""""
|
||||
A class representing an interesting area for shopping or sightseeing.
|
||||
|
||||
It can represent either a general area or a specifc route with start and end point.
|
||||
The importance represents the number of shops found in this cluster.
|
||||
|
||||
Attributes:
|
||||
type : either a 'street' or 'area' (representing a denser field of shops).
|
||||
importance : size of the cluster (number of points).
|
||||
centroid : center of the cluster.
|
||||
start : if the type is a street it goes from here...
|
||||
end : ...to here
|
||||
"""
|
||||
type: Literal['street', 'area']
|
||||
importance: int
|
||||
centroid: tuple
|
||||
# start: Optional[list] = None # for later use if we want to have streets as well
|
||||
# end: Optional[list] = None
|
||||
|
||||
|
||||
class ClusterManager:
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# NOTE: all points are in (lat, lon) format
|
||||
valid: bool # Ensure the manager is valid (ie there are some clusters to be found)
|
||||
all_points: list
|
||||
cluster_points: list
|
||||
cluster_labels: list
|
||||
cluster_type: Literal['sightseeing', 'shopping']
|
||||
|
||||
def __init__(self, bbox: tuple, cluster_type: Literal['sightseeing', 'shopping']) -> None:
|
||||
"""
|
||||
Upon intialization, generate the point cloud used for cluster detection.
|
||||
The points represent bag/clothes shops and general boutiques.
|
||||
If the first step is successful, it applies the DBSCAN clustering algorithm with different
|
||||
parameters depending on the size of the city (number of points).
|
||||
It filters out noise points and keeps only the largest clusters.
|
||||
|
||||
A successful initialization updates:
|
||||
- `self.cluster_points`: The points belonging to clusters.
|
||||
- `self.cluster_labels`: The labels for the points in clusters.
|
||||
|
||||
The method also calls `filter_clusters()` to retain only the largest clusters.
|
||||
|
||||
Args:
|
||||
bbox: The bounding box coordinates (around:radius, center_lat, center_lon).
|
||||
"""
|
||||
|
||||
# Initialize overpass and cache
|
||||
self.overpass = Overpass()
|
||||
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
|
||||
|
||||
self.cluster_type = cluster_type
|
||||
if cluster_type == 'shopping' :
|
||||
elem_type = ['node']
|
||||
sel = ['"shop"~"^(bag|boutique|clothes)$"']
|
||||
out = 'skel'
|
||||
else :
|
||||
elem_type = ['way']
|
||||
sel = ['"historic"="building"']
|
||||
out = 'center'
|
||||
|
||||
# Initialize the points for cluster detection
|
||||
query = overpassQueryBuilder(
|
||||
bbox = bbox,
|
||||
elementType = elem_type,
|
||||
selector = sel,
|
||||
includeCenter = True,
|
||||
out = out
|
||||
)
|
||||
|
||||
try:
|
||||
result = self.overpass.query(query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
|
||||
if len(result.elements()) == 0 :
|
||||
self.valid = False
|
||||
|
||||
else :
|
||||
points = []
|
||||
for elem in result.elements() :
|
||||
coords = tuple((elem.lat(), elem.lon()))
|
||||
if coords[0] is None :
|
||||
coords = tuple((elem.centerLat(), elem.centerLon()))
|
||||
points.append(coords)
|
||||
|
||||
self.all_points = np.array(points)
|
||||
self.valid = True
|
||||
|
||||
# Apply DBSCAN to find clusters. Choose different settings for different cities.
|
||||
if self.cluster_type == 'shopping' and len(self.all_points) > 200 :
|
||||
dbscan = DBSCAN(eps=0.00118, min_samples=15, algorithm='kd_tree') # for large cities
|
||||
elif self.cluster_type == 'sightseeing' :
|
||||
dbscan = DBSCAN(eps=0.0025, min_samples=15, algorithm='kd_tree') # for historic neighborhoods
|
||||
else :
|
||||
dbscan = DBSCAN(eps=0.00075, min_samples=10, algorithm='kd_tree') # for small cities
|
||||
|
||||
labels = dbscan.fit_predict(self.all_points)
|
||||
|
||||
# Separate clustered points and noise points
|
||||
self.cluster_points = self.all_points[labels != -1]
|
||||
self.cluster_labels = labels[labels != -1]
|
||||
|
||||
# filter the clusters to keep only the largest ones
|
||||
self.filter_clusters()
|
||||
|
||||
|
||||
def generate_clusters(self) -> list[Landmark]:
|
||||
"""
|
||||
Generate a list of landmarks based on identified clusters.
|
||||
|
||||
This method iterates over the different clusters, calculates the centroid
|
||||
(as the mean of the points within each cluster), and assigns an importance
|
||||
based on the size of the cluster.
|
||||
|
||||
The generated shopping locations are stored in `self.clusters`
|
||||
as a list of `Cluster` objects, each with:
|
||||
- `type`: Set to 'area'.
|
||||
- `centroid`: The calculated centroid of the cluster.
|
||||
- `importance`: The number of points in the cluster.
|
||||
"""
|
||||
|
||||
if not self.valid :
|
||||
return [] # Return empty list if no clusters were found
|
||||
|
||||
locations = []
|
||||
|
||||
# loop through the different clusters
|
||||
for label in set(self.cluster_labels):
|
||||
|
||||
# Extract points belonging to the current cluster
|
||||
current_cluster = self.cluster_points[self.cluster_labels == label]
|
||||
|
||||
# Calculate the centroid as the mean of the points
|
||||
centroid = np.mean(current_cluster, axis=0)
|
||||
|
||||
if self.cluster_type == 'shopping' :
|
||||
score = len(current_cluster)*2
|
||||
else :
|
||||
score = len(current_cluster)*4
|
||||
locations.append(Cluster(
|
||||
type='area',
|
||||
centroid=centroid,
|
||||
importance = score
|
||||
))
|
||||
|
||||
# Transform the locations in landmarks and return the list
|
||||
cluster_landmarks = []
|
||||
for cluster in locations :
|
||||
cluster_landmarks.append(self.create_landmark(cluster))
|
||||
|
||||
return cluster_landmarks
|
||||
|
||||
|
||||
def create_landmark(self, cluster: Cluster) -> Landmark:
|
||||
"""
|
||||
Create a Landmark object based on the given shopping location.
|
||||
|
||||
This method queries the Overpass API for nearby neighborhoods and shopping malls
|
||||
within a 1000m radius around the shopping location centroid. It selects the closest
|
||||
result and creates a landmark with the associated details such as name, type, and OSM ID.
|
||||
|
||||
Parameters:
|
||||
shopping_location (Cluster): A Cluster object containing
|
||||
the centroid and importance of the area.
|
||||
|
||||
Returns:
|
||||
Landmark: A Landmark object containing details such as the name, type,
|
||||
location, attractiveness, and OSM details.
|
||||
"""
|
||||
|
||||
# Define the bounding box for a given radius around the coordinates
|
||||
lat, lon = cluster.centroid
|
||||
bbox = ("around:1000", str(lat), str(lon))
|
||||
|
||||
# Query neighborhoods and shopping malls
|
||||
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"']
|
||||
|
||||
if self.cluster_type == 'shopping' :
|
||||
selectors.append('"shop"="mall"')
|
||||
new_name = 'Shopping Area'
|
||||
t = 40
|
||||
else :
|
||||
new_name = 'Neighborhood'
|
||||
t = 15
|
||||
|
||||
min_dist = float('inf')
|
||||
new_name_en = None
|
||||
osm_id = 0
|
||||
osm_type = 'node'
|
||||
|
||||
for sel in selectors :
|
||||
query = overpassQueryBuilder(
|
||||
bbox = bbox,
|
||||
elementType = ['node', 'way', 'relation'],
|
||||
selector = sel,
|
||||
includeCenter = True,
|
||||
out = 'center'
|
||||
)
|
||||
|
||||
try:
|
||||
result = self.overpass.query(query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
continue
|
||||
|
||||
for elem in result.elements():
|
||||
location = (elem.centerLat(), elem.centerLon())
|
||||
|
||||
if location[0] is None :
|
||||
location = (elem.lat(), elem.lon())
|
||||
if location[0] is None :
|
||||
continue
|
||||
|
||||
d = get_distance(cluster.centroid, location)
|
||||
if d < min_dist :
|
||||
min_dist = d
|
||||
new_name = elem.tag('name')
|
||||
osm_type = elem.type() # Add type: 'way' or 'relation'
|
||||
osm_id = elem.id() # Add OSM id
|
||||
|
||||
# Add english name if it exists
|
||||
try :
|
||||
new_name_en = elem.tag('name:en')
|
||||
except:
|
||||
pass
|
||||
|
||||
return Landmark(
|
||||
name=new_name,
|
||||
type=self.cluster_type,
|
||||
location=cluster.centroid, # TODO: use the fact the we can also recognize streets.
|
||||
attractiveness=cluster.importance,
|
||||
n_tags=0,
|
||||
osm_id=osm_id,
|
||||
osm_type=osm_type,
|
||||
name_en=new_name_en,
|
||||
duration=t
|
||||
)
|
||||
|
||||
|
||||
def filter_clusters(self):
|
||||
"""
|
||||
Filter clusters to retain only the 5 largest clusters by point count.
|
||||
|
||||
This method calculates the size of each cluster and filters out all but the
|
||||
5 largest clusters. It then updates the cluster points and labels to reflect
|
||||
only those from the top 5 clusters.
|
||||
"""
|
||||
label_counts = np.bincount(self.cluster_labels)
|
||||
|
||||
# Step 3: Get the indices (labels) of the 5 largest clusters
|
||||
top_5_labels = np.argsort(label_counts)[-5:] # Get the largest 5 clusters
|
||||
|
||||
# Step 4: Filter points to keep only the points in the top 5 clusters
|
||||
filtered_cluster_points = []
|
||||
filtered_cluster_labels = []
|
||||
|
||||
for label in top_5_labels:
|
||||
filtered_cluster_points.append(self.cluster_points[self.cluster_labels == label])
|
||||
filtered_cluster_labels.append(np.full((label_counts[label],), label)) # Replicate the label
|
||||
|
||||
# update the cluster points and labels with the filtered data
|
||||
self.cluster_points = np.vstack(filtered_cluster_points)
|
||||
self.cluster_labels = np.concatenate(filtered_cluster_labels)
|
||||
|
||||
Reference in New Issue
Block a user