more balanced scores
All checks were successful
Build and push docker image / Build (pull_request) Successful in 1m41s
All checks were successful
Build and push docker image / Build (pull_request) Successful in 1m41s
This commit is contained in:
@@ -23,8 +23,8 @@ class LandmarkManager:
|
||||
|
||||
radius_close_to: int # radius in meters
|
||||
church_coeff: float # coeff to adjsut score of churches
|
||||
park_coeff: float # coeff to adjust score of parks
|
||||
tag_coeff: float # coeff to adjust weight of tags
|
||||
nature_coeff: float # coeff to adjust score of parks
|
||||
overall_coeff: float # coeff to adjust weight of tags
|
||||
N_important: int # number of important landmarks to consider
|
||||
|
||||
|
||||
@@ -38,8 +38,13 @@ class LandmarkManager:
|
||||
self.max_bbox_side = parameters['city_bbox_side']
|
||||
self.radius_close_to = parameters['radius_close_to']
|
||||
self.church_coeff = parameters['church_coeff']
|
||||
self.park_coeff = parameters['park_coeff']
|
||||
self.tag_coeff = parameters['tag_coeff']
|
||||
self.nature_coeff = parameters['nature_coeff']
|
||||
self.overall_coeff = parameters['overall_coeff']
|
||||
self.tag_exponent = parameters['tag_exponent']
|
||||
self.image_bonus = parameters['image_bonus']
|
||||
self.wikipedia_bonus = parameters['wikipedia_bonus']
|
||||
self.viewpoint_bonus = parameters['viewpoint_bonus']
|
||||
self.pay_bonus = parameters['pay_bonus']
|
||||
self.N_important = parameters['N_important']
|
||||
|
||||
with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
||||
@@ -76,25 +81,25 @@ class LandmarkManager:
|
||||
bbox = self.create_bbox(center_coordinates, reachable_bbox_side)
|
||||
# list for sightseeing
|
||||
if preferences.sightseeing.score != 0:
|
||||
score_function = lambda loc, n_tags: int((((n_tags**1.2)*self.tag_coeff) )*self.church_coeff) # self.count_elements_close_to(loc) +
|
||||
score_function = lambda score: int(score*10)*preferences.sightseeing.score/5 # self.count_elements_close_to(loc) +
|
||||
L1 = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function)
|
||||
L += L1
|
||||
|
||||
# list for nature
|
||||
if preferences.nature.score != 0:
|
||||
score_function = lambda loc, n_tags: int((((n_tags**1.2)*self.tag_coeff) )*self.park_coeff) # self.count_elements_close_to(loc) +
|
||||
score_function = lambda score: int(score*10*self.nature_coeff)*preferences.nature.score/5 # self.count_elements_close_to(loc) +
|
||||
L2 = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, score_function)
|
||||
L += L2
|
||||
|
||||
# list for shopping
|
||||
if preferences.shopping.score != 0:
|
||||
score_function = lambda loc, n_tags: int(((n_tags**1.2)*self.tag_coeff)) # self.count_elements_close_to(loc) +
|
||||
score_function = lambda score: int(score*10)*preferences.shopping.score/5 # self.count_elements_close_to(loc) +
|
||||
L3 = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function)
|
||||
L += L3
|
||||
|
||||
|
||||
L = self.remove_duplicates(L)
|
||||
self.correct_score(L, preferences)
|
||||
# self.correct_score(L, preferences)
|
||||
|
||||
L_constrained = take_most_important(L, self.N_important)
|
||||
self.logger.info(f'Generated {len(L)} landmarks around {center_coordinates}, and constrained to {len(L_constrained)} most important ones.')
|
||||
@@ -273,8 +278,8 @@ class LandmarkManager:
|
||||
continue
|
||||
|
||||
# skip if unused
|
||||
if 'disused:leisure' in elem.tags().keys():
|
||||
continue
|
||||
# if 'disused:leisure' in elem.tags().keys():
|
||||
# continue
|
||||
|
||||
# skip if part of another building
|
||||
if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes':
|
||||
@@ -284,19 +289,20 @@ class LandmarkManager:
|
||||
osm_id = elem.id() # Add OSM id
|
||||
elem_type = landmarktype # Add the landmark type as 'sightseeing,
|
||||
n_tags = len(elem.tags().keys()) # Add number of tags
|
||||
score = n_tags**self.tag_exponent # Add score
|
||||
|
||||
# remove specific tags
|
||||
skip = False
|
||||
for tag in elem.tags().keys():
|
||||
if "pay" in tag:
|
||||
n_tags -= 1 # discard payment options for tags
|
||||
score += self.pay_bonus # discard payment options for tags
|
||||
|
||||
if "disused" in tag:
|
||||
skip = True # skip disused amenities
|
||||
break
|
||||
|
||||
if "wikipedia" in tag:
|
||||
n_tags += 1 # wikipedia entries count more
|
||||
if "wiki" in tag:
|
||||
score += self.wikipedia_bonus # wikipedia entries count more
|
||||
|
||||
# if tag == "wikidata":
|
||||
# Q = elem.tag('wikidata')
|
||||
@@ -305,15 +311,16 @@ class LandmarkManager:
|
||||
# item.get()
|
||||
# n_languages = len(item.labels)
|
||||
# n_tags += n_languages/10
|
||||
|
||||
if "viewpoint" in tag:
|
||||
n_tags += 10
|
||||
score += self.viewpoint_bonus
|
||||
|
||||
if "image" in tag:
|
||||
score += self.image_bonus
|
||||
|
||||
if elem_type != "nature":
|
||||
if "leisure" in tag and elem.tag('leisure') == "park":
|
||||
elem_type = "nature"
|
||||
|
||||
if elem_type == "nature":
|
||||
n_tags += 1
|
||||
|
||||
if landmarktype != "shopping":
|
||||
if "shop" in tag:
|
||||
@@ -326,20 +333,22 @@ class LandmarkManager:
|
||||
if skip:
|
||||
continue
|
||||
|
||||
score = score_function(location, n_tags)
|
||||
if score != 0:
|
||||
# Generate the landmark and append it to the list
|
||||
landmark = Landmark(
|
||||
name=name,
|
||||
type=elem_type,
|
||||
location=location,
|
||||
osm_type=osm_type,
|
||||
osm_id=osm_id,
|
||||
attractiveness=score,
|
||||
must_do=False,
|
||||
n_tags=int(n_tags)
|
||||
)
|
||||
return_list.append(landmark)
|
||||
score = score_function(score)
|
||||
if "place_of_worship" in elem.tags().values() :
|
||||
score = int(score*self.church_coeff)
|
||||
|
||||
# Generate the landmark and append it to the list
|
||||
landmark = Landmark(
|
||||
name=name,
|
||||
type=elem_type,
|
||||
location=location,
|
||||
osm_type=osm_type,
|
||||
osm_id=osm_id,
|
||||
attractiveness=score,
|
||||
must_do=False,
|
||||
n_tags=int(n_tags)
|
||||
)
|
||||
return_list.append(landmark)
|
||||
|
||||
self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
|
||||
|
||||
|
@@ -203,7 +203,7 @@ class Optimizer:
|
||||
return c, A_ub, [max_steps]
|
||||
|
||||
|
||||
def respect_number(self, L: int):
|
||||
def respect_number(self, L, max_landmarks: int):
|
||||
"""
|
||||
Generate constraints to ensure each landmark is visited only once and cap the total number of visited landmarks.
|
||||
|
||||
@@ -224,7 +224,7 @@ class Optimizer:
|
||||
b.append(1)
|
||||
|
||||
A = np.vstack((A, ones*L))
|
||||
b.append(self.max_landmarks+1)
|
||||
b.append(max_landmarks+1)
|
||||
|
||||
return A, b
|
||||
|
||||
@@ -433,6 +433,7 @@ class Optimizer:
|
||||
self,
|
||||
max_time: int,
|
||||
landmarks: list[Landmark],
|
||||
max_landmarks: int = None
|
||||
) -> list[Landmark]:
|
||||
"""
|
||||
Main optimization pipeline to solve the landmark visiting problem.
|
||||
@@ -443,15 +444,18 @@ class Optimizer:
|
||||
Args:
|
||||
max_time (int): Maximum time allowed for the tour in minutes.
|
||||
landmarks (list[Landmark]): List of landmarks to visit.
|
||||
max_landmarks (int): Maximum number of landmarks visited
|
||||
Returns:
|
||||
list[Landmark]: The optimized tour of landmarks with updated travel times, or None if no valid solution is found.
|
||||
"""
|
||||
if max_landmarks is None :
|
||||
max_landmarks = self.max_landmarks
|
||||
|
||||
L = len(landmarks)
|
||||
|
||||
# SET CONSTRAINTS FOR INEQUALITY
|
||||
c, A_ub, b_ub = self.init_ub_dist(landmarks, max_time) # Add the distances from each landmark to the other
|
||||
A, b = self.respect_number(L) # Respect max number of visits (no more possible stops than landmarks).
|
||||
A, b = self.respect_number(L, max_landmarks) # Respect max number of visits (no more possible stops than landmarks).
|
||||
A_ub = np.vstack((A_ub, A), dtype=np.int16)
|
||||
b_ub += b
|
||||
A, b = self.break_sym(L) # break the 'zig-zag' symmetry
|
||||
|
@@ -17,7 +17,7 @@ class Refiner :
|
||||
detour_factor: float # detour factor of straight line vs real distance in cities
|
||||
detour_corridor_width: float # width of the corridor around the path
|
||||
average_walking_speed: float # average walking speed of adult
|
||||
max_landmarks: int # max number of landmarks to visit
|
||||
max_landmarks_refiner: int # max number of landmarks to visit
|
||||
optimizer: Optimizer # optimizer object
|
||||
|
||||
def __init__(self, optimizer: Optimizer) :
|
||||
@@ -29,7 +29,7 @@ class Refiner :
|
||||
self.detour_factor = parameters['detour_factor']
|
||||
self.detour_corridor_width = parameters['detour_corridor_width']
|
||||
self.average_walking_speed = parameters['average_walking_speed']
|
||||
self.max_landmarks = parameters['max_landmarks'] + 4
|
||||
self.max_landmarks_refiner = parameters['max_landmarks_refiner']
|
||||
|
||||
|
||||
def create_corridor(self, landmarks: list[Landmark], width: float) :
|
||||
@@ -308,8 +308,8 @@ class Refiner :
|
||||
"""
|
||||
|
||||
# No need to refine if no detour is taken
|
||||
if detour == 0:
|
||||
return base_tour
|
||||
# if detour == 0:
|
||||
# return base_tour
|
||||
|
||||
minor_landmarks = self.get_minor_landmarks(all_landmarks, base_tour, self.detour_corridor_width)
|
||||
|
||||
@@ -322,7 +322,8 @@ class Refiner :
|
||||
# get a new tour
|
||||
new_tour = self.optimizer.solve_optimization(
|
||||
max_time = max_time + detour,
|
||||
landmarks = full_set
|
||||
landmarks = full_set,
|
||||
max_landmarks = self.max_landmarks_refiner
|
||||
)
|
||||
|
||||
if new_tour is None:
|
||||
|
Reference in New Issue
Block a user