feature/backend/better_time_management #34
| @@ -23,7 +23,7 @@ def test(start_coords: tuple[float, float], finish_coords: tuple[float, float] = | |||||||
|         sightseeing=Preference(type='sightseeing', score = 5), |         sightseeing=Preference(type='sightseeing', score = 5), | ||||||
|         nature=Preference(type='nature', score = 5), |         nature=Preference(type='nature', score = 5), | ||||||
|         shopping=Preference(type='shopping', score = 5), |         shopping=Preference(type='shopping', score = 5), | ||||||
|         max_time_minute=100, |         max_time_minute=15, | ||||||
|         detour_tolerance_minute=0 |         detour_tolerance_minute=0 | ||||||
|     ) |     ) | ||||||
|  |  | ||||||
| @@ -74,6 +74,7 @@ def test(start_coords: tuple[float, float], finish_coords: tuple[float, float] = | |||||||
| # test(tuple((48.8344400, 2.3220540)))       # Café Chez César  | # test(tuple((48.8344400, 2.3220540)))       # Café Chez César  | ||||||
| # test(tuple((48.8375946, 2.2949904)))       # Point random | # test(tuple((48.8375946, 2.2949904)))       # Point random | ||||||
| # test(tuple((47.377859, 8.540585)))         # Zurich HB | # test(tuple((47.377859, 8.540585)))         # Zurich HB | ||||||
| # test(tuple((45.758217, 4.831814)))      # Lyon Bellecour | # test(tuple((45.758217, 4.831814)))         # Lyon Bellecour | ||||||
| test(tuple((48.5848435, 7.7332974)))      # Strasbourg Gare | # test(tuple((48.5848435, 7.7332974)))       # Strasbourg Gare | ||||||
| # test(tuple((48.2067858, 16.3692340)))      # Vienne | # test(tuple((48.2067858, 16.3692340)))      # Vienne | ||||||
|  | test(tuple((48.084588, 7.280405)))         # Turckheim  | ||||||
|   | |||||||
| @@ -487,7 +487,7 @@ class Optimizer: | |||||||
|  |  | ||||||
|         # Raise error if no solution is found |         # Raise error if no solution is found | ||||||
|         if not res.success : |         if not res.success : | ||||||
|             raise ArithmeticError("No solution could be found, the problem is overconstrained. Please adapt your must_dos") |             raise ArithmeticError("No solution could be found, the problem is overconstrained. Try with a longer trip (>30 minutes).") | ||||||
|  |  | ||||||
|         # If there is a solution, we're good to go, just check for connectiveness |         # If there is a solution, we're good to go, just check for connectiveness | ||||||
|         order, circles = self.is_connected(res.x) |         order, circles = self.is_connected(res.x) | ||||||
|   | |||||||
| @@ -2,6 +2,7 @@ import yaml, logging | |||||||
|  |  | ||||||
| from shapely import buffer, LineString, Point, Polygon, MultiPoint, concave_hull | from shapely import buffer, LineString, Point, Polygon, MultiPoint, concave_hull | ||||||
| from math import pi | from math import pi | ||||||
|  | from typing import List | ||||||
|  |  | ||||||
| from structs.landmark import Landmark | from structs.landmark import Landmark | ||||||
| from . import take_most_important, get_time_separation | from . import take_most_important, get_time_separation | ||||||
| @@ -133,6 +134,21 @@ class Refiner : | |||||||
|             i += 1 |             i += 1 | ||||||
|      |      | ||||||
|         return tour |         return tour | ||||||
|  |      | ||||||
|  |     def integrate_landmarks(self, sub_list: List[Landmark], main_list: List[Landmark]) : | ||||||
|  |         """ | ||||||
|  |         Inserts 'sub_list' of Landmarks inside the 'main_list' by leaving the ends untouched. | ||||||
|  |          | ||||||
|  |         Args:  | ||||||
|  |             sub_list    : the list of Landmarks to be inserted inside of the 'main_list'. | ||||||
|  |             main_list   : the original list with start and finish. | ||||||
|  |  | ||||||
|  |         Returns: | ||||||
|  |             the full list. | ||||||
|  |         """ | ||||||
|  |         sub_list.append(main_list[-1])          # add finish back | ||||||
|  |         return main_list[:-1] + sub_list        # create full set of possible landmarks | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|     def find_shortest_path_through_all_landmarks(self, landmarks: list[Landmark]) -> tuple[list[Landmark], Polygon]: |     def find_shortest_path_through_all_landmarks(self, landmarks: list[Landmark]) -> tuple[list[Landmark], Polygon]: | ||||||
| @@ -253,6 +269,11 @@ class Refiner : | |||||||
|         except : |         except : | ||||||
|             better_tour_poly = concave_hull(MultiPoint(coords))  # Create concave hull with "core" of tour leaving out start and finish |             better_tour_poly = concave_hull(MultiPoint(coords))  # Create concave hull with "core" of tour leaving out start and finish | ||||||
|             xs, ys = better_tour_poly.exterior.xy |             xs, ys = better_tour_poly.exterior.xy | ||||||
|  |             """  | ||||||
|  |             ERROR HERE :  | ||||||
|  |                 Exception has occurred: AttributeError | ||||||
|  |                 'LineString' object has no attribute 'exterior' | ||||||
|  |             """ | ||||||
|  |  | ||||||
|  |  | ||||||
|         # reverse the xs and ys |         # reverse the xs and ys | ||||||
| @@ -315,26 +336,30 @@ class Refiner : | |||||||
|  |  | ||||||
|         self.logger.info(f"Using {len(minor_landmarks)} minor landmarks around the predicted path") |         self.logger.info(f"Using {len(minor_landmarks)} minor landmarks around the predicted path") | ||||||
|  |  | ||||||
|         # full set of visitable landmarks |         # Full set of visitable landmarks. | ||||||
|         full_set = base_tour[:-1] + minor_landmarks   # create full set of possible landmarks (without finish) |         full_set = self.integrate_landmarks(minor_landmarks, base_tour)     # could probably be optimized with less overhead | ||||||
|         full_set.append(base_tour[-1])                # add finish back |  | ||||||
|  |  | ||||||
|         # get a new tour |         # Generate a new tour with the optimizer. | ||||||
|         new_tour = self.optimizer.solve_optimization( |         new_tour = self.optimizer.solve_optimization( | ||||||
|             max_time = max_time + detour, |             max_time = max_time + detour, | ||||||
|             landmarks = full_set,  |             landmarks = full_set,  | ||||||
|             max_landmarks = self.max_landmarks_refiner |             max_landmarks = self.max_landmarks_refiner | ||||||
|         ) |         ) | ||||||
|  |  | ||||||
|  |         # If unsuccessful optimization, use the base_tour. | ||||||
|         if new_tour is None: |         if new_tour is None: | ||||||
|             self.logger.warning("No solution found for the refined tour. Returning the initial tour.") |             self.logger.warning("No solution found for the refined tour. Returning the initial tour.") | ||||||
|             new_tour = base_tour |             new_tour = base_tour | ||||||
|  |  | ||||||
|  |         # If only one landmark, return it. | ||||||
|  |         if len(new_tour) < 4 : | ||||||
|  |             return new_tour | ||||||
|  |  | ||||||
|         # Find shortest path using the nearest neighbor heuristic |         # Find shortest path using the nearest neighbor heuristic. | ||||||
|         better_tour, better_poly = self.find_shortest_path_through_all_landmarks(new_tour) |         better_tour, better_poly = self.find_shortest_path_through_all_landmarks(new_tour) | ||||||
|  |  | ||||||
|         # Fix the tour using Polygons if the path looks weird |         # Fix the tour using Polygons if the path looks weird.  | ||||||
|  |         # Conditions : circular trip and invalid polygon. | ||||||
|         if base_tour[0].location == base_tour[-1].location and not better_poly.is_valid : |         if base_tour[0].location == base_tour[-1].location and not better_poly.is_valid : | ||||||
|             better_tour = self.fix_using_polygon(better_tour) |             better_tour = self.fix_using_polygon(better_tour) | ||||||
|  |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user