fixed optimizer. works fine now
This commit is contained in:
parent
c58c10b057
commit
adbb6466d9
@ -1,46 +1,80 @@
|
||||
import math as m
|
||||
|
||||
from OSMPythonTools.api import Api
|
||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder, Nominatim
|
||||
from dataclasses import dataclass
|
||||
from pydantic import BaseModel
|
||||
import math as m
|
||||
from structs.landmarks import Landmark, LandmarkType
|
||||
from structs.preferences import Preferences, Preference
|
||||
from typing import List
|
||||
from typing import Tuple
|
||||
|
||||
RADIUS = 0.0005 # size of the bbox in degrees. 0.0005 ~ 50m
|
||||
BBOX_SIDE = 10 # size of bbox in km for general area, 10km
|
||||
RADIUS_CLOSE_TO = 50 # size of area in m for close features, 5àm radius
|
||||
MIN_SCORE = 100 # discard elements with score < 100
|
||||
|
||||
BBOX_SIDE = 10 # size of bbox in *km* for general area, 10km
|
||||
RADIUS_CLOSE_TO = 25 # size of area in *m* for close features, 5àm radius
|
||||
MIN_SCORE = 30 # discard elements with score < 100
|
||||
MIN_TAGS = 5 # discard elements withs less than 5 tags
|
||||
|
||||
SIGHTSEEING = LandmarkType(landmark_type='sightseeing')
|
||||
NATURE = LandmarkType(landmark_type='nature')
|
||||
SHOPPING = LandmarkType(landmark_type='shopping')
|
||||
|
||||
# Include th json here
|
||||
|
||||
# Include the json here
|
||||
# Create a list of all things to visit given some preferences and a city. Ready for the optimizer
|
||||
def generate_landmarks(coordinates: Tuple[float, float], preferences: Preferences) :
|
||||
def generate_landmarks(preferences: Preferences, city_country: str = None, coordinates: Tuple[float, float] = None)->Tuple[List[Landmark], List[Landmark]] :
|
||||
|
||||
l_sights = ["'tourism'='museum'", "'tourism'='attraction'", "'tourism'='gallery'", 'historic', "'amenity'='arts_centre'", "'amenity'='planetarium'", "'amenity'='place_of_worship'", "'amenity'='fountain'", '"water"="reflecting_pool"']
|
||||
l_nature = ["'leisure'='park'", 'geological', "'natural'='geyser'", "'natural'='hot_spring'", '"natural"="arch"', '"natural"="cave_entrance"', '"natural"="volcano"', '"natural"="stone"', '"tourism"="alpine_hut"', '"tourism"="picnic_site"', '"tourism"="viewpoint"', '"tourism"="zoo"', '"waterway"="waterfall"']
|
||||
l_shop = ["'shop'='department_store'", "'shop'='mall'"] #, '"shop"="collector"', '"shop"="antiques"']
|
||||
|
||||
# List for sightseeing
|
||||
L1 = get_landmarks(coordinates, l_sights, LandmarkType(landmark_type='sightseeing'))
|
||||
correct_score(L1, preferences.sightseeing)
|
||||
|
||||
# List for nature
|
||||
L2 = get_landmarks(coordinates, l_nature, LandmarkType(landmark_type='nature'))
|
||||
correct_score(L2, preferences.nature)
|
||||
|
||||
# List for shopping
|
||||
L3 = get_landmarks(coordinates, l_shop, LandmarkType(landmark_type='shopping'))
|
||||
correct_score(L3, preferences.shopping)
|
||||
L = []
|
||||
|
||||
L = L1 + L2 + L3
|
||||
# Use 'City, Country'
|
||||
if city_country is not None :
|
||||
|
||||
return cleanup_list(L)
|
||||
# List for sightseeing
|
||||
if preferences.sightseeing.score != 0 :
|
||||
L1 = get_landmarks_nominatim(city_country, l_sights, SIGHTSEEING)
|
||||
correct_score(L1, preferences.sightseeing)
|
||||
L += L1
|
||||
|
||||
# List for nature
|
||||
if preferences.nature.score != 0 :
|
||||
L2 = get_landmarks_nominatim(city_country, l_nature, NATURE)
|
||||
correct_score(L2, preferences.nature)
|
||||
L += L2
|
||||
|
||||
# List for shopping
|
||||
if preferences.shopping.score != 0 :
|
||||
L3 = get_landmarks_nominatim(city_country, l_shop, SHOPPING)
|
||||
correct_score(L3, preferences.shopping)
|
||||
L += L3
|
||||
|
||||
# Use coordinates
|
||||
elif coordinates is not None :
|
||||
|
||||
# List for sightseeing
|
||||
if preferences.sightseeing.score != 0 :
|
||||
L1 = get_landmarks_coords(coordinates, l_sights, SIGHTSEEING)
|
||||
correct_score(L1, preferences.sightseeing)
|
||||
L += L1
|
||||
|
||||
# List for nature
|
||||
if preferences.nature.score != 0 :
|
||||
L2 = get_landmarks_coords(coordinates, l_nature, NATURE)
|
||||
correct_score(L2, preferences.nature)
|
||||
L += L2
|
||||
|
||||
# List for shopping
|
||||
if preferences.shopping.score != 0 :
|
||||
L3 = get_landmarks_coords(coordinates, l_shop, SHOPPING)
|
||||
correct_score(L3, preferences.shopping)
|
||||
L += L3
|
||||
|
||||
|
||||
return L, cleanup_list(L)
|
||||
|
||||
# Determines if two locations are close to each other
|
||||
def is_close_to(loc1: Tuple[float, float], loc2: Tuple[float, float]) :
|
||||
def is_close_to(loc1: Tuple[float, float], loc2: Tuple[float, float])->bool :
|
||||
|
||||
alpha = (180*RADIUS_CLOSE_TO)/(6371000*m.pi)
|
||||
if abs(loc1[0] - loc2[0]) + abs(loc1[1] - loc2[1]) < alpha*2 :
|
||||
@ -49,7 +83,7 @@ def is_close_to(loc1: Tuple[float, float], loc2: Tuple[float, float]) :
|
||||
return False
|
||||
|
||||
# Remove duplicate elements and elements with low score
|
||||
def cleanup_list(L: List[Landmark]) :
|
||||
def cleanup_list(L: List[Landmark])->List[Landmark] :
|
||||
L_clean = []
|
||||
names = []
|
||||
|
||||
@ -70,7 +104,6 @@ def cleanup_list(L: List[Landmark]) :
|
||||
|
||||
return L_clean
|
||||
|
||||
|
||||
# Correct the score of a list of landmarks by taking into account preferences and the number of tags
|
||||
def correct_score(L: List[Landmark], preference: Preference) :
|
||||
|
||||
@ -81,8 +114,8 @@ def correct_score(L: List[Landmark], preference: Preference) :
|
||||
raise TypeError(f"LandmarkType {preference.type} does not match the type of Landmark {L[0].name}")
|
||||
|
||||
for elem in L :
|
||||
elem.attractiveness = int(elem.attractiveness/100) + elem.n_tags # arbitrary correction of the balance score vs number of tags
|
||||
elem.attractiveness = elem.attractiveness*preference.score # arbitrary computation
|
||||
elem.attractiveness = int(elem.attractiveness) + elem.n_tags*100 # arbitrary correction of the balance score vs number of tags
|
||||
elem.attractiveness = int(elem.attractiveness*preference.score/500) # arbitrary computation
|
||||
|
||||
# Correct the score of a list of landmarks by taking into account preferences and the number of tags
|
||||
def correct_score_test(L: List[Landmark], preference: Preference) :
|
||||
@ -103,7 +136,9 @@ def count_elements_within_radius(coordinates: Tuple[float, float]) -> int:
|
||||
lat = coordinates[0]
|
||||
lon = coordinates[1]
|
||||
|
||||
bbox = {'latLower':lat-RADIUS,'lonLower':lon-RADIUS,'latHigher':lat+RADIUS,'lonHigher': lon+RADIUS}
|
||||
alpha = (180*RADIUS_CLOSE_TO)/(6371000*m.pi)
|
||||
|
||||
bbox = {'latLower':lat-alpha,'lonLower':lon-alpha,'latHigher':lat+alpha,'lonHigher': lon+alpha}
|
||||
overpass = Overpass()
|
||||
|
||||
# Build the query to find elements within the radius
|
||||
@ -148,11 +183,11 @@ def create_bbox(coordinates: Tuple[float, float], side_length: int) -> Tuple[flo
|
||||
return min_lat, min_lon, max_lat, max_lon
|
||||
|
||||
# Generates the list of landmarks for a given Landmarktype. Needs coordinates, a list of amenities and the corresponding LandmarkType
|
||||
def get_landmarks(coordinates: Tuple[float, float], l: List[Landmark], landmarktype: LandmarkType):
|
||||
def get_landmarks_coords(coordinates: Tuple[float, float], l: List[Landmark], landmarktype: LandmarkType)->List[Landmark]:
|
||||
|
||||
overpass = Overpass()
|
||||
|
||||
# Generate a bbox around currunt coordinates
|
||||
# Generate a bbox around current coordinates
|
||||
bbox = create_bbox(coordinates, BBOX_SIDE)
|
||||
|
||||
# Initialize some variables
|
||||
@ -164,6 +199,46 @@ def get_landmarks(coordinates: Tuple[float, float], l: List[Landmark], landmarkt
|
||||
result = overpass.query(query)
|
||||
N += result.countElements()
|
||||
|
||||
for elem in result.elements():
|
||||
|
||||
name = elem.tag('name') # Add name, decode to ASCII
|
||||
location = (elem.centerLat(), elem.centerLon()) # Add coordinates (lat, lon)
|
||||
|
||||
# skip if unprecise location
|
||||
if name is None or location[0] is None:
|
||||
continue
|
||||
else :
|
||||
|
||||
osm_type = elem.type() # Add type : 'way' or 'relation'
|
||||
osm_id = elem.id() # Add OSM id
|
||||
elem_type = landmarktype # Add the landmark type as 'sightseeing
|
||||
n_tags = len(elem.tags().keys()) # Add number of tags
|
||||
|
||||
# Add score of given landmark based on the number of surrounding elements
|
||||
score = count_elements_within_radius(location)
|
||||
|
||||
if score is not None :
|
||||
# Generate the landmark and append it to the list
|
||||
landmark = Landmark(name=name, type=elem_type, location=location, osm_type=osm_type, osm_id=osm_id, attractiveness=score, must_do=False, n_tags=n_tags)
|
||||
L.append(landmark)
|
||||
|
||||
return L
|
||||
|
||||
def get_landmarks_nominatim(city_country: str, l: List[Landmark], landmarktype: LandmarkType)->List[Landmark] :
|
||||
|
||||
overpass = Overpass()
|
||||
nominatim = Nominatim()
|
||||
areaId = nominatim.query(city_country).areaId()
|
||||
|
||||
# Initialize some variables
|
||||
N = 0
|
||||
L = []
|
||||
|
||||
for amenity in l :
|
||||
query = overpassQueryBuilder(area=areaId, elementType=['way', 'relation'], selector=amenity, includeCenter=True, out='body')
|
||||
result = overpass.query(query)
|
||||
N += result.countElements()
|
||||
|
||||
for elem in result.elements():
|
||||
|
||||
name = elem.tag('name') # Add name
|
||||
@ -188,4 +263,3 @@ def get_landmarks(coordinates: Tuple[float, float], l: List[Landmark], landmarkt
|
||||
L.append(landmark)
|
||||
|
||||
return L
|
||||
|
||||
|
@ -12,13 +12,13 @@ app = FastAPI()
|
||||
|
||||
# Assuming frontend is calling like this :
|
||||
#"http://127.0.0.1:8000/process?param1={param1}¶m2={param2}"
|
||||
# This should become main at some point
|
||||
@app.post("/optimizer/{longitude}/{latitude}")
|
||||
def main(longitude: float, latitude: float, preferences: Preferences = Body(...)) -> List[Landmark]:
|
||||
@app.post("/optimizer_coords/{longitude}/{latitude}/{city_country}")
|
||||
def main1(preferences: Preferences = Body(...), longitude: float = None, latitude: float = None, city_country: str = None) -> List[Landmark]:
|
||||
|
||||
# From frontend get longitude, latitude and prefence list
|
||||
|
||||
# Generate the landmark list
|
||||
landmarks = generate_landmarks(tuple((longitude, latitude)), preferences)
|
||||
landmarks = generate_landmarks(preferences=preferences, city_country=city_country, coordinates=tuple((longitude, latitude)))
|
||||
|
||||
# Set the max distance
|
||||
max_steps = 90
|
||||
|
@ -1,8 +1,40 @@
|
||||
from scipy.optimize import linprog
|
||||
import numpy as np
|
||||
|
||||
from typing import List
|
||||
from typing import Tuple
|
||||
from scipy.optimize import linprog
|
||||
from scipy.linalg import block_diag
|
||||
from structs.landmarks import Landmark, LandmarkType
|
||||
from structs.preferences import Preference, Preferences
|
||||
from structs.landmarks import Landmark
|
||||
from math import radians, sin, cos, acos
|
||||
|
||||
|
||||
|
||||
DETOUR_FACTOR = 1.3 # detour factor for straightline distance
|
||||
AVG_WALKING_SPEED = 4.8 # average walking speed in km/h
|
||||
|
||||
|
||||
# Function that returns the distance in meters from one location to another
|
||||
def get_distance(p1: Tuple[float, float], p2: Tuple[float, float]) :
|
||||
|
||||
# Compute the straight-line distance in km
|
||||
if p1 == p2 :
|
||||
return 0, 0
|
||||
else:
|
||||
dist = 6371.01 * acos(sin(radians(p1[0]))*sin(radians(p2[0])) + cos(radians(p1[0]))*cos(radians(p2[0]))*cos(radians(p1[1]) - radians(p2[1])))
|
||||
|
||||
# Consider the detour factor for average city
|
||||
wdist = dist*DETOUR_FACTOR
|
||||
|
||||
# Time to walk this distance (in minutes)
|
||||
wtime = wdist/AVG_WALKING_SPEED*60
|
||||
|
||||
if wtime > 15 :
|
||||
wtime = 5*round(wtime/5)
|
||||
else :
|
||||
wtime = round(wtime)
|
||||
|
||||
|
||||
return round(wdist, 1), wtime
|
||||
|
||||
|
||||
# landmarks = [Landmark_1, Landmark_2, ...]
|
||||
@ -35,10 +67,10 @@ def untangle(resx: list) -> list:
|
||||
|
||||
return order
|
||||
|
||||
|
||||
# Just to print the result
|
||||
def print_res(res, landmarks: list, P) -> list:
|
||||
X = abs(res.x)
|
||||
order = untangle(X)
|
||||
def print_res(res, order, landmarks: List[Landmark], P) -> list:
|
||||
|
||||
things = []
|
||||
|
||||
"""N = int(np.sqrt(len(X)))
|
||||
@ -49,7 +81,7 @@ def print_res(res, landmarks: list, P) -> list:
|
||||
for i,x in enumerate(X) : X[i] = round(x,0)
|
||||
print(order)"""
|
||||
|
||||
if (X.sum()+1)**2 == len(X) :
|
||||
if len(order) == len(landmarks):
|
||||
print('\nAll landmarks can be visited within max_steps, the following order is suggested : ')
|
||||
else :
|
||||
print('Could not visit all the landmarks, the following order is suggested : ')
|
||||
@ -59,10 +91,141 @@ def print_res(res, landmarks: list, P) -> list:
|
||||
things.append(landmarks[idx].name)
|
||||
|
||||
steps = path_length(P, abs(res.x))
|
||||
print("\nSteps walked : " + str(steps))
|
||||
print("\nMinutes walked : " + str(steps))
|
||||
print(f"\nVisited {len(order)} out of {len(landmarks)} landmarks")
|
||||
|
||||
return things
|
||||
|
||||
|
||||
|
||||
# prevent the creation of similar circles
|
||||
def prevent_circle(resx, landmarks: List[Landmark], A_ub, b_ub) -> bool:
|
||||
for i, elem in enumerate(resx):
|
||||
resx[i] = round(elem)
|
||||
|
||||
N = len(resx) # length of res
|
||||
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
|
||||
n_edges = resx.sum() # number of edges
|
||||
|
||||
|
||||
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
|
||||
|
||||
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
|
||||
|
||||
ind_a = nonzero_tup[0].tolist()
|
||||
vertices_visited = ind_a
|
||||
vertices_visited.remove(0)
|
||||
|
||||
ones = [1]*L
|
||||
h = [0]*N
|
||||
for i in range(L) :
|
||||
if i in vertices_visited :
|
||||
h[i*L:i*L+L] = ones
|
||||
|
||||
A_ub = np.vstack((A_ub, h))
|
||||
b_ub.append(len(vertices_visited)-1)
|
||||
|
||||
return A_ub, b_ub
|
||||
|
||||
|
||||
def break_circle2(circle_vertices, landmarks: List[Landmark], A_ub, b_ub) -> bool:
|
||||
|
||||
L = len(landmarks) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
|
||||
|
||||
|
||||
if L-1 in circle_vertices :
|
||||
circle_vertices.remove(L-1)
|
||||
|
||||
ones = [1]*L
|
||||
h = [0]*L*L
|
||||
for i in range(L) :
|
||||
if i in circle_vertices :
|
||||
h[i*L:i*L+L] = ones
|
||||
|
||||
A_ub = np.vstack((A_ub, h))
|
||||
b_ub.append(len(circle_vertices)-1)
|
||||
|
||||
return A_ub, b_ub
|
||||
|
||||
|
||||
# Checks if the path is connected
|
||||
def is_connected(resx, landmarks: List[Landmark]) -> bool:
|
||||
for i, elem in enumerate(resx):
|
||||
resx[i] = round(elem)
|
||||
|
||||
N = len(resx) # length of res
|
||||
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
|
||||
n_edges = resx.sum() # number of edges
|
||||
|
||||
|
||||
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
|
||||
|
||||
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
|
||||
|
||||
ind_a = nonzero_tup[0].tolist()
|
||||
ind_b = nonzero_tup[1].tolist()
|
||||
|
||||
edges = []
|
||||
edges_visited = []
|
||||
vertices_visited = []
|
||||
|
||||
edge1 = (ind_a[0], ind_b[0])
|
||||
edges_visited.append(edge1)
|
||||
vertices_visited.append(edge1[0])
|
||||
|
||||
for i, a in enumerate(ind_a) :
|
||||
edges.append((a, ind_b[i])) # Create the list of edges
|
||||
|
||||
flag = False
|
||||
|
||||
remaining = edges
|
||||
remaining.remove(edge1)
|
||||
# This can be further optimized
|
||||
#while len(vertices_visited) < n_edges + 1 :
|
||||
break_flag = False
|
||||
while len(remaining) > 0 and not break_flag:
|
||||
for edge2 in remaining :
|
||||
if edge2[0] == edge1[1] :
|
||||
if edge1[1] in vertices_visited :
|
||||
edges_visited.append(edge2)
|
||||
break_flag = True
|
||||
break
|
||||
#continue # continue vs break vs needed at all ?
|
||||
else :
|
||||
vertices_visited.append(edge1[1])
|
||||
edges_visited.append(edge2)
|
||||
remaining.remove(edge2)
|
||||
edge1 = edge2
|
||||
|
||||
elif edge1[1] == L-1 or edge1[1] in vertices_visited:
|
||||
break_flag = True
|
||||
break
|
||||
#break
|
||||
#if flag is True :
|
||||
# break
|
||||
vertices_visited.append(edge1[1])
|
||||
|
||||
|
||||
if len(vertices_visited) == n_edges +1 :
|
||||
flag = True
|
||||
circle = []
|
||||
else:
|
||||
flag = False
|
||||
circle = edges_visited
|
||||
|
||||
"""j = 0
|
||||
for i in vertices_visited :
|
||||
if landmarks[i].name == 'start' :
|
||||
ordered_visit = vertices_visited[j:] + vertices_visited[:j]
|
||||
break
|
||||
j+=1"""
|
||||
|
||||
|
||||
return flag, vertices_visited, circle
|
||||
|
||||
|
||||
|
||||
|
||||
# Checks for cases of circular symmetry in the result
|
||||
def has_circle(resx: list) :
|
||||
N = len(resx) # length of res
|
||||
@ -127,13 +290,13 @@ def break_sym(N, A_ub, b_ub):
|
||||
return A_ub, b_ub
|
||||
|
||||
# Constraint to not have circular paths. Want to go from start -> finish without unconnected loops
|
||||
def break_circle(N, A_ub, b_ub, circle) :
|
||||
l = [0]*N*N
|
||||
def break_circle(L, A_ub, b_ub, circle) :
|
||||
l = [0]*L*L
|
||||
|
||||
for index in circle :
|
||||
x = index[0]
|
||||
y = index[1]
|
||||
l[x*N+y] = 1
|
||||
l[x*L+y] = 1
|
||||
|
||||
A_ub = np.vstack((A_ub,l))
|
||||
b_ub.append(len(circle)-1)
|
||||
@ -147,19 +310,29 @@ def break_circle(N, A_ub, b_ub, circle) :
|
||||
|
||||
# Constraint to respect max number of travels
|
||||
def respect_number(N, A_ub, b_ub):
|
||||
h = []
|
||||
"""h = []
|
||||
for i in range(N) : h.append([1]*N)
|
||||
T = block_diag(*h)
|
||||
"""for l in T :
|
||||
for l in T :
|
||||
for i in range(7):
|
||||
print(l[i*7:i*7+7])
|
||||
print("\n")"""
|
||||
return np.vstack((A_ub, T)), b_ub + [1]*N
|
||||
#return np.vstack((A_ub, T)), b_ub + [1]*N
|
||||
ones = [1]*N
|
||||
zeros = [0]*N
|
||||
for i in range(N) :
|
||||
h = zeros*i + ones + zeros*(N-1-i)
|
||||
|
||||
A_ub = np.vstack((A_ub, h))
|
||||
b_ub.append(1)
|
||||
|
||||
return A_ub, b_ub
|
||||
|
||||
|
||||
# Constraint to tie the problem together. Necessary but not sufficient to avoid circles
|
||||
def respect_order(N: int, A_eq, b_eq):
|
||||
for i in range(N-1) : # Prevent stacked ones
|
||||
if i == 0 :
|
||||
if i == 0 or i == N-1: # Don't touch start or finish
|
||||
continue
|
||||
else :
|
||||
l = [0]*N
|
||||
@ -171,10 +344,6 @@ def respect_order(N: int, A_eq, b_eq):
|
||||
A_eq = np.vstack((A_eq,l))
|
||||
b_eq.append(0)
|
||||
|
||||
"""for i in range(7):
|
||||
print(l[i*7:i*7+7])
|
||||
print("\n")"""
|
||||
|
||||
return A_eq, b_eq
|
||||
|
||||
# Compute manhattan distance between 2 locations
|
||||
@ -183,27 +352,41 @@ def manhattan_distance(loc1: tuple, loc2: tuple):
|
||||
x2, y2 = loc2
|
||||
return abs(x1 - x2) + abs(y1 - y2)
|
||||
|
||||
# Constraint to not stay in position
|
||||
# Constraint to not stay in position. Removes d11, d22, d33, etc.
|
||||
def init_eq_not_stay(N: int):
|
||||
l = [0]*N*N
|
||||
|
||||
|
||||
for i in range(N) :
|
||||
for j in range(N) :
|
||||
if j == i :
|
||||
l[j + i*N] = 1
|
||||
l[N-1] = 1 # cannot skip from start to finish
|
||||
#A_eq = np.array([np.array(xi) for xi in A_eq]) # Must convert A_eq into an np array
|
||||
|
||||
l = np.array(np.array(l))
|
||||
|
||||
"""for i in range(7):
|
||||
print(l[i*7:i*7+7])"""
|
||||
|
||||
return [l], [0]
|
||||
|
||||
# Constraint to ensure start at start and finish at goal
|
||||
def respect_start_finish(N, A_eq: list, b_eq: list):
|
||||
ls = [1]*N + [0]*N*(N-1) # sets only horizontal ones for start (go from)
|
||||
ljump = [0]*N*N
|
||||
ljump[N-1] = 1 # Prevent start finish jump
|
||||
lg = [0]*N*N
|
||||
for k in range(N-1) : # sets only vertical ones for goal (go to)
|
||||
if k != 0 : # Prevent the shortcut start -> finish
|
||||
lg[k*N+N-1] = 1
|
||||
|
||||
A_eq = np.vstack((A_eq,ls))
|
||||
A_eq = np.vstack((A_eq,ljump))
|
||||
A_eq = np.vstack((A_eq,lg))
|
||||
b_eq.append(1)
|
||||
b_eq.append(0)
|
||||
b_eq.append(1)
|
||||
|
||||
return A_eq, b_eq
|
||||
|
||||
# Initialize A and c. Compute the distances from all landmarks to each other and store attractiveness
|
||||
# We want to maximize the sightseeing : max(c) st. A*x < b and A_eq*x = b_eq
|
||||
def init_ub_dist(landmarks: list, max_steps: int):
|
||||
def init_ub_dist(landmarks: List[Landmark], max_steps: int):
|
||||
# Objective function coefficients. a*x1 + b*x2 + c*x3 + ...
|
||||
c = []
|
||||
# Coefficients of inequality constraints (left-hand side)
|
||||
@ -212,7 +395,8 @@ def init_ub_dist(landmarks: list, max_steps: int):
|
||||
dist_table = [0]*len(landmarks)
|
||||
c.append(-spot1.attractiveness)
|
||||
for j, spot2 in enumerate(landmarks) :
|
||||
dist_table[j] = manhattan_distance(spot1.location, spot2.location)
|
||||
d, t = get_distance(spot1.location, spot2.location)
|
||||
dist_table[j] = t
|
||||
A.append(dist_table)
|
||||
c = c*len(landmarks)
|
||||
A_ub = []
|
||||
@ -222,31 +406,31 @@ def init_ub_dist(landmarks: list, max_steps: int):
|
||||
return c, A_ub, [max_steps]
|
||||
|
||||
# Go through the landmarks and force the optimizer to use landmarks where attractiveness is set to -1
|
||||
def respect_user_mustsee(landmarks: list, A_eq: list, b_eq: list) :
|
||||
def respect_user_mustsee(landmarks: List[Landmark], A_eq: list, b_eq: list) :
|
||||
L = len(landmarks)
|
||||
H = 0 # sort of heuristic to get an idea of the number of steps needed
|
||||
for i in landmarks :
|
||||
if i.name == "départ" : elem_prev = i # list of all matches
|
||||
|
||||
elem_prev = landmarks[0]
|
||||
|
||||
for i, elem in enumerate(landmarks) :
|
||||
if elem.attractiveness == -1 :
|
||||
if elem.must_do is True and elem.name not in ['finish', 'start']:
|
||||
l = [0]*L*L
|
||||
if elem.name != "arrivée" :
|
||||
for j in range(L) :
|
||||
l[j +i*L] = 1
|
||||
|
||||
else : # This ensures we go to goal
|
||||
for k in range(L-1) :
|
||||
l[k*L+L-1] = 1
|
||||
for j in range(L) : # sets the horizontal ones (go from)
|
||||
l[j +i*L] = 1 # sets the vertical ones (go to) double check if good
|
||||
|
||||
for k in range(L-1) :
|
||||
l[k*L+L-1] = 1
|
||||
|
||||
H += manhattan_distance(elem.location, elem_prev.location)
|
||||
elem_prev = elem
|
||||
|
||||
"""for i in range(7):
|
||||
print(l[i*7:i*7+7])
|
||||
print("\n")"""
|
||||
|
||||
A_eq = np.vstack((A_eq,l))
|
||||
b_eq.append(1)
|
||||
b_eq.append(2)
|
||||
|
||||
d, t = get_distance(elem.location, elem_prev.location)
|
||||
H += t
|
||||
elem_prev = elem
|
||||
|
||||
|
||||
|
||||
return A_eq, b_eq, H
|
||||
|
||||
# Computes the path length given path matrix (dist_table) and a result
|
||||
@ -259,18 +443,18 @@ def solve_optimization (landmarks, max_steps, printing_details) :
|
||||
N = len(landmarks)
|
||||
|
||||
# SET CONSTRAINTS FOR INEQUALITY
|
||||
c, A_ub, b_ub = init_ub_dist(landmarks, max_steps) # Add the distances from each landmark to the other
|
||||
P = A_ub # store the paths for later. Needed to compute path length
|
||||
A_ub, b_ub = respect_number(N, A_ub, b_ub) # Respect max number of visits.
|
||||
c, A_ub, b_ub = init_ub_dist(landmarks, max_steps) # Add the distances from each landmark to the other
|
||||
P = A_ub # store the paths for later. Needed to compute path length
|
||||
A_ub, b_ub = respect_number(N, A_ub, b_ub) # Respect max number of visits (no more possible stops than landmarks).
|
||||
|
||||
# TODO : Problems with circular symmetry
|
||||
A_ub, b_ub = break_sym(N, A_ub, b_ub) # break the symmetry. Only use the upper diagonal values
|
||||
|
||||
# SET CONSTRAINTS FOR EQUALITY
|
||||
A_eq, b_eq = init_eq_not_stay(N) # Force solution not to stay in same place
|
||||
A_eq, b_eq, H = respect_user_mustsee(landmarks, A_eq, b_eq) # Check if there are user_defined must_see. Also takes care of start/goal
|
||||
|
||||
A_eq, b_eq = respect_order(N, A_eq, b_eq) # Respect order of visit (only works when max_steps is limiting factor)
|
||||
A_eq, b_eq = init_eq_not_stay(N) # Force solution not to stay in same place
|
||||
A_eq, b_eq, H = respect_user_mustsee(landmarks, A_eq, b_eq) # Check if there are user_defined must_see. Also takes care of start/goal
|
||||
A_eq, b_eq = respect_start_finish(N, A_eq, b_eq) # Force start and finish positions
|
||||
A_eq, b_eq = respect_order(N, A_eq, b_eq) # Respect order of visit (only works when max_steps is limiting factor)
|
||||
|
||||
# Bounds for variables (x can only be 0 or 1)
|
||||
x_bounds = [(0, 1)] * len(c)
|
||||
@ -298,20 +482,27 @@ def solve_optimization (landmarks, max_steps, printing_details) :
|
||||
|
||||
# If there is a solution, we're good to go, just check for
|
||||
else :
|
||||
circle = has_circle(res.x)
|
||||
t, order, circle = is_connected(res.x, landmarks)
|
||||
i = 0
|
||||
|
||||
# Break the circular symmetry if needed
|
||||
while len(circle) != 0 :
|
||||
A_ub, b_ub = break_circle(landmarks, A_ub, b_ub, circle)
|
||||
A_ub, b_ub = prevent_circle(res.x, landmarks, A_ub, b_ub)
|
||||
A_ub, b_ub = break_circle(len(landmarks), A_ub, b_ub, circle)
|
||||
A_ub, b_ub = break_circle2(order, landmarks, A_ub, b_ub)
|
||||
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
|
||||
circle = has_circle(res.x)
|
||||
t, order, circle = is_connected(res.x, landmarks)
|
||||
if t :
|
||||
break
|
||||
#circle = has_circle(res.x)
|
||||
print(i)
|
||||
i += 1
|
||||
|
||||
if printing_details is True :
|
||||
if i != 0 :
|
||||
print(f"Neded to recompute paths {i} times because of unconnected loops...")
|
||||
X = print_res(res, landmarks, P)
|
||||
t, order, [] = is_connected(res.x, landmarks)
|
||||
X = print_res(res, order, landmarks, P)
|
||||
return X
|
||||
else :
|
||||
return untangle(res.x)
|
||||
|
@ -1,13 +1,25 @@
|
||||
import pandas as pd
|
||||
from optimizer import solve_optimization
|
||||
from landmarks_manager import generate_landmarks
|
||||
from structs.landmarks import LandmarkTest
|
||||
from structs.landmarks import Landmark
|
||||
from structs.landmarktype import LandmarkType
|
||||
from structs.preferences import Preferences, Preference
|
||||
from fastapi import FastAPI, Query, Body
|
||||
from fastapi.encoders import jsonable_encoder
|
||||
from typing import List
|
||||
|
||||
|
||||
# Helper function to create a .txt file with results
|
||||
def write_data(L: List[Landmark]):
|
||||
|
||||
data = pd.DataFrame()
|
||||
i = 0
|
||||
|
||||
for landmark in L :
|
||||
data[i] = jsonable_encoder(landmark)
|
||||
i += 1
|
||||
|
||||
data.to_json('landmarks.txt', indent = 2, force_ascii=False)
|
||||
|
||||
def test3(city_country: str) -> List[Landmark]:
|
||||
|
||||
|
||||
@ -25,7 +37,9 @@ def test3(city_country: str) -> List[Landmark]:
|
||||
type=LandmarkType(landmark_type='shopping'),
|
||||
score = 5))
|
||||
|
||||
landmarks = generate_landmarks(city_country, preferences)
|
||||
coords = None
|
||||
|
||||
landmarks = generate_landmarks(preferences=preferences, city_country=city_country, coordinates=coords)
|
||||
|
||||
max_steps = 9
|
||||
|
||||
@ -47,21 +61,33 @@ def test4(coordinates: tuple[float, float]) -> List[Landmark]:
|
||||
nature=Preference(
|
||||
name='nature',
|
||||
type=LandmarkType(landmark_type='nature'),
|
||||
score = 0),
|
||||
score = 5),
|
||||
shopping=Preference(
|
||||
name='shopping',
|
||||
type=LandmarkType(landmark_type='shopping'),
|
||||
score = 5))
|
||||
|
||||
landmarks = generate_landmarks(coordinates, preferences)
|
||||
city_country = None
|
||||
|
||||
max_steps = 90
|
||||
landmarks, landmarks_short = generate_landmarks(preferences=preferences, city_country=city_country, coordinates=coordinates)
|
||||
|
||||
visiting_order = solve_optimization(landmarks, max_steps, True)
|
||||
#write_data(landmarks)
|
||||
|
||||
|
||||
start = Landmark(name='start', type=LandmarkType(landmark_type='start'), location=(48.8375946, 2.2949904), osm_type='start', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
|
||||
finish = Landmark(name='finish', type=LandmarkType(landmark_type='finish'), location=(48.8375946, 2.2949904), osm_type='finish', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
|
||||
|
||||
|
||||
test = landmarks_short
|
||||
test.append(finish)
|
||||
test.insert(0, start)
|
||||
|
||||
max_walking_time = 4 # hours
|
||||
|
||||
visiting_order = solve_optimization(test, max_walking_time*60, True)
|
||||
|
||||
print(len(visiting_order))
|
||||
|
||||
return len(visiting_order)
|
||||
|
||||
|
||||
test3(tuple((48.834378, 2.322113)))
|
||||
test4(tuple((48.834378, 2.322113)))
|
20297
landmarks.txt
Normal file
20297
landmarks.txt
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user