Automated docker builds #5
206
backend/src/optimizer.py
Normal file
206
backend/src/optimizer.py
Normal file
@ -0,0 +1,206 @@
|
|||||||
|
from scipy.optimize import linprog
|
||||||
|
import numpy as np
|
||||||
|
from scipy.linalg import block_diag
|
||||||
|
|
||||||
|
|
||||||
|
# Defines the landmark class (aka some place there is to visit)
|
||||||
|
class landmark :
|
||||||
|
def __init__(self, name: str, attractiveness: int, loc: tuple):
|
||||||
|
self.name = name
|
||||||
|
self.attractiveness = attractiveness
|
||||||
|
self.loc = loc
|
||||||
|
|
||||||
|
# Convert the result (edges from j to k like d_25 = edge between vertex 2 and vertex 5) into the list of indices corresponding to the landmarks
|
||||||
|
def untangle(res: list) :
|
||||||
|
N = len(res) # length of res
|
||||||
|
L = int(np.sqrt(N)) # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def.
|
||||||
|
n_landmarks = res.sum() # number of visited landmarks
|
||||||
|
visit_order = []
|
||||||
|
cnt = 0
|
||||||
|
|
||||||
|
if n_landmarks % 2 == 1 : # if odd number of visited checkpoints
|
||||||
|
for i in range(L) :
|
||||||
|
for j in range(L) :
|
||||||
|
if res[i*L + j] == 1 : # if index is 1
|
||||||
|
cnt += 1 # increment counter
|
||||||
|
if cnt % 2 == 1 : # if counter odd
|
||||||
|
visit_order.append(i)
|
||||||
|
visit_order.append(j)
|
||||||
|
else : # if even number of ones
|
||||||
|
for i in range(L) :
|
||||||
|
for j in range(L) :
|
||||||
|
if res[i*L + j] == 1 : # if index is one
|
||||||
|
cnt += 1 # increment counter
|
||||||
|
if j % (L-1) == 0 : # if last node
|
||||||
|
visit_order.append(j) # append only the last index
|
||||||
|
return visit_order # return
|
||||||
|
if cnt % 2 == 1 :
|
||||||
|
visit_order.append(i)
|
||||||
|
visit_order.append(j)
|
||||||
|
return visit_order
|
||||||
|
|
||||||
|
# Just to print the result
|
||||||
|
def print_res(res: list, P) :
|
||||||
|
X = abs(res.x)
|
||||||
|
order = untangle(X)
|
||||||
|
|
||||||
|
# print("Optimal value:", -res.fun) # Minimization, so we negate to get the maximum
|
||||||
|
# print("Optimal point:", res.x)
|
||||||
|
# N = int(np.sqrt(len(X)))
|
||||||
|
# for i in range(N):
|
||||||
|
# print(X[i*N:i*N+N])
|
||||||
|
# print(order)
|
||||||
|
|
||||||
|
if (X.sum()+1)**2 == len(X) :
|
||||||
|
print('\nAll landmarks can be visited within max_steps, the following order is most likely not the fastest')
|
||||||
|
else :
|
||||||
|
print('Could not visit all the landmarks, the following order could be the fastest but not sure')
|
||||||
|
print("Order of visit :")
|
||||||
|
for i, elem in enumerate(landmarks) :
|
||||||
|
if i in order : print('- ' + elem.name)
|
||||||
|
|
||||||
|
steps = path_length(P, abs(res.x))
|
||||||
|
print("\nSteps walked : " + str(steps))
|
||||||
|
|
||||||
|
# Constraint to use only the upper triangular indices for travel
|
||||||
|
def break_sym(landmarks, A_eq, b_eq):
|
||||||
|
L = len(landmarks)
|
||||||
|
l = [0]*L*L
|
||||||
|
for i in range(L) :
|
||||||
|
for j in range(L) :
|
||||||
|
if i >= j :
|
||||||
|
l[j+i*L] = 1
|
||||||
|
|
||||||
|
A_eq = np.vstack((A_eq,l))
|
||||||
|
b_eq.append(0)
|
||||||
|
|
||||||
|
return A_eq, b_eq
|
||||||
|
|
||||||
|
# Constraint to respect max number of travels
|
||||||
|
def respect_number(landmarks, A_ub, b_ub):
|
||||||
|
h = []
|
||||||
|
for i in range(len(landmarks)) : h.append([1]*len(landmarks))
|
||||||
|
T = block_diag(*h)
|
||||||
|
return np.vstack((A_ub, T)), b_ub + [1]*len(landmarks)
|
||||||
|
|
||||||
|
# Constraint to tie the problem together and have a connected path
|
||||||
|
def respect_order(landmarks: list, A_eq, b_eq):
|
||||||
|
N = len(landmarks)
|
||||||
|
for i in range(N-1) : # Prevent stacked ones
|
||||||
|
if i == 0 :
|
||||||
|
continue
|
||||||
|
else :
|
||||||
|
l = [0]*N
|
||||||
|
l[i] = -1
|
||||||
|
l = l*N
|
||||||
|
for j in range(N) :
|
||||||
|
l[i*N + j] = 1
|
||||||
|
|
||||||
|
A_eq = np.vstack((A_eq,l))
|
||||||
|
b_eq.append(0)
|
||||||
|
|
||||||
|
return A_eq, b_eq
|
||||||
|
|
||||||
|
# Compute manhattan distance between 2 locations
|
||||||
|
def manhattan_distance(loc1: tuple, loc2: tuple):
|
||||||
|
x1, y1 = loc1
|
||||||
|
x2, y2 = loc2
|
||||||
|
return abs(x1 - x2) + abs(y1 - y2)
|
||||||
|
|
||||||
|
# Constraint to not stay in position
|
||||||
|
def init_eq_not_stay(landmarks):
|
||||||
|
L = len(landmarks)
|
||||||
|
l = [0]*L*L
|
||||||
|
for i in range(L) :
|
||||||
|
for j in range(L) :
|
||||||
|
if j == i :
|
||||||
|
l[j + i*L] = 1
|
||||||
|
#A_eq = np.array([np.array(xi) for xi in A_eq]) # Must convert A_eq into an np array
|
||||||
|
l = np.array(np.array(l))
|
||||||
|
return [l], [0]
|
||||||
|
|
||||||
|
# Initialize A and c. Compute the distances from all landmarks to each other and store attractiveness
|
||||||
|
# We want to maximize the sightseeing : max(c) st. A*x < b and A_eq*x = b_eq
|
||||||
|
def init_ub_dist(landmarks: list, max_steps: int):
|
||||||
|
# Objective function coefficients. a*x1 + b*x2 + c*x3 + ...
|
||||||
|
c = []
|
||||||
|
# Coefficients of inequality constraints (left-hand side)
|
||||||
|
A = []
|
||||||
|
for i, spot1 in enumerate(landmarks) :
|
||||||
|
dist_table = [0]*len(landmarks)
|
||||||
|
c.append(-spot1.attractiveness)
|
||||||
|
for j, spot2 in enumerate(landmarks) :
|
||||||
|
dist_table[j] = manhattan_distance(spot1.loc, spot2.loc)
|
||||||
|
A.append(dist_table)
|
||||||
|
c = c*len(landmarks)
|
||||||
|
A_ub = []
|
||||||
|
for line in A :
|
||||||
|
A_ub += line
|
||||||
|
return c, A_ub, [max_steps]
|
||||||
|
|
||||||
|
# Go through the landmarks and force the optimizer to use landmarks where attractiveness is set to -1
|
||||||
|
def respect_user_mustsee(landmarks: list, A_eq: list, b_eq: list) :
|
||||||
|
L = len(landmarks)
|
||||||
|
for i, elem in enumerate(landmarks) :
|
||||||
|
if elem.attractiveness == -1 :
|
||||||
|
l = [0]*L*L
|
||||||
|
if elem.name != "arrivée" :
|
||||||
|
for j in range(L) :
|
||||||
|
l[j +i*L] = 1
|
||||||
|
else : # This ensures we go to goal
|
||||||
|
for k in range(L-1) :
|
||||||
|
l[k*L+L-1] = 1
|
||||||
|
A_eq = np.vstack((A_eq,l))
|
||||||
|
b_eq.append(1)
|
||||||
|
return A_eq, b_eq
|
||||||
|
|
||||||
|
# Computes the path length given path matrix (dist_table) and a result
|
||||||
|
def path_length(P: list, resx: list) :
|
||||||
|
return np.dot(P, resx)
|
||||||
|
|
||||||
|
# Initialize all landmarks (+ start and goal). Order matters here
|
||||||
|
landmarks = []
|
||||||
|
landmarks.append(landmark("départ", -1, (0, 0)))
|
||||||
|
landmarks.append(landmark("concorde", -1, (5,5)))
|
||||||
|
landmarks.append(landmark("tour eiffel", 99, (1,1))) # PUT IN JSON
|
||||||
|
landmarks.append(landmark("arc de triomphe", 99, (2,3)))
|
||||||
|
landmarks.append(landmark("louvre", 70, (4,2)))
|
||||||
|
landmarks.append(landmark("montmartre", 20, (0,2)))
|
||||||
|
landmarks.append(landmark("arrivée", -1, (0, 0)))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# CONSTRAINT TO RESPECT MAX NUMBER OF STEPS
|
||||||
|
max_steps = 25
|
||||||
|
|
||||||
|
# SET CONSTRAINTS FOR INEQUALITY
|
||||||
|
c, A_ub, b_ub = init_ub_dist(landmarks, max_steps) # Add the distances from each landmark to the other
|
||||||
|
P = A_ub # store the paths for later. Needed to compute path length
|
||||||
|
A_ub, b_ub = respect_number(landmarks, A_ub, b_ub) # Respect max number of visits.
|
||||||
|
|
||||||
|
# SET CONSTRAINTS FOR EQUALITY
|
||||||
|
A_eq, b_eq = init_eq_not_stay(landmarks) # Force solution not to stay in same place
|
||||||
|
A_eq, b_eq = respect_user_mustsee(landmarks, A_eq, b_eq) # Check if there are user_defined must_see. Also takes care of start/goal
|
||||||
|
A_eq, b_eq = break_sym(landmarks, A_eq, b_eq) # break the symmetry. Only use the upper diagonal values
|
||||||
|
A_eq, b_eq = respect_order(landmarks, A_eq, b_eq) # Respect order of visit (only works when max_steps is limiting factor)
|
||||||
|
|
||||||
|
# Bounds for variables (x can only be 0 or 1)
|
||||||
|
x_bounds = [(0, 1)] * len(c)
|
||||||
|
|
||||||
|
# Solve linear programming problem
|
||||||
|
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3)
|
||||||
|
|
||||||
|
# Raise error if no solution is found
|
||||||
|
if not res.success :
|
||||||
|
raise ValueError("No solution has been found, please adapt your max steps")
|
||||||
|
|
||||||
|
# Print result
|
||||||
|
print_res(res, P)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
x
Reference in New Issue
Block a user