updated refiner
This commit is contained in:
parent
8d068c80a7
commit
fdcaaf8c16
@ -1,8 +1,8 @@
|
||||
import math as m
|
||||
import json, os
|
||||
|
||||
from typing import List, Tuple
|
||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder, Nominatim
|
||||
from typing import List, Tuple, Optional
|
||||
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
||||
|
||||
from structs.landmarks import Landmark, LandmarkType
|
||||
from structs.preferences import Preferences, Preference
|
||||
@ -38,7 +38,9 @@ def generate_landmarks(preferences: Preferences, coordinates: Tuple[float, float
|
||||
correct_score(L3, preferences.shopping)
|
||||
L += L3
|
||||
|
||||
return remove_duplicates(L), take_most_important(L)
|
||||
L = remove_duplicates(L)
|
||||
|
||||
return L, take_most_important(L)
|
||||
|
||||
|
||||
"""def generate_landmarks(preferences: Preferences, city_country: str = None, coordinates: Tuple[float, float] = None) -> Tuple[List[Landmark], List[Landmark]] :
|
||||
@ -91,7 +93,7 @@ def get_list(path: str) -> List[str] :
|
||||
|
||||
|
||||
# Take the most important landmarks from the list
|
||||
def take_most_important(L: List[Landmark]) -> List[Landmark] :
|
||||
def take_most_important(L: List[Landmark], N = 0) -> List[Landmark] :
|
||||
|
||||
# Read the parameters from the file
|
||||
with open (os.path.dirname(os.path.abspath(__file__)) + '/parameters/landmarks_manager.params', "r") as f :
|
||||
@ -125,7 +127,7 @@ def take_most_important(L: List[Landmark]) -> List[Landmark] :
|
||||
for i, elem in enumerate(L_copy) :
|
||||
scores[i] = elem.attractiveness
|
||||
|
||||
res = sorted(range(len(scores)), key = lambda sub: scores[sub])[-N_important:]
|
||||
res = sorted(range(len(scores)), key = lambda sub: scores[sub])[-(N_important-N):]
|
||||
|
||||
for i, elem in enumerate(L_copy) :
|
||||
if i in res :
|
||||
@ -148,21 +150,15 @@ def remove_duplicates(L: List[Landmark]) -> List[Landmark] :
|
||||
|
||||
L_clean = []
|
||||
names = []
|
||||
coords = []
|
||||
|
||||
for landmark in L :
|
||||
if landmark.name in names and landmark.location in coords:
|
||||
if landmark.name in names:
|
||||
continue
|
||||
|
||||
approx_coords = tuple((round(landmark.location[0], 4), round(landmark.location[0], 4)))
|
||||
|
||||
if approx_coords in coords :
|
||||
continue
|
||||
|
||||
|
||||
else :
|
||||
names.append(landmark.name)
|
||||
L_clean.append(landmark)
|
||||
coords.append(approx_coords)
|
||||
|
||||
return L_clean
|
||||
|
||||
|
@ -4,12 +4,13 @@ import json, os
|
||||
from typing import List, Tuple
|
||||
from scipy.optimize import linprog
|
||||
from math import radians, sin, cos, acos
|
||||
from shapely import Polygon
|
||||
|
||||
from structs.landmarks import Landmark
|
||||
|
||||
|
||||
# Function to print the result
|
||||
def print_res(L: List[Landmark], L_tot) -> list:
|
||||
def print_res(L: List[Landmark], L_tot):
|
||||
|
||||
if len(L) == L_tot:
|
||||
print('\nAll landmarks can be visited within max_steps, the following order is suggested : ')
|
||||
@ -25,10 +26,10 @@ def print_res(L: List[Landmark], L_tot) -> list:
|
||||
print('- ' + elem.name)
|
||||
|
||||
print("\nMinutes walked : " + str(dist))
|
||||
print(f"Visited {len(L)} out of {L_tot} landmarks")
|
||||
print(f"Visited {len(L)-2} out of {L_tot-2} landmarks")
|
||||
|
||||
|
||||
# Prevent the use of a particular set of nodes
|
||||
# Prevent the use of a particular solution
|
||||
def prevent_config(resx, A_ub, b_ub) -> bool:
|
||||
|
||||
for i, elem in enumerate(resx):
|
||||
@ -56,7 +57,7 @@ def prevent_config(resx, A_ub, b_ub) -> bool:
|
||||
return A_ub, b_ub
|
||||
|
||||
|
||||
# Prevent the possibility of a given set of vertices
|
||||
# Prevent the possibility of a given solution bit
|
||||
def break_cricle(circle_vertices: list, L: int, A_ub: list, b_ub: list) -> bool:
|
||||
|
||||
if L-1 in circle_vertices :
|
||||
@ -73,7 +74,7 @@ def break_cricle(circle_vertices: list, L: int, A_ub: list, b_ub: list) -> bool:
|
||||
return A_ub, b_ub
|
||||
|
||||
|
||||
# Checks if the path is connected, returns a circle if it finds one
|
||||
# Checks if the path is connected, returns a circle if it finds one and the RESULT
|
||||
def is_connected(resx) -> bool:
|
||||
|
||||
# first round the results to have only 0-1 values
|
||||
@ -182,8 +183,8 @@ def init_ub_dist(landmarks: List[Landmark], max_steps: int):
|
||||
return c, A_ub, [max_steps]
|
||||
|
||||
|
||||
# Constraint to respect max number of travels
|
||||
def respect_number(L, A_ub, b_ub):
|
||||
# Constraint to respect only one travel per landmark. Also caps the total number of visited landmarks
|
||||
def respect_number(L:int, A_ub, b_ub):
|
||||
|
||||
ones = [1]*L
|
||||
zeros = [0]*L
|
||||
@ -192,6 +193,14 @@ def respect_number(L, A_ub, b_ub):
|
||||
A_ub = np.vstack((A_ub, h))
|
||||
b_ub.append(1)
|
||||
|
||||
# Read the parameters from the file
|
||||
with open (os.path.dirname(os.path.abspath(__file__)) + '/parameters/optimizer.params', "r") as f :
|
||||
parameters = json.loads(f.read())
|
||||
max_landmarks = parameters['max landmarks']
|
||||
|
||||
A_ub = np.vstack((A_ub, ones*L))
|
||||
b_ub.append(max_landmarks+1)
|
||||
|
||||
return A_ub, b_ub
|
||||
|
||||
|
||||
@ -290,7 +299,7 @@ def respect_order(N: int, A_eq, b_eq):
|
||||
return A_eq, b_eq
|
||||
|
||||
|
||||
# Computes the path length given path matrix (dist_table) and a result
|
||||
# Computes the time to reach from each landmark to the next
|
||||
def add_time_to_reach(order: List[int], landmarks: List[Landmark])->List[Landmark] :
|
||||
|
||||
# Read the parameters from the file
|
||||
@ -315,6 +324,7 @@ def add_time_to_reach(order: List[int], landmarks: List[Landmark])->List[Landmar
|
||||
|
||||
return L
|
||||
|
||||
|
||||
def add_time_to_reach_simple(ordered_visit: List[Landmark])-> List[Landmark] :
|
||||
|
||||
# Read the parameters from the file
|
||||
@ -326,14 +336,17 @@ def add_time_to_reach_simple(ordered_visit: List[Landmark])-> List[Landmark] :
|
||||
L = []
|
||||
prev = ordered_visit[0]
|
||||
L.append(prev)
|
||||
total_dist = 0
|
||||
|
||||
for elem in ordered_visit[1:] :
|
||||
elem.time_to_reach = get_distance(elem.location, prev.location, detour_factor, speed)[1]
|
||||
elem.must_do = True
|
||||
L.append(elem)
|
||||
prev = elem
|
||||
total_dist += get_distance(elem.location, prev.location, detour_factor, speed)[1]
|
||||
|
||||
|
||||
return L
|
||||
return L, total_dist
|
||||
|
||||
|
||||
# Main optimization pipeline
|
||||
@ -366,22 +379,23 @@ def solve_optimization (landmarks :List[Landmark], max_steps: int, printing_deta
|
||||
else :
|
||||
order, circle = is_connected(res.x)
|
||||
i = 0
|
||||
timeout = 300
|
||||
timeout = 80
|
||||
while len(circle) != 0 and i < timeout:
|
||||
A_ub, b_ub = prevent_config(res.x, A_ub, b_ub)
|
||||
A_ub, b_ub = break_cricle(order, len(landmarks), A_ub, b_ub)
|
||||
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
|
||||
order, circle = is_connected(res.x)
|
||||
if len(circle) == 0 :
|
||||
# Add the times to reach and stop optimizing
|
||||
L = add_time_to_reach(order, landmarks)
|
||||
break
|
||||
#print(i)
|
||||
print(i)
|
||||
i += 1
|
||||
|
||||
if i == timeout :
|
||||
raise TimeoutError(f"Optimization took too long. No solution found after {timeout} iterations.")
|
||||
|
||||
# Add the times to reach and stop optimizing
|
||||
L = add_time_to_reach(order, landmarks)
|
||||
|
||||
if printing_details is True :
|
||||
if i != 0 :
|
||||
print(f"Neded to recompute paths {i} times because of unconnected loops...")
|
||||
|
@ -4,5 +4,5 @@
|
||||
"church coeff" : 0.6,
|
||||
"park coeff" : 1.5,
|
||||
"tag coeff" : 100,
|
||||
"N important" : 30
|
||||
"N important" : 40
|
||||
}
|
@ -1,4 +1,5 @@
|
||||
{
|
||||
"detour factor" : 1.4,
|
||||
"average walking speed" : 4.8
|
||||
"average walking speed" : 4.8,
|
||||
"max landmarks" : 10
|
||||
}
|
@ -1,10 +1,15 @@
|
||||
from collections import defaultdict
|
||||
from heapq import heappop, heappush
|
||||
from itertools import permutations
|
||||
import os, json
|
||||
|
||||
from shapely import buffer, LineString, Point, Polygon, MultiPoint, convex_hull, concave_hull, LinearRing
|
||||
from typing import List
|
||||
from typing import List, Tuple
|
||||
from math import pi
|
||||
|
||||
from structs.landmarks import Landmark
|
||||
from landmarks_manager import take_most_important
|
||||
from optimizer import solve_optimization, add_time_to_reach_simple, print_res
|
||||
from optimizer import solve_optimization, add_time_to_reach_simple, print_res, get_distance
|
||||
|
||||
|
||||
def create_corridor(landmarks: List[Landmark], width: float) :
|
||||
@ -28,10 +33,135 @@ def create_linestring(landmarks: List[Landmark])->List[Point] :
|
||||
|
||||
|
||||
def is_in_area(area: Polygon, coordinates) -> bool :
|
||||
|
||||
point = Point(coordinates)
|
||||
return point.within(area)
|
||||
|
||||
|
||||
def is_close_to(location1: Tuple[float], location2: Tuple[float]):
|
||||
"""Determine if two locations are close by rounding their coordinates to 3 decimals."""
|
||||
absx = abs(location1[0] - location2[0])
|
||||
absy = abs(location1[1] - location2[1])
|
||||
|
||||
return absx < 0.001 and absy < 0.001
|
||||
#return (round(location1[0], 3), round(location1[1], 3)) == (round(location2[0], 3), round(location2[1], 3))
|
||||
|
||||
|
||||
def rearrange(landmarks: List[Landmark]) -> List[Landmark]:
|
||||
|
||||
i = 1
|
||||
while i < len(landmarks):
|
||||
j = i+1
|
||||
while j < len(landmarks):
|
||||
if is_close_to(landmarks[i].location, landmarks[j].location) and landmarks[i].name not in ['start', 'finish'] and landmarks[j].name not in ['start', 'finish']:
|
||||
# If they are not adjacent, move the j-th element to be adjacent to the i-th element
|
||||
if j != i + 1:
|
||||
landmarks.insert(i + 1, landmarks.pop(j))
|
||||
break # Move to the next i-th element after rearrangement
|
||||
j += 1
|
||||
i += 1
|
||||
|
||||
return landmarks
|
||||
|
||||
"""
|
||||
def find_shortest_path(landmarks: List[Landmark]) -> List[Landmark]:
|
||||
|
||||
# Read from data
|
||||
with open (os.path.dirname(os.path.abspath(__file__)) + '/parameters/optimizer.params', "r") as f :
|
||||
parameters = json.loads(f.read())
|
||||
detour = parameters['detour factor']
|
||||
speed = parameters['average walking speed']
|
||||
|
||||
# Step 1: Build the graph
|
||||
graph = defaultdict(list)
|
||||
for i in range(len(landmarks)):
|
||||
for j in range(len(landmarks)):
|
||||
if i != j:
|
||||
distance = get_distance(landmarks[i].location, landmarks[j].location, detour, speed)[1]
|
||||
graph[i].append((distance, j))
|
||||
|
||||
# Step 2: Dijkstra's algorithm to find the shortest path from start to finish
|
||||
start_idx = next(i for i, lm in enumerate(landmarks) if lm.name == 'start')
|
||||
finish_idx = next(i for i, lm in enumerate(landmarks) if lm.name == 'finish')
|
||||
|
||||
distances = {i: float('inf') for i in range(len(landmarks))}
|
||||
previous_nodes = {i: None for i in range(len(landmarks))}
|
||||
distances[start_idx] = 0
|
||||
priority_queue = [(0, start_idx)]
|
||||
|
||||
while priority_queue:
|
||||
current_distance, current_index = heappop(priority_queue)
|
||||
|
||||
if current_distance > distances[current_index]:
|
||||
continue
|
||||
|
||||
for neighbor_distance, neighbor_index in graph[current_index]:
|
||||
distance = current_distance + neighbor_distance
|
||||
|
||||
if distance < distances[neighbor_index]:
|
||||
distances[neighbor_index] = distance
|
||||
previous_nodes[neighbor_index] = current_index
|
||||
heappush(priority_queue, (distance, neighbor_index))
|
||||
|
||||
# Step 3: Backtrack from finish to start to find the path
|
||||
path = []
|
||||
current_index = finish_idx
|
||||
while current_index is not None:
|
||||
path.append(landmarks[current_index])
|
||||
current_index = previous_nodes[current_index]
|
||||
path.reverse()
|
||||
|
||||
return path
|
||||
"""
|
||||
"""
|
||||
def total_path_distance(path: List[Landmark], detour, speed) -> float:
|
||||
total_distance = 0
|
||||
for i in range(len(path) - 1):
|
||||
total_distance += get_distance(path[i].location, path[i + 1].location, detour, speed)[1]
|
||||
return total_distance
|
||||
"""
|
||||
|
||||
|
||||
def find_shortest_path_through_all_landmarks(landmarks: List[Landmark]) -> List[Landmark]:
|
||||
|
||||
# Read from data
|
||||
with open (os.path.dirname(os.path.abspath(__file__)) + '/parameters/optimizer.params', "r") as f :
|
||||
parameters = json.loads(f.read())
|
||||
detour = parameters['detour factor']
|
||||
speed = parameters['average walking speed']
|
||||
|
||||
# Step 1: Find 'start' and 'finish' landmarks
|
||||
start_idx = next(i for i, lm in enumerate(landmarks) if lm.name == 'start')
|
||||
finish_idx = next(i for i, lm in enumerate(landmarks) if lm.name == 'finish')
|
||||
|
||||
start_landmark = landmarks[start_idx]
|
||||
finish_landmark = landmarks[finish_idx]
|
||||
|
||||
|
||||
# Step 2: Create a list of unvisited landmarks excluding 'start' and 'finish'
|
||||
unvisited_landmarks = [lm for i, lm in enumerate(landmarks) if i not in [start_idx, finish_idx]]
|
||||
|
||||
# Step 3: Initialize the path with the 'start' landmark
|
||||
path = [start_landmark]
|
||||
coordinates = [landmarks[start_idx].location]
|
||||
|
||||
current_landmark = start_landmark
|
||||
|
||||
# Step 4: Use nearest neighbor heuristic to visit all landmarks
|
||||
while unvisited_landmarks:
|
||||
nearest_landmark = min(unvisited_landmarks, key=lambda lm: get_distance(current_landmark.location, lm.location, detour, speed)[1])
|
||||
path.append(nearest_landmark)
|
||||
coordinates.append(nearest_landmark.location)
|
||||
current_landmark = nearest_landmark
|
||||
unvisited_landmarks.remove(nearest_landmark)
|
||||
|
||||
# Step 5: Finally add the 'finish' landmark to the path
|
||||
path.append(finish_landmark)
|
||||
coordinates.append(landmarks[finish_idx].location)
|
||||
|
||||
path_poly = Polygon(coordinates)
|
||||
|
||||
return path, path_poly
|
||||
|
||||
def get_minor_landmarks(all_landmarks: List[Landmark], visited_landmarks: List[Landmark], width: float) -> List[Landmark] :
|
||||
|
||||
second_order_landmarks = []
|
||||
@ -45,7 +175,7 @@ def get_minor_landmarks(all_landmarks: List[Landmark], visited_landmarks: List[L
|
||||
if is_in_area(area, landmark.location) and landmark.name not in visited_names:
|
||||
second_order_landmarks.append(landmark)
|
||||
|
||||
return take_most_important(second_order_landmarks)
|
||||
return take_most_important(second_order_landmarks, len(visited_landmarks))
|
||||
|
||||
|
||||
|
||||
@ -58,55 +188,106 @@ def get_minor_landmarks(all_landmarks: List[Landmark], visited_landmarks: List[L
|
||||
full_set = base_tour[:-1] + minor_landmarks # create full set of possible landmarks (without finish)
|
||||
full_set.append(base_tour[-1]) # add finish back
|
||||
|
||||
new_route = solve_optimization(full_set, max_time, print_infos)
|
||||
new_tour = solve_optimization(full_set, max_time, print_infos)
|
||||
|
||||
return new_route"""
|
||||
return new_tour"""
|
||||
|
||||
|
||||
def refine_optimization(landmarks: List[Landmark], base_tour: List[Landmark], max_time: int, print_infos: bool) -> List[Landmark] :
|
||||
|
||||
# Read from the file
|
||||
with open (os.path.dirname(os.path.abspath(__file__)) + '/parameters/optimizer.params', "r") as f :
|
||||
parameters = json.loads(f.read())
|
||||
max_landmarks = parameters['max landmarks']
|
||||
|
||||
if len(base_tour)-2 >= max_landmarks :
|
||||
return base_tour
|
||||
|
||||
|
||||
minor_landmarks = get_minor_landmarks(landmarks, base_tour, 200)
|
||||
|
||||
if print_infos : print("There are " + str(len(minor_landmarks)) + " minor landmarks around the predicted path")
|
||||
if print_infos : print("Using " + str(len(minor_landmarks)) + " minor landmarks around the predicted path")
|
||||
|
||||
# full set of visitable landmarks
|
||||
full_set = base_tour[:-1] + minor_landmarks # create full set of possible landmarks (without finish)
|
||||
full_set.append(base_tour[-1]) # add finish back
|
||||
|
||||
# get a new route
|
||||
new_route = solve_optimization(full_set, max_time, False)
|
||||
|
||||
coords = [] # Coordinates of the new route
|
||||
coords_dict = {} # maps the location of an element to the element itself. Used to access the elements back once we get the geometry
|
||||
|
||||
# Iterate through the new route without finish
|
||||
for elem in new_route[:-1] :
|
||||
coords.append(Point(elem.location))
|
||||
coords_dict[elem.location] = elem # if start = goal, only finish remains
|
||||
|
||||
# Create a concave polygon using the coordinates
|
||||
better_route_poly = concave_hull(MultiPoint(coords)) # Create concave hull with "core" of route leaving out start and finish
|
||||
xs, ys = better_route_poly.exterior.xy
|
||||
|
||||
better_route = [] # List of ordered visit
|
||||
name_index = {} # Maps the name of a landmark to its index in the concave polygon
|
||||
|
||||
# Loop through the polygon and generate the better (ordered) route
|
||||
for i,x in enumerate(xs[:-1]) :
|
||||
better_route.append(coords_dict[tuple((x,ys[i]))])
|
||||
name_index[coords_dict[tuple((x,ys[i]))].name] = i
|
||||
|
||||
# get a new tour
|
||||
new_tour = solve_optimization(full_set, max_time, False)
|
||||
new_tour, new_dist = add_time_to_reach_simple(new_tour)
|
||||
|
||||
# Scroll the list to have start in front again
|
||||
start_index = name_index['start']
|
||||
better_route = better_route[start_index:] + better_route[:start_index]
|
||||
"""#if base_tour[0].location == base_tour[-1].location :
|
||||
if False :
|
||||
coords = [] # Coordinates of the new tour
|
||||
coords_dict = {} # maps the location of an element to the element itself. Used to access the elements back once we get the geometry
|
||||
|
||||
# Append the finish back and correct the time to reach
|
||||
better_route.append(new_route[-1])
|
||||
better_route = add_time_to_reach_simple(better_route)
|
||||
# Iterate through the new tour without finish
|
||||
for elem in new_tour[:-1] :
|
||||
coords.append(Point(elem.location))
|
||||
coords_dict[elem.location] = elem # if start = goal, only finish remains
|
||||
|
||||
# Create a concave polygon using the coordinates
|
||||
better_tour_poly = concave_hull(MultiPoint(coords)) # Create concave hull with "core" of tour leaving out start and finish
|
||||
xs, ys = better_tour_poly.exterior.xy
|
||||
|
||||
# reverse the xs and ys
|
||||
xs.reverse()
|
||||
ys.reverse()
|
||||
|
||||
better_tour = [] # List of ordered visit
|
||||
name_index = {} # Maps the name of a landmark to its index in the concave polygon
|
||||
|
||||
# Loop through the polygon and generate the better (ordered) tour
|
||||
for i,x in enumerate(xs[:-1]) :
|
||||
better_tour.append(coords_dict[tuple((x,ys[i]))])
|
||||
name_index[coords_dict[tuple((x,ys[i]))].name] = i
|
||||
|
||||
|
||||
# Scroll the list to have start in front again
|
||||
start_index = name_index['start']
|
||||
better_tour = better_tour[start_index:] + better_tour[:start_index]
|
||||
|
||||
# Append the finish back and correct the time to reach
|
||||
better_tour.append(new_tour[-1])
|
||||
|
||||
# Rearrange only if polygon
|
||||
better_tour = rearrange(better_tour)
|
||||
|
||||
# Add the time to reach
|
||||
better_tour = add_time_to_reach_simple(better_tour)
|
||||
"""
|
||||
|
||||
|
||||
"""
|
||||
if not better_poly.is_simple :
|
||||
|
||||
coords_dict = {}
|
||||
better_tour2 = []
|
||||
for elem in better_tour :
|
||||
coords_dict[elem.location] = elem
|
||||
|
||||
better_poly2 = better_poly.buffer(0)
|
||||
new_coords = better_poly2.exterior.coords[:]
|
||||
start_coords = base_tour[0].location
|
||||
start_index = new_coords.
|
||||
|
||||
#for point in new_coords :
|
||||
"""
|
||||
|
||||
|
||||
better_tour, better_poly = find_shortest_path_through_all_landmarks(new_tour)
|
||||
better_tour, better_dist = add_time_to_reach_simple(better_tour)
|
||||
|
||||
if new_dist < better_dist :
|
||||
final_tour = new_tour
|
||||
else :
|
||||
final_tour = better_tour
|
||||
|
||||
if print_infos :
|
||||
print("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n")
|
||||
print("\nRefined tour (result of second stage optimization): ")
|
||||
print_res(better_route, len(better_route))
|
||||
print_res(final_tour, len(full_set))
|
||||
|
||||
return better_route
|
||||
|
||||
|
||||
return final_tour
|
||||
|
@ -84,6 +84,10 @@ def test4(coordinates: tuple[float, float]) -> List[Landmark]:
|
||||
# Create start and finish
|
||||
start = Landmark(name='start', type=LandmarkType(landmark_type='start'), location=coordinates, osm_type='start', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
|
||||
finish = Landmark(name='finish', type=LandmarkType(landmark_type='finish'), location=coordinates, osm_type='finish', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
|
||||
#finish = Landmark(name='finish', type=LandmarkType(landmark_type='finish'), location=(48.8777055, 2.3640967), osm_type='finish', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
|
||||
#start = Landmark(name='start', type=LandmarkType(landmark_type='start'), location=(48.847132, 2.312359), osm_type='start', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
|
||||
#finish = Landmark(name='finish', type=LandmarkType(landmark_type='finish'), location=(48.843185, 2.344533), osm_type='finish', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
|
||||
#finish = Landmark(name='finish', type=LandmarkType(landmark_type='finish'), location=(48.847132, 2.312359), osm_type='finish', osm_id=0, attractiveness=0, must_do=True, n_tags = 0)
|
||||
|
||||
# Generate the landmarks from the start location
|
||||
landmarks, landmarks_short = generate_landmarks(preferences=preferences, coordinates=start.location)
|
||||
@ -94,7 +98,7 @@ def test4(coordinates: tuple[float, float]) -> List[Landmark]:
|
||||
landmarks_short.append(finish)
|
||||
|
||||
# TODO use these parameters in another way
|
||||
max_walking_time = 4 # hours
|
||||
max_walking_time = 2 # hours
|
||||
detour = 30 # minutes
|
||||
|
||||
# First stage optimization
|
||||
@ -107,5 +111,6 @@ def test4(coordinates: tuple[float, float]) -> List[Landmark]:
|
||||
|
||||
|
||||
#test4(tuple((48.8344400, 2.3220540))) # Café Chez César
|
||||
test4(tuple((48.8375946, 2.2949904))) # Point random
|
||||
#test4(tuple((48.8375946, 2.2949904))) # Point random
|
||||
test4(tuple((47.377859, 8.540585))) # Zurich HB
|
||||
#test3('Vienna, Austria')
|
Loading…
x
Reference in New Issue
Block a user