better naming and MM
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m22s
Run linting on the backend code / Build (pull_request) Successful in 32s
Run testing on the backend code / Build (pull_request) Failing after 2m15s
Build and release debug APK / Build APK (pull_request) Successful in 7m32s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 17s
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m22s
Run linting on the backend code / Build (pull_request) Successful in 32s
Run testing on the backend code / Build (pull_request) Failing after 2m15s
Build and release debug APK / Build APK (pull_request) Successful in 7m32s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 17s
This commit is contained in:
parent
ddd2e91328
commit
9b61471c94
@ -1,11 +1,11 @@
|
|||||||
city_bbox_side: 7500 #m
|
city_bbox_side: 7500 #m
|
||||||
radius_close_to: 50
|
radius_close_to: 50
|
||||||
church_coeff: 0.9
|
church_coeff: 0.65
|
||||||
nature_coeff: 1.25
|
nature_coeff: 1.35
|
||||||
overall_coeff: 10
|
overall_coeff: 10
|
||||||
tag_exponent: 1.15
|
tag_exponent: 1.15
|
||||||
image_bonus: 10
|
image_bonus: 10
|
||||||
viewpoint_bonus: 15
|
viewpoint_bonus: 5
|
||||||
wikipedia_bonus: 4
|
wikipedia_bonus: 4
|
||||||
name_bonus: 3
|
name_bonus: 3
|
||||||
N_important: 40
|
N_important: 40
|
||||||
|
@ -53,7 +53,7 @@ def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
|
|||||||
client:
|
client:
|
||||||
request:
|
request:
|
||||||
"""
|
"""
|
||||||
duration_minutes = 30
|
duration_minutes = 120
|
||||||
response = client.post(
|
response = client.post(
|
||||||
"/trip/new",
|
"/trip/new",
|
||||||
json={
|
json={
|
||||||
@ -72,10 +72,15 @@ def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
|
|||||||
# Add details to report
|
# Add details to report
|
||||||
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
|
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
|
||||||
|
|
||||||
|
for elem in landmarks :
|
||||||
|
print(elem)
|
||||||
|
|
||||||
# checks :
|
# checks :
|
||||||
assert response.status_code == 200 # check for successful planning
|
assert response.status_code == 200 # check for successful planning
|
||||||
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
|
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
|
||||||
assert 136200148 in osm_ids # check for Cathédrale St. Jean in trip
|
assert 136200148 in osm_ids # check for Cathédrale St. Jean in trip
|
||||||
|
assert response.status_code == 2000 # check for successful planning
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def test_shopping(client, request) : # pylint: disable=redefined-outer-name
|
def test_shopping(client, request) : # pylint: disable=redefined-outer-name
|
||||||
@ -86,7 +91,7 @@ def test_shopping(client, request) : # pylint: disable=redefined-outer-name
|
|||||||
client:
|
client:
|
||||||
request:
|
request:
|
||||||
"""
|
"""
|
||||||
duration_minutes = 600
|
duration_minutes = 1000
|
||||||
response = client.post(
|
response = client.post(
|
||||||
"/trip/new",
|
"/trip/new",
|
||||||
json={
|
json={
|
||||||
@ -100,7 +105,6 @@ def test_shopping(client, request) : # pylint: disable=redefined-outer-name
|
|||||||
)
|
)
|
||||||
result = response.json()
|
result = response.json()
|
||||||
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
|
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
|
||||||
# osm_ids = landmarks_to_osmid(landmarks)
|
|
||||||
|
|
||||||
# Add details to report
|
# Add details to report
|
||||||
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
|
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
|
||||||
|
@ -9,12 +9,12 @@ from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
|||||||
|
|
||||||
from ..structs.landmark import Landmark
|
from ..structs.landmark import Landmark
|
||||||
from ..utils.get_time_separation import get_distance
|
from ..utils.get_time_separation import get_distance
|
||||||
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
|
from ..constants import OSM_CACHE_DIR
|
||||||
|
|
||||||
|
|
||||||
class ShoppingLocation(BaseModel):
|
class Cluster(BaseModel):
|
||||||
""""
|
""""
|
||||||
A classe representing an interesting area for shopping.
|
A class representing an interesting area for shopping or sightseeing.
|
||||||
|
|
||||||
It can represent either a general area or a specifc route with start and end point.
|
It can represent either a general area or a specifc route with start and end point.
|
||||||
The importance represents the number of shops found in this cluster.
|
The importance represents the number of shops found in this cluster.
|
||||||
@ -33,7 +33,7 @@ class ShoppingLocation(BaseModel):
|
|||||||
# end: Optional[list] = None
|
# end: Optional[list] = None
|
||||||
|
|
||||||
|
|
||||||
class ShoppingManager:
|
class ClusterManager:
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@ -42,12 +42,21 @@ class ShoppingManager:
|
|||||||
all_points: list
|
all_points: list
|
||||||
cluster_points: list
|
cluster_points: list
|
||||||
cluster_labels: list
|
cluster_labels: list
|
||||||
shopping_locations: list[ShoppingLocation]
|
cluster_type: Literal['sightseeing', 'shopping']
|
||||||
|
|
||||||
def __init__(self, bbox: tuple) -> None:
|
def __init__(self, bbox: tuple, cluster_type: Literal['sightseeing', 'shopping']) -> None:
|
||||||
"""
|
"""
|
||||||
Upon intialization, generate the point cloud used for cluster detection.
|
Upon intialization, generate the point cloud used for cluster detection.
|
||||||
The points represent bag/clothes shops and general boutiques.
|
The points represent bag/clothes shops and general boutiques.
|
||||||
|
If the first step is successful, it applies the DBSCAN clustering algorithm with different
|
||||||
|
parameters depending on the size of the city (number of points).
|
||||||
|
It filters out noise points and keeps only the largest clusters.
|
||||||
|
|
||||||
|
A successful initialization updates:
|
||||||
|
- `self.cluster_points`: The points belonging to clusters.
|
||||||
|
- `self.cluster_labels`: The labels for the points in clusters.
|
||||||
|
|
||||||
|
The method also calls `filter_clusters()` to retain only the largest clusters.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
bbox: The bounding box coordinates (around:radius, center_lat, center_lon).
|
bbox: The bounding box coordinates (around:radius, center_lat, center_lon).
|
||||||
@ -57,13 +66,23 @@ class ShoppingManager:
|
|||||||
self.overpass = Overpass()
|
self.overpass = Overpass()
|
||||||
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
|
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
|
||||||
|
|
||||||
|
self.cluster_type = cluster_type
|
||||||
|
if cluster_type == 'shopping' :
|
||||||
|
elem_type = ['node']
|
||||||
|
sel = ['"shop"~"^(bag|boutique|clothes)$"']
|
||||||
|
out = 'skel'
|
||||||
|
else :
|
||||||
|
elem_type = ['way']
|
||||||
|
sel = ['"historic"="building"']
|
||||||
|
out = 'center'
|
||||||
|
|
||||||
# Initialize the points for cluster detection
|
# Initialize the points for cluster detection
|
||||||
query = overpassQueryBuilder(
|
query = overpassQueryBuilder(
|
||||||
bbox = bbox,
|
bbox = bbox,
|
||||||
elementType = ['node'],
|
elementType = elem_type,
|
||||||
selector = ['"shop"~"^(bag|boutique|clothes)$"'],
|
selector = sel,
|
||||||
includeCenter = True,
|
includeCenter = True,
|
||||||
out = 'skel'
|
out = out
|
||||||
)
|
)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
@ -77,59 +96,19 @@ class ShoppingManager:
|
|||||||
else :
|
else :
|
||||||
points = []
|
points = []
|
||||||
for elem in result.elements() :
|
for elem in result.elements() :
|
||||||
points.append(tuple((elem.lat(), elem.lon())))
|
coords = tuple((elem.lat(), elem.lon()))
|
||||||
|
if coords[0] is None :
|
||||||
|
coords = tuple((elem.centerLat(), elem.centerLon()))
|
||||||
|
points.append(coords)
|
||||||
|
|
||||||
self.all_points = np.array(points)
|
self.all_points = np.array(points)
|
||||||
self.valid = True
|
self.valid = True
|
||||||
|
|
||||||
|
|
||||||
def generate_shopping_landmarks(self) -> list[Landmark]:
|
|
||||||
"""
|
|
||||||
Generate shopping landmarks based on clustered locations.
|
|
||||||
|
|
||||||
This method first generates clusters of locations and then extracts shopping-related
|
|
||||||
locations from these clusters. It transforms each shopping location into a `Landmark` object.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
list[Landmark]: A list of `Landmark` objects representing shopping locations.
|
|
||||||
Returns an empty list if no clusters are found.
|
|
||||||
"""
|
|
||||||
|
|
||||||
self.generate_clusters()
|
|
||||||
|
|
||||||
if len(set(self.cluster_labels)) == 0 :
|
|
||||||
return [] # Return empty list if no clusters were found
|
|
||||||
|
|
||||||
# Then generate the shopping locations
|
|
||||||
self.generate_shopping_locations()
|
|
||||||
|
|
||||||
# Transform the locations in landmarks and return the list
|
|
||||||
shopping_landmarks = []
|
|
||||||
for location in self.shopping_locations :
|
|
||||||
shopping_landmarks.append(self.create_landmark(location))
|
|
||||||
|
|
||||||
return shopping_landmarks
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def generate_clusters(self) :
|
|
||||||
"""
|
|
||||||
Generate clusters of points using DBSCAN.
|
|
||||||
|
|
||||||
This method applies the DBSCAN clustering algorithm with different
|
|
||||||
parameters depending on the size of the city (number of points).
|
|
||||||
It filters out noise points and keeps only the largest clusters.
|
|
||||||
|
|
||||||
The method updates:
|
|
||||||
- `self.cluster_points`: The points belonging to clusters.
|
|
||||||
- `self.cluster_labels`: The labels for the points in clusters.
|
|
||||||
|
|
||||||
The method also calls `filter_clusters()` to retain only the largest clusters.
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Apply DBSCAN to find clusters. Choose different settings for different cities.
|
# Apply DBSCAN to find clusters. Choose different settings for different cities.
|
||||||
if len(self.all_points) > 200 :
|
if self.cluster_type == 'shopping' and len(self.all_points) > 200 :
|
||||||
dbscan = DBSCAN(eps=0.00118, min_samples=15, algorithm='kd_tree') # for large cities
|
dbscan = DBSCAN(eps=0.00118, min_samples=15, algorithm='kd_tree') # for large cities
|
||||||
|
elif self.cluster_type == 'sightseeing' :
|
||||||
|
dbscan = DBSCAN(eps=0.0025, min_samples=15, algorithm='kd_tree') # for historic neighborhoods
|
||||||
else :
|
else :
|
||||||
dbscan = DBSCAN(eps=0.00075, min_samples=10, algorithm='kd_tree') # for small cities
|
dbscan = DBSCAN(eps=0.00075, min_samples=10, algorithm='kd_tree') # for small cities
|
||||||
|
|
||||||
@ -143,21 +122,24 @@ class ShoppingManager:
|
|||||||
self.filter_clusters()
|
self.filter_clusters()
|
||||||
|
|
||||||
|
|
||||||
def generate_shopping_locations(self) :
|
def generate_clusters(self) -> list[Landmark]:
|
||||||
"""
|
"""
|
||||||
Generate shopping locations based on clustered points.
|
Generate a list of landmarks based on identified clusters.
|
||||||
|
|
||||||
This method iterates over the different clusters, calculates the centroid
|
This method iterates over the different clusters, calculates the centroid
|
||||||
(as the mean of the points within each cluster), and assigns an importance
|
(as the mean of the points within each cluster), and assigns an importance
|
||||||
based on the size of the cluster.
|
based on the size of the cluster.
|
||||||
|
|
||||||
The generated shopping locations are stored in `self.shopping_locations`
|
The generated shopping locations are stored in `self.clusters`
|
||||||
as a list of `ShoppingLocation` objects, each with:
|
as a list of `Cluster` objects, each with:
|
||||||
- `type`: Set to 'area'.
|
- `type`: Set to 'area'.
|
||||||
- `centroid`: The calculated centroid of the cluster.
|
- `centroid`: The calculated centroid of the cluster.
|
||||||
- `importance`: The number of points in the cluster.
|
- `importance`: The number of points in the cluster.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
if not self.valid :
|
||||||
|
return [] # Return empty list if no clusters were found
|
||||||
|
|
||||||
locations = []
|
locations = []
|
||||||
|
|
||||||
# loop through the different clusters
|
# loop through the different clusters
|
||||||
@ -169,16 +151,25 @@ class ShoppingManager:
|
|||||||
# Calculate the centroid as the mean of the points
|
# Calculate the centroid as the mean of the points
|
||||||
centroid = np.mean(current_cluster, axis=0)
|
centroid = np.mean(current_cluster, axis=0)
|
||||||
|
|
||||||
locations.append(ShoppingLocation(
|
if self.cluster_type == 'shopping' :
|
||||||
|
score = len(current_cluster)*2
|
||||||
|
else :
|
||||||
|
score = len(current_cluster)*4
|
||||||
|
locations.append(Cluster(
|
||||||
type='area',
|
type='area',
|
||||||
centroid=centroid,
|
centroid=centroid,
|
||||||
importance = len(current_cluster)
|
importance = score
|
||||||
))
|
))
|
||||||
|
|
||||||
self.shopping_locations = locations
|
# Transform the locations in landmarks and return the list
|
||||||
|
cluster_landmarks = []
|
||||||
|
for cluster in locations :
|
||||||
|
cluster_landmarks.append(self.create_landmark(cluster))
|
||||||
|
|
||||||
|
return cluster_landmarks
|
||||||
|
|
||||||
|
|
||||||
def create_landmark(self, shopping_location: ShoppingLocation) -> Landmark:
|
def create_landmark(self, cluster: Cluster) -> Landmark:
|
||||||
"""
|
"""
|
||||||
Create a Landmark object based on the given shopping location.
|
Create a Landmark object based on the given shopping location.
|
||||||
|
|
||||||
@ -187,7 +178,7 @@ class ShoppingManager:
|
|||||||
result and creates a landmark with the associated details such as name, type, and OSM ID.
|
result and creates a landmark with the associated details such as name, type, and OSM ID.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
shopping_location (ShoppingLocation): A ShoppingLocation object containing
|
shopping_location (Cluster): A Cluster object containing
|
||||||
the centroid and importance of the area.
|
the centroid and importance of the area.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
@ -196,14 +187,21 @@ class ShoppingManager:
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
# Define the bounding box for a given radius around the coordinates
|
# Define the bounding box for a given radius around the coordinates
|
||||||
lat, lon = shopping_location.centroid
|
lat, lon = cluster.centroid
|
||||||
bbox = ("around:1000", str(lat), str(lon))
|
bbox = ("around:1000", str(lat), str(lon))
|
||||||
|
|
||||||
# Query neighborhoods and shopping malls
|
# Query neighborhoods and shopping malls
|
||||||
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"', '"shop"="mall"']
|
selectors = ['"place"~"^(suburb|neighborhood|neighbourhood|quarter|city_block)$"']
|
||||||
|
|
||||||
|
if self.cluster_type == 'shopping' :
|
||||||
|
selectors.append('"shop"="mall"')
|
||||||
|
new_name = 'Shopping Area'
|
||||||
|
t = 40
|
||||||
|
else :
|
||||||
|
new_name = 'Neighborhood'
|
||||||
|
t = 15
|
||||||
|
|
||||||
min_dist = float('inf')
|
min_dist = float('inf')
|
||||||
new_name = 'Shopping Area'
|
|
||||||
new_name_en = None
|
new_name_en = None
|
||||||
osm_id = 0
|
osm_id = 0
|
||||||
osm_type = 'node'
|
osm_type = 'node'
|
||||||
@ -231,7 +229,7 @@ class ShoppingManager:
|
|||||||
if location[0] is None :
|
if location[0] is None :
|
||||||
continue
|
continue
|
||||||
|
|
||||||
d = get_distance(shopping_location.centroid, location)
|
d = get_distance(cluster.centroid, location)
|
||||||
if d < min_dist :
|
if d < min_dist :
|
||||||
min_dist = d
|
min_dist = d
|
||||||
new_name = elem.tag('name')
|
new_name = elem.tag('name')
|
||||||
@ -246,13 +244,14 @@ class ShoppingManager:
|
|||||||
|
|
||||||
return Landmark(
|
return Landmark(
|
||||||
name=new_name,
|
name=new_name,
|
||||||
type='shopping',
|
type=self.cluster_type,
|
||||||
location=shopping_location.centroid, # TODO: use the fact the we can also recognize streets.
|
location=cluster.centroid, # TODO: use the fact the we can also recognize streets.
|
||||||
attractiveness=shopping_location.importance,
|
attractiveness=cluster.importance,
|
||||||
n_tags=0,
|
n_tags=0,
|
||||||
osm_id=osm_id,
|
osm_id=osm_id,
|
||||||
osm_type=osm_type,
|
osm_type=osm_type,
|
||||||
name_en=new_name_en
|
name_en=new_name_en,
|
||||||
|
duration=t
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
@ -5,7 +5,7 @@ from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
|||||||
from ..structs.preferences import Preferences
|
from ..structs.preferences import Preferences
|
||||||
from ..structs.landmark import Landmark
|
from ..structs.landmark import Landmark
|
||||||
from .take_most_important import take_most_important
|
from .take_most_important import take_most_important
|
||||||
from .cluster_processing import ShoppingManager
|
from .cluster_manager import ClusterManager
|
||||||
|
|
||||||
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
|
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
|
||||||
|
|
||||||
@ -86,6 +86,11 @@ class LandmarkManager:
|
|||||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function)
|
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function)
|
||||||
all_landmarks.update(current_landmarks)
|
all_landmarks.update(current_landmarks)
|
||||||
|
|
||||||
|
# special pipeline for historic neighborhoods
|
||||||
|
neighborhood_manager = ClusterManager(bbox, 'sightseeing')
|
||||||
|
historic_clusters = neighborhood_manager.generate_clusters()
|
||||||
|
all_landmarks.update(historic_clusters)
|
||||||
|
|
||||||
# list for nature
|
# list for nature
|
||||||
if preferences.nature.score != 0:
|
if preferences.nature.score != 0:
|
||||||
score_function = lambda score: score * 10 * self.nature_coeff * preferences.nature.score / 5
|
score_function = lambda score: score * 10 * self.nature_coeff * preferences.nature.score / 5
|
||||||
@ -102,10 +107,8 @@ class LandmarkManager:
|
|||||||
all_landmarks.update(current_landmarks)
|
all_landmarks.update(current_landmarks)
|
||||||
|
|
||||||
# special pipeline for shopping malls
|
# special pipeline for shopping malls
|
||||||
shopping_manager = ShoppingManager(bbox)
|
shopping_manager = ClusterManager(bbox, 'shopping')
|
||||||
if shopping_manager.valid :
|
shopping_clusters = shopping_manager.generate_clusters()
|
||||||
shopping_clusters = shopping_manager.generate_shopping_landmarks()
|
|
||||||
for landmark in shopping_clusters : landmark.duration = 45
|
|
||||||
all_landmarks.update(shopping_clusters)
|
all_landmarks.update(shopping_clusters)
|
||||||
|
|
||||||
|
|
||||||
@ -277,6 +280,11 @@ class LandmarkManager:
|
|||||||
skip = True
|
skip = True
|
||||||
break
|
break
|
||||||
|
|
||||||
|
if "building:" in tag_key:
|
||||||
|
# do not count the building description as being particularly useful
|
||||||
|
n_tags -= 1
|
||||||
|
|
||||||
|
|
||||||
if "boundary" in tag_key:
|
if "boundary" in tag_key:
|
||||||
# skip "areas" like administrative boundaries and stuff
|
# skip "areas" like administrative boundaries and stuff
|
||||||
skip = True
|
skip = True
|
||||||
@ -328,12 +336,15 @@ class LandmarkManager:
|
|||||||
|
|
||||||
score = score_function(score)
|
score = score_function(score)
|
||||||
if "place_of_worship" in elem.tags().values() :
|
if "place_of_worship" in elem.tags().values() :
|
||||||
|
if "cathedral" not in elem.tags().values() :
|
||||||
score = score * self.church_coeff
|
score = score * self.church_coeff
|
||||||
|
duration = 5
|
||||||
|
else :
|
||||||
duration = 10
|
duration = 10
|
||||||
|
|
||||||
if 'viewpoint' in elem.tags().values() :
|
elif 'viewpoint' in elem.tags().values() :
|
||||||
# viewpoints must count more
|
# viewpoints must count more
|
||||||
score += self.viewpoint_bonus
|
score = score * self.viewpoint_bonus
|
||||||
duration = 10
|
duration = 10
|
||||||
|
|
||||||
elif "museum" in elem.tags().values() or "aquarium" in elem.tags().values() or "planetarium" in elem.tags().values():
|
elif "museum" in elem.tags().values() or "aquarium" in elem.tags().values() or "planetarium" in elem.tags().values():
|
||||||
|
Loading…
x
Reference in New Issue
Block a user