ensure attractiveness is always an int
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m4s
Build and deploy the backend to staging / Deploy to staging (pull_request) Failing after 18s

This commit is contained in:
Remy Moll 2024-09-27 09:47:10 +02:00
parent 097abc5f29
commit cdc9b0ecd1
7 changed files with 89 additions and 168 deletions

View File

@ -63,7 +63,7 @@ def new_trip(preferences: Preferences, start: tuple[float, float], end: tuple[fl
refined_tour = refiner.refine_optimization(landmarks, base_tour, preferences.max_time_minute, preferences.detour_tolerance_minute)
linked_tour = LinkedLandmarks(refined_tour)
# upon creation of the trip, persistence of both the trip and its landmarks is ensured. Ca
# upon creation of the trip, persistence of both the trip and its landmarks is ensured
trip = Trip.from_linked_landmarks(linked_tour, cache_client)
return trip
@ -84,4 +84,4 @@ def get_landmark(landmark_uuid: str) -> Landmark:
landmark = cache_client.get(f"landmark_{landmark_uuid}")
return landmark
except KeyError:
raise HTTPException(status_code=404, detail="Landmark not found")
raise HTTPException(status_code=404, detail="Landmark not found")

View File

@ -1,6 +1,6 @@
city_bbox_side: 7500 #m
radius_close_to: 50
church_coeff: 0.75
church_coeff: 0.5
nature_coeff: 1.25
overall_coeff: 10
tag_exponent: 1.15

View File

@ -14,26 +14,22 @@ class Landmark(BaseModel) :
osm_id : int
attractiveness : int
n_tags : int
image_url : Optional[str] = None # TODO future
image_url : Optional[str] = None
website_url : Optional[str] = None
wikipedia_url : Optional[str] = None
description : Optional[str] = None # TODO future
duration : Optional[int] = 0 # TODO future
duration : Optional[int] = 0
name_en : Optional[str] = None
# Unique ID of a given landmark
uuid: str = Field(default_factory=uuid4) # TODO implement this ASAP
uuid: str = Field(default_factory=uuid4)
# Additional properties depending on specific tour
must_do : Optional[bool] = False
must_avoid : Optional[bool] = False
is_secondary : Optional[bool] = False # TODO future
time_to_reach_next : Optional[int] = 0 # TODO fix this in existing code
next_uuid : Optional[str] = None # TODO implement this ASAP
def __hash__(self) -> int:
return self.uuid.int
time_to_reach_next : Optional[int] = 0
next_uuid : Optional[str] = None
def __str__(self) -> str:
time_to_next_str = f", time_to_next={self.time_to_reach_next}" if self.time_to_reach_next else ""
@ -42,3 +38,15 @@ class Landmark(BaseModel) :
if self.type in ["start", "finish", "nature", "shopping"] : type_str += '\t '
return f'Landmark{type_str}: [{self.name} @{self.location}, score={self.attractiveness}{time_to_next_str}{is_secondary_str}]'
def distance(self, value: 'Landmark') -> float:
return (self.location[0] - value.location[0])**2 + (self.location[1] - value.location[1])**2
def __hash__(self) -> int:
return hash(self.name)
def __eq__(self, value: 'Landmark') -> bool:
# eq and hash must be consistent
# in particular, if two objects are equal, their hash must be equal
# uuid and osm_id are just shortcuts to avoid comparing all the properties
# if they are equal, we know that the name is also equal and in turn the hash is equal
return self.uuid == value.uuid or self.osm_id == value.osm_id or (self.name == value.name and self.distance(value) < 0.001)

View File

@ -27,4 +27,4 @@ class Trip(BaseModel):
# for landmark in landmarks:
# cache_client.set(f"landmark_{landmark.uuid}", landmark, expire=3600)
return trip
return trip

View File

@ -16,10 +16,8 @@ def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int:
Args:
p1 (Tuple[float, float]): Coordinates of the starting location.
p2 (Tuple[float, float]): Coordinates of the destination.
detour (float): Detour factor affecting the distance.
speed (float): Walking speed in kilometers per hour.
Returns:
Returns:
int: Time to travel from p1 to p2 in minutes.
"""

View File

@ -1,15 +1,11 @@
import math as m
import math
import yaml
import logging
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
from pywikibot import ItemPage, Site
from pywikibot import config
config.put_throttle = 0
config.maxlag = 0
from structs.preferences import Preferences, Preference
from structs.preferences import Preferences
from structs.landmark import Landmark
from .take_most_important import take_most_important
import constants
@ -46,7 +42,7 @@ class LandmarkManager:
self.viewpoint_bonus = parameters['viewpoint_bonus']
self.pay_bonus = parameters['pay_bonus']
self.N_important = parameters['N_important']
with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
self.walking_speed = parameters['average_walking_speed']
@ -69,87 +65,42 @@ class LandmarkManager:
preferences (Preferences): The user's preference settings that influence the landmark selection.
Returns:
tuple[list[Landmark], list[Landmark]]:
- A list of all existing landmarks.
- A list of the most important landmarks based on the user's preferences.
tuple[list[Landmark], list[Landmark]]:
- A list of all existing landmarks.
- A list of the most important landmarks based on the user's preferences.
"""
max_walk_dist = (preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor
reachable_bbox_side = min(max_walk_dist, self.max_bbox_side)
L = []
# use set to avoid duplicates, this requires some __methods__ to be set in Landmark
all_landmarks = set()
bbox = self.create_bbox(center_coordinates, reachable_bbox_side)
# list for sightseeing
if preferences.sightseeing.score != 0:
score_function = lambda score: int(score*10*preferences.sightseeing.score/5) # self.count_elements_close_to(loc) +
L1 = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function)
L += L1
score_function = lambda score: score * 10 * preferences.sightseeing.score / 5
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function)
all_landmarks.update(current_landmarks)
# list for nature
if preferences.nature.score != 0:
score_function = lambda score: int(score*10*self.nature_coeff*preferences.nature.score/5) # self.count_elements_close_to(loc) +
L2 = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, score_function)
L += L2
score_function = lambda score: score * 10 * self.nature_coeff * preferences.nature.score / 5
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, score_function)
all_landmarks.update(current_landmarks)
# list for shopping
if preferences.shopping.score != 0:
score_function = lambda score: int(score*10*preferences.shopping.score/5) # self.count_elements_close_to(loc) +
L3 = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function)
L += L3
score_function = lambda score: score * 10 * preferences.shopping.score / 5
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function)
all_landmarks.update(current_landmarks)
L = self.remove_duplicates(L)
# self.correct_score(L, preferences)
landmarks_constrained = take_most_important(all_landmarks, self.N_important)
self.logger.info(f'Generated {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.')
L_constrained = take_most_important(L, self.N_important)
self.logger.info(f'Generated {len(L)} landmarks around {center_coordinates}, and constrained to {len(L_constrained)} most important ones.')
return all_landmarks, landmarks_constrained
return L, L_constrained
def remove_duplicates(self, landmarks: list[Landmark]) -> list[Landmark]:
"""
Removes duplicate landmarks based on their names from the given list. Only retains the landmark with highest score
Parameters:
landmarks (list[Landmark]): A list of Landmark objects.
Returns:
list[Landmark]: A list of unique Landmark objects based on their names.
"""
L_clean = []
names = []
for landmark in landmarks:
if landmark.name in names:
continue
else:
names.append(landmark.name)
L_clean.append(landmark)
return L_clean
def correct_score(self, landmarks: list[Landmark], preferences: Preferences) -> None:
"""
Adjust the attractiveness score of each landmark in the list based on user preferences.
This method updates the attractiveness of each landmark by scaling it according to the user's preference score.
The score adjustment is computed using a simple linear transformation based on the preference score.
Args:
landmarks (list[Landmark]): A list of landmarks whose scores need to be corrected.
preferences (Preferences): The user's preference settings that influence the attractiveness score adjustment.
"""
score_dict = {
preferences.sightseeing.type: preferences.sightseeing.score,
preferences.nature.type: preferences.nature.score,
preferences.shopping.type: preferences.shopping.score
}
for landmark in landmarks:
landmark.attractiveness = int(landmark.attractiveness * score_dict[landmark.type] / 5)
def count_elements_close_to(self, coordinates: tuple[float, float]) -> int:
@ -172,7 +123,7 @@ class LandmarkManager:
radius = self.radius_close_to
alpha = (180*radius) / (6371000*m.pi)
alpha = (180 * radius) / (6371000 * math.pi)
bbox = {'latLower':lat-alpha,'lonLower':lon-alpha,'latHigher':lat+alpha,'lonHigher': lon+alpha}
# Build the query to find elements within the radius
@ -216,7 +167,7 @@ class LandmarkManager:
# Convert distance to degrees
lat_diff = half_side_length_km / 111 # 1 degree latitude is approximately 111 km
lon_diff = half_side_length_km / (111 * m.cos(m.radians(lat))) # Adjust for longitude based on latitude
lon_diff = half_side_length_km / (111 * math.cos(math.radians(lat))) # Adjust for longitude based on latitude
# Calculate bbox
min_lat = lat - lat_diff
@ -265,22 +216,18 @@ class LandmarkManager:
result = self.overpass.query(query)
except Exception as e:
self.logger.error(f"Error fetching landmarks: {e}")
return
continue
for elem in result.elements():
name = elem.tag('name') # Add name
location = (elem.centerLat(), elem.centerLon()) # Add coordinates (lat, lon)
name = elem.tag('name')
location = (elem.centerLat(), elem.centerLon())
# TODO: exclude these from the get go
# skip if unprecise location
if name is None or location[0] is None:
continue
# skip if unused
# if 'disused:leisure' in elem.tags().keys():
# continue
# skip if part of another building
if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes':
continue
@ -291,7 +238,6 @@ class LandmarkManager:
n_tags = len(elem.tags().keys()) # Add number of tags
score = n_tags**self.tag_exponent # Add score
website_url = None
wikpedia_url = None
image_url = None
name_en = None
@ -299,22 +245,17 @@ class LandmarkManager:
skip = False
for tag in elem.tags().keys():
if "pay" in tag:
score += self.pay_bonus # discard payment options for tags
# payment options are a good sign
score += self.pay_bonus
if "disused" in tag:
skip = True # skip disused amenities
# skip disused amenities
skip = True
break
if "wiki" in tag:
score += self.wikipedia_bonus # wikipedia entries count more
# if tag == "wikidata":
# Q = elem.tag('wikidata')
# site = Site("wikidata", "wikidata")
# item = ItemPage(site, Q)
# item.get()
# n_languages = len(item.labels)
# n_tags += n_languages/10
# wikipedia entries count more
score += self.wikipedia_bonus
if "viewpoint" in tag:
score += self.viewpoint_bonus
@ -335,47 +276,43 @@ class LandmarkManager:
if tag == "building" and elem.tag('building') in ['retail', 'supermarket', 'parking']:
skip = True
break
# Get additional information
# if tag == 'wikipedia' :
# wikpedia_url = elem.tag('wikipedia')
if tag in ['website', 'contact:website'] :
if tag in ['website', 'contact:website']:
website_url = elem.tag(tag)
if tag == 'image' :
if tag == 'image':
image_url = elem.tag('image')
if tag =='name:en' :
if tag =='name:en':
name_en = elem.tag('name:en')
if skip:
continue
score = score_function(score)
if "place_of_worship" in elem.tags().values() :
score = int(score*self.church_coeff)
if "place_of_worship" in elem.tags().values():
score = score * self.church_coeff
duration = 15
elif "museum" in elem.tags().values() :
score = int(score*self.church_coeff)
elif "museum" in elem.tags().values():
score = score * self.church_coeff
duration = 60
else :
else:
duration = 5
# Generate the landmark and append it to the list
# finally create our own landmark object
landmark = Landmark(
name=name,
type=elem_type,
location=location,
osm_type=osm_type,
osm_id=osm_id,
attractiveness=score,
must_do=False,
n_tags=int(n_tags),
duration = duration,
name_en=name_en,
image_url=image_url,
# wikipedia_url=wikpedia_url,
website_url=website_url
name = name,
type = elem_type,
location = location,
osm_type = osm_type,
osm_id = osm_id,
attractiveness = int(score),
must_do = False,
n_tags = int(n_tags),
duration = int(duration),
name_en = name_en,
image_url = image_url,
website_url = website_url
)
return_list.append(landmark)

View File

@ -1,38 +1,16 @@
from structs.landmark import Landmark
def take_most_important(landmarks: list[Landmark], N_important) -> list[Landmark] :
L = len(landmarks)
L_copy = []
L_clean = []
scores = [0]*len(landmarks)
names = []
name_id = {}
def take_most_important(landmarks: list[Landmark], n_important) -> list[Landmark]:
"""
Given a list of landmarks, return the n_important most important landmarks
Parameters:
landmarks: list[Landmark] - list of landmarks
n_important: int - number of most important landmarks to return
Returns:
list[Landmark] - list of the n_important most important landmarks
"""
for i, elem in enumerate(landmarks) :
if elem.name not in names :
names.append(elem.name)
name_id[elem.name] = [i]
L_copy.append(elem)
else :
name_id[elem.name] += [i]
scores = []
for j in name_id[elem.name] :
scores.append(L[j].attractiveness)
best_id = max(range(len(scores)), key=scores.__getitem__)
t = name_id[elem.name][best_id]
if t == i :
for old in L_copy :
if old.name == elem.name :
old.attractiveness = L[t].attractiveness
scores = [0]*len(L_copy)
for i, elem in enumerate(L_copy) :
scores[i] = elem.attractiveness
# Sort landmarks by attractiveness (descending)
landmarks.sort(key=lambda x: x.attractiveness, reverse=True)
res = sorted(range(len(scores)), key = lambda sub: scores[sub])[-(N_important-L):]
for i, elem in enumerate(L_copy) :
if i in res :
L_clean.append(elem)
return L_clean
return landmarks[:n_important]