better pep8
	
		
			
	
		
	
	
		
	
		
			Some checks failed
		
		
	
	
		
			
				
	
				Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m30s
				
			
		
			
				
	
				Run linting on the backend code / Build (pull_request) Failing after 28s
				
			
		
			
				
	
				Run testing on the backend code / Build (pull_request) Failing after 1m37s
				
			
		
			
				
	
				Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 16s
				
			
		
		
	
	
				
					
				
			
		
			Some checks failed
		
		
	
	Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m30s
				
			Run linting on the backend code / Build (pull_request) Failing after 28s
				
			Run testing on the backend code / Build (pull_request) Failing after 1m37s
				
			Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 16s
				
			This commit is contained in:
		| @@ -1,23 +0,0 @@ | ||||
| from typing import Literal, Optional | ||||
| from pydantic import BaseModel | ||||
|  | ||||
|  | ||||
| class ShoppingLocation(BaseModel): | ||||
|     """" | ||||
|     A classe representing an interesting area for shopping. | ||||
|      | ||||
|     It can represent either a general area or a specifc route with start and end point. | ||||
|     The importance represents the number of shops found in this cluster. | ||||
|      | ||||
|     Attributes: | ||||
|         type :       either a 'street' or 'area' (representing a denser field of shops). | ||||
|         importance : size of the cluster (number of points). | ||||
|         centroid :   center of the cluster. | ||||
|         start :      if the type is a street it goes from here... | ||||
|         end :        ...to here | ||||
|     """ | ||||
|     type: Literal['street', 'area'] | ||||
|     importance: int | ||||
|     centroid: tuple | ||||
|     start: Optional[list] = None | ||||
|     end: Optional[list] = None | ||||
| @@ -11,13 +11,28 @@ from ..structs.landmark import Landmark | ||||
| from ..utils.get_time_separation import get_distance | ||||
| from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR | ||||
|  | ||||
|  | ||||
| class ShoppingLocation(BaseModel): | ||||
|     """" | ||||
|     A classe representing an interesting area for shopping. | ||||
|      | ||||
|     It can represent either a general area or a specifc route with start and end point. | ||||
|     The importance represents the number of shops found in this cluster. | ||||
|      | ||||
|     Attributes: | ||||
|         type :       either a 'street' or 'area' (representing a denser field of shops). | ||||
|         importance : size of the cluster (number of points). | ||||
|         centroid :   center of the cluster. | ||||
|         start :      if the type is a street it goes from here... | ||||
|         end :        ...to here | ||||
|     """ | ||||
|     type: Literal['street', 'area'] | ||||
|     importance: int | ||||
|     centroid: tuple | ||||
|     # start: Optional[list] = None      # for later use if we want to have streets as well | ||||
|     # end: Optional[list] = None | ||||
|  | ||||
|  | ||||
| class ShoppingManager: | ||||
|  | ||||
|     logger = logging.getLogger(__name__) | ||||
| @@ -31,7 +46,11 @@ class ShoppingManager: | ||||
|  | ||||
|     def __init__(self, bbox: tuple) -> None: | ||||
|         """ | ||||
|         Upon intialization, generate the list of shops used for cluster points. | ||||
|         Upon intialization, generate the point cloud used for cluster detection. | ||||
|         The points represent bag/clothes shops and general boutiques. | ||||
|  | ||||
|         Args:  | ||||
|             bbox: The bounding box coordinates (around:radius, center_lat, center_lon). | ||||
|         """ | ||||
|  | ||||
|         # Initialize overpass and cache | ||||
| @@ -52,8 +71,10 @@ class ShoppingManager: | ||||
|         except Exception as e: | ||||
|             self.logger.error(f"Error fetching landmarks: {e}") | ||||
|  | ||||
|         if len(result.elements()) > 0 : | ||||
|         if len(result.elements()) == 0 : | ||||
|             self.valid = False | ||||
|          | ||||
|         else : | ||||
|             points = [] | ||||
|             for elem in result.elements() : | ||||
|                 points.append(tuple((elem.lat(), elem.lon()))) | ||||
| @@ -61,18 +82,23 @@ class ShoppingManager: | ||||
|             self.all_points = np.array(points) | ||||
|             self.valid = True             | ||||
|  | ||||
|         else :  | ||||
|             self.valid = False | ||||
|  | ||||
|  | ||||
|     def generate_shopping_landmarks(self) -> list[Landmark]: | ||||
|         """ | ||||
|         Generate shopping landmarks based on clustered locations. | ||||
|  | ||||
|         This method first generates clusters of locations and then  extracts shopping-related  | ||||
|         locations from these clusters. It transforms each shopping location into a `Landmark` object. | ||||
|  | ||||
|         Returns: | ||||
|             list[Landmark]: A list of `Landmark` objects representing shopping locations. | ||||
|                             Returns an empty list if no clusters are found. | ||||
|         """ | ||||
|  | ||||
|         # First generate the clusters | ||||
|         self.generate_clusters() | ||||
|  | ||||
|         # Return empty list if no clusters were found | ||||
|         if len(set(self.cluster_labels)) == 0 : | ||||
|             return [] | ||||
|             return []       # Return empty list if no clusters were found | ||||
|  | ||||
|         # Then generate the shopping locations | ||||
|         self.generate_shopping_locations() | ||||
| @@ -87,6 +113,19 @@ class ShoppingManager: | ||||
|  | ||||
|  | ||||
|     def generate_clusters(self) : | ||||
|         """ | ||||
|         Generate clusters of points using DBSCAN. | ||||
|  | ||||
|         This method applies the DBSCAN clustering algorithm with different | ||||
|         parameters depending on the size of the city (number of points).  | ||||
|         It filters out noise points and keeps only the largest clusters. | ||||
|  | ||||
|         The method updates: | ||||
|             - `self.cluster_points`: The points belonging to clusters. | ||||
|             - `self.cluster_labels`: The labels for the points in clusters. | ||||
|          | ||||
|         The method also calls `filter_clusters()` to retain only the largest clusters. | ||||
|         """ | ||||
|  | ||||
|         # Apply DBSCAN to find clusters. Choose different settings for different cities. | ||||
|         if len(self.all_points) > 200 : | ||||
| @@ -105,6 +144,19 @@ class ShoppingManager: | ||||
|  | ||||
|  | ||||
|     def generate_shopping_locations(self) : | ||||
|         """ | ||||
|         Generate shopping locations based on clustered points. | ||||
|  | ||||
|         This method iterates over the different clusters, calculates the centroid  | ||||
|         (as the mean of the points within each cluster), and assigns an importance  | ||||
|         based on the size of the cluster. | ||||
|  | ||||
|         The generated shopping locations are stored in `self.shopping_locations`  | ||||
|         as a list of `ShoppingLocation` objects, each with: | ||||
|             - `type`: Set to 'area'. | ||||
|             - `centroid`: The calculated centroid of the cluster. | ||||
|             - `importance`: The number of points in the cluster. | ||||
|         """ | ||||
|  | ||||
|         locations = [] | ||||
|  | ||||
| @@ -127,6 +179,21 @@ class ShoppingManager: | ||||
|  | ||||
|  | ||||
|     def create_landmark(self, shopping_location: ShoppingLocation) -> Landmark: | ||||
|         """ | ||||
|         Create a Landmark object based on the given shopping location. | ||||
|  | ||||
|         This method queries the Overpass API for nearby neighborhoods and shopping malls  | ||||
|         within a 1000m radius around the shopping location centroid. It selects the closest  | ||||
|         result and creates a landmark with the associated details such as name, type, and OSM ID. | ||||
|  | ||||
|         Parameters: | ||||
|             shopping_location (ShoppingLocation): A ShoppingLocation object containing  | ||||
|             the centroid and importance of the area. | ||||
|  | ||||
|         Returns: | ||||
|             Landmark: A Landmark object containing details such as the name, type,  | ||||
|             location, attractiveness, and OSM details. | ||||
|         """ | ||||
|  | ||||
|         # Define the bounding box for a given radius around the coordinates | ||||
|         lat, lon = shopping_location.centroid | ||||
| @@ -153,10 +220,10 @@ class ShoppingManager: | ||||
|             try: | ||||
|                 result = self.overpass.query(query) | ||||
|             except Exception as e: | ||||
|                 raise Exception("query unsuccessful") | ||||
|                 self.logger.error(f"Error fetching landmarks: {e}") | ||||
|                 continue | ||||
|  | ||||
|             for elem in result.elements(): | ||||
|  | ||||
|                 location = (elem.centerLat(), elem.centerLon()) | ||||
|  | ||||
|                 if location[0] is None :  | ||||
| @@ -171,7 +238,7 @@ class ShoppingManager: | ||||
|                     osm_type = elem.type()      # Add type: 'way' or 'relation' | ||||
|                     osm_id = elem.id()          # Add OSM id  | ||||
|  | ||||
|                     # add english name if it exists | ||||
|                     # Add english name if it exists | ||||
|                     try : | ||||
|                         new_name_en = elem.tag('name:en') | ||||
|                     except: | ||||
| @@ -191,7 +258,11 @@ class ShoppingManager: | ||||
|  | ||||
|     def filter_clusters(self): | ||||
|         """ | ||||
|         Remove clusters of lesser importance. | ||||
|         Filter clusters to retain only the 5 largest clusters by point count. | ||||
|  | ||||
|         This method calculates the size of each cluster and filters out all but the  | ||||
|         5 largest clusters. It then updates the cluster points and labels to reflect  | ||||
|         only those from the top 5 clusters. | ||||
|         """ | ||||
|         label_counts = np.bincount(self.cluster_labels) | ||||
|  | ||||
|   | ||||
| @@ -184,7 +184,7 @@ class LandmarkManager: | ||||
|         Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates. | ||||
|  | ||||
|         Args: | ||||
|             bbox (tuple[float, float, float, float]): The bounding box coordinates (min_lat, min_lon, max_lat, max_lon). | ||||
|             bbox (tuple[float, float, float, float]): The bounding box coordinates (around:radius, center_lat, center_lon). | ||||
|             amenity_selector (dict): The Overpass API query selector for the desired landmark type.  | ||||
|             landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping'). | ||||
|             score_function (callable): The function to compute the score of the landmark based on its attributes. | ||||
|   | ||||
		Reference in New Issue
	
	Block a user