better pep8
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m30s
Run linting on the backend code / Build (pull_request) Failing after 28s
Run testing on the backend code / Build (pull_request) Failing after 1m37s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 16s
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m30s
Run linting on the backend code / Build (pull_request) Failing after 28s
Run testing on the backend code / Build (pull_request) Failing after 1m37s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 16s
This commit is contained in:
parent
37fb0f2183
commit
a4c435c398
@ -1,23 +0,0 @@
|
|||||||
from typing import Literal, Optional
|
|
||||||
from pydantic import BaseModel
|
|
||||||
|
|
||||||
|
|
||||||
class ShoppingLocation(BaseModel):
|
|
||||||
""""
|
|
||||||
A classe representing an interesting area for shopping.
|
|
||||||
|
|
||||||
It can represent either a general area or a specifc route with start and end point.
|
|
||||||
The importance represents the number of shops found in this cluster.
|
|
||||||
|
|
||||||
Attributes:
|
|
||||||
type : either a 'street' or 'area' (representing a denser field of shops).
|
|
||||||
importance : size of the cluster (number of points).
|
|
||||||
centroid : center of the cluster.
|
|
||||||
start : if the type is a street it goes from here...
|
|
||||||
end : ...to here
|
|
||||||
"""
|
|
||||||
type: Literal['street', 'area']
|
|
||||||
importance: int
|
|
||||||
centroid: tuple
|
|
||||||
start: Optional[list] = None
|
|
||||||
end: Optional[list] = None
|
|
@ -11,13 +11,28 @@ from ..structs.landmark import Landmark
|
|||||||
from ..utils.get_time_separation import get_distance
|
from ..utils.get_time_separation import get_distance
|
||||||
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
|
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
|
||||||
|
|
||||||
|
|
||||||
class ShoppingLocation(BaseModel):
|
class ShoppingLocation(BaseModel):
|
||||||
|
""""
|
||||||
|
A classe representing an interesting area for shopping.
|
||||||
|
|
||||||
|
It can represent either a general area or a specifc route with start and end point.
|
||||||
|
The importance represents the number of shops found in this cluster.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
type : either a 'street' or 'area' (representing a denser field of shops).
|
||||||
|
importance : size of the cluster (number of points).
|
||||||
|
centroid : center of the cluster.
|
||||||
|
start : if the type is a street it goes from here...
|
||||||
|
end : ...to here
|
||||||
|
"""
|
||||||
type: Literal['street', 'area']
|
type: Literal['street', 'area']
|
||||||
importance: int
|
importance: int
|
||||||
centroid: tuple
|
centroid: tuple
|
||||||
# start: Optional[list] = None # for later use if we want to have streets as well
|
# start: Optional[list] = None # for later use if we want to have streets as well
|
||||||
# end: Optional[list] = None
|
# end: Optional[list] = None
|
||||||
|
|
||||||
|
|
||||||
class ShoppingManager:
|
class ShoppingManager:
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
@ -31,7 +46,11 @@ class ShoppingManager:
|
|||||||
|
|
||||||
def __init__(self, bbox: tuple) -> None:
|
def __init__(self, bbox: tuple) -> None:
|
||||||
"""
|
"""
|
||||||
Upon intialization, generate the list of shops used for cluster points.
|
Upon intialization, generate the point cloud used for cluster detection.
|
||||||
|
The points represent bag/clothes shops and general boutiques.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
bbox: The bounding box coordinates (around:radius, center_lat, center_lon).
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# Initialize overpass and cache
|
# Initialize overpass and cache
|
||||||
@ -52,8 +71,10 @@ class ShoppingManager:
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
self.logger.error(f"Error fetching landmarks: {e}")
|
self.logger.error(f"Error fetching landmarks: {e}")
|
||||||
|
|
||||||
if len(result.elements()) > 0 :
|
if len(result.elements()) == 0 :
|
||||||
|
self.valid = False
|
||||||
|
|
||||||
|
else :
|
||||||
points = []
|
points = []
|
||||||
for elem in result.elements() :
|
for elem in result.elements() :
|
||||||
points.append(tuple((elem.lat(), elem.lon())))
|
points.append(tuple((elem.lat(), elem.lon())))
|
||||||
@ -61,18 +82,23 @@ class ShoppingManager:
|
|||||||
self.all_points = np.array(points)
|
self.all_points = np.array(points)
|
||||||
self.valid = True
|
self.valid = True
|
||||||
|
|
||||||
else :
|
|
||||||
self.valid = False
|
|
||||||
|
|
||||||
|
|
||||||
def generate_shopping_landmarks(self) -> list[Landmark]:
|
def generate_shopping_landmarks(self) -> list[Landmark]:
|
||||||
|
"""
|
||||||
|
Generate shopping landmarks based on clustered locations.
|
||||||
|
|
||||||
|
This method first generates clusters of locations and then extracts shopping-related
|
||||||
|
locations from these clusters. It transforms each shopping location into a `Landmark` object.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list[Landmark]: A list of `Landmark` objects representing shopping locations.
|
||||||
|
Returns an empty list if no clusters are found.
|
||||||
|
"""
|
||||||
|
|
||||||
# First generate the clusters
|
|
||||||
self.generate_clusters()
|
self.generate_clusters()
|
||||||
|
|
||||||
# Return empty list if no clusters were found
|
|
||||||
if len(set(self.cluster_labels)) == 0 :
|
if len(set(self.cluster_labels)) == 0 :
|
||||||
return []
|
return [] # Return empty list if no clusters were found
|
||||||
|
|
||||||
# Then generate the shopping locations
|
# Then generate the shopping locations
|
||||||
self.generate_shopping_locations()
|
self.generate_shopping_locations()
|
||||||
@ -87,6 +113,19 @@ class ShoppingManager:
|
|||||||
|
|
||||||
|
|
||||||
def generate_clusters(self) :
|
def generate_clusters(self) :
|
||||||
|
"""
|
||||||
|
Generate clusters of points using DBSCAN.
|
||||||
|
|
||||||
|
This method applies the DBSCAN clustering algorithm with different
|
||||||
|
parameters depending on the size of the city (number of points).
|
||||||
|
It filters out noise points and keeps only the largest clusters.
|
||||||
|
|
||||||
|
The method updates:
|
||||||
|
- `self.cluster_points`: The points belonging to clusters.
|
||||||
|
- `self.cluster_labels`: The labels for the points in clusters.
|
||||||
|
|
||||||
|
The method also calls `filter_clusters()` to retain only the largest clusters.
|
||||||
|
"""
|
||||||
|
|
||||||
# Apply DBSCAN to find clusters. Choose different settings for different cities.
|
# Apply DBSCAN to find clusters. Choose different settings for different cities.
|
||||||
if len(self.all_points) > 200 :
|
if len(self.all_points) > 200 :
|
||||||
@ -105,6 +144,19 @@ class ShoppingManager:
|
|||||||
|
|
||||||
|
|
||||||
def generate_shopping_locations(self) :
|
def generate_shopping_locations(self) :
|
||||||
|
"""
|
||||||
|
Generate shopping locations based on clustered points.
|
||||||
|
|
||||||
|
This method iterates over the different clusters, calculates the centroid
|
||||||
|
(as the mean of the points within each cluster), and assigns an importance
|
||||||
|
based on the size of the cluster.
|
||||||
|
|
||||||
|
The generated shopping locations are stored in `self.shopping_locations`
|
||||||
|
as a list of `ShoppingLocation` objects, each with:
|
||||||
|
- `type`: Set to 'area'.
|
||||||
|
- `centroid`: The calculated centroid of the cluster.
|
||||||
|
- `importance`: The number of points in the cluster.
|
||||||
|
"""
|
||||||
|
|
||||||
locations = []
|
locations = []
|
||||||
|
|
||||||
@ -127,6 +179,21 @@ class ShoppingManager:
|
|||||||
|
|
||||||
|
|
||||||
def create_landmark(self, shopping_location: ShoppingLocation) -> Landmark:
|
def create_landmark(self, shopping_location: ShoppingLocation) -> Landmark:
|
||||||
|
"""
|
||||||
|
Create a Landmark object based on the given shopping location.
|
||||||
|
|
||||||
|
This method queries the Overpass API for nearby neighborhoods and shopping malls
|
||||||
|
within a 1000m radius around the shopping location centroid. It selects the closest
|
||||||
|
result and creates a landmark with the associated details such as name, type, and OSM ID.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
shopping_location (ShoppingLocation): A ShoppingLocation object containing
|
||||||
|
the centroid and importance of the area.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Landmark: A Landmark object containing details such as the name, type,
|
||||||
|
location, attractiveness, and OSM details.
|
||||||
|
"""
|
||||||
|
|
||||||
# Define the bounding box for a given radius around the coordinates
|
# Define the bounding box for a given radius around the coordinates
|
||||||
lat, lon = shopping_location.centroid
|
lat, lon = shopping_location.centroid
|
||||||
@ -153,10 +220,10 @@ class ShoppingManager:
|
|||||||
try:
|
try:
|
||||||
result = self.overpass.query(query)
|
result = self.overpass.query(query)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise Exception("query unsuccessful")
|
self.logger.error(f"Error fetching landmarks: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
for elem in result.elements():
|
for elem in result.elements():
|
||||||
|
|
||||||
location = (elem.centerLat(), elem.centerLon())
|
location = (elem.centerLat(), elem.centerLon())
|
||||||
|
|
||||||
if location[0] is None :
|
if location[0] is None :
|
||||||
@ -171,7 +238,7 @@ class ShoppingManager:
|
|||||||
osm_type = elem.type() # Add type: 'way' or 'relation'
|
osm_type = elem.type() # Add type: 'way' or 'relation'
|
||||||
osm_id = elem.id() # Add OSM id
|
osm_id = elem.id() # Add OSM id
|
||||||
|
|
||||||
# add english name if it exists
|
# Add english name if it exists
|
||||||
try :
|
try :
|
||||||
new_name_en = elem.tag('name:en')
|
new_name_en = elem.tag('name:en')
|
||||||
except:
|
except:
|
||||||
@ -191,7 +258,11 @@ class ShoppingManager:
|
|||||||
|
|
||||||
def filter_clusters(self):
|
def filter_clusters(self):
|
||||||
"""
|
"""
|
||||||
Remove clusters of lesser importance.
|
Filter clusters to retain only the 5 largest clusters by point count.
|
||||||
|
|
||||||
|
This method calculates the size of each cluster and filters out all but the
|
||||||
|
5 largest clusters. It then updates the cluster points and labels to reflect
|
||||||
|
only those from the top 5 clusters.
|
||||||
"""
|
"""
|
||||||
label_counts = np.bincount(self.cluster_labels)
|
label_counts = np.bincount(self.cluster_labels)
|
||||||
|
|
||||||
|
@ -184,7 +184,7 @@ class LandmarkManager:
|
|||||||
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
|
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
bbox (tuple[float, float, float, float]): The bounding box coordinates (min_lat, min_lon, max_lat, max_lon).
|
bbox (tuple[float, float, float, float]): The bounding box coordinates (around:radius, center_lat, center_lon).
|
||||||
amenity_selector (dict): The Overpass API query selector for the desired landmark type.
|
amenity_selector (dict): The Overpass API query selector for the desired landmark type.
|
||||||
landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping').
|
landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping').
|
||||||
score_function (callable): The function to compute the score of the landmark based on its attributes.
|
score_function (callable): The function to compute the score of the landmark based on its attributes.
|
||||||
|
Loading…
x
Reference in New Issue
Block a user