better pep8
	
		
			
	
		
	
	
		
	
		
			Some checks failed
		
		
	
	
		
			
				
	
				Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m30s
				
			
		
			
				
	
				Run linting on the backend code / Build (pull_request) Failing after 28s
				
			
		
			
				
	
				Run testing on the backend code / Build (pull_request) Failing after 1m37s
				
			
		
			
				
	
				Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 16s
				
			
		
		
	
	
				
					
				
			
		
			Some checks failed
		
		
	
	Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m30s
				
			Run linting on the backend code / Build (pull_request) Failing after 28s
				
			Run testing on the backend code / Build (pull_request) Failing after 1m37s
				
			Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 16s
				
			This commit is contained in:
		| @@ -1,23 +0,0 @@ | |||||||
| from typing import Literal, Optional |  | ||||||
| from pydantic import BaseModel |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class ShoppingLocation(BaseModel): |  | ||||||
|     """" |  | ||||||
|     A classe representing an interesting area for shopping. |  | ||||||
|      |  | ||||||
|     It can represent either a general area or a specifc route with start and end point. |  | ||||||
|     The importance represents the number of shops found in this cluster. |  | ||||||
|      |  | ||||||
|     Attributes: |  | ||||||
|         type :       either a 'street' or 'area' (representing a denser field of shops). |  | ||||||
|         importance : size of the cluster (number of points). |  | ||||||
|         centroid :   center of the cluster. |  | ||||||
|         start :      if the type is a street it goes from here... |  | ||||||
|         end :        ...to here |  | ||||||
|     """ |  | ||||||
|     type: Literal['street', 'area'] |  | ||||||
|     importance: int |  | ||||||
|     centroid: tuple |  | ||||||
|     start: Optional[list] = None |  | ||||||
|     end: Optional[list] = None |  | ||||||
| @@ -11,13 +11,28 @@ from ..structs.landmark import Landmark | |||||||
| from ..utils.get_time_separation import get_distance | from ..utils.get_time_separation import get_distance | ||||||
| from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR | from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR | ||||||
|  |  | ||||||
|  |  | ||||||
| class ShoppingLocation(BaseModel): | class ShoppingLocation(BaseModel): | ||||||
|  |     """" | ||||||
|  |     A classe representing an interesting area for shopping. | ||||||
|  |      | ||||||
|  |     It can represent either a general area or a specifc route with start and end point. | ||||||
|  |     The importance represents the number of shops found in this cluster. | ||||||
|  |      | ||||||
|  |     Attributes: | ||||||
|  |         type :       either a 'street' or 'area' (representing a denser field of shops). | ||||||
|  |         importance : size of the cluster (number of points). | ||||||
|  |         centroid :   center of the cluster. | ||||||
|  |         start :      if the type is a street it goes from here... | ||||||
|  |         end :        ...to here | ||||||
|  |     """ | ||||||
|     type: Literal['street', 'area'] |     type: Literal['street', 'area'] | ||||||
|     importance: int |     importance: int | ||||||
|     centroid: tuple |     centroid: tuple | ||||||
|     # start: Optional[list] = None      # for later use if we want to have streets as well |     # start: Optional[list] = None      # for later use if we want to have streets as well | ||||||
|     # end: Optional[list] = None |     # end: Optional[list] = None | ||||||
|  |  | ||||||
|  |  | ||||||
| class ShoppingManager: | class ShoppingManager: | ||||||
|  |  | ||||||
|     logger = logging.getLogger(__name__) |     logger = logging.getLogger(__name__) | ||||||
| @@ -31,7 +46,11 @@ class ShoppingManager: | |||||||
|  |  | ||||||
|     def __init__(self, bbox: tuple) -> None: |     def __init__(self, bbox: tuple) -> None: | ||||||
|         """ |         """ | ||||||
|         Upon intialization, generate the list of shops used for cluster points. |         Upon intialization, generate the point cloud used for cluster detection. | ||||||
|  |         The points represent bag/clothes shops and general boutiques. | ||||||
|  |  | ||||||
|  |         Args:  | ||||||
|  |             bbox: The bounding box coordinates (around:radius, center_lat, center_lon). | ||||||
|         """ |         """ | ||||||
|  |  | ||||||
|         # Initialize overpass and cache |         # Initialize overpass and cache | ||||||
| @@ -52,8 +71,10 @@ class ShoppingManager: | |||||||
|         except Exception as e: |         except Exception as e: | ||||||
|             self.logger.error(f"Error fetching landmarks: {e}") |             self.logger.error(f"Error fetching landmarks: {e}") | ||||||
|  |  | ||||||
|         if len(result.elements()) > 0 : |         if len(result.elements()) == 0 : | ||||||
|  |             self.valid = False | ||||||
|          |          | ||||||
|  |         else : | ||||||
|             points = [] |             points = [] | ||||||
|             for elem in result.elements() : |             for elem in result.elements() : | ||||||
|                 points.append(tuple((elem.lat(), elem.lon()))) |                 points.append(tuple((elem.lat(), elem.lon()))) | ||||||
| @@ -61,18 +82,23 @@ class ShoppingManager: | |||||||
|             self.all_points = np.array(points) |             self.all_points = np.array(points) | ||||||
|             self.valid = True             |             self.valid = True             | ||||||
|  |  | ||||||
|         else :  |  | ||||||
|             self.valid = False |  | ||||||
|  |  | ||||||
|  |  | ||||||
|     def generate_shopping_landmarks(self) -> list[Landmark]: |     def generate_shopping_landmarks(self) -> list[Landmark]: | ||||||
|  |         """ | ||||||
|  |         Generate shopping landmarks based on clustered locations. | ||||||
|  |  | ||||||
|  |         This method first generates clusters of locations and then  extracts shopping-related  | ||||||
|  |         locations from these clusters. It transforms each shopping location into a `Landmark` object. | ||||||
|  |  | ||||||
|  |         Returns: | ||||||
|  |             list[Landmark]: A list of `Landmark` objects representing shopping locations. | ||||||
|  |                             Returns an empty list if no clusters are found. | ||||||
|  |         """ | ||||||
|  |  | ||||||
|         # First generate the clusters |  | ||||||
|         self.generate_clusters() |         self.generate_clusters() | ||||||
|  |  | ||||||
|         # Return empty list if no clusters were found |  | ||||||
|         if len(set(self.cluster_labels)) == 0 : |         if len(set(self.cluster_labels)) == 0 : | ||||||
|             return [] |             return []       # Return empty list if no clusters were found | ||||||
|  |  | ||||||
|         # Then generate the shopping locations |         # Then generate the shopping locations | ||||||
|         self.generate_shopping_locations() |         self.generate_shopping_locations() | ||||||
| @@ -87,6 +113,19 @@ class ShoppingManager: | |||||||
|  |  | ||||||
|  |  | ||||||
|     def generate_clusters(self) : |     def generate_clusters(self) : | ||||||
|  |         """ | ||||||
|  |         Generate clusters of points using DBSCAN. | ||||||
|  |  | ||||||
|  |         This method applies the DBSCAN clustering algorithm with different | ||||||
|  |         parameters depending on the size of the city (number of points).  | ||||||
|  |         It filters out noise points and keeps only the largest clusters. | ||||||
|  |  | ||||||
|  |         The method updates: | ||||||
|  |             - `self.cluster_points`: The points belonging to clusters. | ||||||
|  |             - `self.cluster_labels`: The labels for the points in clusters. | ||||||
|  |          | ||||||
|  |         The method also calls `filter_clusters()` to retain only the largest clusters. | ||||||
|  |         """ | ||||||
|  |  | ||||||
|         # Apply DBSCAN to find clusters. Choose different settings for different cities. |         # Apply DBSCAN to find clusters. Choose different settings for different cities. | ||||||
|         if len(self.all_points) > 200 : |         if len(self.all_points) > 200 : | ||||||
| @@ -105,6 +144,19 @@ class ShoppingManager: | |||||||
|  |  | ||||||
|  |  | ||||||
|     def generate_shopping_locations(self) : |     def generate_shopping_locations(self) : | ||||||
|  |         """ | ||||||
|  |         Generate shopping locations based on clustered points. | ||||||
|  |  | ||||||
|  |         This method iterates over the different clusters, calculates the centroid  | ||||||
|  |         (as the mean of the points within each cluster), and assigns an importance  | ||||||
|  |         based on the size of the cluster. | ||||||
|  |  | ||||||
|  |         The generated shopping locations are stored in `self.shopping_locations`  | ||||||
|  |         as a list of `ShoppingLocation` objects, each with: | ||||||
|  |             - `type`: Set to 'area'. | ||||||
|  |             - `centroid`: The calculated centroid of the cluster. | ||||||
|  |             - `importance`: The number of points in the cluster. | ||||||
|  |         """ | ||||||
|  |  | ||||||
|         locations = [] |         locations = [] | ||||||
|  |  | ||||||
| @@ -127,6 +179,21 @@ class ShoppingManager: | |||||||
|  |  | ||||||
|  |  | ||||||
|     def create_landmark(self, shopping_location: ShoppingLocation) -> Landmark: |     def create_landmark(self, shopping_location: ShoppingLocation) -> Landmark: | ||||||
|  |         """ | ||||||
|  |         Create a Landmark object based on the given shopping location. | ||||||
|  |  | ||||||
|  |         This method queries the Overpass API for nearby neighborhoods and shopping malls  | ||||||
|  |         within a 1000m radius around the shopping location centroid. It selects the closest  | ||||||
|  |         result and creates a landmark with the associated details such as name, type, and OSM ID. | ||||||
|  |  | ||||||
|  |         Parameters: | ||||||
|  |             shopping_location (ShoppingLocation): A ShoppingLocation object containing  | ||||||
|  |             the centroid and importance of the area. | ||||||
|  |  | ||||||
|  |         Returns: | ||||||
|  |             Landmark: A Landmark object containing details such as the name, type,  | ||||||
|  |             location, attractiveness, and OSM details. | ||||||
|  |         """ | ||||||
|  |  | ||||||
|         # Define the bounding box for a given radius around the coordinates |         # Define the bounding box for a given radius around the coordinates | ||||||
|         lat, lon = shopping_location.centroid |         lat, lon = shopping_location.centroid | ||||||
| @@ -153,10 +220,10 @@ class ShoppingManager: | |||||||
|             try: |             try: | ||||||
|                 result = self.overpass.query(query) |                 result = self.overpass.query(query) | ||||||
|             except Exception as e: |             except Exception as e: | ||||||
|                 raise Exception("query unsuccessful") |                 self.logger.error(f"Error fetching landmarks: {e}") | ||||||
|  |                 continue | ||||||
|  |  | ||||||
|             for elem in result.elements(): |             for elem in result.elements(): | ||||||
|  |  | ||||||
|                 location = (elem.centerLat(), elem.centerLon()) |                 location = (elem.centerLat(), elem.centerLon()) | ||||||
|  |  | ||||||
|                 if location[0] is None :  |                 if location[0] is None :  | ||||||
| @@ -168,10 +235,10 @@ class ShoppingManager: | |||||||
|                 if  d < min_dist : |                 if  d < min_dist : | ||||||
|                     min_dist = d |                     min_dist = d | ||||||
|                     new_name = elem.tag('name') |                     new_name = elem.tag('name') | ||||||
|                     osm_type = elem.type()              # Add type: 'way' or 'relation' |                     osm_type = elem.type()      # Add type: 'way' or 'relation' | ||||||
|                     osm_id = elem.id()                  # Add OSM id  |                     osm_id = elem.id()          # Add OSM id  | ||||||
|  |  | ||||||
|                     # add english name if it exists |                     # Add english name if it exists | ||||||
|                     try : |                     try : | ||||||
|                         new_name_en = elem.tag('name:en') |                         new_name_en = elem.tag('name:en') | ||||||
|                     except: |                     except: | ||||||
| @@ -191,7 +258,11 @@ class ShoppingManager: | |||||||
|  |  | ||||||
|     def filter_clusters(self): |     def filter_clusters(self): | ||||||
|         """ |         """ | ||||||
|         Remove clusters of lesser importance. |         Filter clusters to retain only the 5 largest clusters by point count. | ||||||
|  |  | ||||||
|  |         This method calculates the size of each cluster and filters out all but the  | ||||||
|  |         5 largest clusters. It then updates the cluster points and labels to reflect  | ||||||
|  |         only those from the top 5 clusters. | ||||||
|         """ |         """ | ||||||
|         label_counts = np.bincount(self.cluster_labels) |         label_counts = np.bincount(self.cluster_labels) | ||||||
|  |  | ||||||
|   | |||||||
| @@ -184,7 +184,7 @@ class LandmarkManager: | |||||||
|         Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates. |         Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates. | ||||||
|  |  | ||||||
|         Args: |         Args: | ||||||
|             bbox (tuple[float, float, float, float]): The bounding box coordinates (min_lat, min_lon, max_lat, max_lon). |             bbox (tuple[float, float, float, float]): The bounding box coordinates (around:radius, center_lat, center_lon). | ||||||
|             amenity_selector (dict): The Overpass API query selector for the desired landmark type.  |             amenity_selector (dict): The Overpass API query selector for the desired landmark type.  | ||||||
|             landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping'). |             landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping'). | ||||||
|             score_function (callable): The function to compute the score of the landmark based on its attributes. |             score_function (callable): The function to compute the score of the landmark based on its attributes. | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user