backend/new-overpass #52
							
								
								
									
										1
									
								
								backend/.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								backend/.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -1,4 +1,5 @@ | ||||
| # osm-cache and wikidata cache | ||||
| cache_XML/ | ||||
| cache/ | ||||
| apicache/ | ||||
|  | ||||
|   | ||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										133
									
								
								backend/src/overpass/caching_strategy.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										133
									
								
								backend/src/overpass/caching_strategy.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,133 @@ | ||||
| import os | ||||
| import xml.etree.ElementTree as ET | ||||
| import hashlib | ||||
| import ujson | ||||
|  | ||||
| from ..constants import OSM_CACHE_DIR | ||||
|  | ||||
|  | ||||
| def get_cache_key(query: str) -> str: | ||||
|     """ | ||||
|     Generate a unique cache key for the query using a hash function. | ||||
|     This ensures that queries with different parameters are cached separately. | ||||
|     """ | ||||
|     return hashlib.md5(query.encode('utf-8')).hexdigest() | ||||
|  | ||||
|  | ||||
| class CachingStrategyBase: | ||||
|     def get(self, key): | ||||
|         raise NotImplementedError('Subclass should implement get') | ||||
|  | ||||
|     def set(self, key, data): | ||||
|         raise NotImplementedError('Subclass should implement set') | ||||
|  | ||||
|     def close(self): | ||||
|         pass | ||||
|  | ||||
|  | ||||
| # For later use if xml does not suit well | ||||
| class JSONCache(CachingStrategyBase): | ||||
|     def __init__(self, cache_dir=OSM_CACHE_DIR): | ||||
|         # Add the class name as a suffix to the directory | ||||
|         self._cache_dir = f'{cache_dir}_JSON' | ||||
|         if not os.path.exists(self._cache_dir): | ||||
|             os.makedirs(self._cache_dir) | ||||
|  | ||||
|     def _filename(self, key): | ||||
|         return os.path.join(self._cache_dir, f'{key}.json') | ||||
|  | ||||
|     def get(self, key): | ||||
|         filename = self._filename(key) | ||||
|         if os.path.exists(filename): | ||||
|             with open(filename, 'r') as file: | ||||
|                 return ujson.load(file) | ||||
|         return None | ||||
|  | ||||
|     def set(self, key, value): | ||||
|         with open(self._filename(key), 'w') as file: | ||||
|             ujson.dump(value, file) | ||||
|  | ||||
|  | ||||
| class XMLCache(CachingStrategyBase): | ||||
|     def __init__(self, cache_dir=OSM_CACHE_DIR): | ||||
|         # Add the class name as a suffix to the directory | ||||
|         self._cache_dir = f'{cache_dir}_XML' | ||||
|         if not os.path.exists(self._cache_dir): | ||||
|             os.makedirs(self._cache_dir) | ||||
|  | ||||
|     def _filename(self, key): | ||||
|         return os.path.join(self._cache_dir, f'{key}.xml') | ||||
|  | ||||
|     def get(self, key): | ||||
|         """Retrieve XML data from the cache and parse it as an ElementTree.""" | ||||
|         filename = self._filename(key) | ||||
|         if os.path.exists(filename): | ||||
|             try: | ||||
|                 # Parse and return the cached XML data | ||||
|                 tree = ET.parse(filename) | ||||
|                 return tree.getroot()  # Return the root element of the parsed XML | ||||
|             except ET.ParseError: | ||||
|                 print(f"Error parsing cached XML file: {filename}") | ||||
|                 return None | ||||
|         return None | ||||
|  | ||||
|     def set(self, key, value): | ||||
|         """Save the XML data as an ElementTree to the cache.""" | ||||
|         filename = self._filename(key) | ||||
|         tree = ET.ElementTree(value)  # value is expected to be an ElementTree root element | ||||
|         try: | ||||
|             # Write the XML data to a file | ||||
|             with open(filename, 'wb') as file: | ||||
|                 tree.write(file, encoding='utf-8', xml_declaration=True) | ||||
|         except IOError as e: | ||||
|             print(f"Error writing to cache file: {filename} - {e}") | ||||
|  | ||||
|  | ||||
| class CachingStrategy: | ||||
|     __strategy = XMLCache()  # Default caching strategy | ||||
|  | ||||
|     # Dictionary to map string identifiers to caching strategy classes | ||||
|     __strategies = { | ||||
|         'XML': XMLCache, | ||||
|         'JSON': JSONCache, | ||||
|         # Add more strategies here if needed | ||||
|     } | ||||
|  | ||||
|     @classmethod | ||||
|     def use(cls, strategy_name='XML', **kwargs): | ||||
|         """ | ||||
|         Set the caching strategy based on the strategy_name provided. | ||||
|  | ||||
|         Args: | ||||
|             strategy_name (str): The name of the caching strategy (e.g., 'XML'). | ||||
|             **kwargs: Additional keyword arguments to pass when initializing the strategy. | ||||
|         """ | ||||
|         # If a previous strategy exists, close it | ||||
|         if cls.__strategy: | ||||
|             cls.__strategy.close() | ||||
|          | ||||
|         # Retrieve the strategy class based on the strategy name | ||||
|         strategy_class = cls.__strategies.get(strategy_name) | ||||
|          | ||||
|         if not strategy_class: | ||||
|             raise ValueError(f"Unknown caching strategy: {strategy_name}") | ||||
|          | ||||
|         # Instantiate the new strategy with the provided arguments | ||||
|         cls.__strategy = strategy_class(**kwargs) | ||||
|         return cls.__strategy | ||||
|  | ||||
|     @classmethod | ||||
|     def get(cls, key): | ||||
|         """Get data from the current strategy's cache.""" | ||||
|         if not cls.__strategy: | ||||
|             raise RuntimeError("Caching strategy has not been set.") | ||||
|         return cls.__strategy.get(key) | ||||
|  | ||||
|     @classmethod | ||||
|     def set(cls, key, value): | ||||
|         """Set data in the current strategy's cache.""" | ||||
|         if not cls.__strategy: | ||||
|             raise RuntimeError("Caching strategy has not been set.") | ||||
|         cls.__strategy.set(key, value) | ||||
|  | ||||
|  | ||||
							
								
								
									
										114
									
								
								backend/src/overpass/overpass.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										114
									
								
								backend/src/overpass/overpass.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,114 @@ | ||||
| from typing import Literal, List | ||||
| import urllib | ||||
| import json | ||||
| import xml.etree.ElementTree as ET | ||||
|  | ||||
| from .caching_strategy import get_cache_key, CachingStrategy | ||||
|  | ||||
|  | ||||
| ElementTypes = List[Literal['way', 'node', 'relation']] | ||||
|  | ||||
|  | ||||
| def build_query(area: tuple, element_types: ElementTypes, selector: str,  | ||||
|                          conditions=[], out='center'): | ||||
|     """ | ||||
|     Constructs a query string for the Overpass API to retrieve OpenStreetMap (OSM) data. | ||||
|  | ||||
|     Args: | ||||
|         area (tuple): A tuple representing the geographical search area, typically in the format  | ||||
|                       (radius, latitude, longitude). The first element is a string like "around:2000"  | ||||
|                       specifying the search radius, and the second and third elements represent  | ||||
|                       the latitude and longitude as floats or strings. | ||||
|         element_types (list[str]): A list of OSM element types to search for. Must be one or more of  | ||||
|                                    'Way', 'Node', or 'Relation'. | ||||
|         selector (str): The key or tag to filter the OSM elements (e.g., 'amenity', 'highway', etc.). | ||||
|         conditions (list, optional): A list of conditions to apply as additional filters for the  | ||||
|                                      selected OSM elements. The conditions should be written in  | ||||
|                                      the Overpass QL format, and they are combined with '&&' if  | ||||
|                                      multiple are provided. Defaults to an empty list. | ||||
|         out (str, optional): Specifies the output type, such as 'center', 'body', or 'tags'.  | ||||
|                              Defaults to 'center'. | ||||
|  | ||||
|     Returns: | ||||
|         str: The constructed Overpass QL query string. | ||||
|  | ||||
|     Notes: | ||||
|         - If no conditions are provided, the query will just use the `selector` to filter the OSM  | ||||
|           elements without additional constraints. | ||||
|         - The search area must always formatted as "(radius, lat, lon)". | ||||
|     """ | ||||
|     if not isinstance(conditions, list) : | ||||
|         conditions = [conditions] | ||||
|  | ||||
|     query = '(' | ||||
|  | ||||
|     # Round the radius to nearest 50 and coordinates to generate less queries | ||||
|     search_radius = round(area[0] / 50) * 50 | ||||
|     loc = tuple((round(area[1], 2), round(area[2], 2))) | ||||
|     search_area = f"(around:{search_radius}, {str(loc[0])}, {str(loc[1])})" | ||||
|  | ||||
|     if conditions : | ||||
|         conditions = '(if: ' + ' && '.join(conditions) + ')' | ||||
|     else : | ||||
|         conditions = '' | ||||
|  | ||||
|     for elem in element_types : | ||||
|         query += elem + '[' + selector + ']' + conditions + search_area + ';' | ||||
|  | ||||
|     query += ');' + f'out {out};' | ||||
|  | ||||
|     return query | ||||
|  | ||||
|  | ||||
| def send_overpass_query(query: str, use_cache: bool = True) -> dict: | ||||
|     """ | ||||
|     Sends the Overpass QL query to the Overpass API and returns the parsed JSON response. | ||||
|  | ||||
|     Args: | ||||
|         query (str): The Overpass QL query to be sent to the Overpass API. | ||||
|  | ||||
|     Returns: | ||||
|         dict: The parsed JSON response from the Overpass API, or None if the request fails. | ||||
|     """ | ||||
|  | ||||
|     # Generate a cache key for the current query | ||||
|     cache_key = get_cache_key(query) | ||||
|  | ||||
|     # Try to fetch the result from the cache | ||||
|     cached_response = CachingStrategy.get(cache_key) | ||||
|     if cached_response: | ||||
|         print("Cache hit!") | ||||
|         return cached_response | ||||
|  | ||||
|     # Define the Overpass API endpoint | ||||
|     overpass_url = "https://overpass-api.de/api/interpreter" | ||||
|  | ||||
|     # Prepare the data to be sent as POST request, encoded as bytes | ||||
|     data = urllib.parse.urlencode({'data': query}).encode('utf-8') | ||||
|  | ||||
|     # Create a custom header with a User-Agent | ||||
|     headers = { | ||||
|         'User-Agent': 'Mozilla/5.0 (compatible; OverpassQuery/1.0; +http://example.com)', | ||||
|     } | ||||
|  | ||||
|     try: | ||||
|         # Create a Request object with the specified URL, data, and headers | ||||
|         request = urllib.request.Request(overpass_url, data=data, headers=headers) | ||||
|          | ||||
|         # Send the request and read the response | ||||
|         with urllib.request.urlopen(request) as response: | ||||
|             # Read and decode the response | ||||
|             response_data = response.read().decode('utf-8') | ||||
|             root = ET.fromstring(response_data) | ||||
|  | ||||
|             # Cache the response data as an ElementTree root | ||||
|             CachingStrategy.set(cache_key, root) | ||||
|  | ||||
|             return root | ||||
|  | ||||
|     except urllib.error.URLError as e: | ||||
|         print(f"Error connecting to Overpass API: {e}") | ||||
|         return None | ||||
|     except json.JSONDecodeError: | ||||
|         print("Error decoding the JSON response from Overpass API.") | ||||
|         return None | ||||
| @@ -11,7 +11,7 @@ def client(): | ||||
|     """Client used to call the app.""" | ||||
|     return TestClient(app) | ||||
|  | ||||
| ''' | ||||
|  | ||||
| def test_turckheim(client, request):    # pylint: disable=redefined-outer-name | ||||
|     """ | ||||
|     Test n°1 : Custom test in Turckheim to ensure small villages are also supported. | ||||
| @@ -54,7 +54,7 @@ def test_turckheim(client, request):    # pylint: disable=redefined-outer-name | ||||
|     assert len(landmarks) > 2           # check that there is something to visit | ||||
|     assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds" | ||||
|     # assert 2==3 | ||||
| ''' | ||||
|  | ||||
|  | ||||
| def test_bellecour(client, request) :   # pylint: disable=redefined-outer-name | ||||
|     """ | ||||
| @@ -97,7 +97,7 @@ def test_bellecour(client, request) :   # pylint: disable=redefined-outer-name | ||||
|     assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2 | ||||
|     # assert 2 == 3 | ||||
|  | ||||
| ''' | ||||
|  | ||||
| def test_cologne(client, request) :   # pylint: disable=redefined-outer-name | ||||
|     """ | ||||
|     Test n°2 : Custom test in Lyon centre to ensure proper decision making in crowded area. | ||||
| @@ -336,7 +336,7 @@ def test_shopping(client, request) :   # pylint: disable=redefined-outer-name | ||||
|     assert response.status_code == 200  # check for successful planning | ||||
|     assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds" | ||||
|     assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2 | ||||
| ''' | ||||
|  | ||||
|  | ||||
| # def test_new_trip_single_prefs(client): | ||||
| #     response = client.post( | ||||
|   | ||||
| @@ -1,12 +1,15 @@ | ||||
| """Module used to import data from OSM and arrange them in categories.""" | ||||
| import logging | ||||
| import yaml | ||||
| import xml.etree.ElementTree as ET | ||||
|  | ||||
|  | ||||
| from ..structs.preferences import Preferences | ||||
| from ..structs.landmark import Landmark | ||||
| from .take_most_important import take_most_important | ||||
| from .cluster_manager import ClusterManager | ||||
| from .overpass import OverpassQueryBuilder, send_overpass_query, parse_result | ||||
| from ..overpass.overpass import build_query, send_overpass_query | ||||
| from ..overpass.caching_strategy import CachingStrategy | ||||
|  | ||||
| from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR | ||||
|  | ||||
| @@ -53,8 +56,7 @@ class LandmarkManager: | ||||
|             self.walking_speed = parameters['average_walking_speed'] | ||||
|             self.detour_factor = parameters['detour_factor'] | ||||
|  | ||||
|         # self.overpass = Overpass() | ||||
|         # CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR) | ||||
|         CachingStrategy.use('XML', cache_dir=OSM_CACHE_DIR) | ||||
|  | ||||
|         self.logger.info('LandmakManager successfully initialized.') | ||||
|  | ||||
| @@ -84,35 +86,32 @@ class LandmarkManager: | ||||
|         all_landmarks = set() | ||||
|  | ||||
|         # Create a bbox using the around technique, tuple of strings | ||||
|         bbox = tuple((f"around:{min(2000, reachable_bbox_side/2)}", str(center_coordinates[0]), str(center_coordinates[1]))) | ||||
|         bbox = tuple((min(2000, reachable_bbox_side/2), center_coordinates[0], center_coordinates[1])) | ||||
|  | ||||
|         # list for sightseeing | ||||
|         if preferences.sightseeing.score != 0: | ||||
|             self.logger.debug('Fetching sightseeing landmarks...') | ||||
|             score_function = lambda score: score * 10 * preferences.sightseeing.score / 5 | ||||
|             current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function) | ||||
|             current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, preferences.sightseeing.score) | ||||
|             all_landmarks.update(current_landmarks) | ||||
|             self.logger.debug('Fetching sightseeing clusters...') | ||||
|  | ||||
|             # special pipeline for historic neighborhoods | ||||
|             neighborhood_manager = ClusterManager(bbox, 'sightseeing') | ||||
|             historic_clusters = neighborhood_manager.generate_clusters() | ||||
|             all_landmarks.update(historic_clusters) | ||||
|             self.logger.debug('Sightseeing clusters done') | ||||
|             # neighborhood_manager = ClusterManager(bbox, 'sightseeing') | ||||
|             # historic_clusters = neighborhood_manager.generate_clusters() | ||||
|             # all_landmarks.update(historic_clusters) | ||||
|             # self.logger.debug('Sightseeing clusters done') | ||||
|  | ||||
|         # list for nature | ||||
|         if preferences.nature.score != 0: | ||||
|             self.logger.debug('Fetching nature landmarks...') | ||||
|             score_function = lambda score: score * 10 * self.nature_coeff * preferences.nature.score / 5 | ||||
|             current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, score_function) | ||||
|             current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, preferences.nature.score) | ||||
|             all_landmarks.update(current_landmarks) | ||||
|  | ||||
|  | ||||
|         # list for shopping | ||||
|         if preferences.shopping.score != 0: | ||||
|             self.logger.debug('Fetching shopping landmarks...') | ||||
|             score_function = lambda score: score * 10 * preferences.shopping.score / 5 | ||||
|             current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function) | ||||
|             current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, preferences.shopping.score) | ||||
|             self.logger.debug('Fetching shopping clusters...') | ||||
|  | ||||
|             # set time for all shopping activites : | ||||
| @@ -121,10 +120,10 @@ class LandmarkManager: | ||||
|             all_landmarks.update(current_landmarks) | ||||
|  | ||||
|             # special pipeline for shopping malls | ||||
|             shopping_manager = ClusterManager(bbox, 'shopping') | ||||
|             shopping_clusters = shopping_manager.generate_clusters() | ||||
|             all_landmarks.update(shopping_clusters) | ||||
|             self.logger.debug('Shopping clusters done') | ||||
|             # shopping_manager = ClusterManager(bbox, 'shopping') | ||||
|             # shopping_clusters = shopping_manager.generate_clusters() | ||||
|             # all_landmarks.update(shopping_clusters) | ||||
|             # self.logger.debug('Shopping clusters done') | ||||
|  | ||||
|  | ||||
|  | ||||
| @@ -133,8 +132,19 @@ class LandmarkManager: | ||||
|  | ||||
|         return all_landmarks, landmarks_constrained | ||||
|  | ||||
|     def set_score(self, landmark: Landmark, landmarktype: str, preference_level: int) : | ||||
|     def set_landmark_score(self, landmark: Landmark, landmarktype: str, preference_level: int) : | ||||
|         """ | ||||
|         Calculate and set the attractiveness score for a given landmark. | ||||
|  | ||||
|         This method evaluates the landmark's attractiveness based on its properties  | ||||
|         (number of tags, presence of Wikipedia URL, image, website, and whether it's  | ||||
|         a place of worship) and adjusts the score using the user's preference level. | ||||
|  | ||||
|         Args: | ||||
|         landmark (Landmark): The landmark object to score. | ||||
|         landmarktype (str): The type of the landmark (currently unused). | ||||
|         preference_level (int): The user's preference level for this landmark type. | ||||
|         """ | ||||
|         score = landmark.n_tags**self.tag_exponent | ||||
|         if landmark.wiki_url : | ||||
|             score *= self.wikipedia_bonus | ||||
| @@ -144,11 +154,13 @@ class LandmarkManager: | ||||
|             score *= self.wikipedia_bonus | ||||
|         if landmark.is_place_of_worship : | ||||
|             score *= self.church_coeff | ||||
|         if landmarktype == 'nature' : | ||||
|             score *= self.nature_coeff | ||||
|  | ||||
|         landmark.attractiveness = int(score * preference_level) | ||||
|         landmark.attractiveness = int(score * preference_level * 2) | ||||
|  | ||||
|     ''' | ||||
|     def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]: | ||||
|  | ||||
|     def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, preference_level: int) -> list[Landmark]: | ||||
|         """ | ||||
|         Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates. | ||||
|  | ||||
| @@ -183,165 +195,7 @@ class LandmarkManager: | ||||
|                 query_conditions = [] | ||||
|                 element_types.append('node') | ||||
|  | ||||
|             query = OverpassQueryBuilder( | ||||
|                 area = bbox, | ||||
|                 element_types = element_types, | ||||
|                 selector = sel, | ||||
|                 conditions = query_conditions,        # except for nature.... | ||||
|                 out = 'center' | ||||
|                 ) | ||||
|             self.logger.debug(f"Query: {query}") | ||||
|  | ||||
|             try: | ||||
|                 result = self.overpass.query(query) | ||||
|             except Exception as e: | ||||
|                 self.logger.error(f"Error fetching landmarks: {e}") | ||||
|                 continue | ||||
|  | ||||
|             for elem in result.elements(): | ||||
|  | ||||
|                 name = elem.tag('name') | ||||
|                 location = (elem.centerLat(), elem.centerLon()) | ||||
|                 osm_type = elem.type()              # Add type: 'way' or 'relation' | ||||
|                 osm_id = elem.id()                  # Add OSM id | ||||
|  | ||||
|                 # TODO: exclude these from the get go | ||||
|                 # handle unprecise and no-name locations | ||||
|                 if name is None or location[0] is None: | ||||
|                     if osm_type == 'node' and 'viewpoint' in elem.tags().values(): | ||||
|                         name = 'Viewpoint' | ||||
|                         name_en = 'Viewpoint' | ||||
|                         location = (elem.lat(), elem.lon()) | ||||
|                     else : | ||||
|                         continue | ||||
|  | ||||
|                 # skip if part of another building | ||||
|                 if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes': | ||||
|                     continue | ||||
|  | ||||
|                 elem_type = landmarktype                # Add the landmark type as 'sightseeing, | ||||
|                 n_tags = len(elem.tags().keys())        # Add number of tags | ||||
|                 score = n_tags**self.tag_exponent       # Add score | ||||
|                 duration = 5                            # Set base duration to 5 minutes | ||||
|                 # skip = False                            # Set skipping parameter to false | ||||
|                 tag_values = set(elem.tags().values())  # Store tag values | ||||
|  | ||||
|  | ||||
|                 # Retrieve image, name and website : | ||||
|                 image_url = elem.tag('image') | ||||
|                 website_url = elem.tag('website') | ||||
|                 if website_url is None : | ||||
|                     website_url = elem.tag('wikipedia') | ||||
|                 name_en = elem.tag('name:en') | ||||
|  | ||||
|                 if elem_type != "nature" and elem.tag('leisure') == "park": | ||||
|                     elem_type = "nature" | ||||
|  | ||||
|                 if elem.tag('wikipedia') is not None : | ||||
|                     score += self.wikipedia_bonus | ||||
|  | ||||
|                 # Skip element if it is an administrative boundary or a disused thing or it is an appartement and useless amenities | ||||
|                 if elem.tag('boundary') is not None or elem.tag('disused') is not None: | ||||
|                     continue | ||||
|                 if 'apartments' in elem.tags().values(): | ||||
|                     continue | ||||
|                 if elem.tag('historic') is not None and elem.tag('historic') in ['manor', 'optical_telegraph', 'pound', 'shieling', 'wayside_cross']: | ||||
|                     continue | ||||
|  | ||||
|                 # Adjust scoring, browse through tag keys using wildcards | ||||
|                 for tag_key in elem.tags().keys(): | ||||
|                     if "pay" in tag_key: | ||||
|                         # payment options are misleading and should not count for the scoring. | ||||
|                         score += self.pay_bonus | ||||
|  | ||||
|                     if "building:" in tag_key: | ||||
|                         # do not count the building description as being particularly useful | ||||
|                         n_tags -= 1 | ||||
|  | ||||
|                     # if landmarktype != "shopping": | ||||
|                     #     if "shop" in tag_key: | ||||
|                     #         skip = True | ||||
|                     #         break | ||||
|                         # if tag_key == "building" and elem.tag('building') in ['retail', 'supermarket', 'parking']: | ||||
|                         #     skip = True | ||||
|                         #     break | ||||
|  | ||||
|                 # if skip: | ||||
|                 #     continue | ||||
|  | ||||
|                 score = score_function(score) | ||||
|  | ||||
|                 if "place_of_worship" in tag_values : | ||||
|                     if 'cathedral' in tag_values : | ||||
|                         duration = 10 | ||||
|                     else : | ||||
|                         score *= self.church_coeff | ||||
|  | ||||
|                 elif 'viewpoint' in tag_values : | ||||
|                     # viewpoints must count more | ||||
|                     score = score * self.viewpoint_bonus | ||||
|  | ||||
|                 elif "museum" in tag_values or "aquarium" in tag_values or "planetarium" in tag_values: | ||||
|                     duration = 60 | ||||
|  | ||||
|                 # finally create our own landmark object | ||||
|                 landmark = Landmark( | ||||
|                     name = name, | ||||
|                     type = elem_type, | ||||
|                     location = location, | ||||
|                     osm_type = osm_type, | ||||
|                     osm_id = osm_id, | ||||
|                     attractiveness = int(score), | ||||
|                     must_do = False, | ||||
|                     n_tags = int(n_tags), | ||||
|                     duration = int(duration), | ||||
|                     name_en = name_en, | ||||
|                     image_url = image_url, | ||||
|                     website_url = website_url | ||||
|                 ) | ||||
|                 return_list.append(landmark) | ||||
|  | ||||
|         self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}") | ||||
|  | ||||
|         return return_list | ||||
|     ''' | ||||
|  | ||||
|     def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]: | ||||
|         """ | ||||
|         Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates. | ||||
|  | ||||
|         Args: | ||||
|             bbox (tuple[float, float, float, float]): The bounding box coordinates (around:radius, center_lat, center_lon). | ||||
|             amenity_selector (dict): The Overpass API query selector for the desired landmark type.  | ||||
|             landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping'). | ||||
|             score_function (callable): The function to compute the score of the landmark based on its attributes. | ||||
|  | ||||
|         Returns: | ||||
|             list[Landmark]: A list of Landmark objects that were fetched and filtered based on the provided criteria. | ||||
|  | ||||
|         Notes: | ||||
|             - Landmarks are fetched using Overpass API queries. | ||||
|             - Selectors are translated from the dictionary to the Overpass query format. (e.g., 'amenity'='place_of_worship') | ||||
|             - Landmarks are filtered based on various conditions including tags and type. | ||||
|             - Scores are assigned to landmarks based on their attributes and surrounding elements. | ||||
|         """ | ||||
|         return_list = [] | ||||
|  | ||||
|         if landmarktype == 'nature' : query_conditions = [] | ||||
|         else : query_conditions = ['count_tags()>5'] | ||||
|  | ||||
|         # caution, when applying a list of selectors, overpass will search for elements that match ALL selectors simultaneously | ||||
|         # we need to split the selectors into separate queries and merge the results | ||||
|         for sel in dict_to_selector_list(amenity_selector): | ||||
|             # self.logger.debug(f"Current selector: {sel}") | ||||
|  | ||||
|             element_types = ['way', 'relation'] | ||||
|  | ||||
|             if 'viewpoint' in sel : | ||||
|                 query_conditions = [] | ||||
|                 element_types.append('node') | ||||
|  | ||||
|             query = OverpassQueryBuilder( | ||||
|             query = build_query( | ||||
|                 area = bbox, | ||||
|                 element_types = element_types, | ||||
|                 selector = sel, | ||||
| @@ -356,12 +210,110 @@ class LandmarkManager: | ||||
|                 self.logger.error(f"Error fetching landmarks: {e}") | ||||
|                 continue | ||||
|                  | ||||
|             return_list = parse_result(result, landmarktype) | ||||
|             return_list += self.parse_overpass_result(result, landmarktype, preference_level) | ||||
|  | ||||
|         self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}") | ||||
|  | ||||
|         return return_list | ||||
|  | ||||
|  | ||||
|     def parse_overpass_result(self, root: ET.Element, landmarktype, preference_level) -> list[Landmark]: | ||||
|         """ | ||||
|         Parse the Overpass API result and extract landmarks. | ||||
|  | ||||
|         This method processes the XML root element returned by the Overpass API and  | ||||
|         extracts landmarks of types 'node', 'way', and 'relation'. It retrieves  | ||||
|         relevant information such as name, coordinates, and tags, and converts them  | ||||
|         into Landmark objects. | ||||
|  | ||||
|         Args: | ||||
|         root (ET.Element): The root element of the XML response from Overpass API. | ||||
|         elem_type (str): The type of landmark (e.g., node, way, relation). | ||||
|  | ||||
|         Returns: | ||||
|         list[Landmark]: A list of Landmark objects extracted from the XML data. | ||||
|         """ | ||||
|         if root is None : | ||||
|             return [] | ||||
|  | ||||
|         landmarks = [] | ||||
|         for osm_type in ['node', 'way', 'relation'] : | ||||
|             for elem in root.findall(osm_type): | ||||
|                 # self.logger.debug('new landmark') | ||||
|  | ||||
|                 # Extract basic info from the landmark. | ||||
|                 name = elem.find("tag[@k='name']").get('v') if elem.find("tag[@k='name']") is not None else None | ||||
|                 center = elem.find('center') | ||||
|                 tags = elem.findall('tag') | ||||
|  | ||||
|                 # Extract the center latitude and longitude if available. | ||||
|                 if name is not None and center is not None: | ||||
|                     lat = float(center.get('lat')) | ||||
|                     lon = float(center.get('lon')) | ||||
|                     coords = tuple((lat, lon)) | ||||
|                 else : | ||||
|                     continue | ||||
|                  | ||||
|                 # Convert this to Landmark object | ||||
|                 landmark = Landmark(name=name, | ||||
|                                     type=landmarktype, | ||||
|                                     location=coords, | ||||
|                                     osm_id=elem.get('id'),  | ||||
|                                     osm_type=osm_type, | ||||
|                                     attractiveness=0, | ||||
|                                     n_tags=len(tags)) | ||||
|  | ||||
|                 # Browse through tags to add information to landmark. | ||||
|                 for tag in tags: | ||||
|                     key = tag.get('k') | ||||
|                     value = tag.get('v') | ||||
|  | ||||
|                     # Skip this landmark if not suitable. | ||||
|                     if key == 'building:part' and value == 'yes' : | ||||
|                         break | ||||
|                     if 'disused:' in key : | ||||
|                         break | ||||
|                     if 'boundary:' in key : | ||||
|                         break | ||||
|                     if 'shop' in key and landmarktype != 'shopping' : | ||||
|                         break | ||||
|                     # if value == 'apartments' : | ||||
|                     #     break | ||||
|                      | ||||
|                     # Fill in the other attributes. | ||||
|                     if key == 'image' : | ||||
|                         landmark.image_url = value | ||||
|                     if key == 'website' : | ||||
|                         landmark.website_url = value | ||||
|                     if key == 'place_of_worship' : | ||||
|                         landmark.is_place_of_worship = True | ||||
|                     if key == 'wikipedia' : | ||||
|                         landmark.wiki_url = value | ||||
|                     if key == 'name:en' : | ||||
|                         landmark.name_en = value | ||||
|                     if 'building:' in key or 'pay' in key : | ||||
|                         landmark.n_tags -= 1 | ||||
|                      | ||||
|                     # Set the duration. | ||||
|                     if value in ['museum', 'aquarium', 'planetarium'] : | ||||
|                         landmark.duration = 60 | ||||
|                     elif value == 'viewpoint' : | ||||
|                         landmark.is_viewpoint = True | ||||
|                         landmark.duration = 10 | ||||
|                     elif value == 'cathedral' : | ||||
|                         landmark.is_place_of_worship = False | ||||
|                         landmark.duration = 10 | ||||
|                     else : | ||||
|                         landmark.duration = 5 | ||||
|  | ||||
|                 else:  | ||||
|                     self.set_landmark_score(landmark, landmarktype, preference_level) | ||||
|                     landmarks.append(landmark) | ||||
|                     # self.logger.debug('new landmark added') | ||||
|                 continue | ||||
|  | ||||
|         return landmarks | ||||
|  | ||||
| def dict_to_selector_list(d: dict) -> list: | ||||
|     """ | ||||
|     Convert a dictionary of key-value pairs to a list of Overpass query strings. | ||||
|   | ||||
| @@ -1,199 +0,0 @@ | ||||
| from typing import Literal, List | ||||
| import urllib | ||||
| import json | ||||
| import xml.etree.ElementTree as ET | ||||
|  | ||||
| from ..structs.landmark import Landmark | ||||
|  | ||||
| ElementTypes = List[Literal['way', 'node', 'relation']] | ||||
|  | ||||
|  | ||||
|  | ||||
| def OverpassQueryBuilder(area: tuple, element_types: ElementTypes, selector: str,  | ||||
|                          conditions=[], out='center'): | ||||
|     """ | ||||
|     Constructs a query string for the Overpass API to retrieve OpenStreetMap (OSM) data. | ||||
|  | ||||
|     Args: | ||||
|         area (tuple): A tuple representing the geographical search area, typically in the format  | ||||
|                       (radius, latitude, longitude). The first element is a string like "around:2000"  | ||||
|                       specifying the search radius, and the second and third elements represent  | ||||
|                       the latitude and longitude as floats or strings. | ||||
|         element_types (list[str]): A list of OSM element types to search for. Must be one or more of  | ||||
|                                    'Way', 'Node', or 'Relation'. | ||||
|         selector (str): The key or tag to filter the OSM elements (e.g., 'amenity', 'highway', etc.). | ||||
|         conditions (list, optional): A list of conditions to apply as additional filters for the  | ||||
|                                      selected OSM elements. The conditions should be written in  | ||||
|                                      the Overpass QL format, and they are combined with '&&' if  | ||||
|                                      multiple are provided. Defaults to an empty list. | ||||
|         out (str, optional): Specifies the output type, such as 'center', 'body', or 'tags'.  | ||||
|                              Defaults to 'center'. | ||||
|  | ||||
|     Returns: | ||||
|         str: The constructed Overpass QL query string. | ||||
|  | ||||
|     Notes: | ||||
|         - If no conditions are provided, the query will just use the `selector` to filter the OSM  | ||||
|           elements without additional constraints. | ||||
|         - The search area must always formatted as "(radius, lat, lon)". | ||||
|     """ | ||||
|     if not isinstance(conditions, list) : | ||||
|         conditions = [conditions] | ||||
|  | ||||
|     query = '(' | ||||
|     search_area = f"({', '.join(map(str, area))})" | ||||
|  | ||||
|     if conditions : | ||||
|         conditions = '(if: ' + ' && '.join(conditions) + ')' | ||||
|     else : | ||||
|         conditions = '' | ||||
|  | ||||
|     for elem in element_types : | ||||
|         query += elem + '[' + selector + ']' + conditions + search_area + ';' | ||||
|  | ||||
|     query += ');' + f'out {out};' | ||||
|  | ||||
|     return query | ||||
|  | ||||
|  | ||||
| def send_overpass_query(query: str) -> dict: | ||||
|     """ | ||||
|     Sends the Overpass QL query to the Overpass API and returns the parsed JSON response. | ||||
|  | ||||
|     Args: | ||||
|         query (str): The Overpass QL query to be sent to the Overpass API. | ||||
|  | ||||
|     Returns: | ||||
|         dict: The parsed JSON response from the Overpass API, or None if the request fails. | ||||
|     """ | ||||
|  | ||||
|     # Define the Overpass API endpoint | ||||
|     overpass_url = "https://overpass-api.de/api/interpreter" | ||||
|  | ||||
|     # Prepare the data to be sent as POST request, encoded as bytes | ||||
|     data = urllib.parse.urlencode({'data': query}).encode('utf-8') | ||||
|  | ||||
|     # Create a custom header with a User-Agent | ||||
|     headers = { | ||||
|         'User-Agent': 'Mozilla/5.0 (compatible; OverpassQuery/1.0; +http://example.com)', | ||||
|     } | ||||
|  | ||||
|     try: | ||||
|         # Create a Request object with the specified URL, data, and headers | ||||
|         request = urllib.request.Request(overpass_url, data=data, headers=headers) | ||||
|          | ||||
|         # Send the request and read the response | ||||
|         with urllib.request.urlopen(request) as response: | ||||
|             # Read and decode the response | ||||
|             response_data = response.read().decode('utf-8') | ||||
|             return ET.fromstring(response_data) | ||||
|  | ||||
|     except urllib.error.URLError as e: | ||||
|         print(f"Error connecting to Overpass API: {e}") | ||||
|         return None | ||||
|     except json.JSONDecodeError: | ||||
|         print("Error decoding the JSON response from Overpass API.") | ||||
|         return None | ||||
|  | ||||
|  | ||||
| def parse_result(root: ET.Element, elem_type) -> List[Landmark]: | ||||
|  | ||||
|     landmarks = [] | ||||
|     if root is None : | ||||
|         return landmarks | ||||
|  | ||||
|     for osm_type in ['node', 'way', 'relation'] : | ||||
|         for elem in root.findall(osm_type): | ||||
|  | ||||
|             # Extract basic info from the landmark. | ||||
|             name = elem.find("tag[@k='name']").get('v') if elem.find("tag[@k='name']") is not None else None | ||||
|             center = elem.find('center') | ||||
|             tags = elem.findall('tag') | ||||
|  | ||||
|             # Extract the center latitude and longitude if available. | ||||
|             if name is not None and center is not None: | ||||
|                 lat = float(center.get('lat')) | ||||
|                 lon = float(center.get('lon')) | ||||
|                 coords = tuple((lat, lon)) | ||||
|             else : | ||||
|                 continue | ||||
|              | ||||
|             # Convert this to Landmark object | ||||
|             landmark = Landmark(name=name, | ||||
|                                 type=elem_type, | ||||
|                                 location=coords, | ||||
|                                 osm_id=elem.get('id'),  | ||||
|                                 osm_type=osm_type, | ||||
|                                 attractiveness=0, | ||||
|                                 n_tags=len(tags)) | ||||
|  | ||||
|             # Browse through tags to add information to landmark. | ||||
|             for tag in tags: | ||||
|                 key = tag.get('k') | ||||
|                 value = tag.get('v') | ||||
|  | ||||
|                 # Skip this landmark if not suitable. | ||||
|                 if key == 'building:part' and value == 'yes' : | ||||
|                     break | ||||
|                 if 'disused:' in key : | ||||
|                     break | ||||
|                 if 'boundary:' in key : | ||||
|                     break | ||||
|                 if 'shop' in key and elem_type != 'shopping' : | ||||
|                     break | ||||
|                 # if value == 'apartments' : | ||||
|                 #     break | ||||
|                  | ||||
|                 # Fill in the other attributes. | ||||
|                 if key == 'image' : | ||||
|                     landmark.image_url = value | ||||
|                 if key == 'website' : | ||||
|                     landmark.website_url = value | ||||
|                 if key == 'place_of_worship' : | ||||
|                     landmark.is_place_of_worship = True | ||||
|                 if key == 'wikipedia' : | ||||
|                     landmark.wiki_url = value | ||||
|                 if key == 'name:en' : | ||||
|                     landmark.name_en = value | ||||
|                 if 'building:' in key or 'pay' in key : | ||||
|                     landmark.n_tags -= 1 | ||||
|                  | ||||
|                 # Set the duration. | ||||
|                 if value in ['museum', 'aquarium', 'planetarium'] : | ||||
|                     landmark.duration = 60 | ||||
|                 elif value == 'viewpoint' : | ||||
|                     landmark.is_viewpoint = True | ||||
|                     landmark.duration = 10 | ||||
|                 elif value == 'cathedral' : | ||||
|                     landmark.is_place_of_worship = False | ||||
|                     landmark.duration = 10 | ||||
|                 else : | ||||
|                     landmark.duration = 5 | ||||
|  | ||||
|             else:  | ||||
|                 set_score(landmark, elem_type) | ||||
|                 landmarks.append(landmark) | ||||
|             continue | ||||
|  | ||||
|     return landmarks | ||||
|  | ||||
|  | ||||
|  | ||||
| def set_score(landmark: Landmark, landmarktype: str) : | ||||
|  | ||||
|         score = landmark.n_tags**1.15 | ||||
|         if landmark.wiki_url : | ||||
|             score *= 1.1 | ||||
|         if landmark.image_url : | ||||
|             score *= 1.1 | ||||
|         if landmark.website_url : | ||||
|             score *= 1.1 | ||||
|         if landmark.is_place_of_worship : | ||||
|             score *= 0.65 | ||||
|         if landmark.is_viewpoint : | ||||
|             # print(f"{landmark.name}:  n_tags={landmark.n_tags} and score={score*3*1.35*10}") | ||||
|             score *= 3 | ||||
|         if landmarktype == 'nature' : | ||||
|             score *= 1.35 | ||||
|  | ||||
|         landmark.attractiveness = int(score * 10) | ||||
		Reference in New Issue
	
	Block a user