massive numpy optimization and more tests
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 2m17s
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
Run linting on the backend code / Build (pull_request) Successful in 25s
Run testing on the backend code / Build (pull_request) Failing after 6m58s

This commit is contained in:
Helldragon67 2025-01-14 18:23:58 +01:00
parent 4fae658dbb
commit ecd505a9ce
8 changed files with 1440 additions and 247 deletions

1094
backend/report.html Normal file

File diff suppressed because one or more lines are too long

View File

@ -109,9 +109,12 @@ def new_trip(preferences: Preferences,
start_time = time.time()
# Second stage optimization
refined_tour = refiner.refine_optimization(landmarks, base_tour,
try :
refined_tour = refiner.refine_optimization(landmarks, base_tour,
preferences.max_time_minute,
preferences.detour_tolerance_minute)
except Exception as exc :
raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {str(exc)}") from exc
t_second_stage = time.time() - start_time
logger.debug(f'Generating landmarks : {round(t_generate_landmarks,3)} seconds')

View File

@ -35,7 +35,6 @@ def test_turckheim(client, request): # pylint: disable=redefined-outer-name
}
)
result = response.json()
print(result)
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
@ -45,13 +44,16 @@ def test_turckheim(client, request): # pylint: disable=redefined-outer-name
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert isinstance(landmarks, list) # check that the return type is a list
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
assert len(landmarks) > 2 # check that there is something to visit
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert 2==3
# assert 2==3
def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
"""
@ -84,16 +86,15 @@ def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
for elem in landmarks :
print(elem)
print(elem.osm_id)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
# assert 2 == 3
'''
def test_Paris(client, request) : # pylint: disable=redefined-outer-name
"""
@ -126,14 +127,13 @@ def test_Paris(client, request) : # pylint: disable=redefined-outer-name
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
for elem in landmarks :
print(elem)
print(elem.osm_id)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
def test_New_York(client, request) : # pylint: disable=redefined-outer-name
@ -167,14 +167,14 @@ def test_New_York(client, request) : # pylint: disable=redefined-outer-name
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
for elem in landmarks :
print(elem)
print(elem.osm_id)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
def test_shopping(client, request) : # pylint: disable=redefined-outer-name
"""
@ -207,11 +207,15 @@ def test_shopping(client, request) : # pylint: disable=redefined-outer-name
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
'''
assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2
# def test_new_trip_single_prefs(client):
# response = client.post(
# "/trip/new",

View File

@ -42,7 +42,7 @@ def fetch_landmark(client, landmark_uuid: str):
try:
json_data = response.json()
logger.info(f'API Response: {json_data}')
# logger.info(f'API Response: {json_data}')
except ValueError as e:
logger.error(f'Failed to parse response as JSON: {response.text}')
raise HTTPException(status_code=500, detail="Invalid response format from API") from e

View File

@ -12,6 +12,10 @@ from ..utils.get_time_separation import get_distance
from ..constants import OSM_CACHE_DIR
# silence the overpass logger
logging.getLogger('OSMPythonTools').setLevel(level=logging.CRITICAL)
class Cluster(BaseModel):
""""
A class representing an interesting area for shopping or sightseeing.
@ -102,7 +106,6 @@ class ClusterManager:
points.append(coords)
self.all_points = np.array(points)
self.valid = True
# Apply DBSCAN to find clusters. Choose different settings for different cities.
if self.cluster_type == 'shopping' and len(self.all_points) > 200 :
@ -114,12 +117,17 @@ class ClusterManager:
labels = dbscan.fit_predict(self.all_points)
# Separate clustered points and noise points
self.cluster_points = self.all_points[labels != -1]
self.cluster_labels = labels[labels != -1]
# Check that there are at least 2 different clusters
if len(set(labels)) > 2 :
self.logger.debug(f"Found {len(set(labels))} different clusters.")
# Separate clustered points and noise points
self.cluster_points = self.all_points[labels != -1]
self.cluster_labels = labels[labels != -1]
self.filter_clusters() # ValueError here sometimes. I dont know why. # Filter the clusters to keep only the largest ones.
self.valid = True
# filter the clusters to keep only the largest ones
self.filter_clusters()
else :
self.valid = False
def generate_clusters(self) -> list[Landmark]:

View File

@ -23,23 +23,23 @@ def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int:
"""
if p1 == p2:
return 0
else:
# Compute the distance in km along the surface of the Earth
# (assume spherical Earth)
# this is the haversine formula, stolen from stackoverflow
# in order to not use any external libraries
lat1, lon1 = radians(p1[0]), radians(p1[1])
lat2, lon2 = radians(p2[0]), radians(p2[1])
# if p1 == p2:
# return 0
# else:
# Compute the distance in km along the surface of the Earth
# (assume spherical Earth)
# this is the haversine formula, stolen from stackoverflow
# in order to not use any external libraries
lat1, lon1 = radians(p1[0]), radians(p1[1])
lat2, lon2 = radians(p2[0]), radians(p2[1])
dlon = lon2 - lon1
dlat = lat2 - lat1
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
distance = EARTH_RADIUS_KM * c
distance = EARTH_RADIUS_KM * c
# Consider the detour factor for average an average city
walk_distance = distance * DETOUR_FACTOR
@ -47,7 +47,7 @@ def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int:
# Time to walk this distance (in minutes)
walk_time = walk_distance / AVERAGE_WALKING_SPEED * 60
return round(walk_time)
return min(round(walk_time), 32765)
def get_distance(p1: tuple[float, float], p2: tuple[float, float]) -> int:

View File

@ -53,6 +53,8 @@ class LandmarkManager:
self.overpass = Overpass()
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
self.logger.info('LandmakManager successfully initialized.')
def generate_landmarks_list(self, center_coordinates: tuple[float, float], preferences: Preferences) -> tuple[list[Landmark], list[Landmark]]:
"""
@ -71,7 +73,7 @@ class LandmarkManager:
- A list of all existing landmarks.
- A list of the most important landmarks based on the user's preferences.
"""
self.logger.debug('Starting to fetch landmarks...')
max_walk_dist = (preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor
reachable_bbox_side = min(max_walk_dist, self.max_bbox_side)
@ -83,25 +85,32 @@ class LandmarkManager:
# list for sightseeing
if preferences.sightseeing.score != 0:
self.logger.debug('Fetching sightseeing landmarks...')
score_function = lambda score: score * 10 * preferences.sightseeing.score / 5
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function)
all_landmarks.update(current_landmarks)
self.logger.debug('Fetching sightseeing clusters...')
# special pipeline for historic neighborhoods
neighborhood_manager = ClusterManager(bbox, 'sightseeing')
historic_clusters = neighborhood_manager.generate_clusters()
all_landmarks.update(historic_clusters)
self.logger.debug('Sightseeing clusters done')
# list for nature
if preferences.nature.score != 0:
self.logger.debug('Fetching nature landmarks...')
score_function = lambda score: score * 10 * self.nature_coeff * preferences.nature.score / 5
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, score_function)
all_landmarks.update(current_landmarks)
# list for shopping
if preferences.shopping.score != 0:
self.logger.debug('Fetching shopping landmarks...')
score_function = lambda score: score * 10 * preferences.shopping.score / 5
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function)
self.logger.debug('Fetching shopping clusters...')
# set time for all shopping activites :
for landmark in current_landmarks : landmark.duration = 30
@ -111,18 +120,19 @@ class LandmarkManager:
shopping_manager = ClusterManager(bbox, 'shopping')
shopping_clusters = shopping_manager.generate_clusters()
all_landmarks.update(shopping_clusters)
self.logger.debug('Shopping clusters done')
landmarks_constrained = take_most_important(all_landmarks, self.N_important)
self.logger.info(f'Generated {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.')
self.logger.info(f'All landmarks generated : {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.')
return all_landmarks, landmarks_constrained
"""
def count_elements_close_to(self, coordinates: tuple[float, float]) -> int:
"""
Count the number of OpenStreetMap elements (nodes, ways, relations) within a specified radius of the given location.
This function constructs a bounding box around the specified coordinates based on the radius. It then queries
@ -134,7 +144,7 @@ class LandmarkManager:
Returns:
int: The number of elements (nodes, ways, relations) within the specified radius. Returns 0 if no elements
are found or if an error occurs during the query.
"""
lat = coordinates[0]
lon = coordinates[1]
@ -162,6 +172,7 @@ class LandmarkManager:
return N_elem
except:
return 0
"""
# def create_bbox(self, coordinates: tuple[float, float], reachable_bbox_side: int) -> tuple[float, float, float, float]:
@ -211,7 +222,7 @@ class LandmarkManager:
# caution, when applying a list of selectors, overpass will search for elements that match ALL selectors simultaneously
# we need to split the selectors into separate queries and merge the results
for sel in dict_to_selector_list(amenity_selector):
self.logger.debug(f"Current selector: {sel}")
# self.logger.debug(f"Current selector: {sel}")
element_types = ['way', 'relation']
@ -230,7 +241,7 @@ class LandmarkManager:
includeCenter = True,
out = 'center'
)
self.logger.debug(f"Query: {query}")
# self.logger.debug(f"Query: {query}")
try:
result = self.overpass.query(query)

View File

@ -35,11 +35,7 @@ class Optimizer:
"""
Initialize the objective function coefficients and inequality constraints.
-> Adds 1 row of constraints
1 row
+ L-1 rows
-> Pre-allocates A_ub for the rest of the computations
-> Pre-allocates A_ub for the rest of the computations with 2*L rows
This function computes the distances between all landmarks and stores
their attractiveness to maximize sightseeing. The goal is to maximize
@ -59,36 +55,42 @@ class Optimizer:
c = np.zeros(L, dtype=np.int16)
# Coefficients of inequality constraints (left-hand side)
A_first = np.zeros((L, L), dtype=np.int16)
A_ub = np.zeros((2*L, L*L), dtype=np.int16)
b_ub = np.zeros(2*L, dtype=np.int16)
# Fill in first row
b_ub[0] = round(max_time*self.overshoot)
for i, spot1 in enumerate(landmarks) :
c[i] = -spot1.attractiveness
for j in range(i+1, L) :
if i !=j :
t = get_time(spot1.location, landmarks[j].location) + spot1.duration
A_first[i,j] = t
A_first[j,i] = t
A_ub[0, i*L + j] = t
A_ub[0, j*L + i] = t
# Expand 'c' to L*L for every decision variable
c = np.tile(c, L)
# Now sort and modify A_ub for each row
if L > 22 :
for i in range(L):
# Get indices of the 20 smallest values in row i
closest_indices = np.argpartition(A_first[i, :], 20)[:20]
# Get indices of the 4 smallest values in row i
row_values = A_ub[0, i*L:i*L+L]
closest_indices = np.argpartition(row_values, 22)[:22]
# Create a mask for non-closest landmarks
mask = np.ones(L, dtype=bool)
mask[closest_indices] = False
# Set non-closest landmarks to 32700
A_first[i, mask] = 32765
# Replicate the objective function 'c' for each decision variable (L times)
c = np.tile(c, L) # This correctly expands 'c' to L*L
# Set non-closest landmarks to 32765
row_values[mask] = 32765
A_ub[0, i*L:i*L+L] = row_values
return c, A_first.flatten(), [max_time*self.overshoot]
return c, A_ub, b_ub
def respect_number(self, L, max_landmarks: int):
def respect_number(self, A, b, L, max_landmarks: int):
"""
Generate constraints to ensure each landmark is visited only once and cap the total number of visited landmarks.
-> Adds L-1 rows of constraints
@ -100,24 +102,25 @@ class Optimizer:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
# First constraint: each landmark is visited exactly once
A = np.zeros((L-1, L*L), dtype=np.int8)
b = []
# A = np.zeros((L-1, L*L), dtype=np.int8)
# b = []
# Fill-in row 2 until row L-2
for i in range(1, L-1):
A[i-1, L*i:L*(i+1)] = np.ones(L, dtype=np.int8)
b.append(1)
A[i, L*i:L*(i+1)] = np.ones(L, dtype=np.int16)
b[i] = 1
# Fill-in row L-1
# Second constraint: cap the total number of visits
A[-1, :] = np.ones(L*L, dtype=np.int8)
b.append(max_landmarks+2)
return A, b
A[L-1, :] = np.ones(L*L, dtype=np.int16)
b[L-1] = max_landmarks+2
def break_sym(self, L):
def break_sym(self, A, b, L):
"""
Generate constraints to prevent simultaneous travel between two landmarks
in both directions. Constraint to not have d14 and d41 simultaneously.
Does not prevent cyclic paths with more elements
-> Adds a variable number of rows of constraints
-> Adds L rows of constraints (some of which might be zero)
Args:
L (int): Number of landmarks.
@ -126,25 +129,27 @@ class Optimizer:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and
the right-hand side of the inequality constraints.
"""
b = []
# b = []
upper_ind = np.triu_indices(L,0,L)
up_ind_x = upper_ind[0]
up_ind_y = upper_ind[1]
A = np.zeros((len(up_ind_x[1:]),L*L), dtype=np.int8)
for i, _ in enumerate(up_ind_x[1:]) :
# A = np.zeros((len(up_ind_x[1:]),L*L), dtype=np.int8)
# Fill-in rows L to 2*L-1
for i in range(L) :
if up_ind_x[i] != up_ind_y[i] :
A[i, up_ind_x[i]*L + up_ind_y[i]] = 1
A[i, up_ind_y[i]*L + up_ind_x[i]] = 1
b.append(1)
A[L+i, up_ind_x[i]*L + up_ind_y[i]] = 1
A[L+i, up_ind_y[i]*L + up_ind_x[i]] = 1
b[L+i] = 1
return A[~np.all(A == 0, axis=1)], b
# return A[~np.all(A == 0, axis=1)], b
def init_eq_not_stay(self, L: int):
def init_eq_not_stay(self, landmarks: list):
"""
Generate constraints to prevent staying in the same position (e.g., removing d11, d22, d33, etc.).
-> Adds 1 row of constraints
-> Pre-allocates A_eq for the rest of the computations with (L+2 + dynamic incr) rows
Args:
L (int): Number of landmarks.
@ -152,15 +157,78 @@ class Optimizer:
Returns:
tuple[list[np.ndarray], list[int]]: Equality constraint coefficients and the right-hand side of the equality constraints.
"""
L = len(landmarks)
incr = 0
for i, elem in enumerate(landmarks) :
if (elem.must_do or elem.must_avoid) and i not in [0, L-1]:
incr += 1
A_eq = np.zeros((L+2+incr, L*L), dtype=np.int8)
b_eq = np.zeros(L+2+incr, dtype=np.int8)
l = np.zeros((L, L), dtype=np.int8)
# Set diagonal elements to 1 (to prevent staying in the same position)
np.fill_diagonal(l, 1)
return l.flatten(), [0]
# Fill-in first row
A_eq[0,:] = l.flatten()
b_eq[0] = 0
return A_eq, b_eq
def respect_user_must_do(self, landmarks: list[Landmark]) :
# Constraint to ensure start at start and finish at goal
def respect_start_finish(self, A, b, L: int):
"""
Generate constraints to ensure that the optimization starts at the designated
start landmark and finishes at the goal landmark.
-> Adds 3 rows of constraints
Args:
L (int): Number of landmarks.
Returns:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
# Fill-in row 1.
A[1, :L] = np.ones(L, dtype=np.int8) # sets departures only for start (horizontal ones)
for k in range(L-1) :
if k != 0 :
# Fill-in row 2
A[2, k*L+L-1] = 1 # sets arrivals only for finish (vertical ones)
# Fill-in row 3
A[3, k*L] = 1
A[3, L*(L-1):] = np.ones(L, dtype=np.int8) # prevents arrivals at start and departures from goal
b[1:4] = [1, 1, 0]
# return A, b
def respect_order(self, A, b, L: int):
"""
Generate constraints to tie the optimization problem together and prevent
stacked ones, although this does not fully prevent circles.
-> Adds L-2 rows of constraints
Args:
L (int): Number of landmarks.
Returns:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
ones = np.ones(L, dtype=np.int8)
# Fill-in rows 4 to L+2
for i in range(1, L-1) : # Prevent stacked ones
for j in range(L) :
A[i-1+4, i + j*L] = -1
A[i-1+4, i*L:(i+1)*L] = ones
b[4:L+2] = np.zeros(L-2, dtype=np.int8)
def respect_user_must(self, A, b, landmarks: list[Landmark]) :
"""
Generate constraints to ensure that landmarks marked as 'must_do' are included in the optimization.
-> Adds a variable number of rows of constraints BUT CAN BE PRE COMPUTED
@ -173,88 +241,20 @@ class Optimizer:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
L = len(landmarks)
A = np.zeros((L, L*L), dtype=np.int8)
b = []
for i, elem in enumerate(landmarks) :
if elem.must_do is True and elem.name not in ['finish', 'start']:
A[i, i*L:i*L+L] = np.ones(L, dtype=np.int8)
b.append(1)
return A[~np.all(A == 0, axis=1)], b
def respect_user_must_avoid(self, landmarks: list[Landmark]) :
"""
Generate constraints to ensure that landmarks marked as 'must_avoid' are skipped
in the optimization.
-> Adds a variable number of rows of constraints BUT CAN BE PRE COMPUTED
Args:
landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_avoid'.
Returns:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
L = len(landmarks)
A = np.zeros((L, L*L), dtype=np.int8)
b = []
ones = np.ones(L, dtype=np.int8)
incr = 0
for i, elem in enumerate(landmarks) :
if elem.must_do is True and i not in [0, L-1]:
A[i, i*L:i*L+L] = np.ones(L, dtype=np.int8)
b.append(0)
return A[~np.all(A == 0, axis=1)], b
# Constraint to ensure start at start and finish at goal
def respect_start_finish(self, L: int):
"""
Generate constraints to ensure that the optimization starts at the designated
start landmark and finishes at the goal landmark.
-> Adds 3 rows of constraints
Args:
L (int): Number of landmarks.
Returns:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
A = np.zeros((3, L*L), dtype=np.int8)
A[0, :L] = np.ones(L, dtype=np.int8) # sets departures only for start (horizontal ones)
for k in range(L-1) :
A[2, k*L] = 1
if k != 0 :
A[1, k*L+L-1] = 1 # sets arrivals only for finish (vertical ones)
A[2, L*(L-1):] = np.ones(L, dtype=np.int8) # prevents arrivals at start and departures from goal
b = [1, 1, 0]
return A, b
def respect_order(self, L: int):
"""
Generate constraints to tie the optimization problem together and prevent
stacked ones, although this does not fully prevent circles.
-> Adds L-2 rows of constraints
Args:
L (int): Number of landmarks.
Returns:
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
A = np.zeros((L-2, L*L), dtype=np.int8)
b = [0]*(L-2)
for i in range(1, L-1) : # Prevent stacked ones
for j in range(L) :
A[i-1, i + j*L] = -1
A[i-1, i*L:(i+1)*L] = np.ones(L, dtype=np.int8)
return A, b
# First part of the dynamic infill
A[L+2+incr, i*L:i*L+L] = ones
b[L+2+incr] = 1
incr += 1
if elem.must_avoid is True and i not in [0, L-1]:
# Second part of the dynamic infill
A[L+2+incr, i*L:i*L+L] = ones
b[L+2+incr] = 0
incr += 1
# Prevent the use of a particular solution
@ -282,13 +282,14 @@ class Optimizer:
vertices_visited = ind_a
vertices_visited.remove(0)
ones = [1]*L
h = [0]*N
ones = np.ones(L, dtype=np.int8)
h = np.zeros(L*L, dtype=np.int8)
for i in range(L) :
if i in vertices_visited :
h[i*L:i*L+L] = ones
return h, [len(vertices_visited)-1]
return h, np.array([len(vertices_visited)-1])
# Prevents the creation of the same circle (both directions)
@ -303,22 +304,21 @@ class Optimizer:
Returns:
tuple[np.ndarray, list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector.
"""
l = np.zeros((2, L*L), dtype=np.int8)
l1 = [0]*L*L
l2 = [0]*L*L
for i, node in enumerate(circle_vertices[:-1]) :
next = circle_vertices[i+1]
l1[node*L + next] = 1
l2[next*L + node] = 1
l[0, node*L + next] = 1
l[1, next*L + node] = 1
s = circle_vertices[0]
g = circle_vertices[-1]
l1[g*L + s] = 1
l2[s*L + g] = 1
l[0, g*L + s] = 1
l[1, s*L + g] = 1
return np.vstack((l1, l2)), [0, 0]
return l, np.zeros(2, dtype=np.int8)
def is_connected(self, resx) :
@ -331,10 +331,90 @@ class Optimizer:
Returns:
tuple[list[int], Optional[list[list[int]]]]: A tuple containing the visit order and a list of any detected circles.
"""
resx = np.round(resx).astype(np.int8) # round all elements and cast them to int
N = len(resx) # length of res
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0]
nonzero_tup = np.unravel_index(nonzeroind, (L,L))
ind_a = nonzero_tup[0] # removed .tolist()
ind_b = nonzero_tup[1]
# Extract all journeys
all_journeys_nodes = []
visited_nodes = set()
for node in ind_a:
if node not in visited_nodes:
journey_nodes = self.get_journey(node, ind_a, ind_b)
all_journeys_nodes.append(journey_nodes)
visited_nodes.update(journey_nodes)
for l in all_journeys_nodes :
if 0 in l :
all_journeys_nodes.remove(l)
break
if not all_journeys_nodes :
return None
return all_journeys_nodes
def get_journey(self, start, ind_a, ind_b):
"""
Trace the journey starting from a given node and follow the connections between landmarks.
This method constructs a graph from two lists of landmark connections, `ind_a` and `ind_b`,
where each element in `ind_a` is connected to the corresponding element in `ind_b`.
It then performs a depth-first search (DFS) starting from the `start` node to determine
the path (journey) by following the connections.
Args:
start (int): The starting node of the journey.
ind_a (list[int]): List of "from" nodes, representing the starting points of each connection.
ind_b (list[int]): List of "to" nodes, representing the endpoints of each connection.
Returns:
list[int]: A list of nodes representing the order of the journey, starting from the `start` node.
Example:
If `ind_a = [0, 1, 2]` and `ind_b = [1, 2, 3]`, starting from node 0, the journey would be `[0, 1, 2, 3]`.
"""
graph = defaultdict(list)
for a, b in zip(ind_a, ind_b):
graph[a].append(b)
journey_nodes = []
visited = set()
stack = deque([start])
while stack:
node = stack.pop()
if node not in visited:
visited.add(node)
journey_nodes.append(node)
for neighbor in graph[node]:
if neighbor not in visited:
stack.append(neighbor)
return journey_nodes
def get_order(self, resx):
"""
Determine the order of visits given the result of the optimization.
Args:
resx (list): List of edge weights.
Returns:
list[int]: A list containing the visit order.
"""
# first round the results to have only 0-1 values
for i, elem in enumerate(resx):
resx[i] = round(elem)
resx = np.round(resx).astype(np.uint8) # round all elements and cast them to int
N = len(resx) # length of res
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
@ -345,48 +425,32 @@ class Optimizer:
ind_a = nonzero_tup[0].tolist()
ind_b = nonzero_tup[1].tolist()
# Step 1: Create a graph representation
graph = defaultdict(list)
for a, b in zip(ind_a, ind_b):
graph[a].append(b)
order = [0]
current = 0
used_indices = set() # Track visited index pairs
while True:
# Find index of the current node in ind_a
try:
i = ind_a.index(current)
except ValueError:
break # No more links, stop the search
if i in used_indices:
break # Prevent infinite loops
# Step 2: Function to perform BFS/DFS to extract journeys
def get_journey(start):
journey_nodes = []
visited = set()
stack = deque([start])
used_indices.add(i) # Mark this index as visited
next_node = ind_b[i] # Get the corresponding node in ind_b
order.append(next_node) # Add it to the path
while stack:
node = stack.pop()
if node not in visited:
visited.add(node)
journey_nodes.append(node)
for neighbor in graph[node]:
if neighbor not in visited:
stack.append(neighbor)
# Switch roles, now look for next_node in ind_a
try:
current = next_node
except ValueError:
break # No further connections, end the path
return journey_nodes
return order
# Step 3: Extract all journeys
all_journeys_nodes = []
visited_nodes = set()
for node in ind_a:
if node not in visited_nodes:
journey_nodes = get_journey(node)
all_journeys_nodes.append(journey_nodes)
visited_nodes.update(journey_nodes)
for l in all_journeys_nodes :
if 0 in l :
order = l
all_journeys_nodes.remove(l)
break
if len(all_journeys_nodes) == 0 :
return order, None
return order, all_journeys_nodes
def link_list(self, order: list[int], landmarks: list[Landmark])->list[Landmark] :
@ -449,33 +513,34 @@ class Optimizer:
L = len(landmarks)
# SET CONSTRAINTS FOR INEQUALITY
c, A_ub, b_ub = self.init_ub_time(landmarks, max_time) # Add the distances from each landmark to the other
A, b = self.respect_number(L, max_landmarks) # Respect max number of visits (no more possible stops than landmarks).
A_ub = np.vstack((A_ub, A))
b_ub += b
A, b = self.break_sym(L) # break the 'zig-zag' symmetry
A_ub = np.vstack((A_ub, A))
b_ub += b
c, A_ub, b_ub = self.init_ub_time(landmarks, max_time) # Adds the distances from each landmark to the other.
self.respect_number(A_ub, b_ub, L, max_landmarks) # Respects max number of visits (no more possible stops than landmarks).
self.break_sym(A_ub, b_ub, L) # Breaks the 'zig-zag' symmetry. Avoids d12 and d21 but not larger cirlces.
# SET CONSTRAINTS FOR EQUALITY
A_eq, b_eq = self.init_eq_not_stay(L) # Force solution not to stay in same place
A, b = self.respect_user_must_do(landmarks) # Check if there are user_defined must_see. Also takes care of start/goal
if len(b) > 0 :
A_eq = np.vstack((A_eq, A), dtype=np.int8)
b_eq += b
A, b = self.respect_user_must_avoid(landmarks) # Check if there are user_defined must_see. Also takes care of start/goal
if len(b) > 0 :
A_eq = np.vstack((A_eq, A), dtype=np.int8)
b_eq += b
A, b = self.respect_start_finish(L) # Force start and finish positions
A_eq = np.vstack((A_eq, A), dtype=np.int8)
b_eq += b
A, b = self.respect_order(L) # Respect order of visit (only works when max_time is limiting factor)
A_eq = np.vstack((A_eq, A), dtype=np.int8)
b_eq += b
A_eq, b_eq = self.init_eq_not_stay(landmarks) # Force solution not to stay in same place
self.respect_start_finish(A_eq, b_eq, L) # Force start and finish positions
self.respect_order(A_eq, b_eq, L) # Respect order of visit (only works when max_time is limiting factor)
self.respect_user_must(A_eq, b_eq, landmarks) # Force to do/avoid landmarks set by user.
self.logger.debug(f"Optimizing with {A_ub.shape[0]} + {A_eq.shape[0]} = {A_ub.shape[0] + A_eq.shape[0]} constraints.")
# A, b = self.respect_user_must_do(landmarks) # Check if there are user_defined must_see. Also takes care of start/goal
# if len(b) > 0 :
# A_eq = np.vstack((A_eq, A), dtype=np.int8)
# b_eq += b
# A, b = self.respect_user_must_avoid(landmarks) # Check if there are user_defined must_see. Also takes care of start/goal
# if len(b) > 0 :
# A_eq = np.vstack((A_eq, A), dtype=np.int8)
# b_eq += b
# A, b = self.respect_start_finish(L) # Force start and finish positions
# A_eq = np.vstack((A_eq, A), dtype=np.int8)
# b_eq += b
# A, b = self.respect_order(L) # Respect order of visit (only works when max_time is limiting factor)
# A_eq = np.vstack((A_eq, A), dtype=np.int8)
# b_eq += b
# until here opti
# SET BOUNDS FOR DECISION VARIABLE (x can only be 0 or 1)
@ -484,39 +549,47 @@ class Optimizer:
# Solve linear programming problem
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
self.logger.debug("First results are out. Looking out for circles and correcting.")
# Raise error if no solution is found. FIXME: for now this throws the internal server error
if not res.success :
self.logger.error("The problem is overconstrained, no solution on first try.")
raise ArithmeticError("No solution could be found, the problem is overconstrained. Try with a longer trip (>30 minutes).")
# If there is a solution, we're good to go, just check for connectiveness
order, circles = self.is_connected(res.x)
circles = self.is_connected(res.x)
#nodes, edges = is_connected(res.x)
i = 0
timeout = 80
while circles is not None and i < timeout:
i += 1
# print(f"Iteration {i} of fixing circles")
A, b = self.prevent_config(res.x)
A_ub = np.vstack((A_ub, A))
b_ub += b
#A_ub, b_ub = prevent_circle(order, len(landmarks), A_ub, b_ub)
b_ub = np.concatenate((b_ub, b))
for circle in circles :
A, b = self.prevent_circle(circle, L)
A_eq = np.vstack((A_eq, A))
b_eq += b
b_eq = np.concatenate((b_eq, b))
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
if not res.success :
self.logger.error(f'Unexpected error after {timeout} iterations of fixing circles.')
raise ArithmeticError("Solving failed because of overconstrained problem")
order, circles = self.is_connected(res.x)
circles = self.is_connected(res.x)
#nodes, edges = is_connected(res.x)
if circles is None :
break
# print(i)
i += 1
if i == timeout :
self.logger.error(f'Timeout: No solution found after {timeout} iterations.')
raise TimeoutError(f"Optimization took too long. No solution found after {timeout} iterations.")
#sort the landmarks in the order of the solution
# Sort the landmarks in the order of the solution
order = self.get_order(res.x)
tour = [landmarks[i] for i in order]
self.logger.debug(f"Re-optimized {i} times, score: {int(-res.fun)}")
return tour