ensure attractiveness is always an int #25
| @@ -63,7 +63,7 @@ def new_trip(preferences: Preferences, start: tuple[float, float], end: tuple[fl | |||||||
|     refined_tour = refiner.refine_optimization(landmarks, base_tour, preferences.max_time_minute, preferences.detour_tolerance_minute) |     refined_tour = refiner.refine_optimization(landmarks, base_tour, preferences.max_time_minute, preferences.detour_tolerance_minute) | ||||||
|  |  | ||||||
|     linked_tour = LinkedLandmarks(refined_tour) |     linked_tour = LinkedLandmarks(refined_tour) | ||||||
|     # upon creation of the trip, persistence of both the trip and its landmarks is ensured. Ca |     # upon creation of the trip, persistence of both the trip and its landmarks is ensured | ||||||
|     trip = Trip.from_linked_landmarks(linked_tour, cache_client) |     trip = Trip.from_linked_landmarks(linked_tour, cache_client) | ||||||
|     return trip |     return trip | ||||||
|  |  | ||||||
| @@ -84,4 +84,4 @@ def get_landmark(landmark_uuid: str) -> Landmark: | |||||||
|         landmark = cache_client.get(f"landmark_{landmark_uuid}") |         landmark = cache_client.get(f"landmark_{landmark_uuid}") | ||||||
|         return landmark |         return landmark | ||||||
|     except KeyError: |     except KeyError: | ||||||
|         raise HTTPException(status_code=404, detail="Landmark not found") |         raise HTTPException(status_code=404, detail="Landmark not found") | ||||||
|   | |||||||
| @@ -1,6 +1,6 @@ | |||||||
| city_bbox_side: 7500 #m | city_bbox_side: 7500 #m | ||||||
| radius_close_to: 50 | radius_close_to: 50 | ||||||
| church_coeff: 0.75 | church_coeff: 0.5 | ||||||
| nature_coeff: 1.25 | nature_coeff: 1.25 | ||||||
| overall_coeff: 10 | overall_coeff: 10 | ||||||
| tag_exponent: 1.15 | tag_exponent: 1.15 | ||||||
|   | |||||||
| @@ -14,26 +14,22 @@ class Landmark(BaseModel) : | |||||||
|     osm_id : int |     osm_id : int | ||||||
|     attractiveness : int |     attractiveness : int | ||||||
|     n_tags : int |     n_tags : int | ||||||
|     image_url : Optional[str] = None                            # TODO future |     image_url : Optional[str] = None | ||||||
|     website_url : Optional[str] = None |     website_url : Optional[str] = None | ||||||
|     wikipedia_url : Optional[str] = None |  | ||||||
|     description : Optional[str] = None                          # TODO future |     description : Optional[str] = None                          # TODO future | ||||||
|     duration : Optional[int] = 0                                # TODO future |     duration : Optional[int] = 0 | ||||||
|     name_en : Optional[str] = None |     name_en : Optional[str] = None | ||||||
|  |  | ||||||
|     # Unique ID of a given landmark |     # Unique ID of a given landmark | ||||||
|     uuid: str = Field(default_factory=uuid4)                    # TODO implement this ASAP |     uuid: str = Field(default_factory=uuid4) | ||||||
|      |      | ||||||
|     # Additional properties depending on specific tour |     # Additional properties depending on specific tour | ||||||
|     must_do : Optional[bool] = False |     must_do : Optional[bool] = False | ||||||
|     must_avoid : Optional[bool] = False |     must_avoid : Optional[bool] = False | ||||||
|     is_secondary : Optional[bool] = False                       # TODO future    |     is_secondary : Optional[bool] = False                       # TODO future    | ||||||
|      |      | ||||||
|     time_to_reach_next : Optional[int] = 0                      # TODO fix this in existing code |     time_to_reach_next : Optional[int] = 0 | ||||||
|     next_uuid : Optional[str] = None                            # TODO implement this ASAP |     next_uuid : Optional[str] = None | ||||||
|  |  | ||||||
|     def __hash__(self) -> int: |  | ||||||
|         return self.uuid.int |  | ||||||
|      |      | ||||||
|     def __str__(self) -> str: |     def __str__(self) -> str: | ||||||
|         time_to_next_str = f", time_to_next={self.time_to_reach_next}" if self.time_to_reach_next else "" |         time_to_next_str = f", time_to_next={self.time_to_reach_next}" if self.time_to_reach_next else "" | ||||||
| @@ -42,3 +38,15 @@ class Landmark(BaseModel) : | |||||||
|         if self.type in ["start", "finish", "nature", "shopping"] : type_str += '\t ' |         if self.type in ["start", "finish", "nature", "shopping"] : type_str += '\t ' | ||||||
|         return f'Landmark{type_str}: [{self.name} @{self.location}, score={self.attractiveness}{time_to_next_str}{is_secondary_str}]' |         return f'Landmark{type_str}: [{self.name} @{self.location}, score={self.attractiveness}{time_to_next_str}{is_secondary_str}]' | ||||||
|      |      | ||||||
|  |     def distance(self, value: 'Landmark') -> float: | ||||||
|  |         return (self.location[0] - value.location[0])**2 + (self.location[1] - value.location[1])**2 | ||||||
|  |  | ||||||
|  |     def __hash__(self) -> int: | ||||||
|  |         return hash(self.name) | ||||||
|  |  | ||||||
|  |     def __eq__(self, value: 'Landmark') -> bool: | ||||||
|  |         # eq and hash must be consistent | ||||||
|  |         # in particular, if two objects are equal, their hash must be equal | ||||||
|  |         # uuid and osm_id are just shortcuts to avoid comparing all the properties | ||||||
|  |         # if they are equal, we know that the name is also equal and in turn the hash is equal | ||||||
|  |         return self.uuid == value.uuid or self.osm_id == value.osm_id or (self.name == value.name and self.distance(value) < 0.001) | ||||||
|   | |||||||
| @@ -27,4 +27,4 @@ class Trip(BaseModel): | |||||||
|         # for landmark in landmarks: |         # for landmark in landmarks: | ||||||
|         #     cache_client.set(f"landmark_{landmark.uuid}", landmark, expire=3600) |         #     cache_client.set(f"landmark_{landmark.uuid}", landmark, expire=3600) | ||||||
|  |  | ||||||
|         return trip |         return trip | ||||||
|   | |||||||
| @@ -16,10 +16,8 @@ def get_time(p1: tuple[float, float], p2: tuple[float, float]) -> int: | |||||||
|     Args: |     Args: | ||||||
|         p1 (Tuple[float, float]): Coordinates of the starting location. |         p1 (Tuple[float, float]): Coordinates of the starting location. | ||||||
|         p2 (Tuple[float, float]): Coordinates of the destination. |         p2 (Tuple[float, float]): Coordinates of the destination. | ||||||
|         detour (float): Detour factor affecting the distance. |  | ||||||
|         speed (float): Walking speed in kilometers per hour. |  | ||||||
|  |  | ||||||
|     Returns: |         Returns: | ||||||
|         int: Time to travel from p1 to p2 in minutes. |         int: Time to travel from p1 to p2 in minutes. | ||||||
|     """ |     """ | ||||||
|  |  | ||||||
|   | |||||||
| @@ -1,15 +1,11 @@ | |||||||
| import math as m | import math | ||||||
| import yaml | import yaml | ||||||
| import logging | import logging | ||||||
|  |  | ||||||
| from OSMPythonTools.overpass import Overpass, overpassQueryBuilder | from OSMPythonTools.overpass import Overpass, overpassQueryBuilder | ||||||
| from OSMPythonTools.cachingStrategy import CachingStrategy, JSON | from OSMPythonTools.cachingStrategy import CachingStrategy, JSON | ||||||
| from pywikibot import ItemPage, Site |  | ||||||
| from pywikibot import config |  | ||||||
| config.put_throttle = 0 |  | ||||||
| config.maxlag = 0 |  | ||||||
|  |  | ||||||
| from structs.preferences import Preferences, Preference | from structs.preferences import Preferences | ||||||
| from structs.landmark import Landmark | from structs.landmark import Landmark | ||||||
| from .take_most_important import take_most_important | from .take_most_important import take_most_important | ||||||
| import constants | import constants | ||||||
| @@ -46,7 +42,7 @@ class LandmarkManager: | |||||||
|             self.viewpoint_bonus = parameters['viewpoint_bonus'] |             self.viewpoint_bonus = parameters['viewpoint_bonus'] | ||||||
|             self.pay_bonus = parameters['pay_bonus'] |             self.pay_bonus = parameters['pay_bonus'] | ||||||
|             self.N_important = parameters['N_important'] |             self.N_important = parameters['N_important'] | ||||||
|              |  | ||||||
|         with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f: |         with constants.OPTIMIZER_PARAMETERS_PATH.open('r') as f: | ||||||
|             parameters = yaml.safe_load(f) |             parameters = yaml.safe_load(f) | ||||||
|             self.walking_speed = parameters['average_walking_speed'] |             self.walking_speed = parameters['average_walking_speed'] | ||||||
| @@ -69,87 +65,42 @@ class LandmarkManager: | |||||||
|         preferences (Preferences): The user's preference settings that influence the landmark selection. |         preferences (Preferences): The user's preference settings that influence the landmark selection. | ||||||
|  |  | ||||||
|         Returns: |         Returns: | ||||||
|             tuple[list[Landmark], list[Landmark]]: |         tuple[list[Landmark], list[Landmark]]: | ||||||
|                 - A list of all existing landmarks. |         - A list of all existing landmarks. | ||||||
|                 - A list of the most important landmarks based on the user's preferences. |         - A list of the most important landmarks based on the user's preferences. | ||||||
|         """ |         """ | ||||||
|  |  | ||||||
|         max_walk_dist = (preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor |         max_walk_dist = (preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor | ||||||
|         reachable_bbox_side = min(max_walk_dist, self.max_bbox_side) |         reachable_bbox_side = min(max_walk_dist, self.max_bbox_side) | ||||||
|  |  | ||||||
|         L = [] |         # use set to avoid duplicates, this requires some __methods__ to be set in Landmark | ||||||
|  |         all_landmarks = set() | ||||||
|  |  | ||||||
|         bbox = self.create_bbox(center_coordinates, reachable_bbox_side) |         bbox = self.create_bbox(center_coordinates, reachable_bbox_side) | ||||||
|         # list for sightseeing |         # list for sightseeing | ||||||
|         if preferences.sightseeing.score != 0: |         if preferences.sightseeing.score != 0: | ||||||
|             score_function = lambda score: int(score*10*preferences.sightseeing.score/5)   # self.count_elements_close_to(loc) + |             score_function = lambda score: score * 10 * preferences.sightseeing.score / 5 | ||||||
|             L1 = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function) |             current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function) | ||||||
|             L += L1 |             all_landmarks.update(current_landmarks) | ||||||
|  |  | ||||||
|         # list for nature |         # list for nature | ||||||
|         if preferences.nature.score != 0: |         if preferences.nature.score != 0: | ||||||
|             score_function = lambda score: int(score*10*self.nature_coeff*preferences.nature.score/5)   # self.count_elements_close_to(loc) + |             score_function = lambda score: score * 10 * self.nature_coeff * preferences.nature.score / 5 | ||||||
|             L2 = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, score_function) |             current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, score_function) | ||||||
|             L += L2 |             all_landmarks.update(current_landmarks) | ||||||
|  |  | ||||||
|         # list for shopping |         # list for shopping | ||||||
|         if preferences.shopping.score != 0: |         if preferences.shopping.score != 0: | ||||||
|             score_function = lambda score: int(score*10*preferences.shopping.score/5)   # self.count_elements_close_to(loc) + |             score_function = lambda score: score * 10 * preferences.shopping.score / 5 | ||||||
|             L3 = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function) |             current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function) | ||||||
|             L += L3 |             all_landmarks.update(current_landmarks) | ||||||
|  |  | ||||||
|  |  | ||||||
|         L = self.remove_duplicates(L) |         landmarks_constrained = take_most_important(all_landmarks, self.N_important) | ||||||
|         # self.correct_score(L, preferences) |         self.logger.info(f'Generated {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.') | ||||||
|  |  | ||||||
|         L_constrained = take_most_important(L, self.N_important) |         return all_landmarks, landmarks_constrained | ||||||
|         self.logger.info(f'Generated {len(L)} landmarks around {center_coordinates}, and constrained to {len(L_constrained)} most important ones.') |  | ||||||
|  |  | ||||||
|         return L, L_constrained |  | ||||||
|  |  | ||||||
|  |  | ||||||
|     def remove_duplicates(self, landmarks: list[Landmark]) -> list[Landmark]: |  | ||||||
|         """ |  | ||||||
|         Removes duplicate landmarks based on their names from the given list. Only retains the landmark with highest score |  | ||||||
|  |  | ||||||
|         Parameters: |  | ||||||
|         landmarks (list[Landmark]): A list of Landmark objects. |  | ||||||
|  |  | ||||||
|         Returns: |  | ||||||
|         list[Landmark]: A list of unique Landmark objects based on their names. |  | ||||||
|         """ |  | ||||||
|  |  | ||||||
|         L_clean = [] |  | ||||||
|         names = [] |  | ||||||
|  |  | ||||||
|         for landmark in landmarks: |  | ||||||
|             if landmark.name in names:  |  | ||||||
|                 continue   |  | ||||||
|             else: |  | ||||||
|                 names.append(landmark.name) |  | ||||||
|                 L_clean.append(landmark) |  | ||||||
|          |  | ||||||
|         return L_clean |  | ||||||
|          |  | ||||||
|  |  | ||||||
|     def correct_score(self, landmarks: list[Landmark], preferences: Preferences) -> None: |  | ||||||
|         """ |  | ||||||
|         Adjust the attractiveness score of each landmark in the list based on user preferences. |  | ||||||
|  |  | ||||||
|         This method updates the attractiveness of each landmark by scaling it according to the user's preference score. |  | ||||||
|         The score adjustment is computed using a simple linear transformation based on the preference score. |  | ||||||
|  |  | ||||||
|         Args: |  | ||||||
|             landmarks (list[Landmark]): A list of landmarks whose scores need to be corrected. |  | ||||||
|             preferences (Preferences): The user's preference settings that influence the attractiveness score adjustment. |  | ||||||
|         """ |  | ||||||
|  |  | ||||||
|         score_dict = { |  | ||||||
|             preferences.sightseeing.type: preferences.sightseeing.score, |  | ||||||
|             preferences.nature.type: preferences.nature.score, |  | ||||||
|             preferences.shopping.type: preferences.shopping.score |  | ||||||
|         } |  | ||||||
|         for landmark in landmarks: |  | ||||||
|             landmark.attractiveness = int(landmark.attractiveness * score_dict[landmark.type] / 5)         |  | ||||||
|  |  | ||||||
|  |  | ||||||
|     def count_elements_close_to(self, coordinates: tuple[float, float]) -> int: |     def count_elements_close_to(self, coordinates: tuple[float, float]) -> int: | ||||||
| @@ -172,7 +123,7 @@ class LandmarkManager: | |||||||
|  |  | ||||||
|         radius = self.radius_close_to |         radius = self.radius_close_to | ||||||
|  |  | ||||||
|         alpha = (180*radius) / (6371000*m.pi) |         alpha = (180 * radius) / (6371000 * math.pi) | ||||||
|         bbox = {'latLower':lat-alpha,'lonLower':lon-alpha,'latHigher':lat+alpha,'lonHigher': lon+alpha} |         bbox = {'latLower':lat-alpha,'lonLower':lon-alpha,'latHigher':lat+alpha,'lonHigher': lon+alpha} | ||||||
|  |  | ||||||
|         # Build the query to find elements within the radius |         # Build the query to find elements within the radius | ||||||
| @@ -216,7 +167,7 @@ class LandmarkManager: | |||||||
|  |  | ||||||
|         # Convert distance to degrees |         # Convert distance to degrees | ||||||
|         lat_diff = half_side_length_km / 111  # 1 degree latitude is approximately 111 km |         lat_diff = half_side_length_km / 111  # 1 degree latitude is approximately 111 km | ||||||
|         lon_diff = half_side_length_km / (111 * m.cos(m.radians(lat)))  # Adjust for longitude based on latitude |         lon_diff = half_side_length_km / (111 * math.cos(math.radians(lat)))  # Adjust for longitude based on latitude | ||||||
|  |  | ||||||
|         # Calculate bbox |         # Calculate bbox | ||||||
|         min_lat = lat - lat_diff |         min_lat = lat - lat_diff | ||||||
| @@ -265,22 +216,18 @@ class LandmarkManager: | |||||||
|                 result = self.overpass.query(query) |                 result = self.overpass.query(query) | ||||||
|             except Exception as e: |             except Exception as e: | ||||||
|                 self.logger.error(f"Error fetching landmarks: {e}") |                 self.logger.error(f"Error fetching landmarks: {e}") | ||||||
|                 return |                 continue | ||||||
|              |  | ||||||
|             for elem in result.elements(): |             for elem in result.elements(): | ||||||
|  |  | ||||||
|                 name = elem.tag('name')                             # Add name |                 name = elem.tag('name') | ||||||
|                 location = (elem.centerLat(), elem.centerLon())     # Add coordinates (lat, lon) |                 location = (elem.centerLat(), elem.centerLon()) | ||||||
|  |  | ||||||
|                 # TODO: exclude these from the get go |                 # TODO: exclude these from the get go | ||||||
|                 # skip if unprecise location |                 # skip if unprecise location | ||||||
|                 if name is None or location[0] is None: |                 if name is None or location[0] is None: | ||||||
|                     continue |                     continue | ||||||
|  |  | ||||||
|                 # skip if unused |  | ||||||
|                 # if 'disused:leisure' in elem.tags().keys(): |  | ||||||
|                 #     continue |  | ||||||
|                  |  | ||||||
|                 # skip if part of another building |                 # skip if part of another building | ||||||
|                 if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes': |                 if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes': | ||||||
|                     continue |                     continue | ||||||
| @@ -291,7 +238,6 @@ class LandmarkManager: | |||||||
|                 n_tags = len(elem.tags().keys())    # Add number of tags |                 n_tags = len(elem.tags().keys())    # Add number of tags | ||||||
|                 score = n_tags**self.tag_exponent   # Add score |                 score = n_tags**self.tag_exponent   # Add score | ||||||
|                 website_url = None |                 website_url = None | ||||||
|                 wikpedia_url = None |  | ||||||
|                 image_url = None |                 image_url = None | ||||||
|                 name_en = None |                 name_en = None | ||||||
|  |  | ||||||
| @@ -299,22 +245,17 @@ class LandmarkManager: | |||||||
|                 skip = False |                 skip = False | ||||||
|                 for tag in elem.tags().keys(): |                 for tag in elem.tags().keys(): | ||||||
|                     if "pay" in tag: |                     if "pay" in tag: | ||||||
|                         score += self.pay_bonus             # discard payment options for tags |                         # payment options are a good sign | ||||||
|  |                         score += self.pay_bonus | ||||||
|  |  | ||||||
|                     if "disused" in tag: |                     if "disused" in tag: | ||||||
|                         skip = True             # skip disused amenities |                         # skip disused amenities | ||||||
|  |                         skip = True | ||||||
|                         break |                         break | ||||||
|  |  | ||||||
|                     if "wiki" in tag: |                     if "wiki" in tag: | ||||||
|                         score += self.wikipedia_bonus             # wikipedia entries count more |                         # wikipedia entries count more | ||||||
|                          |                         score += self.wikipedia_bonus | ||||||
|                     # if tag == "wikidata": |  | ||||||
|                     #     Q = elem.tag('wikidata') |  | ||||||
|                     #     site = Site("wikidata", "wikidata") |  | ||||||
|                     #     item = ItemPage(site, Q) |  | ||||||
|                     #     item.get() |  | ||||||
|                     #     n_languages = len(item.labels) |  | ||||||
|                     #     n_tags += n_languages/10 |  | ||||||
|  |  | ||||||
|                     if "viewpoint" in tag: |                     if "viewpoint" in tag: | ||||||
|                         score += self.viewpoint_bonus |                         score += self.viewpoint_bonus | ||||||
| @@ -335,47 +276,43 @@ class LandmarkManager: | |||||||
|                         if tag == "building" and elem.tag('building') in ['retail', 'supermarket', 'parking']: |                         if tag == "building" and elem.tag('building') in ['retail', 'supermarket', 'parking']: | ||||||
|                             skip = True |                             skip = True | ||||||
|                             break |                             break | ||||||
|                      |  | ||||||
|                     # Get additional information |                     if tag in ['website', 'contact:website']: | ||||||
|                     # if tag == 'wikipedia' : |  | ||||||
|                     #     wikpedia_url = elem.tag('wikipedia') |  | ||||||
|                     if tag in ['website', 'contact:website'] : |  | ||||||
|                         website_url = elem.tag(tag) |                         website_url = elem.tag(tag) | ||||||
|                     if tag == 'image' : |                     if tag == 'image': | ||||||
|                         image_url = elem.tag('image') |                         image_url = elem.tag('image') | ||||||
|                     if tag =='name:en' : |                     if tag =='name:en': | ||||||
|                         name_en = elem.tag('name:en') |                         name_en = elem.tag('name:en') | ||||||
|  |  | ||||||
|                 if skip: |                 if skip: | ||||||
|                     continue |                     continue | ||||||
|  |  | ||||||
|                 score = score_function(score) |                 score = score_function(score) | ||||||
|                 if "place_of_worship" in elem.tags().values() : |                 if "place_of_worship" in elem.tags().values(): | ||||||
|                     score = int(score*self.church_coeff) |                     score = score * self.church_coeff | ||||||
|                     duration = 15 |                     duration = 15 | ||||||
|                  |                  | ||||||
|                 elif "museum" in elem.tags().values() : |                 elif "museum" in elem.tags().values(): | ||||||
|                     score = int(score*self.church_coeff) |                     score = score * self.church_coeff | ||||||
|                     duration = 60 |                     duration = 60 | ||||||
|                  |                  | ||||||
|                 else :  |                 else: | ||||||
|                     duration = 5 |                     duration = 5 | ||||||
|  |  | ||||||
|                 # Generate the landmark and append it to the list |                 # finally create our own landmark object | ||||||
|                 landmark = Landmark( |                 landmark = Landmark( | ||||||
|                     name=name, |                     name = name, | ||||||
|                     type=elem_type, |                     type = elem_type, | ||||||
|                     location=location, |                     location = location, | ||||||
|                     osm_type=osm_type, |                     osm_type = osm_type, | ||||||
|                     osm_id=osm_id, |                     osm_id = osm_id, | ||||||
|                     attractiveness=score, |                     attractiveness = int(score), | ||||||
|                     must_do=False, |                     must_do = False, | ||||||
|                     n_tags=int(n_tags), |                     n_tags = int(n_tags), | ||||||
|                     duration = duration,  |                     duration = int(duration), | ||||||
|                     name_en=name_en, |                     name_en = name_en, | ||||||
|                     image_url=image_url, |                     image_url = image_url, | ||||||
|                     # wikipedia_url=wikpedia_url, |                     website_url = website_url | ||||||
|                     website_url=website_url |  | ||||||
|                 ) |                 ) | ||||||
|                 return_list.append(landmark) |                 return_list.append(landmark) | ||||||
|          |          | ||||||
|   | |||||||
| @@ -1,38 +1,16 @@ | |||||||
| from structs.landmark import Landmark | from structs.landmark import Landmark | ||||||
|  |  | ||||||
| def take_most_important(landmarks: list[Landmark], N_important) -> list[Landmark] : | def take_most_important(landmarks: list[Landmark], n_important) -> list[Landmark]: | ||||||
|     L = len(landmarks) |     """ | ||||||
|     L_copy = [] |     Given a list of landmarks, return the n_important most important landmarks | ||||||
|     L_clean = [] |     Parameters: | ||||||
|     scores = [0]*len(landmarks) |     landmarks: list[Landmark] - list of landmarks | ||||||
|     names = [] |     n_important: int - number of most important landmarks to return | ||||||
|     name_id = {} |     Returns: | ||||||
|  |     list[Landmark] - list of the n_important most important landmarks | ||||||
|  |     """ | ||||||
|  |  | ||||||
|     for i, elem in enumerate(landmarks) : |     # Sort landmarks by attractiveness (descending) | ||||||
|         if elem.name not in names : |     landmarks.sort(key=lambda x: x.attractiveness, reverse=True) | ||||||
|             names.append(elem.name) |  | ||||||
|             name_id[elem.name] = [i] |  | ||||||
|             L_copy.append(elem) |  | ||||||
|         else : |  | ||||||
|             name_id[elem.name] += [i] |  | ||||||
|             scores = [] |  | ||||||
|             for j in name_id[elem.name] : |  | ||||||
|                 scores.append(L[j].attractiveness) |  | ||||||
|             best_id = max(range(len(scores)), key=scores.__getitem__) |  | ||||||
|             t = name_id[elem.name][best_id] |  | ||||||
|             if t == i : |  | ||||||
|                 for old in L_copy : |  | ||||||
|                     if old.name == elem.name : |  | ||||||
|                         old.attractiveness = L[t].attractiveness |  | ||||||
|      |  | ||||||
|     scores = [0]*len(L_copy) |  | ||||||
|     for i, elem in enumerate(L_copy) : |  | ||||||
|         scores[i] = elem.attractiveness |  | ||||||
|  |  | ||||||
|     res = sorted(range(len(scores)), key = lambda sub: scores[sub])[-(N_important-L):] |     return landmarks[:n_important] | ||||||
|  |  | ||||||
|     for i, elem in enumerate(L_copy) : |  | ||||||
|         if i in res : |  | ||||||
|             L_clean.append(elem) |  | ||||||
|  |  | ||||||
|     return L_clean |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user