Automated docker builds #5
							
								
								
									
										206
									
								
								backend/src/optimizer.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										206
									
								
								backend/src/optimizer.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,206 @@
 | 
			
		||||
from scipy.optimize import linprog
 | 
			
		||||
import numpy as np
 | 
			
		||||
from scipy.linalg import block_diag
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Defines the landmark class (aka some place there is to visit)
 | 
			
		||||
class landmark :
 | 
			
		||||
    def __init__(self, name: str, attractiveness: int, loc: tuple):
 | 
			
		||||
        self.name = name
 | 
			
		||||
        self.attractiveness = attractiveness
 | 
			
		||||
        self.loc = loc
 | 
			
		||||
 | 
			
		||||
# Convert the result (edges from j to k like d_25 = edge between vertex 2 and vertex 5) into the list of indices corresponding to the landmarks
 | 
			
		||||
def untangle(res: list) :
 | 
			
		||||
    N = len(res)                # length of res
 | 
			
		||||
    L = int(np.sqrt(N))         # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
 | 
			
		||||
    n_landmarks = res.sum()     # number of visited landmarks
 | 
			
		||||
    visit_order = []
 | 
			
		||||
    cnt = 0
 | 
			
		||||
 | 
			
		||||
    if n_landmarks % 2 == 1 :                                     # if odd number of visited checkpoints
 | 
			
		||||
        for i in range(L) :
 | 
			
		||||
            for j in range(L) :
 | 
			
		||||
                if res[i*L + j] == 1 :              # if index is 1
 | 
			
		||||
                    cnt += 1                        # increment counter
 | 
			
		||||
                    if cnt % 2 == 1 :               # if counter odd
 | 
			
		||||
                        visit_order.append(i)
 | 
			
		||||
                        visit_order.append(j)
 | 
			
		||||
    else :                                   # if even number of ones
 | 
			
		||||
        for i in range(L) :
 | 
			
		||||
            for j in range(L) :
 | 
			
		||||
                if res[i*L + j] == 1 :              # if index is one
 | 
			
		||||
                    cnt += 1                        # increment counter
 | 
			
		||||
                    if j % (L-1) == 0 :             # if last node
 | 
			
		||||
                        visit_order.append(j)       # append only the last index
 | 
			
		||||
                        return visit_order          # return
 | 
			
		||||
                    if cnt % 2 == 1 : 
 | 
			
		||||
                        visit_order.append(i)
 | 
			
		||||
                        visit_order.append(j)
 | 
			
		||||
    return visit_order
 | 
			
		||||
 | 
			
		||||
# Just to print the result
 | 
			
		||||
def print_res(res: list, P) :
 | 
			
		||||
    X = abs(res.x)
 | 
			
		||||
    order = untangle(X)
 | 
			
		||||
 | 
			
		||||
    # print("Optimal value:", -res.fun)  # Minimization, so we negate to get the maximum
 | 
			
		||||
    # print("Optimal point:", res.x)
 | 
			
		||||
    # N = int(np.sqrt(len(X)))
 | 
			
		||||
    # for i in range(N):
 | 
			
		||||
    #     print(X[i*N:i*N+N])
 | 
			
		||||
    # print(order)
 | 
			
		||||
 | 
			
		||||
    if (X.sum()+1)**2 == len(X) : 
 | 
			
		||||
        print('\nAll landmarks can be visited within max_steps, the following order is most likely not the fastest')
 | 
			
		||||
    else :
 | 
			
		||||
        print('Could not visit all the landmarks, the following order could be the fastest but not sure')
 | 
			
		||||
    print("Order of visit :")
 | 
			
		||||
    for i, elem in enumerate(landmarks) : 
 | 
			
		||||
        if i in order : print('- ' + elem.name)
 | 
			
		||||
 | 
			
		||||
    steps = path_length(P, abs(res.x))
 | 
			
		||||
    print("\nSteps walked : " + str(steps))
 | 
			
		||||
 | 
			
		||||
# Constraint to use only the upper triangular indices for travel
 | 
			
		||||
def break_sym(landmarks, A_eq, b_eq):
 | 
			
		||||
    L = len(landmarks)
 | 
			
		||||
    l = [0]*L*L
 | 
			
		||||
    for i in range(L) :
 | 
			
		||||
        for j in range(L) :
 | 
			
		||||
            if i >= j :
 | 
			
		||||
                l[j+i*L] = 1
 | 
			
		||||
 | 
			
		||||
    A_eq = np.vstack((A_eq,l))
 | 
			
		||||
    b_eq.append(0)
 | 
			
		||||
 | 
			
		||||
    return A_eq, b_eq
 | 
			
		||||
 | 
			
		||||
# Constraint to respect max number of travels
 | 
			
		||||
def respect_number(landmarks, A_ub, b_ub):
 | 
			
		||||
    h = []
 | 
			
		||||
    for i in range(len(landmarks)) : h.append([1]*len(landmarks))
 | 
			
		||||
    T = block_diag(*h)
 | 
			
		||||
    return np.vstack((A_ub, T)), b_ub + [1]*len(landmarks)
 | 
			
		||||
 | 
			
		||||
# Constraint to tie the problem together and have a connected path
 | 
			
		||||
def respect_order(landmarks: list, A_eq, b_eq): 
 | 
			
		||||
    N = len(landmarks)
 | 
			
		||||
    for i in range(N-1) :     # Prevent stacked ones
 | 
			
		||||
        if i == 0 :
 | 
			
		||||
            continue
 | 
			
		||||
        else : 
 | 
			
		||||
            l = [0]*N
 | 
			
		||||
            l[i] = -1
 | 
			
		||||
            l = l*N
 | 
			
		||||
            for j in range(N) :
 | 
			
		||||
                l[i*N + j] = 1
 | 
			
		||||
 | 
			
		||||
            A_eq = np.vstack((A_eq,l))
 | 
			
		||||
            b_eq.append(0)
 | 
			
		||||
 | 
			
		||||
    return A_eq, b_eq
 | 
			
		||||
 | 
			
		||||
# Compute manhattan distance between 2 locations
 | 
			
		||||
def manhattan_distance(loc1: tuple, loc2: tuple):
 | 
			
		||||
    x1, y1 = loc1
 | 
			
		||||
    x2, y2 = loc2
 | 
			
		||||
    return abs(x1 - x2) + abs(y1 - y2)
 | 
			
		||||
 | 
			
		||||
# Constraint to not stay in position
 | 
			
		||||
def init_eq_not_stay(landmarks): 
 | 
			
		||||
    L = len(landmarks)
 | 
			
		||||
    l = [0]*L*L
 | 
			
		||||
    for i in range(L) :
 | 
			
		||||
        for j in range(L) :
 | 
			
		||||
            if j == i :
 | 
			
		||||
                l[j + i*L] = 1
 | 
			
		||||
    #A_eq = np.array([np.array(xi) for xi in A_eq])                  # Must convert A_eq into an np array
 | 
			
		||||
    l = np.array(np.array(l))
 | 
			
		||||
    return [l], [0]
 | 
			
		||||
 | 
			
		||||
# Initialize A and c. Compute the distances from all landmarks to each other and store attractiveness
 | 
			
		||||
# We want to maximize the sightseeing :  max(c) st. A*x < b   and   A_eq*x = b_eq
 | 
			
		||||
def init_ub_dist(landmarks: list, max_steps: int):
 | 
			
		||||
    # Objective function coefficients. a*x1 + b*x2 + c*x3 + ...
 | 
			
		||||
    c = []
 | 
			
		||||
    # Coefficients of inequality constraints (left-hand side)
 | 
			
		||||
    A = []
 | 
			
		||||
    for i, spot1 in enumerate(landmarks) :
 | 
			
		||||
        dist_table = [0]*len(landmarks)
 | 
			
		||||
        c.append(-spot1.attractiveness)
 | 
			
		||||
        for j, spot2 in enumerate(landmarks) :
 | 
			
		||||
            dist_table[j] = manhattan_distance(spot1.loc, spot2.loc)
 | 
			
		||||
        A.append(dist_table)
 | 
			
		||||
    c = c*len(landmarks)
 | 
			
		||||
    A_ub = []
 | 
			
		||||
    for line in A :
 | 
			
		||||
        A_ub += line
 | 
			
		||||
    return c, A_ub, [max_steps]
 | 
			
		||||
 | 
			
		||||
# Go through the landmarks and force the optimizer to use landmarks where attractiveness is set to -1
 | 
			
		||||
def respect_user_mustsee(landmarks: list, A_eq: list, b_eq: list) :
 | 
			
		||||
    L = len(landmarks)
 | 
			
		||||
    for i, elem in enumerate(landmarks) :
 | 
			
		||||
        if elem.attractiveness == -1 :
 | 
			
		||||
            l = [0]*L*L
 | 
			
		||||
            if elem.name != "arrivée" :
 | 
			
		||||
                for j in range(L) :
 | 
			
		||||
                    l[j +i*L] = 1
 | 
			
		||||
            else :                          # This ensures we go to goal
 | 
			
		||||
                for k in range(L-1) :
 | 
			
		||||
                        l[k*L+L-1] = 1
 | 
			
		||||
            A_eq = np.vstack((A_eq,l))
 | 
			
		||||
            b_eq.append(1)
 | 
			
		||||
    return A_eq, b_eq
 | 
			
		||||
 | 
			
		||||
# Computes the path length given path matrix (dist_table) and a result
 | 
			
		||||
def path_length(P: list, resx: list) :
 | 
			
		||||
    return np.dot(P, resx)
 | 
			
		||||
 | 
			
		||||
# Initialize all landmarks (+ start and goal). Order matters here
 | 
			
		||||
landmarks = []
 | 
			
		||||
landmarks.append(landmark("départ", -1, (0, 0)))
 | 
			
		||||
landmarks.append(landmark("concorde", -1, (5,5)))
 | 
			
		||||
landmarks.append(landmark("tour eiffel", 99, (1,1)))                           # PUT IN JSON
 | 
			
		||||
landmarks.append(landmark("arc de triomphe", 99, (2,3)))
 | 
			
		||||
landmarks.append(landmark("louvre", 70, (4,2)))
 | 
			
		||||
landmarks.append(landmark("montmartre", 20, (0,2)))
 | 
			
		||||
landmarks.append(landmark("arrivée", -1, (0, 0)))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# CONSTRAINT TO RESPECT MAX NUMBER OF STEPS
 | 
			
		||||
max_steps = 25
 | 
			
		||||
 | 
			
		||||
# SET CONSTRAINTS FOR INEQUALITY
 | 
			
		||||
c, A_ub, b_ub = init_ub_dist(landmarks, max_steps)              # Add the distances from each landmark to the other
 | 
			
		||||
P = A_ub                                                        # store the paths for later. Needed to compute path length
 | 
			
		||||
A_ub, b_ub = respect_number(landmarks, A_ub, b_ub)              # Respect max number of visits. 
 | 
			
		||||
 | 
			
		||||
# SET CONSTRAINTS FOR EQUALITY
 | 
			
		||||
A_eq, b_eq = init_eq_not_stay(landmarks)                       # Force solution not to stay in same place
 | 
			
		||||
A_eq, b_eq = respect_user_mustsee(landmarks, A_eq, b_eq)       # Check if there are user_defined must_see. Also takes care of start/goal
 | 
			
		||||
A_eq, b_eq = break_sym(landmarks, A_eq, b_eq)                  # break the symmetry. Only use the upper diagonal values
 | 
			
		||||
A_eq, b_eq = respect_order(landmarks, A_eq, b_eq)              # Respect order of visit (only works when max_steps is limiting factor)
 | 
			
		||||
 | 
			
		||||
# Bounds for variables (x can only be 0 or 1)
 | 
			
		||||
x_bounds = [(0, 1)] * len(c)
 | 
			
		||||
 | 
			
		||||
# Solve linear programming problem
 | 
			
		||||
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
 | 
			
		||||
 | 
			
		||||
# Raise error if no solution is found
 | 
			
		||||
if not res.success :
 | 
			
		||||
    raise ValueError("No solution has been found, please adapt your max steps")
 | 
			
		||||
 | 
			
		||||
# Print result
 | 
			
		||||
print_res(res, P)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user