fixed input as coordinates
Some checks failed
Build and push docker image / Build (pull_request) Failing after 36s
Build and release APK / Build APK (pull_request) Successful in 5m20s
Build web / Build Web (pull_request) Successful in 1m13s

This commit is contained in:
Kilian Scheidecker 2024-06-04 00:20:54 +02:00
parent bcc91c638d
commit c58c10b057
7 changed files with 274 additions and 80 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
cache/

View File

@ -2,77 +2,190 @@ from OSMPythonTools.api import Api
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder, Nominatim
from dataclasses import dataclass
from pydantic import BaseModel
import math as m
from structs.landmarks import Landmark, LandmarkType
from structs.preferences import Preferences, Preference
from typing import List
from typing import Tuple
RADIUS = 0.0005 # size of the bbox in degrees. 0.0005 ~ 50m
BBOX_SIDE = 10 # size of bbox in km for general area, 10km
RADIUS_CLOSE_TO = 50 # size of area in m for close features, 5àm radius
MIN_SCORE = 100 # discard elements with score < 100
MIN_TAGS = 5 # discard elements withs less than 5 tags
# Defines the landmark class (aka some place there is to visit)
@dataclass
class Landmarkkkk :
name : str
attractiveness : int
id : int
# Include th json here
# Create a list of all things to visit given some preferences and a city. Ready for the optimizer
def generate_landmarks(coordinates: Tuple[float, float], preferences: Preferences) :
l_sights = ["'tourism'='museum'", "'tourism'='attraction'", "'tourism'='gallery'", 'historic', "'amenity'='arts_centre'", "'amenity'='planetarium'", "'amenity'='place_of_worship'", "'amenity'='fountain'", '"water"="reflecting_pool"']
l_nature = ["'leisure'='park'", 'geological', "'natural'='geyser'", "'natural'='hot_spring'", '"natural"="arch"', '"natural"="cave_entrance"', '"natural"="volcano"', '"natural"="stone"', '"tourism"="alpine_hut"', '"tourism"="picnic_site"', '"tourism"="viewpoint"', '"tourism"="zoo"', '"waterway"="waterfall"']
l_shop = ["'shop'='department_store'", "'shop'='mall'"] #, '"shop"="collector"', '"shop"="antiques"']
# List for sightseeing
L1 = get_landmarks(coordinates, l_sights, LandmarkType(landmark_type='sightseeing'))
correct_score(L1, preferences.sightseeing)
class Landmark(BaseModel) :
name : str
attractiveness : int
loc : tuple
# List for nature
L2 = get_landmarks(coordinates, l_nature, LandmarkType(landmark_type='nature'))
correct_score(L2, preferences.nature)
# List for shopping
L3 = get_landmarks(coordinates, l_shop, LandmarkType(landmark_type='shopping'))
correct_score(L3, preferences.shopping)
# Converts a OSM id to a landmark
def add_from_id(id: int, score: int) :
L = L1 + L2 + L3
try :
s = 'way/' + str(id) # prepare string for query
obj = api.query(s) # object to add
return cleanup_list(L)
# Determines if two locations are close to each other
def is_close_to(loc1: Tuple[float, float], loc2: Tuple[float, float]) :
alpha = (180*RADIUS_CLOSE_TO)/(6371000*m.pi)
if abs(loc1[0] - loc2[0]) + abs(loc1[1] - loc2[1]) < alpha*2 :
return True
else :
return False
# Remove duplicate elements and elements with low score
def cleanup_list(L: List[Landmark]) :
L_clean = []
names = []
for landmark in L :
if landmark.name in names : # Remove duplicates
continue
elif landmark.attractiveness < MIN_SCORE : # Remove uninteresting
continue
elif landmark.n_tags < MIN_TAGS : # Remove uninteresting 2.0
continue
else :
names.append(landmark.name)
L_clean.append(landmark)
return L_clean
# Correct the score of a list of landmarks by taking into account preferences and the number of tags
def correct_score(L: List[Landmark], preference: Preference) :
if len(L) == 0 :
return
if L[0].type != preference.type :
raise TypeError(f"LandmarkType {preference.type} does not match the type of Landmark {L[0].name}")
for elem in L :
elem.attractiveness = int(elem.attractiveness/100) + elem.n_tags # arbitrary correction of the balance score vs number of tags
elem.attractiveness = elem.attractiveness*preference.score # arbitrary computation
# Correct the score of a list of landmarks by taking into account preferences and the number of tags
def correct_score_test(L: List[Landmark], preference: Preference) :
if len(L) == 0 :
return
if L[0].type != preference.type :
raise TypeError(f"LandmarkType {preference.type} does not match the type of Landmark {L[0].name}")
for elem in L :
elem.attractiveness = int(elem.attractiveness/100) + elem.n_tags # arbitrary correction of the balance score vs number of tags
elem.attractiveness = elem.attractiveness*preference.score # arbitrary computation
# Function to count elements within a 25m radius of a location
def count_elements_within_radius(coordinates: Tuple[float, float]) -> int:
lat = coordinates[0]
lon = coordinates[1]
bbox = {'latLower':lat-RADIUS,'lonLower':lon-RADIUS,'latHigher':lat+RADIUS,'lonHigher': lon+RADIUS}
overpass = Overpass()
# Build the query to find elements within the radius
radius_query = overpassQueryBuilder(bbox=[bbox['latLower'],bbox['lonLower'],bbox['latHigher'],bbox['lonHigher']],
elementType=['node', 'way', 'relation'])
try :
radius_result = overpass.query(radius_query)
# The count is the number of elements found
return radius_result.countElements()
except :
s = 'relation/' + str(id) # prepare string for query
obj = api.query(s) # object to add
return None
return Landmarkkkk(obj.tag('name:fr'), score, id) # create Landmark out of it
# Creates a bounding box around precise coordinates
def create_bbox(coordinates: Tuple[float, float], side_length: int) -> Tuple[float, float, float, float]:
"""
Create a simple bounding box around given coordinates.
:param coordinates: tuple (lat, lon)
-> lat: Latitude of the center point.
-> lon: Longitude of the center point.
:param side_length: int - side length of the bbox in km
:return: Bounding box as (min_lat, min_lon, max_lat, max_lon).
"""
lat = coordinates[0]
lon = coordinates[1]
# Half the side length in km (since it's a square bbox)
half_side_length_km = side_length / 2.0
# Convert distance to degrees
lat_diff = half_side_length_km / 111 # 1 degree latitude is approximately 111 km
lon_diff = half_side_length_km / (111 * m.cos(m.radians(lat))) # Adjust for longitude based on latitude
# Calculate bbox
min_lat = lat - lat_diff
max_lat = lat + lat_diff
min_lon = lon - lon_diff
max_lon = lon + lon_diff
return min_lat, min_lon, max_lat, max_lon
# Generates the list of landmarks for a given Landmarktype. Needs coordinates, a list of amenities and the corresponding LandmarkType
def get_landmarks(coordinates: Tuple[float, float], l: List[Landmark], landmarktype: LandmarkType):
def get_sights(city_country: str):
nominatim = Nominatim()
areaId = nominatim.query(city_country).areaId()
overpass = Overpass()
# list of stuff we want to define as sights
l = ["'tourism'='museum'", "'tourism'='attraction'", "'tourism'='gallery'", 'historic', "'amenity'='arts_centre'", "'amenity'='planetarium'", '"amenity"="place_of_worship"']
score = 0
# Generate a bbox around currunt coordinates
bbox = create_bbox(coordinates, BBOX_SIDE)
# Initialize some variables
N = 0
L = []
for amenity in l :
query = overpassQueryBuilder(area=areaId, elementType=['way', 'relation'], selector=amenity, includeGeometry=True)
query = overpassQueryBuilder(bbox=bbox, elementType=['way', 'relation'], selector=amenity, includeCenter=True, out='body')
result = overpass.query(query)
score += result.countElements()
N += result.countElements()
return score
for elem in result.elements():
name = elem.tag('name') # Add name
location = (elem.centerLat(), elem.centerLon()) # Add coordinates (lat, lon)
# take a lsit of tuples (id, score) to generate a list of landmarks
def generate_landmarks(ids_and_scores: list) :
# skip if unprecise location
if name is None or location[0] is None:
continue
else :
osm_type = elem.type() # Add type : 'way' or 'relation'
osm_id = elem.id() # Add OSM id
elem_type = landmarktype # Add the landmark type as 'sightseeing
n_tags = len(elem.tags().keys()) # Add number of tags
# Add score of given landmark based on the number of surrounding elements
score = count_elements_within_radius(location)
L = []
for tup in ids_and_scores :
L.append(add_from_id(tup[0], tup[1]))
if score is not None :
# Generate the landmark and append it to the list
landmark = Landmark(name=name, type=elem_type, location=location, osm_type=osm_type, osm_id=osm_id, attractiveness=score, must_do=False, n_tags=n_tags)
L.append(landmark)
return L
"""
api = Api()
l = (7515426, 70)
t = (5013364, 100)
n = (201611261, 99)
a = (226413508, 50)
m = (23762981, 30)
ids_and_scores = [t, l, n, a, m]
landmarks = generate_landmarks(ids_and_scores)
for obj in landmarks :
print(obj)"""
print(get_sights('Paris, France'))

View File

@ -1,7 +1,9 @@
from optimizer import solve_optimization
from landmarks_manager import generate_landmarks
from structs.landmarks import LandmarkTest
from structs.landmarks import Landmark
from structs.preferences import Preferences
from structs.landmarktype import LandmarkType
from structs.preferences import Preferences, Preference
from fastapi import FastAPI, Query, Body
from typing import List
@ -12,13 +14,22 @@ app = FastAPI()
#"http://127.0.0.1:8000/process?param1={param1}&param2={param2}"
# This should become main at some point
@app.post("/optimizer/{longitude}/{latitude}")
def main(longitude: float, latitude: float, prefrences: Preferences = Body(...)) -> List[Landmark]:
def main(longitude: float, latitude: float, preferences: Preferences = Body(...)) -> List[Landmark]:
# From frontend get longitude, latitude and prefence list
# Generate the landmark list
landmarks = generate_landmarks(tuple((longitude, latitude)), preferences)
# Set the max distance
max_steps = 90
# Compute the visiting order
visiting_order = solve_optimization(landmarks, max_steps, True)
return visiting_order
landmarks = []
return landmarks
@app.get("test")
def test():
@ -46,6 +57,16 @@ def test():
#return("max steps :", max_steps, "\n", visiting_order)
"""# keep this for debug
if __name__ == "__main__":
main()"""
# input city, country in the form of 'Paris, France'
@app.post("/test2/{city_country}")
def test2(city_country: str, preferences: Preferences = Body(...)) -> List[Landmark]:
landmarks = generate_landmarks(city_country, preferences)
max_steps = 9000000
visiting_order = solve_optimization(landmarks, max_steps, True)

View File

@ -212,7 +212,7 @@ def init_ub_dist(landmarks: list, max_steps: int):
dist_table = [0]*len(landmarks)
c.append(-spot1.attractiveness)
for j, spot2 in enumerate(landmarks) :
dist_table[j] = manhattan_distance(spot1.loc, spot2.loc)
dist_table[j] = manhattan_distance(spot1.location, spot2.location)
A.append(dist_table)
c = c*len(landmarks)
A_ub = []
@ -238,7 +238,7 @@ def respect_user_mustsee(landmarks: list, A_eq: list, b_eq: list) :
for k in range(L-1) :
l[k*L+L-1] = 1
H += manhattan_distance(elem.loc, elem_prev.loc)
H += manhattan_distance(elem.location, elem_prev.location)
elem_prev = elem
"""for i in range(7):

View File

@ -1,4 +1,5 @@
from pydantic import BaseModel
from OSMPythonTools.api import Api
from .landmarktype import LandmarkType
from .preferences import Preferences
@ -12,19 +13,10 @@ class Landmark(BaseModel) :
name : str
type: LandmarkType # De facto mapping depending on how the query was executed with overpass. Should still EXACTLY correspond to the preferences
location : tuple
# loop through the preferences and assign a score to the landmark
def score(self, preferences: Preferences):
for preference_name, preference in preferences.__dict__.items():
if (preference_name == self.type.landmark_type) :
score = preference.score
if (not score) :
raise Exception(f"Could not determine score for landmark {self.name}")
else :
return score
osm_type : str
osm_id : int
attractiveness : int
must_do : bool
n_tags : int

View File

@ -3,8 +3,8 @@ from .landmarktype import LandmarkType
class Preference(BaseModel) :
name: str
type: LandmarkType
score: int
type: LandmarkType # should match the attributes of the Preferences class
score: int # score could be from 1 to 5
# Input for optimization
class Preferences(BaseModel) :
@ -17,11 +17,11 @@ class Preferences(BaseModel) :
# Shopping (diriger plutôt vers des zones / rues commerçantes)
shopping : Preference
# Food (price low or high. Combien on veut dépenser pour manger à midi/soir)
""" # Food (price low or high. Combien on veut dépenser pour manger à midi/soir)
food_budget : Preference
# Tolérance au détour (ce qui détermine (+ ou -) le chemin emprunté)
detour_tol : Preference
detour_tol : Preference"""

67
backend/src/tester.py Normal file
View File

@ -0,0 +1,67 @@
from optimizer import solve_optimization
from landmarks_manager import generate_landmarks
from structs.landmarks import LandmarkTest
from structs.landmarks import Landmark
from structs.landmarktype import LandmarkType
from structs.preferences import Preferences, Preference
from fastapi import FastAPI, Query, Body
from typing import List
def test3(city_country: str) -> List[Landmark]:
preferences = Preferences(
sightseeing=Preference(
name='sightseeing',
type=LandmarkType(landmark_type='sightseeing'),
score = 5),
nature=Preference(
name='nature',
type=LandmarkType(landmark_type='nature'),
score = 0),
shopping=Preference(
name='shopping',
type=LandmarkType(landmark_type='shopping'),
score = 5))
landmarks = generate_landmarks(city_country, preferences)
max_steps = 9
visiting_order = solve_optimization(landmarks, max_steps, True)
print(len(visiting_order))
return len(visiting_order)
def test4(coordinates: tuple[float, float]) -> List[Landmark]:
preferences = Preferences(
sightseeing=Preference(
name='sightseeing',
type=LandmarkType(landmark_type='sightseeing'),
score = 5),
nature=Preference(
name='nature',
type=LandmarkType(landmark_type='nature'),
score = 0),
shopping=Preference(
name='shopping',
type=LandmarkType(landmark_type='shopping'),
score = 5))
landmarks = generate_landmarks(coordinates, preferences)
max_steps = 90
visiting_order = solve_optimization(landmarks, max_steps, True)
print(len(visiting_order))
return len(visiting_order)
test3(tuple((48.834378, 2.322113)))