7 Commits

Author SHA1 Message Date
96b0718081 removed unused landmark attributes
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m39s
Run linting on the backend code / Build (pull_request) Successful in 31s
Run testing on the backend code / Build (pull_request) Failing after 49s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 38s
2025-07-13 17:47:12 +02:00
d9e5d9dac6 fixed dependcu
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m8s
Run linting on the backend code / Build (pull_request) Successful in 29s
Run testing on the backend code / Build (pull_request) Failing after 46s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 28s
2025-07-13 17:45:13 +02:00
b0f9d31ee2 Implement backend API for landmarks, trip optimization, and toilet locations
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m49s
Run linting on the backend code / Build (pull_request) Successful in 30s
Run testing on the backend code / Build (pull_request) Failing after 45s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 32s
- Added landmarks_router.py to handle landmark retrieval based on user preferences and location.
- Implemented optimization_router.py for trip optimization, including handling preferences and landmarks.
- Created toilets_router.py to fetch toilet locations within a specified radius from a given location.
- Enhanced error handling and logging across all new endpoints.
- Generated a comprehensive report.html for test results and environment details.
2025-07-13 17:43:24 +02:00
54bc9028ad simplified test pipeline
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m38s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 17m36s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 35s
2025-07-02 21:59:07 +02:00
37926e68ec fixed typo in invalid inputs
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 2m24s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 20m39s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 32s
2025-07-02 21:58:47 +02:00
e2d3d29956 working split
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m46s
Run linting on the backend code / Build (pull_request) Successful in 2m31s
Run testing on the backend code / Build (pull_request) Failing after 12m37s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 29s
2025-06-22 14:24:00 +02:00
6921ab57f8 added more structure
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 3m29s
Run linting on the backend code / Build (pull_request) Successful in 27s
Run testing on the backend code / Build (pull_request) Failing after 12m29s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 34s
2025-06-21 18:54:42 +02:00
24 changed files with 1791 additions and 685 deletions

3
backend/.gitignore vendored
View File

@@ -12,6 +12,9 @@ __pycache__/
# C extensions # C extensions
*.so *.so
# Pytest reports
report.html
# Distribution / packaging # Distribution / packaging
.Python .Python
build/ build/

File diff suppressed because one or more lines are too long

View File

@@ -146,7 +146,7 @@ class ClusterManager:
self.valid = False self.valid = False
else : else :
self.logger.debug(f"Detected 0 {cluster_type} clusters.") self.logger.debug(f"Found 0 {cluster_type} clusters.")
self.valid = False self.valid = False

View File

@@ -4,7 +4,6 @@ import yaml
from ..structs.preferences import Preferences from ..structs.preferences import Preferences
from ..structs.landmark import Landmark from ..structs.landmark import Landmark
from ..utils.take_most_important import take_most_important
from .cluster_manager import ClusterManager from .cluster_manager import ClusterManager
from ..overpass.overpass import Overpass, get_base_info from ..overpass.overpass import Overpass, get_base_info
from ..utils.bbox import create_bbox from ..utils.bbox import create_bbox
@@ -23,7 +22,7 @@ class LandmarkManager:
church_coeff: float # coeff to adjsut score of churches church_coeff: float # coeff to adjsut score of churches
nature_coeff: float # coeff to adjust score of parks nature_coeff: float # coeff to adjust score of parks
overall_coeff: float # coeff to adjust weight of tags overall_coeff: float # coeff to adjust weight of tags
n_important: int # number of important landmarks to consider # n_important: int # number of important landmarks to consider
def __init__(self) -> None: def __init__(self) -> None:
@@ -42,7 +41,7 @@ class LandmarkManager:
self.wikipedia_bonus = parameters['wikipedia_bonus'] self.wikipedia_bonus = parameters['wikipedia_bonus']
self.viewpoint_bonus = parameters['viewpoint_bonus'] self.viewpoint_bonus = parameters['viewpoint_bonus']
self.pay_bonus = parameters['pay_bonus'] self.pay_bonus = parameters['pay_bonus']
self.n_important = parameters['N_important'] # self.n_important = parameters['N_important']
with OPTIMIZER_PARAMETERS_PATH.open('r') as f: with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f) parameters = yaml.safe_load(f)
@@ -55,7 +54,12 @@ class LandmarkManager:
self.logger.info('LandmakManager successfully initialized.') self.logger.info('LandmakManager successfully initialized.')
def generate_landmarks_list(self, center_coordinates: tuple[float, float], preferences: Preferences) -> tuple[list[Landmark], list[Landmark]]: def generate_landmarks_list(
self,
center_coordinates: tuple[float, float],
preferences: Preferences,
allow_clusters: bool = True
) -> list[Landmark] :
""" """
Generate and prioritize a list of landmarks based on user preferences. Generate and prioritize a list of landmarks based on user preferences.
@@ -63,16 +67,17 @@ class LandmarkManager:
and current location. It scores and corrects these landmarks, removes duplicates, and then selects the most important and current location. It scores and corrects these landmarks, removes duplicates, and then selects the most important
landmarks based on a predefined criterion. landmarks based on a predefined criterion.
Args: Parameters :
center_coordinates (tuple[float, float]): The latitude and longitude of the center location around which to search. center_coordinates (tuple[float, float]): The latitude and longitude of the center location around which to search.
preferences (Preferences): The user's preference settings that influence the landmark selection. preferences (Preferences): The user's preference settings that influence the landmark selection.
allow_clusters (bool, optional) : If set to False, no clusters will be fetched. Mainly used for the option to fetch landmarks nearby.
Returns: Returns:
tuple[list[Landmark], list[Landmark]]: tuple[list[Landmark], list[Landmark]]:
- A list of all existing landmarks. - A list of all existing landmarks.
- A list of the most important landmarks based on the user's preferences. - A list of the most important landmarks based on the user's preferences.
""" """
self.logger.debug('Starting to fetch landmarks...') self.logger.info(f'Starting to fetch landmarks around {center_coordinates}...')
max_walk_dist = int((preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor) max_walk_dist = int((preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor)
radius = min(max_walk_dist, int(self.max_bbox_side/2)) radius = min(max_walk_dist, int(self.max_bbox_side/2))
@@ -89,10 +94,11 @@ class LandmarkManager:
all_landmarks.update(current_landmarks) all_landmarks.update(current_landmarks)
self.logger.info(f'Found {len(current_landmarks)} sightseeing landmarks') self.logger.info(f'Found {len(current_landmarks)} sightseeing landmarks')
if allow_clusters :
# special pipeline for historic neighborhoods # special pipeline for historic neighborhoods
neighborhood_manager = ClusterManager(bbox, 'sightseeing') neighborhood_manager = ClusterManager(bbox, 'sightseeing')
historic_clusters = neighborhood_manager.generate_clusters() historic_clusters = neighborhood_manager.generate_clusters()
all_landmarks.update(historic_clusters) all_landmarks.update(historic_clusters)
# list for nature # list for nature
if preferences.nature.score != 0: if preferences.nature.score != 0:
@@ -113,16 +119,19 @@ class LandmarkManager:
landmark.duration = 30 landmark.duration = 30
all_landmarks.update(current_landmarks) all_landmarks.update(current_landmarks)
# special pipeline for shopping malls if allow_clusters :
shopping_manager = ClusterManager(bbox, 'shopping') # special pipeline for shopping malls
shopping_clusters = shopping_manager.generate_clusters() shopping_manager = ClusterManager(bbox, 'shopping')
all_landmarks.update(shopping_clusters) shopping_clusters = shopping_manager.generate_clusters()
all_landmarks.update(shopping_clusters)
landmarks_constrained = take_most_important(all_landmarks, self.n_important) # DETAILS HERE
# self.logger.info(f'All landmarks generated : {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.') # self.logger.info(f'All landmarks generated : {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.')
self.logger.info(f'Found {len(all_landmarks)} landmarks in total.')
return sorted(all_landmarks, key=lambda x: x.attractiveness, reverse=True)
return all_landmarks, landmarks_constrained
def set_landmark_score(self, landmark: Landmark, landmarktype: str, preference_level: int) : def set_landmark_score(self, landmark: Landmark, landmarktype: str, preference_level: int) :
""" """
@@ -236,6 +245,17 @@ class LandmarkManager:
continue continue
tags = elem.get('tags') tags = elem.get('tags')
n_tags=len(tags)
# Skip this landmark if not suitable
if tags.get('building:part') is not None :
continue
if tags.get('disused') is not None :
continue
if tags.get('boundary') is not None :
continue
if tags.get('shop') is not None and landmarktype != 'shopping' :
continue
# Convert this to Landmark object # Convert this to Landmark object
landmark = Landmark(name=name, landmark = Landmark(name=name,
@@ -244,180 +264,36 @@ class LandmarkManager:
osm_id=id, osm_id=id,
osm_type=osm_type, osm_type=osm_type,
attractiveness=0, attractiveness=0,
n_tags=len(tags)) n_tags=n_tags)
# Browse through tags to add information to landmark. # Extract useful information for score calculation later down the road.
for key, value in tags.items(): landmark.image_url = tags.get('image')
landmark.website_url = tags.get('website')
landmark.wiki_url = tags.get('wikipedia')
landmark.name_en = tags.get('name:en')
# Skip this landmark if not suitable. # Check for place of worship
if key == 'building:part' and value == 'yes' : if tags.get('place_of_worship') is not None :
break
if 'disused:' in key :
break
if 'boundary:' in key :
break
if 'shop' in key and landmarktype != 'shopping' :
break
# if value == 'apartments' :
# break
# Fill in the other attributes.
if key == 'image' :
landmark.image_url = value
if key == 'website' :
landmark.website_url = value
if value == 'place_of_worship' :
landmark.is_place_of_worship = True landmark.is_place_of_worship = True
if key == 'wikipedia' : landmark.name_en = tags.get('place_of_worship')
landmark.wiki_url = value
if key == 'name:en' :
landmark.name_en = value
if 'building:' in key or 'pay' in key :
landmark.n_tags -= 1
# Set the duration. Needed for the optimization.
if tags.get('amenity') in ['aquarium', 'planetarium'] or tags.get('tourism') in ['aquarium', 'museum', 'zoo']:
landmark.duration = 60
elif tags.get('tourism') == 'viewpoint' :
landmark.is_viewpoint = True
landmark.duration = 10
elif tags.get('building') == 'cathedral' :
landmark.is_place_of_worship = False
landmark.duration = 10
# Set the duration. # Compute the score and add landmark to the list.
if value in ['museum', 'aquarium', 'planetarium'] :
landmark.duration = 60
elif value == 'viewpoint' :
landmark.is_viewpoint = True
landmark.duration = 10
elif value == 'cathedral' :
landmark.is_place_of_worship = False
landmark.duration = 10
landmark.description, landmark.keywords = self.description_and_keywords(tags)
self.set_landmark_score(landmark, landmarktype, preference_level) self.set_landmark_score(landmark, landmarktype, preference_level)
landmarks.append(landmark) landmarks.append(landmark)
continue
return landmarks return landmarks
def description_and_keywords(self, tags: dict):
"""
Generates a description and a set of keywords for a given landmark based on its tags.
Params:
tags (dict): A dictionary containing metadata about the landmark, including its name,
importance, height, date of construction, and visitor information.
Returns:
description (str): A string description of the landmark.
keywords (dict): A dictionary of keywords with fields such as 'importance', 'height',
'place_type', and 'date'.
"""
# Extract relevant fields
name = tags.get('name')
importance = tags.get('importance', None)
n_visitors = tags.get('tourism:visitors', None)
height = tags.get('height')
place_type = self.get_place_type(tags)
date = self.get_date(tags)
if place_type is None :
return None, None
# Start the description.
if importance is None :
if len(tags.keys()) < 5 :
return None, None
if len(tags.keys()) < 10 :
description = f"{name} is a well known {place_type}."
elif len(tags.keys()) < 17 :
importance = 'national'
description = f"{name} is a {place_type} of national importance."
else :
importance = 'international'
description = f"{name} is an internationally famous {place_type}."
else :
description = f"{name} is a {place_type} of {importance} importance."
if height is not None and date is not None :
description += f" This {place_type} was constructed in {date} and is ca. {height} meters high."
elif height is not None :
description += f" This {place_type} stands ca. {height} meters tall."
elif date is not None:
description += f" It was constructed in {date}."
# Format the visitor number
if n_visitors is not None :
n_visitors = int(n_visitors)
if n_visitors < 1000000 :
description += f" It welcomes {int(n_visitors/1000)} thousand visitors every year."
else :
description += f" It welcomes {round(n_visitors/1000000, 1)} million visitors every year."
# Set the keywords.
keywords = {"importance": importance,
"height": height,
"place_type": place_type,
"date": date}
return description, keywords
def get_place_type(self, data):
"""
Determines the type of the place based on available tags such as 'amenity', 'building',
'historic', and 'leisure'. The priority order is: 'historic' > 'building' (if not generic) >
'amenity' > 'leisure'.
Params:
data (dict): A dictionary containing metadata about the place.
Returns:
place_type (str): The determined type of the place, or None if no relevant type is found.
"""
amenity = data.get('amenity', None)
building = data.get('building', None)
historic = data.get('historic', None)
leisure = data.get('leisure')
if historic and historic != "yes":
return historic
if building and building not in ["yes", "civic", "government", "apartments", "residential", "commericial", "industrial", "retail", "religious", "public", "service"]:
return building
if amenity:
return amenity
if leisure:
return leisure
return None
def get_date(self, data):
"""
Extracts the most relevant date from the available tags, prioritizing 'construction_date',
'start_date', 'year_of_construction', and 'opening_date' in that order.
Params:
data (dict): A dictionary containing metadata about the place.
Returns:
date (str): The most relevant date found, or None if no date is available.
"""
construction_date = data.get('construction_date', None)
opening_date = data.get('opening_date', None)
start_date = data.get('start_date', None)
year_of_construction = data.get('year_of_construction', None)
# Prioritize based on availability
if construction_date:
return construction_date
if start_date:
return start_date
if year_of_construction:
return year_of_construction
if opening_date:
return opening_date
return None
def dict_to_selector_list(d: dict) -> list: def dict_to_selector_list(d: dict) -> list:
""" """
Convert a dictionary of key-value pairs to a list of Overpass query strings. Convert a dictionary of key-value pairs to a list of Overpass query strings.

View File

@@ -0,0 +1,123 @@
"""Main app for backend api"""
import logging
import time
import random
from fastapi import HTTPException, APIRouter
from ..structs.landmark import Landmark
from ..structs.preferences import Preferences, Preference
from .landmarks_manager import LandmarkManager
# Setup the logger and the Landmarks Manager
logger = logging.getLogger(__name__)
manager = LandmarkManager()
# Initialize the API router
router = APIRouter()
@router.post("/get/landmarks")
def get_landmarks(
preferences: Preferences,
start: tuple[float, float],
) -> list[Landmark]:
"""
Function that returns all available landmarks given some preferences and a start position.
Args:
preferences : the preferences specified by the user as the post body
start : the coordinates of the starting point
Returns:
list[Landmark] : The full list of fetched landmarks
"""
if preferences is None:
raise HTTPException(status_code=406, detail="Preferences not provided or incomplete.")
if (preferences.shopping.score == 0 and
preferences.sightseeing.score == 0 and
preferences.nature.score == 0) :
raise HTTPException(status_code=406, detail="All preferences are 0.")
if start is None:
raise HTTPException(status_code=406, detail="Start coordinates not provided")
if not (-90 <= start[0] <= 90 or -180 <= start[1] <= 180):
raise HTTPException(status_code=422, detail="Start coordinates not in range")
logger.info(f"Requested new trip generation. Details:\n\tCoordinates: {start}\n\tTime: {preferences.max_time_minute}\n\tSightseeing: {preferences.sightseeing.score}\n\tNature: {preferences.nature.score}\n\tShopping: {preferences.shopping.score}")
start_time = time.time()
# Generate the landmarks from the start location
landmarks = manager.generate_landmarks_list(
center_coordinates = start,
preferences = preferences
)
if len(landmarks) == 0 :
raise HTTPException(status_code=500, detail="No landmarks were found.")
t_generate_landmarks = time.time() - start_time
logger.info(f'Fetched {len(landmarks)} landmarks in \t: {round(t_generate_landmarks,3)} seconds')
return landmarks
@router.post("/get-nearby/landmarks/{lat}/{lon}")
def get_landmarks_nearby(
lat: float,
lon: float
) -> list[Landmark] :
"""
Suggests nearby landmarks based on a given latitude and longitude.
This endpoint returns a curated list of up to 5 landmarks around the given geographical coordinates. It uses fixed preferences for
sightseeing, shopping, and nature, with a maximum time constraint of 30 minutes to limit the number of landmarks returned.
Args:
lat (float): Latitude of the user's current location.
lon (float): Longitude of the user's current location.
Returns:
list[Landmark]: A list of selected nearby landmarks.
"""
logger.info(f'Fetching landmarks nearby ({lat}, {lon}).')
# Define fixed preferences:
prefs = Preferences(
sightseeing = Preference(
type='sightseeing',
score=5
),
shopping = Preference(
type='shopping',
score=2
),
nature = Preference(
type='nature',
score=5
),
max_time_minute=30,
detour_tolerance_minute=0,
)
# Find the landmarks around the location
landmarks_around = manager.generate_landmarks_list(
center_coordinates = (lat, lon),
preferences = prefs,
allow_clusters=False,
)
if len(landmarks_around) == 0 :
raise HTTPException(status_code=500, detail="No landmarks were found.")
# select 8 - 12 landmarks from there
if len(landmarks_around) > 8 :
n_imp = random.randint(2,5)
rest = random.randint(8 - n_imp, min(12, len(landmarks_around))-n_imp)
print(f'len = {len(landmarks_around)}\nn_imp = {n_imp}\nrest = {rest}')
landmarks_around = landmarks_around[:n_imp] + random.sample(landmarks_around[n_imp:], rest)
logger.info(f'Found {len(landmarks_around)} landmarks to suggest nearby ({lat}, {lon}).')
# logger.debug('Suggested landmarks :\n\t' + '\n\t'.join(f'{landmark}' for landmark in landmarks_around))
return landmarks_around

View File

@@ -33,14 +33,14 @@ def configure_logging():
# silence the chatty logs loki generates itself # silence the chatty logs loki generates itself
logging.getLogger('urllib3.connectionpool').setLevel(logging.WARNING) logging.getLogger('urllib3.connectionpool').setLevel(logging.WARNING)
# no need for time since it's added by loki or can be shown in kube logs # no need for time since it's added by loki or can be shown in kube logs
logging_format = '%(name)s - %(levelname)s - %(message)s' logging_format = '%(name)-55s - %(levelname)-7s - %(message)s'
else: else:
# if we are in a debug (local) session, set verbose and rich logging # if we are in a debug (local) session, set verbose and rich logging
from rich.logging import RichHandler from rich.logging import RichHandler
logging_handlers = [RichHandler()] logging_handlers = [RichHandler()]
logging_level = logging.DEBUG if is_debug else logging.INFO logging_level = logging.DEBUG if is_debug else logging.INFO
logging_format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logging_format = '%(asctime)s - %(name)-55s - %(levelname)-7s - %(message)s'

View File

@@ -1,19 +1,18 @@
"""Main app for backend api""" """Main app for backend api"""
import logging import logging
import time
from contextlib import asynccontextmanager from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException, BackgroundTasks from fastapi import FastAPI, HTTPException
from .logging_config import configure_logging from .logging_config import configure_logging
from .structs.landmark import Landmark from .structs.landmark import Landmark
from .structs.preferences import Preferences
from .structs.linked_landmarks import LinkedLandmarks from .structs.linked_landmarks import LinkedLandmarks
from .structs.trip import Trip from .structs.trip import Trip
from .landmarks.landmarks_manager import LandmarkManager from .landmarks.landmarks_manager import LandmarkManager
from .toilets.toilet_routes import router as toilets_router from .toilets.toilets_router import router as toilets_router
from .optimization.optimization_router import router as optimization_router
from .landmarks.landmarks_router import router as landmarks_router, get_landmarks_nearby
from .optimization.optimizer import Optimizer from .optimization.optimizer import Optimizer
from .optimization.refiner import Refiner from .optimization.refiner import Refiner
from .overpass.overpass import fill_cache
from .cache import client as cache_client from .cache import client as cache_client
@@ -37,115 +36,22 @@ app = FastAPI(lifespan=lifespan)
# Fetches the global list of landmarks given preferences and start/end coordinates. Two routes
# Call with "/get/landmarks/" for main entry point of the trip generation pipeline.
# Call with "/get-nearby/landmarks/" for the NEARBY feature.
app.include_router(landmarks_router)
# Optimizes the trip given preferences. Second step in the main trip generation pipeline
# Call with "/optimize/trip"
app.include_router(optimization_router)
# Fetches toilets near given coordinates.
# Call with "/get/toilets" for fetching toilets around coordinates
app.include_router(toilets_router) app.include_router(toilets_router)
@app.post("/trip/new")
def new_trip(preferences: Preferences,
start: tuple[float, float],
end: tuple[float, float] | None = None,
background_tasks: BackgroundTasks = None) -> Trip:
"""
Main function to call the optimizer.
Args:
preferences : the preferences specified by the user as the post body
start : the coordinates of the starting point
end : the coordinates of the finishing point
Returns:
(uuid) : The uuid of the first landmark in the optimized route
"""
if preferences is None:
raise HTTPException(status_code=406, detail="Preferences not provided or incomplete.")
if (preferences.shopping.score == 0 and
preferences.sightseeing.score == 0 and
preferences.nature.score == 0) :
raise HTTPException(status_code=406, detail="All preferences are 0.")
if start is None:
raise HTTPException(status_code=406, detail="Start coordinates not provided")
if not (-90 <= start[0] <= 90 or -180 <= start[1] <= 180):
raise HTTPException(status_code=422, detail="Start coordinates not in range")
if end is None:
end = start
logger.info("No end coordinates provided. Using start=end.")
logger.info(f"Requested new trip generation. Details:\n\tCoordinates: {start}\n\tTime: {preferences.max_time_minute}\n\tSightseeing: {preferences.sightseeing.score}\n\tNature: {preferences.nature.score}\n\tShopping: {preferences.shopping.score}")
start_landmark = Landmark(name='start',
type='start',
location=(start[0], start[1]),
osm_type='start',
osm_id=0,
attractiveness=0,
duration=0,
must_do=True,
n_tags = 0)
end_landmark = Landmark(name='finish',
type='finish',
location=(end[0], end[1]),
osm_type='end',
osm_id=0,
attractiveness=0,
duration=0,
must_do=True,
n_tags=0)
start_time = time.time()
# Generate the landmarks from the start location
landmarks, landmarks_short = manager.generate_landmarks_list(
center_coordinates = start,
preferences = preferences
)
if len(landmarks) == 0 :
raise HTTPException(status_code=500, detail="No landmarks were found.")
# insert start and finish to the landmarks list
landmarks_short.insert(0, start_landmark)
landmarks_short.append(end_landmark)
t_generate_landmarks = time.time() - start_time
logger.info(f'Fetched {len(landmarks)} landmarks in \t: {round(t_generate_landmarks,3)} seconds')
start_time = time.time()
# First stage optimization
try:
base_tour = optimizer.solve_optimization(preferences.max_time_minute, landmarks_short)
except Exception as exc:
logger.error(f"Trip generation failed: {str(exc)}")
raise HTTPException(status_code=500, detail=f"Optimization failed: {str(exc)}") from exc
t_first_stage = time.time() - start_time
start_time = time.time()
# Second stage optimization
# TODO : only if necessary (not enough landmarks for ex.)
try :
refined_tour = refiner.refine_optimization(landmarks, base_tour,
preferences.max_time_minute,
preferences.detour_tolerance_minute)
except Exception as exc :
logger.warning(f"Refiner failed. Proceeding with base trip {str(exc)}")
refined_tour = base_tour
t_second_stage = time.time() - start_time
logger.debug(f'First stage optimization\t: {round(t_first_stage,3)} seconds')
logger.debug(f'Second stage optimization\t: {round(t_second_stage,3)} seconds')
logger.info(f'Total computation time\t: {round(t_first_stage + t_second_stage,3)} seconds')
linked_tour = LinkedLandmarks(refined_tour)
# upon creation of the trip, persistence of both the trip and its landmarks is ensured.
trip = Trip.from_linked_landmarks(linked_tour, cache_client)
logger.info(f'Generated a trip of {trip.total_time} minutes with {len(refined_tour)} landmarks in {round(t_generate_landmarks + t_first_stage + t_second_stage,3)} seconds.')
logger.debug('Detailed trip :\n\t' + '\n\t'.join(f'{landmark}' for landmark in refined_tour))
background_tasks.add_task(fill_cache)
return trip
#### For already existing trips/landmarks #### For already existing trips/landmarks
@app.get("/trip/{trip_uuid}") @app.get("/trip/{trip_uuid}")
@@ -224,3 +130,4 @@ def update_trip_time(trip_uuid: str, removed_landmark_uuid: str) -> Trip:
trip = Trip.from_linked_landmarks(linked_tour, cache_client) trip = Trip.from_linked_landmarks(linked_tour, cache_client)
return trip return trip

View File

@@ -0,0 +1,139 @@
"""API entry point for the trip optimization."""
import logging
import time
import yaml
from fastapi import HTTPException, APIRouter, BackgroundTasks
from .optimizer import Optimizer
from .refiner import Refiner
from ..structs.landmark import Landmark
from ..structs.preferences import Preferences
from ..structs.linked_landmarks import LinkedLandmarks
from ..structs.trip import Trip
from ..overpass.overpass import fill_cache
from ..cache import client as cache_client
from ..constants import OPTIMIZER_PARAMETERS_PATH
# Setup the Logger, Optimizer and Refiner
logger = logging.getLogger(__name__)
optimizer = Optimizer()
refiner = Refiner(optimizer=optimizer)
# Initialize the API router
router = APIRouter()
@router.post("/optimize/trip")
def optimize_trip(
preferences: Preferences,
landmarks: list[Landmark],
start: tuple[float, float],
end: tuple[float, float] | None = None,
background_tasks: BackgroundTasks = None
) -> Trip:
"""
Main function to call the optimizer.
Args:
preferences (Preferences) : the preferences specified by the user as the post body.
start (tuple[float, float]) : the coordinates of the starting point.
end tuple[float, float] : the coordinates of the finishing point.
backgroud_tasks (BackgroundTasks) : necessary to fill the cache after the trip has been returned.
Returns:
(uuid) : The uuid of the first landmark in the optimized route
"""
if preferences is None:
raise HTTPException(status_code=406, detail="Preferences not provided or incomplete.")
if len(landmarks) == 0 :
raise HTTPException(status_code=406, detail="No landmarks provided for computing the trip.")
if (preferences.shopping.score == 0 and
preferences.sightseeing.score == 0 and
preferences.nature.score == 0) :
raise HTTPException(status_code=406, detail="All preferences are 0.")
if start is None:
raise HTTPException(status_code=406, detail="Start coordinates not provided")
if not (-90 <= start[0] <= 90 or -180 <= start[1] <= 180):
raise HTTPException(status_code=422, detail="Start coordinates not in range")
if end is None:
end = start
logger.info("No end coordinates provided. Using start=end.")
# Start the timer
start_time = time.time()
logger.info(f"Requested new trip generation. Details:\n\tCoordinates: {start}\n\tTime: {preferences.max_time_minute}\n\tSightseeing: {preferences.sightseeing.score}\n\tNature: {preferences.nature.score}\n\tShopping: {preferences.shopping.score}")
start_landmark = Landmark(
name='start',
type='start',
location=(start[0], start[1]),
osm_type='start',
osm_id=0,
attractiveness=0,
duration=0,
must_do=True,
n_tags = 0
)
end_landmark = Landmark(
name='finish',
type='finish',
location=(end[0], end[1]),
osm_type='end',
osm_id=0,
attractiveness=0,
duration=0,
must_do=True,
n_tags=0
)
# From the parameters load the length at which to truncate the landmarks list.
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
parameters = yaml.safe_load(f)
n_important = parameters['N_important']
# Truncate to the most important landmarks for a shorter list
landmarks_short = landmarks[:n_important]
# insert start and finish to the shorter landmarks list
landmarks_short.insert(0, start_landmark)
landmarks_short.append(end_landmark)
# First stage optimization
try:
base_tour = optimizer.solve_optimization(preferences.max_time_minute, landmarks_short)
except Exception as exc:
logger.error(f"Trip generation failed: {str(exc)}")
raise HTTPException(status_code=500, detail=f"Optimization failed: {str(exc)}") from exc
t_first_stage = time.time() - start_time
start_time = time.time()
# Second stage optimization
try :
refined_tour = refiner.refine_optimization(landmarks, base_tour,
preferences.max_time_minute,
preferences.detour_tolerance_minute)
except Exception as exc :
logger.warning(f"Refiner failed. Proceeding with base trip {str(exc)}")
refined_tour = base_tour
t_second_stage = time.time() - start_time
logger.debug(f'First stage optimization\t: {round(t_first_stage,3)} seconds')
logger.debug(f'Second stage optimization\t: {round(t_second_stage,3)} seconds')
logger.info(f'Total computation time\t: {round(t_first_stage + t_second_stage,3)} seconds')
linked_tour = LinkedLandmarks(refined_tour)
# upon creation of the trip, persistence of both the trip and its landmarks is ensured.
trip = Trip.from_linked_landmarks(linked_tour, cache_client)
logger.info(f'Optimized a trip of {trip.total_time} minutes with {len(refined_tour)} landmarks in {round(t_first_stage + t_second_stage,3)} seconds.')
logger.info('Detailed trip :\n\t' + '\n\t'.join(f'{landmark}' for landmark in refined_tour))
background_tasks.add_task(fill_cache)
return trip

View File

@@ -402,6 +402,8 @@ def fill_cache():
n_files = 0 n_files = 0
total = 0 total = 0
overpass.logger.info('Trip successfully returned, starting to fill cache.')
with os.scandir(OSM_CACHE_DIR) as it: with os.scandir(OSM_CACHE_DIR) as it:
for entry in it: for entry in it:
if entry.is_file() and entry.name.startswith('hollow_'): if entry.is_file() and entry.name.startswith('hollow_'):

View File

@@ -7,5 +7,4 @@ tag_exponent: 1.15
image_bonus: 1.1 image_bonus: 1.1
viewpoint_bonus: 10 viewpoint_bonus: 10
wikipedia_bonus: 1.25 wikipedia_bonus: 1.25
N_important: 60
pay_bonus: -1 pay_bonus: -1

View File

@@ -7,3 +7,4 @@ overshoot: 0.0016
time_limit: 1 time_limit: 1
gap_rel: 0.025 gap_rel: 0.025
max_iter: 80 max_iter: 80
N_important: 60

View File

@@ -49,8 +49,8 @@ class Landmark(BaseModel) :
image_url : Optional[str] = None image_url : Optional[str] = None
website_url : Optional[str] = None website_url : Optional[str] = None
wiki_url : Optional[str] = None wiki_url : Optional[str] = None
keywords: Optional[dict] = {} # keywords: Optional[dict] = {}
description : Optional[str] = None # description : Optional[str] = None
duration : Optional[int] = 5 duration : Optional[int] = 5
name_en : Optional[str] = None name_en : Optional[str] = None

View File

@@ -2,6 +2,7 @@
from .landmark import Landmark from .landmark import Landmark
from ..utils.get_time_distance import get_time from ..utils.get_time_distance import get_time
from ..utils.description import description_and_keywords
class LinkedLandmarks: class LinkedLandmarks:
""" """
@@ -35,18 +36,23 @@ class LinkedLandmarks:
Create the links between the landmarks in the list by setting their Create the links between the landmarks in the list by setting their
.next_uuid and the .time_to_next attributes. .next_uuid and the .time_to_next attributes.
""" """
# Mark secondary landmarks as such # Mark secondary landmarks as such
self.update_secondary_landmarks() self.update_secondary_landmarks()
for i, landmark in enumerate(self._landmarks[:-1]): for i, landmark in enumerate(self._landmarks[:-1]):
# Set uuid of the next landmark
landmark.next_uuid = self._landmarks[i + 1].uuid landmark.next_uuid = self._landmarks[i + 1].uuid
# Adjust time to reach and total time
time_to_next = get_time(landmark.location, self._landmarks[i + 1].location) time_to_next = get_time(landmark.location, self._landmarks[i + 1].location)
landmark.time_to_reach_next = time_to_next landmark.time_to_reach_next = time_to_next
self.total_time += time_to_next self.total_time += time_to_next
self.total_time += landmark.duration self.total_time += landmark.duration
# Fill in the keywords and description. GOOD IDEA, BAD EXECUTION, tags aren't available anymore at this stage
# landmark.description, landmark.keywords = description_and_keywords(tags)
self._landmarks[-1].next_uuid = None self._landmarks[-1].next_uuid = None
self._landmarks[-1].time_to_reach_next = 0 self._landmarks[-1].time_to_reach_next = 0

View File

@@ -1,7 +1,7 @@
"""Defines the Preferences used as input for trip generation.""" """Defines the Preferences used as input for trip generation."""
from typing import Optional, Literal from typing import Optional, Literal
from pydantic import BaseModel from pydantic import BaseModel, field_validator
class Preference(BaseModel) : class Preference(BaseModel) :
@@ -15,6 +15,13 @@ class Preference(BaseModel) :
type: Literal['sightseeing', 'nature', 'shopping', 'start', 'finish'] type: Literal['sightseeing', 'nature', 'shopping', 'start', 'finish']
score: int # score could be from 1 to 5 score: int # score could be from 1 to 5
@field_validator("type")
@classmethod
def validate_type(cls, v):
if v not in {'sightseeing', 'nature', 'shopping', 'start', 'finish'}:
raise ValueError(f"Invalid type: {v}")
return v
# Input for optimization # Input for optimization
class Preferences(BaseModel) : class Preferences(BaseModel) :

View File

@@ -19,30 +19,50 @@ def invalid_client():
([48.8566, 2.3522], {}, 422), ([48.8566, 2.3522], {}, 422),
# Invalid cases: incomplete preferences. # Invalid cases: incomplete preferences.
([48.084588, 7.280405], {"sightseeing": {"type": "nature", "score": 5}, # no shopping ([48.084588, 7.280405], {"sightseeing": {"type": "sightseeing", "score": 5}, # no shopping pref
"nature": {"type": "nature", "score": 5}, "nature": {"type": "nature", "score": 5},
}, 422), }, 422),
([48.084588, 7.280405], {"sightseeing": {"type": "nature", "score": 5}, # no nature ([48.084588, 7.280405], {"sightseeing": {"type": "sightseeing", "score": 5}, # no nature pref
"shopping": {"type": "shopping", "score": 5}, "shopping": {"type": "shopping", "score": 5},
}, 422), }, 422),
([48.084588, 7.280405], {"nature": {"type": "nature", "score": 5}, # no sightseeing ([48.084588, 7.280405], {"nature": {"type": "nature", "score": 5}, # no sightseeing pref
"shopping": {"type": "shopping", "score": 5}, "shopping": {"type": "shopping", "score": 5},
}, 422), }, 422),
([48.084588, 7.280405], {"sightseeing": {"type": "nature", "score": 1}, # mixed up preferences types. TODO: i suggest reducing the complexity by remove the Preference object.
"nature": {"type": "shopping", "score": 1},
"shopping": {"type": "shopping", "score": 1},
}, 422),
([48.084588, 7.280405], {"doesnotexist": {"type": "sightseeing", "score": 2}, # non-existing preferences types
"nature": {"type": "nature", "score": 2},
"shopping": {"type": "shopping", "score": 2},
}, 422),
([48.084588, 7.280405], {"sightseeing": {"type": "sightseeing", "score": 3}, # non-existing preferences types
"nature": {"type": "doesntexisteither", "score": 3},
"shopping": {"type": "shopping", "score": 3},
}, 422),
([48.084588, 7.280405], {"sightseeing": {"type": "sightseeing", "score": -1}, # negative preference value
"nature": {"type": "doesntexisteither", "score": 4},
"shopping": {"type": "shopping", "score": 4},
}, 422),
([48.084588, 7.280405], {"sightseeing": {"type": "sightseeing", "score": 10}, # too high preference value
"nature": {"type": "doesntexisteither", "score": 4},
"shopping": {"type": "shopping", "score": 4},
}, 422),
# Invalid cases: unexisting coords # Invalid cases: unexisting coords
([91, 181], {"sightseeing": {"type": "nature", "score": 5}, ([91, 181], {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5}, "nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5}, "shopping": {"type": "shopping", "score": 5},
}, 422), }, 422),
([-91, 181], {"sightseeing": {"type": "nature", "score": 5}, ([-91, 181], {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5}, "nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5}, "shopping": {"type": "shopping", "score": 5},
}, 422), }, 422),
([91, -181], {"sightseeing": {"type": "nature", "score": 5}, ([91, -181], {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5}, "nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5}, "shopping": {"type": "shopping", "score": 5},
}, 422), }, 422),
([-91, -181], {"sightseeing": {"type": "nature", "score": 5}, ([-91, -181], {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5}, "nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5}, "shopping": {"type": "shopping", "score": 5},
}, 422), }, 422),
@@ -53,8 +73,8 @@ def test_input(invalid_client, start, preferences, status_code): # pylint: dis
Test new trip creation with different sets of preferences and locations. Test new trip creation with different sets of preferences and locations.
""" """
response = invalid_client.post( response = invalid_client.post(
"/trip/new", "/get/landmarks",
json={ json ={
"preferences": preferences, "preferences": preferences,
"start": start "start": start
} }

View File

@@ -1,343 +0,0 @@
"""Collection of tests to ensure correct implementation and track progress. """
import time
from fastapi.testclient import TestClient
import pytest
from .test_utils import load_trip_landmarks, log_trip_details
from ..main import app
@pytest.fixture(scope="module")
def client():
"""Client used to call the app."""
return TestClient(app)
def test_turckheim(client, request): # pylint: disable=redefined-outer-name
"""
Test n°1 : Custom test in Turckheim to ensure small villages are also supported.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 20
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 0},
"shopping": {"type": "shopping", "score": 0},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [48.084588, 7.280405]
# "start": [45.74445023349939, 4.8222687890538865]
# "start": [45.75156398104873, 4.827154464827647]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# checks :
assert response.status_code == 200 # check for successful planning
assert isinstance(landmarks, list) # check that the return type is a list
assert len(landmarks) > 2 # check that there is something to visit
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
# assert 2!= 3
def test_bellecour(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°2 : Custom test in Lyon centre to ensure proper decision making in crowded area.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 120
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [45.7576485, 4.8330241]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_cologne(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°3 : Custom test in Cologne to ensure proper decision making in crowded area.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 240
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [50.942352665, 6.957777972392]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_strasbourg(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°4 : Custom test in Strasbourg to ensure proper decision making in crowded area.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 180
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [48.5846589226, 7.74078715721]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_zurich(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°5 : Custom test in Zurich to ensure proper decision making in crowded area.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 180
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [47.377884227, 8.5395114066]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_paris(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°6 : Custom test in Paris (les Halles) centre to ensure proper decision making in crowded area.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 200
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 0},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [48.85468881798671, 2.3423925755998374]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_new_york(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°7 : Custom test in New York to ensure proper decision making in crowded area.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 600
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 5},
"nature": {"type": "nature", "score": 5},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [40.72592726802, -73.9920434795]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"
def test_shopping(client, request) : # pylint: disable=redefined-outer-name
"""
Test n°8 : Custom test in Lyon centre to ensure shopping clusters are found.
Args:
client:
request:
"""
start_time = time.time() # Start timer
duration_minutes = 240
response = client.post(
"/trip/new",
json={
"preferences": {"sightseeing": {"type": "sightseeing", "score": 0},
"nature": {"type": "nature", "score": 0},
"shopping": {"type": "shopping", "score": 5},
"max_time_minute": duration_minutes,
"detour_tolerance_minute": 0},
"start": [45.7576485, 4.8330241]
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], duration_minutes)
# for elem in landmarks :
# print(elem)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert duration_minutes*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {duration_minutes}"
assert duration_minutes*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {duration_minutes}"

View File

@@ -0,0 +1,46 @@
"""Collection of tests to ensure correct implementation and track progress of the get_landmarks_nearby feature. """
from fastapi.testclient import TestClient
import pytest
from ..main import app
@pytest.fixture(scope="module")
def client():
"""Client used to call the app."""
return TestClient(app)
@pytest.mark.parametrize(
"location,status_code",
[
([45.7576485, 4.8330241], 200), # Lyon, France
([41.4020572, 2.1818985], 200), # Barcelona, Spain
([59.3293, 18.0686], 200), # Stockholm, Sweden
([43.6532, -79.3832], 200), # Toronto, Canada
([38.7223, -9.1393], 200), # Lisbon, Portugal
([6.5244, 3.3792], 200), # Lagos, Nigeria
([17.3850, 78.4867], 200), # Hyderabad, India
([30.0444, 31.2357], 200), # Cairo, Egypt
([50.8503, 4.3517], 200), # Brussels, Belgium
([35.2271, -80.8431], 200), # Charlotte, USA
([10.4806, -66.9036], 200), # Caracas, Venezuela
([9.51074, -13.71118], 200), # Conakry, Guinea
]
)
def test_nearby(client, location, status_code): # pylint: disable=redefined-outer-name
"""
Test n°1 : Verify handling of invalid input.
Args:
client:
request:
"""
response = client.post(f"/get-nearby/landmarks/{location[0]}/{location[1]}")
suggestions = response.json()
# checks :
assert response.status_code == status_code # check for successful planning
assert isinstance(suggestions, list) # check that the return type is a list
assert len(suggestions) > 0

View File

@@ -18,7 +18,7 @@ def client():
[ [
({}, None, 422), # Invalid case: no location at all. ({}, None, 422), # Invalid case: no location at all.
([443], None, 422), # Invalid cases: invalid location. ([443], None, 422), # Invalid cases: invalid location.
([443, 433], None, 422), # Invalid cases: invalid location. ([443, 433], None, 422), # Invalid cases: invalid location.
] ]
) )
def test_invalid_input(client, location, radius, status_code): # pylint: disable=redefined-outer-name def test_invalid_input(client, location, radius, status_code): # pylint: disable=redefined-outer-name
@@ -30,12 +30,13 @@ def test_invalid_input(client, location, radius, status_code): # pylint: disa
request: request:
""" """
response = client.post( response = client.post(
"/toilets/new", "/get/toilets",
params={ params={
"location": location, "location": location,
"radius": radius "radius": radius
} }
) )
print(response.json())
# checks : # checks :
assert response.status_code == status_code assert response.status_code == status_code
@@ -58,11 +59,12 @@ def test_no_toilets(client, location, status_code): # pylint: disable=redefin
request: request:
""" """
response = client.post( response = client.post(
"/toilets/new", "/get/toilets",
params={ params={
"location": location "location": location
} }
) )
print(response.json())
toilets_list = [Toilets.model_validate(toilet) for toilet in response.json()] toilets_list = [Toilets.model_validate(toilet) for toilet in response.json()]
# checks : # checks :
@@ -87,12 +89,14 @@ def test_toilets(client, location, status_code): # pylint: disable=redefined-
request: request:
""" """
response = client.post( response = client.post(
"/toilets/new", "/get/toilets",
params={ params={
"location": location, "location": location,
"radius" : 600 "radius" : 600
} }
) )
print(response.json())
toilets_list = [Toilets.model_validate(toilet) for toilet in response.json()] toilets_list = [Toilets.model_validate(toilet) for toilet in response.json()]
# checks : # checks :

View File

@@ -0,0 +1,81 @@
"""Collection of tests to ensure correct implementation and track progress."""
import time
from fastapi.testclient import TestClient
import pytest
from .test_utils import load_trip_landmarks, log_trip_details
from ..structs.preferences import Preferences, Preference
from ..main import app
@pytest.fixture(scope="module")
def client():
"""Client used to call the app."""
return TestClient(app)
@pytest.mark.parametrize(
"sightseeing, shopping, nature, max_time_minute, start_coords, end_coords",
[
# Edge cases
(0, 0, 5, 240, [45.7576485, 4.8330241], None), # Lyon, Bellecour - test shopping only
# Realistic
(5, 0, 0, 20, [48.0845881, 7.2804050], None), # Turckheim
(5, 5, 5, 120, [45.7576485, 4.8330241], None), # Lyon, Bellecour
(5, 2, 5, 240, [50.9423526, 6.9577780], None), # Cologne, centre
(3, 5, 0, 180, [48.5846589226, 7.74078715721], None), # Strasbourg, centre
(2, 4, 5, 180, [47.377884227, 8.5395114066], None), # Zurich, centre
(5, 0, 5, 200, [48.85468881798671, 2.3423925755998374], None), # Paris, centre
(5, 5, 5, 600, [40.72592726802, -73.9920434795], None), # New York, Lower Manhattan
]
)
def test_trip(client, request, sightseeing, shopping, nature, max_time_minute, start_coords, end_coords):
start_time = time.time() # Start timer
prefs = Preferences(
sightseeing=Preference(type='sightseeing', score=sightseeing),
shopping=Preference(type='shopping', score=shopping),
nature=Preference(type='nature', score=nature),
max_time_minute=max_time_minute,
detour_tolerance_minute=0,
)
start = start_coords
end = end_coords
# Step 1: request the list of landmarks in the vicinty of the starting point
response = client.post(
"/get/landmarks",
json={
"preferences": prefs.model_dump(),
"start": start_coords,
"end": end_coords,
}
)
landmarks = response.json()
# Step 2: Feed the landmarks to the optimizer to compute the trip
response = client.post(
"/optimize/trip",
json={
"preferences": prefs.model_dump(),
"landmarks": landmarks,
"start": start,
"end": end,
}
)
result = response.json()
landmarks = load_trip_landmarks(client, result['first_landmark_uuid'])
# Get computation time
comp_time = time.time() - start_time
# Add details to report
log_trip_details(request, landmarks, result['total_time'], prefs.max_time_minute)
# checks :
assert response.status_code == 200 # check for successful planning
assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds"
assert prefs.max_time_minute*0.8 < result['total_time'], f"Trip too short: {result['total_time']} instead of {prefs.max_time_minute}"
assert prefs.max_time_minute*1.2 > result['total_time'], f"Trip too long: {result['total_time']} instead of {prefs.max_time_minute}"

View File

@@ -1,9 +1,12 @@
"""Helper methods for testing.""" """Helper methods for testing."""
import time
import logging import logging
from functools import wraps
from fastapi import HTTPException from fastapi import HTTPException
from ..structs.landmark import Landmark
from ..cache import client as cache_client from ..cache import client as cache_client
from ..structs.landmark import Landmark
from ..structs.preferences import Preferences, Preference
def landmarks_to_osmid(landmarks: list[Landmark]) -> list[int] : def landmarks_to_osmid(landmarks: list[Landmark]) -> list[int] :
@@ -91,3 +94,34 @@ def log_trip_details(request, landmarks: list[Landmark], duration: int, target_d
request.node.trip_details = trip_string request.node.trip_details = trip_string
request.node.trip_duration = str(duration) # result['total_time'] request.node.trip_duration = str(duration) # result['total_time']
request.node.target_duration = str(target_duration) request.node.target_duration = str(target_duration)
def trip_params(
sightseeing: int,
shopping: int,
nature: int,
max_time_minute: int,
start_coords: tuple[float, float] = None,
end_coords: tuple[float, float] = None,
):
def decorator(test_func):
@wraps(test_func)
def wrapper(client, request):
prefs = Preferences(
sightseeing=Preference(type='sightseeing', score=sightseeing),
shopping=Preference(type='shopping', score=shopping),
nature=Preference(type='nature', score=nature),
max_time_minute=max_time_minute,
detour_tolerance_minute=0,
)
start = start_coords
end = end_coords
# Inject into test function
return test_func(client, request, prefs, start, end)
return wrapper
return decorator

View File

@@ -1,16 +1,20 @@
"""Defines the endpoint for fetching toilet locations.""" """API entry point for fetching toilet locations."""
from fastapi import HTTPException, APIRouter, Query from fastapi import HTTPException, APIRouter, Query
from ..structs.toilets import Toilets
from .toilets_manager import ToiletsManager from .toilets_manager import ToiletsManager
from ..structs.toilets import Toilets
# Define the API router # Initialize the API router
router = APIRouter() router = APIRouter()
@router.post("/toilets/new") @router.post("/get/toilets")
def get_toilets(location: tuple[float, float] = Query(...), radius: int = 500) -> list[Toilets] : def get_toilets(
location: tuple[float, float] = Query(...),
radius: int = 500
) -> list[Toilets] :
""" """
Endpoint to find toilets within a specified radius from a given location. Endpoint to find toilets within a specified radius from a given location.

View File

@@ -0,0 +1,123 @@
"""Add more information about the landmarks by writing a short description and keywords. """
def description_and_keywords(tags: dict):
"""
Generates a description and a set of keywords for a given landmark based on its tags.
Params:
tags (dict): A dictionary containing metadata about the landmark, including its name,
importance, height, date of construction, and visitor information.
Returns:
description (str): A string description of the landmark.
keywords (dict): A dictionary of keywords with fields such as 'importance', 'height',
'place_type', and 'date'.
"""
# Extract relevant fields
name = tags.get('name')
importance = tags.get('importance', None)
n_visitors = tags.get('tourism:visitors', None)
height = tags.get('height')
place_type = get_place_type(tags)
date = get_date(tags)
if place_type is None :
return None, None
# Start the description.
if importance is None :
if len(tags.keys()) < 5 :
return None, None
if len(tags.keys()) < 10 :
description = f"{name} is a well known {place_type}."
elif len(tags.keys()) < 17 :
importance = 'national'
description = f"{name} is a {place_type} of national importance."
else :
importance = 'international'
description = f"{name} is an internationally famous {place_type}."
else :
description = f"{name} is a {place_type} of {importance} importance."
if height is not None and date is not None :
description += f" This {place_type} was constructed in {date} and is ca. {height} meters high."
elif height is not None :
description += f" This {place_type} stands ca. {height} meters tall."
elif date is not None:
description += f" It was constructed in {date}."
# Format the visitor number
if n_visitors is not None :
n_visitors = int(n_visitors)
if n_visitors < 1000000 :
description += f" It welcomes {int(n_visitors/1000)} thousand visitors every year."
else :
description += f" It welcomes {round(n_visitors/1000000, 1)} million visitors every year."
# Set the keywords.
keywords = {"importance": importance,
"height": height,
"place_type": place_type,
"date": date}
return description, keywords
def get_place_type(tags):
"""
Determines the type of the place based on available tags such as 'amenity', 'building',
'historic', and 'leisure'. The priority order is: 'historic' > 'building' (if not generic) >
'amenity' > 'leisure'.
Params:
tags (dict): A dictionary containing metadata about the place.
Returns:
place_type (str): The determined type of the place, or None if no relevant type is found.
"""
amenity = tags.get('amenity', None)
building = tags.get('building', None)
historic = tags.get('historic', None)
leisure = tags.get('leisure')
if historic and historic != "yes":
return historic
if building and building not in ["yes", "civic", "government", "apartments", "residential", "commericial", "industrial", "retail", "religious", "public", "service"]:
return building
if amenity:
return amenity
if leisure:
return leisure
return None
def get_date(tags):
"""
Extracts the most relevant date from the available tags, prioritizing 'construction_date',
'start_date', 'year_of_construction', and 'opening_date' in that order.
Params:
tags (dict): A dictionary containing metadata about the place.
Returns:
date (str): The most relevant date found, or None if no date is available.
"""
construction_date = tags.get('construction_date', None)
opening_date = tags.get('opening_date', None)
start_date = tags.get('start_date', None)
year_of_construction = tags.get('year_of_construction', None)
# Prioritize based on availability
if construction_date:
return construction_date
if start_date:
return start_date
if year_of_construction:
return year_of_construction
if opening_date:
return opening_date
return None

View File

@@ -1,17 +0,0 @@
"""Helper function to return only the major landmarks from a large list."""
from ..structs.landmark import Landmark
def take_most_important(landmarks: list[Landmark], n_important) -> list[Landmark]:
"""
Given a list of landmarks, return the n_important most important landmarks
Args:
landmarks: list[Landmark] - list of landmarks
n_important: int - number of most important landmarks to return
Returns:
list[Landmark] - list of the n_important most important landmarks
"""
# Sort landmarks by attractiveness (descending)
sorted_landmarks = sorted(landmarks, key=lambda x: x.attractiveness, reverse=True)
return sorted_landmarks[:n_important]

1091
report.html Normal file

File diff suppressed because it is too large Load Diff