ensure attractiveness is always an int
This commit is contained in:
parent
097abc5f29
commit
cdc9b0ecd1
@ -63,7 +63,7 @@ def new_trip(preferences: Preferences, start: tuple[float, float], end: tuple[fl
|
||||
refined_tour = refiner.refine_optimization(landmarks, base_tour, preferences.max_time_minute, preferences.detour_tolerance_minute)
|
||||
|
||||
linked_tour = LinkedLandmarks(refined_tour)
|
||||
# upon creation of the trip, persistence of both the trip and its landmarks is ensured. Ca
|
||||
# upon creation of the trip, persistence of both the trip and its landmarks is ensured
|
||||
trip = Trip.from_linked_landmarks(linked_tour, cache_client)
|
||||
return trip
|
||||
|
||||
@ -84,4 +84,4 @@ def get_landmark(landmark_uuid: str) -> Landmark:
|
||||
landmark = cache_client.get(f"landmark_{landmark_uuid}")
|
||||
return landmark
|
||||
except KeyError:
|
||||
raise HTTPException(status_code=404, detail="Landmark not found")
|
||||
raise HTTPException(status_code=404, detail="Landmark not found")
|
||||
|
@ -1,6 +1,6 @@
|
||||
city_bbox_side: 7500 #m
|
||||
radius_close_to: 50
|
||||
church_coeff: 0.75
|
||||
church_coeff: 0.5
|
||||
nature_coeff: 1.25
|
||||
overall_coeff: 10
|
||||
tag_exponent: 1.15
|
||||
|
@ -14,26 +14,22 @@ class Landmark(BaseModel) :
|
||||
osm_id : int
|
||||
attractiveness : int
|
||||
n_tags : int
|
||||
image_url : Optional[str] = None # TODO future
|
||||
image_url : Optional[str] = None
|
||||
website_url : Optional[str] = None
|
||||
wikipedia_url : Optional[str] = None
|
||||
description : Optional[str] = None # TODO future
|
||||
duration : Optional[int] = 0 # TODO future
|
||||
duration : Optional[int] = 0
|
||||
name_en : Optional[str] = None
|
||||
|
||||
# Unique ID of a given landmark
|
||||
uuid: str = Field(default_factory=uuid4) # TODO implement this ASAP
|
||||
uuid: str = Field(default_factory=uuid4)
|
||||
|
||||
# Additional properties depending on specific tour
|
||||
must_do : Optional[bool] = False
|
||||
must_avoid : Optional[bool] = False
|
||||
is_secondary : Optional[bool] = False # TODO future
|
||||
|
||||
time_to_reach_next : Optional[int] = 0 # TODO fix this in existing code
|
||||
next_uuid : Optional[str] = None # TODO implement this ASAP
|
||||
|
||||
def __hash__(self) -> int:
|
||||
return self.uuid.int
|
||||
time_to_reach_next : Optional[int] = 0
|
||||
next_uuid : Optional[str] = None
|
||||
|
||||
def __str__(self) -> str:
|
||||
time_to_next_str = f", time_to_next={self.time_to_reach_next}" if self.time_to_reach_next else ""
|
||||
@ -42,3 +38,15 @@ class Landmark(BaseModel) :
|
||||
if self.type in ["start", "finish", "nature", "shopping"] : type_str += '\t '
|
||||
return f'Landmark{type_str}: [{self.name} @{self.location}, score={self.attractiveness}{time_to_next_str}{is_secondary_str}]'
|
||||
|
||||
def distance(self, value: 'Landmark') -> float:
|
||||
return (self.location[0] - value.location[0])**2 + (self.location[1] - value.location[1])**2
|
||||
|
||||
def __hash__(self) -> int:
|
||||
return hash(self.name)
|
||||
|
||||
def __eq__(self, value: 'Landmark') -> bool:
|
||||
# eq and hash must be consistent
|
||||
# in particular, if two objects are equal, their hash must be equal
|
||||
# uuid and osm_id are just shortcuts to avoid comparing all the properties
|
||||
# if they are equal, we know that the name is also equal and in turn the hash is equal
|
||||
return self.uuid == value.uuid or self.osm_id == value.osm_id or (self.name == value.name and self.distance(value) < 0.001)
|
||||
|
@ -27,4 +27,4 @@ class Trip(BaseModel):
|
||||
# for landmark in landmarks:
|
||||
# cache_client.set(f"landmark_{landmark.uuid}", landmark, expire=3600)
|
||||
|
||||
return trip
|
||||
return trip
|
||||
|
@ -16,10 +16,8 @@ def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int:
|
||||
Args:
|
||||
p1 (Tuple[float, float]): Coordinates of the starting location.
|
||||
p2 (Tuple[float, float]): Coordinates of the destination.
|
||||
detour (float): Detour factor affecting the distance.
|
||||
speed (float): Walking speed in kilometers per hour.
|
||||
|
||||
Returns:
|
||||
Returns:
|
||||
int: Time to travel from p1 to p2 in minutes.
|
||||
"""
|
||||
|
||||
|
@ -1,15 +1,11 @@
|
||||
import math as m
|
||||
import math
|
||||
import yaml
|
||||
import logging
|
||||
|
||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
||||
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
||||
from pywikibot import ItemPage, Site
|
||||
from pywikibot import config
|
||||
config.put_throttle = 0
|
||||
config.maxlag = 0
|
||||
|
||||
from structs.preferences import Preferences, Preference
|
||||
from structs.preferences import Preferences
|
||||
from structs.landmark import Landmark
|
||||
from .take_most_important import take_most_important
|
||||
import constants
|
||||
@ -46,7 +42,7 @@ class LandmarkManager:
|
||||
self.viewpoint_bonus = parameters['viewpoint_bonus']
|
||||
self.pay_bonus = parameters['pay_bonus']
|
||||
self.N_important = parameters['N_important']
|
||||
|
||||
|
||||
with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
parameters = yaml.safe_load(f)
|
||||
self.walking_speed = parameters['average_walking_speed']
|
||||
@ -69,87 +65,42 @@ class LandmarkManager:
|
||||
preferences (Preferences): The user's preference settings that influence the landmark selection.
|
||||
|
||||
Returns:
|
||||
tuple[list[Landmark], list[Landmark]]:
|
||||
- A list of all existing landmarks.
|
||||
- A list of the most important landmarks based on the user's preferences.
|
||||
tuple[list[Landmark], list[Landmark]]:
|
||||
- A list of all existing landmarks.
|
||||
- A list of the most important landmarks based on the user's preferences.
|
||||
"""
|
||||
|
||||
max_walk_dist = (preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor
|
||||
reachable_bbox_side = min(max_walk_dist, self.max_bbox_side)
|
||||
|
||||
L = []
|
||||
# use set to avoid duplicates, this requires some __methods__ to be set in Landmark
|
||||
all_landmarks = set()
|
||||
|
||||
bbox = self.create_bbox(center_coordinates, reachable_bbox_side)
|
||||
# list for sightseeing
|
||||
if preferences.sightseeing.score != 0:
|
||||
score_function = lambda score: int(score*10*preferences.sightseeing.score/5) # self.count_elements_close_to(loc) +
|
||||
L1 = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function)
|
||||
L += L1
|
||||
score_function = lambda score: score * 10 * preferences.sightseeing.score / 5
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function)
|
||||
all_landmarks.update(current_landmarks)
|
||||
|
||||
# list for nature
|
||||
if preferences.nature.score != 0:
|
||||
score_function = lambda score: int(score*10*self.nature_coeff*preferences.nature.score/5) # self.count_elements_close_to(loc) +
|
||||
L2 = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, score_function)
|
||||
L += L2
|
||||
score_function = lambda score: score * 10 * self.nature_coeff * preferences.nature.score / 5
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, score_function)
|
||||
all_landmarks.update(current_landmarks)
|
||||
|
||||
# list for shopping
|
||||
if preferences.shopping.score != 0:
|
||||
score_function = lambda score: int(score*10*preferences.shopping.score/5) # self.count_elements_close_to(loc) +
|
||||
L3 = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function)
|
||||
L += L3
|
||||
score_function = lambda score: score * 10 * preferences.shopping.score / 5
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function)
|
||||
all_landmarks.update(current_landmarks)
|
||||
|
||||
|
||||
L = self.remove_duplicates(L)
|
||||
# self.correct_score(L, preferences)
|
||||
landmarks_constrained = take_most_important(all_landmarks, self.N_important)
|
||||
self.logger.info(f'Generated {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.')
|
||||
|
||||
L_constrained = take_most_important(L, self.N_important)
|
||||
self.logger.info(f'Generated {len(L)} landmarks around {center_coordinates}, and constrained to {len(L_constrained)} most important ones.')
|
||||
return all_landmarks, landmarks_constrained
|
||||
|
||||
return L, L_constrained
|
||||
|
||||
|
||||
def remove_duplicates(self, landmarks: list[Landmark]) -> list[Landmark]:
|
||||
"""
|
||||
Removes duplicate landmarks based on their names from the given list. Only retains the landmark with highest score
|
||||
|
||||
Parameters:
|
||||
landmarks (list[Landmark]): A list of Landmark objects.
|
||||
|
||||
Returns:
|
||||
list[Landmark]: A list of unique Landmark objects based on their names.
|
||||
"""
|
||||
|
||||
L_clean = []
|
||||
names = []
|
||||
|
||||
for landmark in landmarks:
|
||||
if landmark.name in names:
|
||||
continue
|
||||
else:
|
||||
names.append(landmark.name)
|
||||
L_clean.append(landmark)
|
||||
|
||||
return L_clean
|
||||
|
||||
|
||||
def correct_score(self, landmarks: list[Landmark], preferences: Preferences) -> None:
|
||||
"""
|
||||
Adjust the attractiveness score of each landmark in the list based on user preferences.
|
||||
|
||||
This method updates the attractiveness of each landmark by scaling it according to the user's preference score.
|
||||
The score adjustment is computed using a simple linear transformation based on the preference score.
|
||||
|
||||
Args:
|
||||
landmarks (list[Landmark]): A list of landmarks whose scores need to be corrected.
|
||||
preferences (Preferences): The user's preference settings that influence the attractiveness score adjustment.
|
||||
"""
|
||||
|
||||
score_dict = {
|
||||
preferences.sightseeing.type: preferences.sightseeing.score,
|
||||
preferences.nature.type: preferences.nature.score,
|
||||
preferences.shopping.type: preferences.shopping.score
|
||||
}
|
||||
for landmark in landmarks:
|
||||
landmark.attractiveness = int(landmark.attractiveness * score_dict[landmark.type] / 5)
|
||||
|
||||
|
||||
def count_elements_close_to(self, coordinates: tuple[float, float]) -> int:
|
||||
@ -172,7 +123,7 @@ class LandmarkManager:
|
||||
|
||||
radius = self.radius_close_to
|
||||
|
||||
alpha = (180*radius) / (6371000*m.pi)
|
||||
alpha = (180 * radius) / (6371000 * math.pi)
|
||||
bbox = {'latLower':lat-alpha,'lonLower':lon-alpha,'latHigher':lat+alpha,'lonHigher': lon+alpha}
|
||||
|
||||
# Build the query to find elements within the radius
|
||||
@ -216,7 +167,7 @@ class LandmarkManager:
|
||||
|
||||
# Convert distance to degrees
|
||||
lat_diff = half_side_length_km / 111 # 1 degree latitude is approximately 111 km
|
||||
lon_diff = half_side_length_km / (111 * m.cos(m.radians(lat))) # Adjust for longitude based on latitude
|
||||
lon_diff = half_side_length_km / (111 * math.cos(math.radians(lat))) # Adjust for longitude based on latitude
|
||||
|
||||
# Calculate bbox
|
||||
min_lat = lat - lat_diff
|
||||
@ -265,22 +216,18 @@ class LandmarkManager:
|
||||
result = self.overpass.query(query)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error fetching landmarks: {e}")
|
||||
return
|
||||
|
||||
continue
|
||||
|
||||
for elem in result.elements():
|
||||
|
||||
name = elem.tag('name') # Add name
|
||||
location = (elem.centerLat(), elem.centerLon()) # Add coordinates (lat, lon)
|
||||
name = elem.tag('name')
|
||||
location = (elem.centerLat(), elem.centerLon())
|
||||
|
||||
# TODO: exclude these from the get go
|
||||
# skip if unprecise location
|
||||
if name is None or location[0] is None:
|
||||
continue
|
||||
|
||||
# skip if unused
|
||||
# if 'disused:leisure' in elem.tags().keys():
|
||||
# continue
|
||||
|
||||
# skip if part of another building
|
||||
if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes':
|
||||
continue
|
||||
@ -291,7 +238,6 @@ class LandmarkManager:
|
||||
n_tags = len(elem.tags().keys()) # Add number of tags
|
||||
score = n_tags**self.tag_exponent # Add score
|
||||
website_url = None
|
||||
wikpedia_url = None
|
||||
image_url = None
|
||||
name_en = None
|
||||
|
||||
@ -299,22 +245,17 @@ class LandmarkManager:
|
||||
skip = False
|
||||
for tag in elem.tags().keys():
|
||||
if "pay" in tag:
|
||||
score += self.pay_bonus # discard payment options for tags
|
||||
# payment options are a good sign
|
||||
score += self.pay_bonus
|
||||
|
||||
if "disused" in tag:
|
||||
skip = True # skip disused amenities
|
||||
# skip disused amenities
|
||||
skip = True
|
||||
break
|
||||
|
||||
if "wiki" in tag:
|
||||
score += self.wikipedia_bonus # wikipedia entries count more
|
||||
|
||||
# if tag == "wikidata":
|
||||
# Q = elem.tag('wikidata')
|
||||
# site = Site("wikidata", "wikidata")
|
||||
# item = ItemPage(site, Q)
|
||||
# item.get()
|
||||
# n_languages = len(item.labels)
|
||||
# n_tags += n_languages/10
|
||||
# wikipedia entries count more
|
||||
score += self.wikipedia_bonus
|
||||
|
||||
if "viewpoint" in tag:
|
||||
score += self.viewpoint_bonus
|
||||
@ -335,47 +276,43 @@ class LandmarkManager:
|
||||
if tag == "building" and elem.tag('building') in ['retail', 'supermarket', 'parking']:
|
||||
skip = True
|
||||
break
|
||||
|
||||
# Get additional information
|
||||
# if tag == 'wikipedia' :
|
||||
# wikpedia_url = elem.tag('wikipedia')
|
||||
if tag in ['website', 'contact:website'] :
|
||||
|
||||
if tag in ['website', 'contact:website']:
|
||||
website_url = elem.tag(tag)
|
||||
if tag == 'image' :
|
||||
if tag == 'image':
|
||||
image_url = elem.tag('image')
|
||||
if tag =='name:en' :
|
||||
if tag =='name:en':
|
||||
name_en = elem.tag('name:en')
|
||||
|
||||
if skip:
|
||||
continue
|
||||
|
||||
score = score_function(score)
|
||||
if "place_of_worship" in elem.tags().values() :
|
||||
score = int(score*self.church_coeff)
|
||||
if "place_of_worship" in elem.tags().values():
|
||||
score = score * self.church_coeff
|
||||
duration = 15
|
||||
|
||||
elif "museum" in elem.tags().values() :
|
||||
score = int(score*self.church_coeff)
|
||||
elif "museum" in elem.tags().values():
|
||||
score = score * self.church_coeff
|
||||
duration = 60
|
||||
|
||||
else :
|
||||
else:
|
||||
duration = 5
|
||||
|
||||
# Generate the landmark and append it to the list
|
||||
# finally create our own landmark object
|
||||
landmark = Landmark(
|
||||
name=name,
|
||||
type=elem_type,
|
||||
location=location,
|
||||
osm_type=osm_type,
|
||||
osm_id=osm_id,
|
||||
attractiveness=score,
|
||||
must_do=False,
|
||||
n_tags=int(n_tags),
|
||||
duration = duration,
|
||||
name_en=name_en,
|
||||
image_url=image_url,
|
||||
# wikipedia_url=wikpedia_url,
|
||||
website_url=website_url
|
||||
name = name,
|
||||
type = elem_type,
|
||||
location = location,
|
||||
osm_type = osm_type,
|
||||
osm_id = osm_id,
|
||||
attractiveness = int(score),
|
||||
must_do = False,
|
||||
n_tags = int(n_tags),
|
||||
duration = int(duration),
|
||||
name_en = name_en,
|
||||
image_url = image_url,
|
||||
website_url = website_url
|
||||
)
|
||||
return_list.append(landmark)
|
||||
|
||||
|
@ -1,38 +1,16 @@
|
||||
from structs.landmark import Landmark
|
||||
|
||||
def take_most_important(landmarks: list[Landmark], N_important) -> list[Landmark] :
|
||||
L = len(landmarks)
|
||||
L_copy = []
|
||||
L_clean = []
|
||||
scores = [0]*len(landmarks)
|
||||
names = []
|
||||
name_id = {}
|
||||
def take_most_important(landmarks: list[Landmark], n_important) -> list[Landmark]:
|
||||
"""
|
||||
Given a list of landmarks, return the n_important most important landmarks
|
||||
Parameters:
|
||||
landmarks: list[Landmark] - list of landmarks
|
||||
n_important: int - number of most important landmarks to return
|
||||
Returns:
|
||||
list[Landmark] - list of the n_important most important landmarks
|
||||
"""
|
||||
|
||||
for i, elem in enumerate(landmarks) :
|
||||
if elem.name not in names :
|
||||
names.append(elem.name)
|
||||
name_id[elem.name] = [i]
|
||||
L_copy.append(elem)
|
||||
else :
|
||||
name_id[elem.name] += [i]
|
||||
scores = []
|
||||
for j in name_id[elem.name] :
|
||||
scores.append(L[j].attractiveness)
|
||||
best_id = max(range(len(scores)), key=scores.__getitem__)
|
||||
t = name_id[elem.name][best_id]
|
||||
if t == i :
|
||||
for old in L_copy :
|
||||
if old.name == elem.name :
|
||||
old.attractiveness = L[t].attractiveness
|
||||
|
||||
scores = [0]*len(L_copy)
|
||||
for i, elem in enumerate(L_copy) :
|
||||
scores[i] = elem.attractiveness
|
||||
# Sort landmarks by attractiveness (descending)
|
||||
landmarks.sort(key=lambda x: x.attractiveness, reverse=True)
|
||||
|
||||
res = sorted(range(len(scores)), key = lambda sub: scores[sub])[-(N_important-L):]
|
||||
|
||||
for i, elem in enumerate(L_copy) :
|
||||
if i in res :
|
||||
L_clean.append(elem)
|
||||
|
||||
return L_clean
|
||||
return landmarks[:n_important]
|
||||
|
Loading…
x
Reference in New Issue
Block a user