Merge pull request 'Better landmark finding' (#27) from fix/backend/moore-tags into main
All checks were successful
Build and deploy the backend to production / Build and push image (push) Successful in 1m38s
/ push-to-remote (push) Successful in 13s
Build and deploy the backend to production / Deploy to production (push) Successful in 14s

Reviewed-on: #27
This commit is contained in:
Remy Moll 2024-10-22 09:20:53 +00:00
commit f76cd603f3
12 changed files with 1201 additions and 1137 deletions

View File

@ -9,9 +9,9 @@ name = "pypi"
numpy = "*"
fastapi = "*"
pydantic = "*"
geopy = "*"
shapely = "*"
scipy = "*"
osmpythontools = "*"
pywikibot = "*"
pymemcache = "*"
fastapi-cli = "*"

2208
backend/Pipfile.lock generated

File diff suppressed because it is too large Load Diff

@ -1 +1 @@
Subproject commit 8927f278f32bf0eca169ce4b13fbde8a4ed57274
Subproject commit 718df09e88b63c9524c882ccbb8247ca1448d3ff

View File

@ -16,7 +16,7 @@ OSM_CACHE_DIR = Path(cache_dir_string)
import logging
# if we are in a debug session, set verbose and rich logging
if os.getenv('DEBUG', False):
if os.getenv('DEBUG', "false") == "true":
from rich.logging import RichHandler
logging.basicConfig(
level=logging.DEBUG,

View File

@ -1,3 +1,6 @@
# Tags were picked mostly arbitrarily, based on the OSM wiki and the OSM tags page.
# See https://taginfo.openstreetmap.org for more inspiration.
nature:
leisure: park
geological: ''
@ -11,7 +14,24 @@ nature:
- alpine_hut
- viewpoint
- zoo
waterway: waterfall
- resort
- picnic_site
water:
- pond
- lake
- river
- basin
- stream
- lagoon
- rapids
waterway:
- waterfall
- river
- canal
- dam
- dock
- boatyard
shopping:
shop:
@ -23,10 +43,48 @@ sightseeing:
- museum
- attraction
- gallery
- artwork
- aquarium
historic: ''
amenity:
- planetarium
- place_of_worship
- fountain
- townhall
water:
- reflecting_pool
bridge:
- aqueduct
- viaduct
- boardwalk
- cantilever
- abandoned
building:
- church
- chapel
- mosque
- synagogue
- ruins
- temple
- government
- cathedral
- castle
- museum
# to be used later on
restauration:
shop:
- coffee
- bakery
- restaurant
- pastry
amenity:
- restaurant
- cafe
- ice_cream
- food_court
- biergarten

View File

@ -21,8 +21,8 @@ if constants.MEMCACHED_HOST_PATH is None:
else:
client = Client(
constants.MEMCACHED_HOST_PATH,
timeout=1,
allow_unicode_keys=True,
encoding='utf-8',
serde=serde.pickle_serde
timeout = 1,
allow_unicode_keys = True,
encoding = 'utf-8',
serde = serde.pickle_serde
)

View File

@ -5,7 +5,7 @@ from uuid import uuid4
# Output to frontend
class Landmark(BaseModel) :
# Properties of the landmark
name : str
type: Literal['sightseeing', 'nature', 'shopping', 'start', 'finish']
@ -22,22 +22,22 @@ class Landmark(BaseModel) :
# Unique ID of a given landmark
uuid: str = Field(default_factory=uuid4)
# Additional properties depending on specific tour
must_do : Optional[bool] = False
must_avoid : Optional[bool] = False
is_secondary : Optional[bool] = False # TODO future
time_to_reach_next : Optional[int] = 0
next_uuid : Optional[str] = None
def __str__(self) -> str:
time_to_next_str = f", time_to_next={self.time_to_reach_next}" if self.time_to_reach_next else ""
is_secondary_str = f", secondary" if self.is_secondary else ""
type_str = '(' + self.type + ')'
if self.type in ["start", "finish", "nature", "shopping"] : type_str += '\t '
return f'Landmark{type_str}: [{self.name} @{self.location}, score={self.attractiveness}{time_to_next_str}{is_secondary_str}]'
def distance(self, value: 'Landmark') -> float:
return (self.location[0] - value.location[0])**2 + (self.location[1] - value.location[1])**2

View File

@ -22,7 +22,8 @@ class Trip(BaseModel):
# Store the trip in the cache
cache_client.set(f"trip_{trip.uuid}", trip)
cache_client.set_many({f"landmark_{landmark.uuid}": landmark for landmark in landmarks}, expire=3600)
# make sure to await the result (noreply=False). Otherwise the cache might not be inplace when the trip is actually requested
cache_client.set_many({f"landmark_{landmark.uuid}": landmark for landmark in landmarks}, expire=3600, noreply=False)
# is equivalent to:
# for landmark in landmarks:
# cache_client.set(f"landmark_{landmark.uuid}", landmark, expire=3600)

View File

@ -1,5 +1,5 @@
import yaml
from geopy.distance import geodesic
from math import sin, cos, sqrt, atan2, radians
import constants
@ -8,6 +8,7 @@ with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f:
DETOUR_FACTOR = parameters['detour_factor']
AVERAGE_WALKING_SPEED = parameters['average_walking_speed']
EARTH_RADIUS_KM = 6373
def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int:
"""
@ -22,16 +23,28 @@ def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int:
"""
# Compute the straight-line distance in km
if p1 == p2 :
if p1 == p2:
return 0
else:
dist = geodesic(p1, p2).kilometers
else:
# Compute the distance in km along the surface of the Earth
# (assume spherical Earth)
# this is the haversine formula, stolen from stackoverflow
# in order to not use any external libraries
lat1, lon1 = radians(p1[0]), radians(p1[1])
lat2, lon2 = radians(p2[0]), radians(p2[1])
# Consider the detour factor for average cityto deterline walking distance (in km)
walk_dist = dist*DETOUR_FACTOR
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
distance = EARTH_RADIUS_KM * c
# Consider the detour factor for average an average city
walk_distance = distance * DETOUR_FACTOR
# Time to walk this distance (in minutes)
walk_time = walk_dist/AVERAGE_WALKING_SPEED*60
walk_time = walk_distance / AVERAGE_WALKING_SPEED * 60
return round(walk_time)

View File

@ -10,7 +10,8 @@ from structs.landmark import Landmark
from .take_most_important import take_most_important
import constants
# silence the overpass logger
logging.getLogger('OSMPythonTools').setLevel(level=logging.CRITICAL)
class LandmarkManager:
@ -206,11 +207,15 @@ class LandmarkManager:
query = overpassQueryBuilder(
bbox = bbox,
elementType = ['way', 'relation'],
# selector can in principle be a list already,
# but it generates the intersection of the queries
# we want the union
selector = sel,
# conditions = [],
conditions = ['count_tags()>5'],
includeCenter = True,
out = 'body'
)
self.logger.debug(f"Query: {query}")
try:
result = self.overpass.query(query)
@ -336,7 +341,7 @@ def dict_to_selector_list(d: dict) -> list:
for key, value in d.items():
if type(value) == list:
val = '|'.join(value)
return_list.append(f'{key}~"{val}"')
return_list.append(f'{key}~"^({val})$"')
elif type(value) == str and len(value) == 0:
return_list.append(f'{key}')
else:

View File

@ -3,7 +3,6 @@ import numpy as np
from scipy.optimize import linprog
from collections import defaultdict, deque
from geopy.distance import geodesic
from structs.landmark import Landmark
from .get_time_separation import get_time

View File

@ -42,7 +42,7 @@ jobs:
- name: Load secrets from github
run: |
echo "${{ secrets.ANDROID_SECRET_PROPERTIES_BASE64 }}" | base64 -d > secrets.properties
echo "${{ secrets.ANDROID_GOOGLE_PLAY_JSON_BASE64 }}" | base64 -d > fastlane/google-key.json
echo "${{ secrets.ANDROID_GOOGLE_PLAY_JSON_BASE64 }}" | base64 -d > google-key.json
echo "${{ secrets.ANDROID_KEYSTORE_BASE64 }}" | base64 -d > release.keystore
working-directory: android