new endpoint for toilets
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Failing after 2m35s
Build and deploy the backend to staging / Deploy to staging (pull_request) Has been skipped
Run linting on the backend code / Build (pull_request) Failing after 28s
Run testing on the backend code / Build (pull_request) Failing after 1m24s

This commit is contained in:
2024-12-14 16:52:07 +01:00
parent 2033941953
commit edd8a8b2b9
10 changed files with 263 additions and 33 deletions

View File

@@ -44,7 +44,7 @@ class Optimizer:
resx (list[float]): List of edge weights.
Returns:
Tuple[list[int], list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector.
tuple[list[int], list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector.
"""
for i, elem in enumerate(resx):
@@ -79,7 +79,7 @@ class Optimizer:
L (int): Number of landmarks.
Returns:
Tuple[np.ndarray, list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector.
tuple[np.ndarray, list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector.
"""
l1 = [0]*L*L
@@ -107,7 +107,7 @@ class Optimizer:
resx (list): List of edge weights.
Returns:
Tuple[list[int], Optional[list[list[int]]]]: A tuple containing the visit order and a list of any detected circles.
tuple[list[int], Optional[list[list[int]]]]: A tuple containing the visit order and a list of any detected circles.
"""
# first round the results to have only 0-1 values
@@ -180,7 +180,7 @@ class Optimizer:
max_time (int): Maximum time of visit allowed.
Returns:
Tuple[list[float], list[float], list[int]]: Objective function coefficients, inequality constraint coefficients, and the right-hand side of the inequality constraint.
tuple[list[float], list[float], list[int]]: Objective function coefficients, inequality constraint coefficients, and the right-hand side of the inequality constraint.
"""
# Objective function coefficients. a*x1 + b*x2 + c*x3 + ...
@@ -212,7 +212,7 @@ class Optimizer:
L (int): Number of landmarks.
Returns:
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
ones = [1]*L
@@ -239,7 +239,7 @@ class Optimizer:
L (int): Number of landmarks.
Returns:
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
upper_ind = np.triu_indices(L,0,L)
@@ -270,7 +270,7 @@ class Optimizer:
L (int): Number of landmarks.
Returns:
Tuple[list[np.ndarray], list[int]]: Equality constraint coefficients and the right-hand side of the equality constraints.
tuple[list[np.ndarray], list[int]]: Equality constraint coefficients and the right-hand side of the equality constraints.
"""
l = [0]*L*L
@@ -293,7 +293,7 @@ class Optimizer:
landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_do'.
Returns:
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
L = len(landmarks)
@@ -319,7 +319,7 @@ class Optimizer:
landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_avoid'.
Returns:
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
L = len(landmarks)
@@ -346,7 +346,7 @@ class Optimizer:
L (int): Number of landmarks.
Returns:
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
l_start = [1]*L + [0]*L*(L-1) # sets departures only for start (horizontal ones)
@@ -374,7 +374,7 @@ class Optimizer:
L (int): Number of landmarks.
Returns:
Tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints.
"""
A = [0]*L*L