Merge pull request 'feature/backend/better_time_management' (#34) from feature/backend/better_time_management into main
Reviewed-on: #34
This commit is contained in:
commit
e18a9c63e6
3
.vscode/settings.json
vendored
Normal file
3
.vscode/settings.json
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
{
|
||||
"cmake.ignoreCMakeListsMissing": true
|
||||
}
|
@ -1,12 +1,37 @@
|
||||
# Backend
|
||||
|
||||
This repository contains the backend code for the application. It utilizes FastAPI that allows to quickly create a RESTful API that exposes the endpoints of the route optimizer.
|
||||
|
||||
This repository contains the backend code for the application. It utilizes **FastAPI** to quickly create a RESTful API that exposes the endpoints of the route optimizer.
|
||||
|
||||
## Getting Started
|
||||
- The code of the python application is located in the `src` directory.
|
||||
- Package management is handled with `pipenv` and the dependencies are listed in the `Pipfile`.
|
||||
- Since the application is aimed to be deployed in a container, the `Dockerfile` is provided to build the image.
|
||||
|
||||
### Directory Structure
|
||||
- The code for the Python application is located in the `src` directory.
|
||||
- Package management is handled with **pipenv**, and the dependencies are listed in the `Pipfile`.
|
||||
- Since the application is designed to be deployed in a container, the `Dockerfile` is provided to build the image.
|
||||
|
||||
### Setting Up the Development Environment
|
||||
|
||||
To set up your development environment using **pipenv**, follow these steps:
|
||||
|
||||
1. Install `pipenv` by running:
|
||||
```bash
|
||||
sudo apt install pipenv
|
||||
```
|
||||
|
||||
2. Create and activate a virtual environment:
|
||||
```bash
|
||||
pipenv shell
|
||||
```
|
||||
|
||||
3. Install the dependencies listed in the `Pipfile`:
|
||||
```bash
|
||||
pipenv install
|
||||
```
|
||||
|
||||
4. The virtual environment will be created under:
|
||||
```bash
|
||||
~/.local/share/virtualenvs/...
|
||||
```
|
||||
|
||||
### Deployment
|
||||
To deploy the backend docker container, we use kubernetes. Modifications to the backend are automatically pushed to a two-stage environment through the CI pipeline. See [deployment/README](deployment/README.md] for further information.
|
||||
|
@ -45,7 +45,6 @@ sightseeing:
|
||||
- gallery
|
||||
- artwork
|
||||
- aquarium
|
||||
|
||||
historic: ''
|
||||
amenity:
|
||||
- planetarium
|
||||
|
@ -23,7 +23,7 @@ def test(start_coords: tuple[float, float], finish_coords: tuple[float, float] =
|
||||
sightseeing=Preference(type='sightseeing', score = 5),
|
||||
nature=Preference(type='nature', score = 5),
|
||||
shopping=Preference(type='shopping', score = 5),
|
||||
max_time_minute=100,
|
||||
max_time_minute=15,
|
||||
detour_tolerance_minute=0
|
||||
)
|
||||
|
||||
@ -74,6 +74,7 @@ def test(start_coords: tuple[float, float], finish_coords: tuple[float, float] =
|
||||
# test(tuple((48.8344400, 2.3220540))) # Café Chez César
|
||||
# test(tuple((48.8375946, 2.2949904))) # Point random
|
||||
# test(tuple((47.377859, 8.540585))) # Zurich HB
|
||||
# test(tuple((45.758217, 4.831814))) # Lyon Bellecour
|
||||
test(tuple((48.5848435, 7.7332974))) # Strasbourg Gare
|
||||
# test(tuple((45.758217, 4.831814))) # Lyon Bellecour
|
||||
# test(tuple((48.5848435, 7.7332974))) # Strasbourg Gare
|
||||
# test(tuple((48.2067858, 16.3692340))) # Vienne
|
||||
test(tuple((48.084588, 7.280405))) # Turckheim
|
||||
|
@ -94,6 +94,8 @@ class LandmarkManager:
|
||||
if preferences.shopping.score != 0:
|
||||
score_function = lambda score: score * 10 * preferences.shopping.score / 5
|
||||
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function)
|
||||
# set time for all shopping activites :
|
||||
for landmark in current_landmarks : landmark.duration = 45
|
||||
all_landmarks.update(current_landmarks)
|
||||
|
||||
|
||||
@ -246,11 +248,11 @@ class LandmarkManager:
|
||||
image_url = None
|
||||
name_en = None
|
||||
|
||||
# remove specific tags
|
||||
# Adjust scoring
|
||||
skip = False
|
||||
for tag in elem.tags().keys():
|
||||
if "pay" in tag:
|
||||
# payment options are a good sign
|
||||
# payment options are misleading and should not count for the scoring.
|
||||
score += self.pay_bonus
|
||||
|
||||
if "disused" in tag:
|
||||
@ -263,10 +265,12 @@ class LandmarkManager:
|
||||
score += self.wikipedia_bonus
|
||||
|
||||
if "viewpoint" in tag:
|
||||
# viewpoints must count more
|
||||
score += self.viewpoint_bonus
|
||||
duration = 10
|
||||
|
||||
if "image" in tag:
|
||||
# images must count more
|
||||
score += self.image_bonus
|
||||
|
||||
if elem_type != "nature":
|
||||
@ -282,6 +286,7 @@ class LandmarkManager:
|
||||
skip = True
|
||||
break
|
||||
|
||||
# Extract image, website and english name
|
||||
if tag in ['website', 'contact:website']:
|
||||
website_url = elem.tag(tag)
|
||||
if tag == 'image':
|
||||
@ -295,10 +300,9 @@ class LandmarkManager:
|
||||
score = score_function(score)
|
||||
if "place_of_worship" in elem.tags().values():
|
||||
score = score * self.church_coeff
|
||||
duration = 15
|
||||
duration = 10
|
||||
|
||||
elif "museum" in elem.tags().values():
|
||||
score = score * self.church_coeff
|
||||
elif "museum" in elem.tags().values() or "aquarium" in elem.tags().values() or "planetarium" in elem.tags().values():
|
||||
duration = 60
|
||||
|
||||
else:
|
||||
|
@ -487,7 +487,7 @@ class Optimizer:
|
||||
|
||||
# Raise error if no solution is found
|
||||
if not res.success :
|
||||
raise ArithmeticError("No solution could be found, the problem is overconstrained. Please adapt your must_dos")
|
||||
raise ArithmeticError("No solution could be found, the problem is overconstrained. Try with a longer trip (>30 minutes).")
|
||||
|
||||
# If there is a solution, we're good to go, just check for connectiveness
|
||||
order, circles = self.is_connected(res.x)
|
||||
|
@ -2,6 +2,7 @@ import yaml, logging
|
||||
|
||||
from shapely import buffer, LineString, Point, Polygon, MultiPoint, concave_hull
|
||||
from math import pi
|
||||
from typing import List
|
||||
|
||||
from structs.landmark import Landmark
|
||||
from . import take_most_important, get_time_separation
|
||||
@ -133,6 +134,21 @@ class Refiner :
|
||||
i += 1
|
||||
|
||||
return tour
|
||||
|
||||
def integrate_landmarks(self, sub_list: List[Landmark], main_list: List[Landmark]) :
|
||||
"""
|
||||
Inserts 'sub_list' of Landmarks inside the 'main_list' by leaving the ends untouched.
|
||||
|
||||
Args:
|
||||
sub_list : the list of Landmarks to be inserted inside of the 'main_list'.
|
||||
main_list : the original list with start and finish.
|
||||
|
||||
Returns:
|
||||
the full list.
|
||||
"""
|
||||
sub_list.append(main_list[-1]) # add finish back
|
||||
return main_list[:-1] + sub_list # create full set of possible landmarks
|
||||
|
||||
|
||||
|
||||
def find_shortest_path_through_all_landmarks(self, landmarks: list[Landmark]) -> tuple[list[Landmark], Polygon]:
|
||||
@ -253,6 +269,11 @@ class Refiner :
|
||||
except :
|
||||
better_tour_poly = concave_hull(MultiPoint(coords)) # Create concave hull with "core" of tour leaving out start and finish
|
||||
xs, ys = better_tour_poly.exterior.xy
|
||||
"""
|
||||
ERROR HERE :
|
||||
Exception has occurred: AttributeError
|
||||
'LineString' object has no attribute 'exterior'
|
||||
"""
|
||||
|
||||
|
||||
# reverse the xs and ys
|
||||
@ -315,26 +336,30 @@ class Refiner :
|
||||
|
||||
self.logger.info(f"Using {len(minor_landmarks)} minor landmarks around the predicted path")
|
||||
|
||||
# full set of visitable landmarks
|
||||
full_set = base_tour[:-1] + minor_landmarks # create full set of possible landmarks (without finish)
|
||||
full_set.append(base_tour[-1]) # add finish back
|
||||
# Full set of visitable landmarks.
|
||||
full_set = self.integrate_landmarks(minor_landmarks, base_tour) # could probably be optimized with less overhead
|
||||
|
||||
# get a new tour
|
||||
# Generate a new tour with the optimizer.
|
||||
new_tour = self.optimizer.solve_optimization(
|
||||
max_time = max_time + detour,
|
||||
landmarks = full_set,
|
||||
max_landmarks = self.max_landmarks_refiner
|
||||
)
|
||||
|
||||
# If unsuccessful optimization, use the base_tour.
|
||||
if new_tour is None:
|
||||
self.logger.warning("No solution found for the refined tour. Returning the initial tour.")
|
||||
new_tour = base_tour
|
||||
|
||||
# If only one landmark, return it.
|
||||
if len(new_tour) < 4 :
|
||||
return new_tour
|
||||
|
||||
# Find shortest path using the nearest neighbor heuristic
|
||||
# Find shortest path using the nearest neighbor heuristic.
|
||||
better_tour, better_poly = self.find_shortest_path_through_all_landmarks(new_tour)
|
||||
|
||||
# Fix the tour using Polygons if the path looks weird
|
||||
# Fix the tour using Polygons if the path looks weird.
|
||||
# Conditions : circular trip and invalid polygon.
|
||||
if base_tour[0].location == base_tour[-1].location and not better_poly.is_valid :
|
||||
better_tour = self.fix_using_polygon(better_tour)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user