fixed input as coordinates
Some checks failed
Build and push docker image / Build (pull_request) Failing after 36s
Build and release APK / Build APK (pull_request) Successful in 5m20s
Build web / Build Web (pull_request) Successful in 1m13s

This commit is contained in:
Kilian Scheidecker 2024-06-04 00:20:54 +02:00
parent bcc91c638d
commit c58c10b057
7 changed files with 274 additions and 80 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
cache/

View File

@ -2,77 +2,190 @@ from OSMPythonTools.api import Api
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder, Nominatim from OSMPythonTools.overpass import Overpass, overpassQueryBuilder, Nominatim
from dataclasses import dataclass from dataclasses import dataclass
from pydantic import BaseModel from pydantic import BaseModel
import math as m
from structs.landmarks import Landmark, LandmarkType
from structs.preferences import Preferences, Preference
from typing import List
from typing import Tuple
RADIUS = 0.0005 # size of the bbox in degrees. 0.0005 ~ 50m
BBOX_SIDE = 10 # size of bbox in km for general area, 10km
RADIUS_CLOSE_TO = 50 # size of area in m for close features, 5àm radius
MIN_SCORE = 100 # discard elements with score < 100
MIN_TAGS = 5 # discard elements withs less than 5 tags
# Defines the landmark class (aka some place there is to visit) # Include th json here
@dataclass # Create a list of all things to visit given some preferences and a city. Ready for the optimizer
class Landmarkkkk : def generate_landmarks(coordinates: Tuple[float, float], preferences: Preferences) :
name : str
attractiveness : int l_sights = ["'tourism'='museum'", "'tourism'='attraction'", "'tourism'='gallery'", 'historic', "'amenity'='arts_centre'", "'amenity'='planetarium'", "'amenity'='place_of_worship'", "'amenity'='fountain'", '"water"="reflecting_pool"']
id : int l_nature = ["'leisure'='park'", 'geological', "'natural'='geyser'", "'natural'='hot_spring'", '"natural"="arch"', '"natural"="cave_entrance"', '"natural"="volcano"', '"natural"="stone"', '"tourism"="alpine_hut"', '"tourism"="picnic_site"', '"tourism"="viewpoint"', '"tourism"="zoo"', '"waterway"="waterfall"']
l_shop = ["'shop'='department_store'", "'shop'='mall'"] #, '"shop"="collector"', '"shop"="antiques"']
# List for sightseeing
L1 = get_landmarks(coordinates, l_sights, LandmarkType(landmark_type='sightseeing'))
correct_score(L1, preferences.sightseeing)
class Landmark(BaseModel) : # List for nature
name : str L2 = get_landmarks(coordinates, l_nature, LandmarkType(landmark_type='nature'))
attractiveness : int correct_score(L2, preferences.nature)
loc : tuple
# List for shopping
L3 = get_landmarks(coordinates, l_shop, LandmarkType(landmark_type='shopping'))
correct_score(L3, preferences.shopping)
# Converts a OSM id to a landmark L = L1 + L2 + L3
def add_from_id(id: int, score: int) :
try : return cleanup_list(L)
s = 'way/' + str(id) # prepare string for query
obj = api.query(s) # object to add # Determines if two locations are close to each other
def is_close_to(loc1: Tuple[float, float], loc2: Tuple[float, float]) :
alpha = (180*RADIUS_CLOSE_TO)/(6371000*m.pi)
if abs(loc1[0] - loc2[0]) + abs(loc1[1] - loc2[1]) < alpha*2 :
return True
else :
return False
# Remove duplicate elements and elements with low score
def cleanup_list(L: List[Landmark]) :
L_clean = []
names = []
for landmark in L :
if landmark.name in names : # Remove duplicates
continue
elif landmark.attractiveness < MIN_SCORE : # Remove uninteresting
continue
elif landmark.n_tags < MIN_TAGS : # Remove uninteresting 2.0
continue
else :
names.append(landmark.name)
L_clean.append(landmark)
return L_clean
# Correct the score of a list of landmarks by taking into account preferences and the number of tags
def correct_score(L: List[Landmark], preference: Preference) :
if len(L) == 0 :
return
if L[0].type != preference.type :
raise TypeError(f"LandmarkType {preference.type} does not match the type of Landmark {L[0].name}")
for elem in L :
elem.attractiveness = int(elem.attractiveness/100) + elem.n_tags # arbitrary correction of the balance score vs number of tags
elem.attractiveness = elem.attractiveness*preference.score # arbitrary computation
# Correct the score of a list of landmarks by taking into account preferences and the number of tags
def correct_score_test(L: List[Landmark], preference: Preference) :
if len(L) == 0 :
return
if L[0].type != preference.type :
raise TypeError(f"LandmarkType {preference.type} does not match the type of Landmark {L[0].name}")
for elem in L :
elem.attractiveness = int(elem.attractiveness/100) + elem.n_tags # arbitrary correction of the balance score vs number of tags
elem.attractiveness = elem.attractiveness*preference.score # arbitrary computation
# Function to count elements within a 25m radius of a location
def count_elements_within_radius(coordinates: Tuple[float, float]) -> int:
lat = coordinates[0]
lon = coordinates[1]
bbox = {'latLower':lat-RADIUS,'lonLower':lon-RADIUS,'latHigher':lat+RADIUS,'lonHigher': lon+RADIUS}
overpass = Overpass()
# Build the query to find elements within the radius
radius_query = overpassQueryBuilder(bbox=[bbox['latLower'],bbox['lonLower'],bbox['latHigher'],bbox['lonHigher']],
elementType=['node', 'way', 'relation'])
try :
radius_result = overpass.query(radius_query)
# The count is the number of elements found
return radius_result.countElements()
except : except :
s = 'relation/' + str(id) # prepare string for query return None
obj = api.query(s) # object to add
return Landmarkkkk(obj.tag('name:fr'), score, id) # create Landmark out of it # Creates a bounding box around precise coordinates
def create_bbox(coordinates: Tuple[float, float], side_length: int) -> Tuple[float, float, float, float]:
"""
Create a simple bounding box around given coordinates.
:param coordinates: tuple (lat, lon)
-> lat: Latitude of the center point.
-> lon: Longitude of the center point.
:param side_length: int - side length of the bbox in km
:return: Bounding box as (min_lat, min_lon, max_lat, max_lon).
"""
lat = coordinates[0]
lon = coordinates[1]
# Half the side length in km (since it's a square bbox)
half_side_length_km = side_length / 2.0
# Convert distance to degrees
lat_diff = half_side_length_km / 111 # 1 degree latitude is approximately 111 km
lon_diff = half_side_length_km / (111 * m.cos(m.radians(lat))) # Adjust for longitude based on latitude
# Calculate bbox
min_lat = lat - lat_diff
max_lat = lat + lat_diff
min_lon = lon - lon_diff
max_lon = lon + lon_diff
return min_lat, min_lon, max_lat, max_lon
# Generates the list of landmarks for a given Landmarktype. Needs coordinates, a list of amenities and the corresponding LandmarkType
def get_landmarks(coordinates: Tuple[float, float], l: List[Landmark], landmarktype: LandmarkType):
def get_sights(city_country: str):
nominatim = Nominatim()
areaId = nominatim.query(city_country).areaId()
overpass = Overpass() overpass = Overpass()
# list of stuff we want to define as sights # Generate a bbox around currunt coordinates
l = ["'tourism'='museum'", "'tourism'='attraction'", "'tourism'='gallery'", 'historic', "'amenity'='arts_centre'", "'amenity'='planetarium'", '"amenity"="place_of_worship"'] bbox = create_bbox(coordinates, BBOX_SIDE)
score = 0
# Initialize some variables
N = 0
L = []
for amenity in l : for amenity in l :
query = overpassQueryBuilder(area=areaId, elementType=['way', 'relation'], selector=amenity, includeGeometry=True) query = overpassQueryBuilder(bbox=bbox, elementType=['way', 'relation'], selector=amenity, includeCenter=True, out='body')
result = overpass.query(query) result = overpass.query(query)
score += result.countElements() N += result.countElements()
return score for elem in result.elements():
name = elem.tag('name') # Add name
location = (elem.centerLat(), elem.centerLon()) # Add coordinates (lat, lon)
# take a lsit of tuples (id, score) to generate a list of landmarks # skip if unprecise location
def generate_landmarks(ids_and_scores: list) : if name is None or location[0] is None:
continue
else :
osm_type = elem.type() # Add type : 'way' or 'relation'
osm_id = elem.id() # Add OSM id
elem_type = landmarktype # Add the landmark type as 'sightseeing
n_tags = len(elem.tags().keys()) # Add number of tags
# Add score of given landmark based on the number of surrounding elements
score = count_elements_within_radius(location)
L = [] if score is not None :
for tup in ids_and_scores : # Generate the landmark and append it to the list
L.append(add_from_id(tup[0], tup[1])) landmark = Landmark(name=name, type=elem_type, location=location, osm_type=osm_type, osm_id=osm_id, attractiveness=score, must_do=False, n_tags=n_tags)
L.append(landmark)
return L return L
"""
api = Api()
l = (7515426, 70)
t = (5013364, 100)
n = (201611261, 99)
a = (226413508, 50)
m = (23762981, 30)
ids_and_scores = [t, l, n, a, m]
landmarks = generate_landmarks(ids_and_scores)
for obj in landmarks :
print(obj)"""
print(get_sights('Paris, France'))

View File

@ -1,7 +1,9 @@
from optimizer import solve_optimization from optimizer import solve_optimization
from landmarks_manager import generate_landmarks
from structs.landmarks import LandmarkTest from structs.landmarks import LandmarkTest
from structs.landmarks import Landmark from structs.landmarks import Landmark
from structs.preferences import Preferences from structs.landmarktype import LandmarkType
from structs.preferences import Preferences, Preference
from fastapi import FastAPI, Query, Body from fastapi import FastAPI, Query, Body
from typing import List from typing import List
@ -12,13 +14,22 @@ app = FastAPI()
#"http://127.0.0.1:8000/process?param1={param1}&param2={param2}" #"http://127.0.0.1:8000/process?param1={param1}&param2={param2}"
# This should become main at some point # This should become main at some point
@app.post("/optimizer/{longitude}/{latitude}") @app.post("/optimizer/{longitude}/{latitude}")
def main(longitude: float, latitude: float, prefrences: Preferences = Body(...)) -> List[Landmark]: def main(longitude: float, latitude: float, preferences: Preferences = Body(...)) -> List[Landmark]:
# From frontend get longitude, latitude and prefence list # From frontend get longitude, latitude and prefence list
# Generate the landmark list
landmarks = generate_landmarks(tuple((longitude, latitude)), preferences)
# Set the max distance
max_steps = 90
# Compute the visiting order
visiting_order = solve_optimization(landmarks, max_steps, True)
return visiting_order
landmarks = []
return landmarks
@app.get("test") @app.get("test")
def test(): def test():
@ -46,6 +57,16 @@ def test():
#return("max steps :", max_steps, "\n", visiting_order) #return("max steps :", max_steps, "\n", visiting_order)
"""# keep this for debug # input city, country in the form of 'Paris, France'
if __name__ == "__main__": @app.post("/test2/{city_country}")
main()""" def test2(city_country: str, preferences: Preferences = Body(...)) -> List[Landmark]:
landmarks = generate_landmarks(city_country, preferences)
max_steps = 9000000
visiting_order = solve_optimization(landmarks, max_steps, True)

View File

@ -212,7 +212,7 @@ def init_ub_dist(landmarks: list, max_steps: int):
dist_table = [0]*len(landmarks) dist_table = [0]*len(landmarks)
c.append(-spot1.attractiveness) c.append(-spot1.attractiveness)
for j, spot2 in enumerate(landmarks) : for j, spot2 in enumerate(landmarks) :
dist_table[j] = manhattan_distance(spot1.loc, spot2.loc) dist_table[j] = manhattan_distance(spot1.location, spot2.location)
A.append(dist_table) A.append(dist_table)
c = c*len(landmarks) c = c*len(landmarks)
A_ub = [] A_ub = []
@ -238,7 +238,7 @@ def respect_user_mustsee(landmarks: list, A_eq: list, b_eq: list) :
for k in range(L-1) : for k in range(L-1) :
l[k*L+L-1] = 1 l[k*L+L-1] = 1
H += manhattan_distance(elem.loc, elem_prev.loc) H += manhattan_distance(elem.location, elem_prev.location)
elem_prev = elem elem_prev = elem
"""for i in range(7): """for i in range(7):

View File

@ -1,4 +1,5 @@
from pydantic import BaseModel from pydantic import BaseModel
from OSMPythonTools.api import Api
from .landmarktype import LandmarkType from .landmarktype import LandmarkType
from .preferences import Preferences from .preferences import Preferences
@ -12,19 +13,10 @@ class Landmark(BaseModel) :
name : str name : str
type: LandmarkType # De facto mapping depending on how the query was executed with overpass. Should still EXACTLY correspond to the preferences type: LandmarkType # De facto mapping depending on how the query was executed with overpass. Should still EXACTLY correspond to the preferences
location : tuple location : tuple
osm_type : str
# loop through the preferences and assign a score to the landmark osm_id : int
def score(self, preferences: Preferences): attractiveness : int
must_do : bool
for preference_name, preference in preferences.__dict__.items(): n_tags : int
if (preference_name == self.type.landmark_type) :
score = preference.score
if (not score) :
raise Exception(f"Could not determine score for landmark {self.name}")
else :
return score

View File

@ -3,8 +3,8 @@ from .landmarktype import LandmarkType
class Preference(BaseModel) : class Preference(BaseModel) :
name: str name: str
type: LandmarkType type: LandmarkType # should match the attributes of the Preferences class
score: int score: int # score could be from 1 to 5
# Input for optimization # Input for optimization
class Preferences(BaseModel) : class Preferences(BaseModel) :
@ -17,11 +17,11 @@ class Preferences(BaseModel) :
# Shopping (diriger plutôt vers des zones / rues commerçantes) # Shopping (diriger plutôt vers des zones / rues commerçantes)
shopping : Preference shopping : Preference
# Food (price low or high. Combien on veut dépenser pour manger à midi/soir) """ # Food (price low or high. Combien on veut dépenser pour manger à midi/soir)
food_budget : Preference food_budget : Preference
# Tolérance au détour (ce qui détermine (+ ou -) le chemin emprunté) # Tolérance au détour (ce qui détermine (+ ou -) le chemin emprunté)
detour_tol : Preference detour_tol : Preference"""

67
backend/src/tester.py Normal file
View File

@ -0,0 +1,67 @@
from optimizer import solve_optimization
from landmarks_manager import generate_landmarks
from structs.landmarks import LandmarkTest
from structs.landmarks import Landmark
from structs.landmarktype import LandmarkType
from structs.preferences import Preferences, Preference
from fastapi import FastAPI, Query, Body
from typing import List
def test3(city_country: str) -> List[Landmark]:
preferences = Preferences(
sightseeing=Preference(
name='sightseeing',
type=LandmarkType(landmark_type='sightseeing'),
score = 5),
nature=Preference(
name='nature',
type=LandmarkType(landmark_type='nature'),
score = 0),
shopping=Preference(
name='shopping',
type=LandmarkType(landmark_type='shopping'),
score = 5))
landmarks = generate_landmarks(city_country, preferences)
max_steps = 9
visiting_order = solve_optimization(landmarks, max_steps, True)
print(len(visiting_order))
return len(visiting_order)
def test4(coordinates: tuple[float, float]) -> List[Landmark]:
preferences = Preferences(
sightseeing=Preference(
name='sightseeing',
type=LandmarkType(landmark_type='sightseeing'),
score = 5),
nature=Preference(
name='nature',
type=LandmarkType(landmark_type='nature'),
score = 0),
shopping=Preference(
name='shopping',
type=LandmarkType(landmark_type='shopping'),
score = 5))
landmarks = generate_landmarks(coordinates, preferences)
max_steps = 90
visiting_order = solve_optimization(landmarks, max_steps, True)
print(len(visiting_order))
return len(visiting_order)
test3(tuple((48.834378, 2.322113)))