working split
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m46s
Run linting on the backend code / Build (pull_request) Successful in 2m31s
Run testing on the backend code / Build (pull_request) Failing after 12m37s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 29s

This commit is contained in:
kscheidecker 2025-06-22 14:24:00 +02:00
parent 6921ab57f8
commit e2d3d29956
13 changed files with 369 additions and 103 deletions

3
backend/.gitignore vendored
View File

@ -12,6 +12,9 @@ __pycache__/
# C extensions
*.so
# Pytest reports
report.html
# Distribution / packaging
.Python
build/

File diff suppressed because one or more lines are too long

View File

@ -259,15 +259,7 @@ class LandmarkManager:
if tags.get('shop') is not None and landmarktype != 'shopping' :
continue
# Maybe a bit too inefficient
# for key in tags.keys():
# if 'disused:' in key or 'boundary:' in key :
# break
# if 'building:' in key or 'pay' in key :
# n_tags -= 1
# Convert this to Landmark object
# TODO: convert to proto landmark and store rest to memcache
landmark = Landmark(name=name,
type=landmarktype,
location=coords,

View File

@ -0,0 +1,117 @@
"""Main app for backend api"""
import logging
import time
import random
from fastapi import HTTPException, APIRouter
from ..structs.landmark import Landmark
from ..structs.preferences import Preferences, Preference
from ..landmarks.landmarks_manager import LandmarkManager
# Setup the logger and the Landmarks Manager
logger = logging.getLogger(__name__)
manager = LandmarkManager()
# Start the router
router = APIRouter()
@router.post("/get/landmarks")
def get_landmarks(
preferences: Preferences,
start: tuple[float, float],
) -> list[Landmark]:
"""
Function that returns all available landmarks given some preferences and a start position.
Args:
preferences : the preferences specified by the user as the post body
start : the coordinates of the starting point
Returns:
list[Landmark] : The full list of fetched landmarks
"""
if preferences is None:
raise HTTPException(status_code=406, detail="Preferences not provided or incomplete.")
if (preferences.shopping.score == 0 and
preferences.sightseeing.score == 0 and
preferences.nature.score == 0) :
raise HTTPException(status_code=406, detail="All preferences are 0.")
if start is None:
raise HTTPException(status_code=406, detail="Start coordinates not provided")
if not (-90 <= start[0] <= 90 or -180 <= start[1] <= 180):
raise HTTPException(status_code=422, detail="Start coordinates not in range")
logger.info(f"Requested new trip generation. Details:\n\tCoordinates: {start}\n\tTime: {preferences.max_time_minute}\n\tSightseeing: {preferences.sightseeing.score}\n\tNature: {preferences.nature.score}\n\tShopping: {preferences.shopping.score}")
start_time = time.time()
# Generate the landmarks from the start location
landmarks, _ = manager.generate_landmarks_list(
center_coordinates = start,
preferences = preferences
)
if len(landmarks) == 0 :
raise HTTPException(status_code=500, detail="No landmarks were found.")
t_generate_landmarks = time.time() - start_time
logger.info(f'Fetched {len(landmarks)} landmarks in \t: {round(t_generate_landmarks,3)} seconds')
return landmarks
@router.post("/landmarks/get-nearby/{lat}/{lon}")
def get_landmarks_nearby(
lat: float,
lon: float
) -> list[Landmark] :
"""
Suggests nearby landmarks based on a given latitude and longitude.
This endpoint returns a curated list of up to 5 landmarks around the given geographical coordinates. It uses fixed preferences for
sightseeing, shopping, and nature, with a maximum time constraint of 30 minutes to limit the number of landmarks returned.
Args:
lat (float): Latitude of the user's current location.
lon (float): Longitude of the user's current location.
Returns:
list[Landmark]: A list of selected nearby landmarks.
"""
logger.info(f'Fetching landmarks nearby ({lat}, {lon}).')
# Define fixed preferences:
prefs = Preferences(
sightseeing = Preference(
type='sightseeing',
score=5
),
shopping = Preference(
type='shopping',
score=2
),
nature = Preference(
type='nature',
score=5
),
max_time_minute=30,
detour_tolerance_minute=0,
)
# Find the landmarks around the location
_, landmarks_around = manager.generate_landmarks_list(
center_coordinates = (lat, lon),
preferences = prefs,
allow_clusters=False,
)
if len(landmarks_around) == 0 :
raise HTTPException(status_code=500, detail="No landmarks were found.")
# select 5 landmarks from there
if len(landmarks_around) > 6 :
landmarks_around = landmarks_around[:2] + random.sample(landmarks_around[3:], 2)
logger.info(f'Found {len(landmarks_around)} landmarks nearby ({lat}, {lon}).')
logger.debug('Suggested landmarks :\n\t' + '\n\t'.join(f'{landmark}' for landmark in landmarks_around))
return landmarks_around

View File

@ -33,14 +33,14 @@ def configure_logging():
# silence the chatty logs loki generates itself
logging.getLogger('urllib3.connectionpool').setLevel(logging.WARNING)
# no need for time since it's added by loki or can be shown in kube logs
logging_format = '%(name)s - %(levelname)s - %(message)s'
logging_format = '%(name)-55s - %(levelname)-7s - %(message)s'
else:
# if we are in a debug (local) session, set verbose and rich logging
from rich.logging import RichHandler
logging_handlers = [RichHandler()]
logging_level = logging.DEBUG if is_debug else logging.INFO
logging_format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
logging_format = '%(asctime)s - %(name)-55s - %(levelname)-7s - %(message)s'

View File

@ -11,7 +11,9 @@ from .structs.preferences import Preferences, Preference
from .structs.linked_landmarks import LinkedLandmarks
from .structs.trip import Trip
from .landmarks.landmarks_manager import LandmarkManager
from .toilets.toilet_routes import router as toilets_router
from .toilets.toilets_route import router as toilets_router
from .optimization.optimization_routes import router as optimization_router
from .landmarks.landmarks_routes import router as landmarks_router
from .optimization.optimizer import Optimizer
from .optimization.refiner import Refiner
from .overpass.overpass import fill_cache
@ -39,13 +41,17 @@ app = FastAPI(lifespan=lifespan)
app.include_router(toilets_router)
app.include_router(optimization_router)
app.include_router(landmarks_router)
@app.post("/trip/new")
def new_trip(preferences: Preferences,
start: tuple[float, float],
end: tuple[float, float] | None = None,
background_tasks: BackgroundTasks = None) -> Trip:
def new_trip(
preferences: Preferences,
start: tuple[float, float],
end: tuple[float, float] | None = None,
background_tasks: BackgroundTasks = None
) -> Trip:
"""
Main function to call the optimizer.
@ -226,44 +232,3 @@ def update_trip_time(trip_uuid: str, removed_landmark_uuid: str) -> Trip:
return trip
# TODO: get stuff to do nearby. The idea is to have maybe thhe 3 best things to do within 500m and 2 hidden gems.
@app.post("/landmarks/get-nearby/{lat}/{lon}")
def get_landmarks_nearby(lat: float, lon: float) -> list[Landmark] :
# preferences = {"sightseeing": {"type": "sightseeing", "score": 0},
# "nature": {"type": "nature", "score": 0},
# "shopping": {"type": "shopping", "score": 5},
# "max_time_minute": 30,
# "detour_tolerance_minute": 0},
# Find the landmarks around the location
_, landmarks_around = manager.generate_landmarks_list(
center_coordinates = (lat, lon),
preferences = Preferences(
sightseeing = Preference(
type='sightseeing',
score=5
),
shopping = Preference(
type='shopping',
score=2
),
nature = Preference(
type='nature',
score=5
),
max_time_minute=30,
detour_tolerance_minute=0),
allow_clusters=False
)
if len(landmarks_around) == 0 :
raise HTTPException(status_code=500, detail="No landmarks were found.")
# select 5 landmarks from there
if len(landmarks_around) > 6 :
landmarks_around = landmarks_around[:2] + random.sample(landmarks_around[3:], 2)
logger.info('Suggested landmarks :\n\t' + '\n\t'.join(f'{landmark}' for landmark in landmarks_around))
return landmarks_around

View File

@ -0,0 +1,135 @@
"""Main app for backend api"""
import logging
import time
import yaml
from fastapi import HTTPException, APIRouter, BackgroundTasks
from ..structs.landmark import Landmark
from ..structs.preferences import Preferences
from ..structs.linked_landmarks import LinkedLandmarks
from ..utils.take_most_important import take_most_important
from ..structs.trip import Trip
from ..optimization.optimizer import Optimizer
from ..optimization.refiner import Refiner
from ..overpass.overpass import fill_cache
from ..cache import client as cache_client
from ..constants import LANDMARK_PARAMETERS_PATH
# Setup the Logger, Optimizer and Refiner
logger = logging.getLogger(__name__)
optimizer = Optimizer()
refiner = Refiner(optimizer=optimizer)
# Start the router
router = APIRouter()
@router.post("/optimize/trip")
def optimize_trip(
preferences: Preferences,
landmarks: list[Landmark],
start: tuple[float, float],
end: tuple[float, float] | None = None,
background_tasks: BackgroundTasks = None
) -> Trip:
"""
Main function to call the optimizer.
Args:
preferences (Preferences) : the preferences specified by the user as the post body.
start (tuple[float, float]) : the coordinates of the starting point.
end tuple[float, float] : the coordinates of the finishing point.
backgroud_tasks (BackgroundTasks) : necessary to fill the cache after the trip has been returned.
Returns:
(uuid) : The uuid of the first landmark in the optimized route
"""
if preferences is None:
raise HTTPException(status_code=406, detail="Preferences not provided or incomplete.")
if len(landmarks) == 0 :
raise HTTPException(status_code=406, detail="No landmarks provided for computing the trip.")
if (preferences.shopping.score == 0 and
preferences.sightseeing.score == 0 and
preferences.nature.score == 0) :
raise HTTPException(status_code=406, detail="All preferences are 0.")
if start is None:
raise HTTPException(status_code=406, detail="Start coordinates not provided")
if not (-90 <= start[0] <= 90 or -180 <= start[1] <= 180):
raise HTTPException(status_code=422, detail="Start coordinates not in range")
if end is None:
end = start
logger.info("No end coordinates provided. Using start=end.")
# Start the timer
start_time = time.time()
logger.info(f"Requested new trip generation. Details:\n\tCoordinates: {start}\n\tTime: {preferences.max_time_minute}\n\tSightseeing: {preferences.sightseeing.score}\n\tNature: {preferences.nature.score}\n\tShopping: {preferences.shopping.score}")
start_landmark = Landmark(name='start',
type='start',
location=(start[0], start[1]),
osm_type='start',
osm_id=0,
attractiveness=0,
duration=0,
must_do=True,
n_tags = 0)
end_landmark = Landmark(name='finish',
type='finish',
location=(end[0], end[1]),
osm_type='end',
osm_id=0,
attractiveness=0,
duration=0,
must_do=True,
n_tags=0)
# From the parameters load the length at which to truncate the landmarks list.
with LANDMARK_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
n_important = parameters['N_important']
# Truncate to the most important landmarks for a shorter list
landmarks_short = take_most_important(landmarks, n_important)
# insert start and finish to the shorter landmarks list
landmarks_short.insert(0, start_landmark)
landmarks_short.append(end_landmark)
# First stage optimization
try:
base_tour = optimizer.solve_optimization(preferences.max_time_minute, landmarks_short)
except Exception as exc:
logger.error(f"Trip generation failed: {str(exc)}")
raise HTTPException(status_code=500, detail=f"Optimization failed: {str(exc)}") from exc
t_first_stage = time.time() - start_time
start_time = time.time()
# Second stage optimization
try :
refined_tour = refiner.refine_optimization(landmarks, base_tour,
preferences.max_time_minute,
preferences.detour_tolerance_minute)
except Exception as exc :
logger.warning(f"Refiner failed. Proceeding with base trip {str(exc)}")
refined_tour = base_tour
t_second_stage = time.time() - start_time
logger.debug(f'First stage optimization\t: {round(t_first_stage,3)} seconds')
logger.debug(f'Second stage optimization\t: {round(t_second_stage,3)} seconds')
logger.info(f'Total computation time\t: {round(t_first_stage + t_second_stage,3)} seconds')
linked_tour = LinkedLandmarks(refined_tour)
# upon creation of the trip, persistence of both the trip and its landmarks is ensured.
trip = Trip.from_linked_landmarks(linked_tour, cache_client)
logger.info(f'Optimized a trip of {trip.total_time} minutes with {len(refined_tour)} landmarks in {round(t_first_stage + t_second_stage,3)} seconds.')
logger.info('Detailed trip :\n\t' + '\n\t'.join(f'{landmark}' for landmark in refined_tour))
background_tasks.add_task(fill_cache)
return trip

View File

@ -402,6 +402,8 @@ def fill_cache():
n_files = 0
total = 0
overpass.logger.info('Trip successfully returned, starting to fill cache.')
with os.scandir(OSM_CACHE_DIR) as it:
for entry in it:
if entry.is_file() and entry.name.startswith('hollow_'):

View File

@ -1,16 +0,0 @@
from typing import Optional
from uuid import uuid4, UUID
from pydantic import BaseModel, Field
# Output to frontend
class ProtoLandmark(BaseModel) :
"""fef"""
uuid: UUID = Field(default_factory=uuid4)
location : tuple
attractiveness : int
duration : Optional[int] = 5
must_do : Optional[bool] = False
must_avoid : Optional[bool] = False

View File

@ -1,4 +1,4 @@
"""Collection of tests to ensure correct implementation and track progress. """
"""Collection of tests to ensure correct implementation and track progress."""
import time
from fastapi.testclient import TestClient
import pytest
@ -6,6 +6,7 @@ import pytest
from .test_utils import load_trip_landmarks, log_trip_details
from ..main import app
@pytest.fixture(scope="module")
def client():
"""Client used to call the app."""
@ -88,15 +89,13 @@ def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_cologne(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°3 : Custom test in Cologne to ensure proper decision making in crowded area.
@ -128,9 +127,6 @@ def test_cologne(client, request) : # pylint: disable=redefined-outer-name
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
@ -169,9 +165,6 @@ def test_strasbourg(client, request) : # pylint: disable=redefined-outer-name
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
@ -210,9 +203,6 @@ def test_zurich(client, request) : # pylint: disable=redefined-outer-name
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
@ -251,9 +241,6 @@ def test_paris(client, request) : # pylint: disable=redefined-outer-name
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
@ -292,9 +279,6 @@ def test_new_york(client, request) : # pylint: disable=redefined-outer-name
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
@ -333,9 +317,6 @@ def test_shopping(client, request) : # pylint: disable=redefined-outer-name
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"

View File

@ -0,0 +1,80 @@
"""Collection of tests to ensure correct implementation and track progress."""
import time
from fastapi.testclient import TestClient
import pytest
from .test_utils import load_trip_landmarks, log_trip_details
from ..structs.preferences import Preferences, Preference
from ..main import app
@pytest.fixture(scope="module")
def client():
"""Client used to call the app."""
return TestClient(app)
def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°2 : Custom test in Lyon centre to ensure proper decision making in crowded area.
Args:
client:
request:
"""
start_time = time.time() # Start timer
# Step 0: Define the trip preferences
prefs = Preferences(
sightseeing = Preference(
type='sightseeing',
score=5
),
shopping = Preference(
type='shopping',
score=5
),
nature = Preference(
type='nature',
score=5
),
max_time_minute=120,
detour_tolerance_minute=0,
)
# Define the starting coordinates
start = [45.7576485, 4.8330241]
# Step 1: request the list of landmarks in the vicinty of the starting point
response = client.post(
"/get/landmarks",
json={
"preferences": prefs.model_dump(),
"start": start
}
)
landmarks = response.json()
# Step 2: Feed the landmarks to the optimizer to compute the trip
response = client.post(
"/optimize/trip",
json={
"preferences": prefs.model_dump(),
"landmarks": landmarks,
"start": start
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], prefs.max_time_minute)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert prefs.max_time_minute*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {prefs.max_time_minute}"
assert prefs.max_time_minute*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {prefs.max_time_minute}"

View File

@ -1,15 +1,22 @@
"""Helper function to return only the major landmarks from a large list."""
from ..structs.landmark import Landmark
def take_most_important(landmarks: list[Landmark], n_important) -> list[Landmark]:
def take_most_important(
landmarks: list[Landmark],
n_important: int
) -> list[Landmark]:
"""
Given a list of landmarks, return the n_important most important landmarks
Given a list of landmarks, return the most important landmarks based on their attractiveness.
Args:
landmarks: list[Landmark] - list of landmarks
n_important: int - number of most important landmarks to return
landmarks (list[Landmark]): List of landmarks that needs to be truncated
n_important (int): Number of most important landmarks to return
Returns:
list[Landmark] - list of the n_important most important landmarks
list[Landmark]: List of the n_important most important landmarks
"""
if n_important == 0 :
raise ValueError('Number of landmarks to keep cannot be zero.')
# Sort landmarks by attractiveness (descending)
sorted_landmarks = sorted(landmarks, key=lambda x: x.attractiveness, reverse=True)