backend/new-overpass #52
| @@ -53,8 +53,8 @@ def test_turckheim(client, request):    # pylint: disable=redefined-outer-name | ||||
|     assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2 | ||||
|     assert len(landmarks) > 2           # check that there is something to visit | ||||
|     assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds" | ||||
|     # assert 2==3 | ||||
|  | ||||
|     assert 2==3 | ||||
| ''' | ||||
| def test_bellecour(client, request) :   # pylint: disable=redefined-outer-name | ||||
|     """ | ||||
|     Test n°2 : Custom test in Lyon centre to ensure proper decision making in crowded area. | ||||
| @@ -214,7 +214,7 @@ def test_shopping(client, request) :   # pylint: disable=redefined-outer-name | ||||
|     assert response.status_code == 200  # check for successful planning | ||||
|     assert comp_time < 30, f"Computation time exceeded 30 seconds: {comp_time:.2f} seconds" | ||||
|     assert duration_minutes*0.8 < int(result['total_time']) < duration_minutes*1.2 | ||||
|  | ||||
| ''' | ||||
|  | ||||
| # def test_new_trip_single_prefs(client): | ||||
| #     response = client.post( | ||||
|   | ||||
							
								
								
									
										524
									
								
								backend/src/utils/old_optimizer.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										524
									
								
								backend/src/utils/old_optimizer.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,524 @@ | ||||
| import yaml, logging | ||||
| import numpy as np | ||||
|  | ||||
| from scipy.optimize import linprog | ||||
| from collections import defaultdict, deque | ||||
|  | ||||
| from ..structs.landmark import Landmark | ||||
| from .get_time_separation import get_time | ||||
| from ..constants import OPTIMIZER_PARAMETERS_PATH | ||||
|  | ||||
|      | ||||
|  | ||||
|  | ||||
|  | ||||
| class Optimizer: | ||||
|  | ||||
|     logger = logging.getLogger(__name__) | ||||
|  | ||||
|     detour: int = None              # accepted max detour time (in minutes) | ||||
|     detour_factor: float            # detour factor of straight line vs real distance in cities | ||||
|     average_walking_speed: float    # average walking speed of adult | ||||
|     max_landmarks: int              # max number of landmarks to visit | ||||
|     overshoot: float                # overshoot to allow maxtime to overflow. Optimizer is a bit restrictive | ||||
|  | ||||
|  | ||||
|     def __init__(self) : | ||||
|  | ||||
|         # load parameters from file | ||||
|         with OPTIMIZER_PARAMETERS_PATH.open('r') as f: | ||||
|             parameters = yaml.safe_load(f) | ||||
|             self.detour_factor = parameters['detour_factor'] | ||||
|             self.average_walking_speed = parameters['average_walking_speed'] | ||||
|             self.max_landmarks = parameters['max_landmarks'] | ||||
|             self.overshoot = parameters['overshoot'] | ||||
|          | ||||
|  | ||||
|  | ||||
|     # Prevent the use of a particular solution | ||||
|     def prevent_config(self, resx): | ||||
|         """ | ||||
|         Prevent the use of a particular solution by adding constraints to the optimization. | ||||
|  | ||||
|         Args: | ||||
|             resx (list[float]): List of edge weights. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[list[int], list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector. | ||||
|         """ | ||||
|          | ||||
|         for i, elem in enumerate(resx): | ||||
|             resx[i] = round(elem) | ||||
|          | ||||
|         N = len(resx)               # Number of edges | ||||
|         L = int(np.sqrt(N))         # Number of landmarks | ||||
|  | ||||
|         nonzeroind = np.nonzero(resx)[0]                    # the return is a little funky so I use the [0] | ||||
|         nonzero_tup = np.unravel_index(nonzeroind, (L,L)) | ||||
|  | ||||
|         ind_a = nonzero_tup[0].tolist() | ||||
|         vertices_visited = ind_a | ||||
|         vertices_visited.remove(0) | ||||
|  | ||||
|         ones = [1]*L | ||||
|         h = [0]*N | ||||
|         for i in range(L) : | ||||
|             if i in vertices_visited : | ||||
|                 h[i*L:i*L+L] = ones | ||||
|  | ||||
|         return h, [len(vertices_visited)-1] | ||||
|  | ||||
|  | ||||
|     # Prevents the creation of the same circle (both directions) | ||||
|     def prevent_circle(self, circle_vertices: list, L: int) : | ||||
|         """ | ||||
|         Prevent circular paths by by adding constraints to the optimization. | ||||
|  | ||||
|         Args: | ||||
|             circle_vertices (list): List of vertices forming a circle. | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: A tuple containing a new row for constraint matrix and new value for upper bound vector. | ||||
|         """ | ||||
|  | ||||
|         l1 = [0]*L*L | ||||
|         l2 = [0]*L*L | ||||
|         for i, node in enumerate(circle_vertices[:-1]) : | ||||
|             next = circle_vertices[i+1] | ||||
|  | ||||
|             l1[node*L + next] = 1 | ||||
|             l2[next*L + node] = 1 | ||||
|  | ||||
|         s = circle_vertices[0] | ||||
|         g = circle_vertices[-1] | ||||
|  | ||||
|         l1[g*L + s] = 1 | ||||
|         l2[s*L + g] = 1 | ||||
|  | ||||
|         return np.vstack((l1, l2)), [0, 0] | ||||
|  | ||||
|  | ||||
|     def is_connected(self, resx) : | ||||
|         """ | ||||
|         Determine the order of visits and detect any circular paths in the given configuration. | ||||
|  | ||||
|         Args: | ||||
|             resx (list): List of edge weights. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[list[int], Optional[list[list[int]]]]: A tuple containing the visit order and a list of any detected circles. | ||||
|         """ | ||||
|  | ||||
|         # first round the results to have only 0-1 values | ||||
|         for i, elem in enumerate(resx): | ||||
|             resx[i] = round(elem) | ||||
|          | ||||
|         N = len(resx)               # length of res | ||||
|         L = int(np.sqrt(N))         # number of landmarks. CAST INTO INT but should not be a problem because N = L**2 by def. | ||||
|  | ||||
|         nonzeroind = np.nonzero(resx)[0] # the return is a little funny so I use the [0] | ||||
|         nonzero_tup = np.unravel_index(nonzeroind, (L,L)) | ||||
|  | ||||
|         ind_a = nonzero_tup[0].tolist() | ||||
|         ind_b = nonzero_tup[1].tolist() | ||||
|  | ||||
|         # Step 1: Create a graph representation | ||||
|         graph = defaultdict(list) | ||||
|         for a, b in zip(ind_a, ind_b): | ||||
|             graph[a].append(b) | ||||
|  | ||||
|         # Step 2: Function to perform BFS/DFS to extract journeys | ||||
|         def get_journey(start): | ||||
|             journey_nodes = [] | ||||
|             visited = set() | ||||
|             stack = deque([start]) | ||||
|  | ||||
|             while stack: | ||||
|                 node = stack.pop() | ||||
|                 if node not in visited: | ||||
|                     visited.add(node) | ||||
|                     journey_nodes.append(node) | ||||
|                     for neighbor in graph[node]: | ||||
|                         if neighbor not in visited: | ||||
|                             stack.append(neighbor) | ||||
|  | ||||
|             return journey_nodes | ||||
|  | ||||
|         # Step 3: Extract all journeys | ||||
|         all_journeys_nodes = [] | ||||
|         visited_nodes = set() | ||||
|  | ||||
|         for node in ind_a: | ||||
|             if node not in visited_nodes: | ||||
|                 journey_nodes = get_journey(node) | ||||
|                 all_journeys_nodes.append(journey_nodes) | ||||
|                 visited_nodes.update(journey_nodes) | ||||
|  | ||||
|         for l in all_journeys_nodes : | ||||
|             if 0 in l : | ||||
|                 order = l | ||||
|                 all_journeys_nodes.remove(l) | ||||
|                 break | ||||
|  | ||||
|         if len(all_journeys_nodes) == 0 : | ||||
|             return order, None | ||||
|  | ||||
|         return order, all_journeys_nodes | ||||
|  | ||||
|  | ||||
|  | ||||
|     def init_ub_dist(self, landmarks: list[Landmark], max_time: int): | ||||
|         """ | ||||
|         Initialize the objective function coefficients and inequality constraints for the optimization problem. | ||||
|  | ||||
|         This function computes the distances between all landmarks and stores their attractiveness to maximize sightseeing.  | ||||
|         The goal is to maximize the objective function subject to the constraints A*x < b and A_eq*x = b_eq. | ||||
|  | ||||
|         Args: | ||||
|             landmarks (list[Landmark]): List of landmarks. | ||||
|             max_time (int): Maximum time of visit allowed. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[list[float], list[float], list[int]]: Objective function coefficients, inequality constraint coefficients, and the right-hand side of the inequality constraint. | ||||
|         """ | ||||
|          | ||||
|         # Objective function coefficients. a*x1 + b*x2 + c*x3 + ... | ||||
|         c = [] | ||||
|         # Coefficients of inequality constraints (left-hand side) | ||||
|         A_ub = [] | ||||
|  | ||||
|         for spot1 in landmarks : | ||||
|             dist_table = [0]*len(landmarks) | ||||
|             c.append(-spot1.attractiveness) | ||||
|             for j, spot2 in enumerate(landmarks) : | ||||
|                 t = get_time(spot1.location, spot2.location) + spot1.duration | ||||
|                 dist_table[j] = t | ||||
|             closest = sorted(dist_table)[:25] | ||||
|             for i, dist in enumerate(dist_table) : | ||||
|                 if dist not in closest : | ||||
|                     dist_table[i] = 32700 | ||||
|             A_ub += dist_table | ||||
|         c = c*len(landmarks) | ||||
|  | ||||
|         return c, A_ub, [max_time*self.overshoot] | ||||
|  | ||||
|  | ||||
|     def respect_number(self, L, max_landmarks: int): | ||||
|         """ | ||||
|         Generate constraints to ensure each landmark is visited only once and cap the total number of visited landmarks. | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         ones = [1]*L | ||||
|         zeros = [0]*L | ||||
|         A = ones + zeros*(L-1) | ||||
|         b = [1] | ||||
|         for i in range(L-1) : | ||||
|             h_new = zeros*i + ones + zeros*(L-1-i) | ||||
|             A = np.vstack((A, h_new)) | ||||
|             b.append(1) | ||||
|  | ||||
|         A = np.vstack((A, ones*L)) | ||||
|         b.append(max_landmarks+1) | ||||
|  | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     # Constraint to not have d14 and d41 simultaneously. Does not prevent cyclic paths with more elements | ||||
|     def break_sym(self, L): | ||||
|         """ | ||||
|         Generate constraints to prevent simultaneous travel between two landmarks in both directions. | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         upper_ind = np.triu_indices(L,0,L) | ||||
|  | ||||
|         up_ind_x = upper_ind[0] | ||||
|         up_ind_y = upper_ind[1] | ||||
|  | ||||
|         A = [0]*L*L | ||||
|         b = [1] | ||||
|  | ||||
|         for i, _ in enumerate(up_ind_x[1:]) : | ||||
|             l = [0]*L*L | ||||
|             if up_ind_x[i] != up_ind_y[i] : | ||||
|                 l[up_ind_x[i]*L + up_ind_y[i]] = 1 | ||||
|                 l[up_ind_y[i]*L + up_ind_x[i]] = 1 | ||||
|  | ||||
|                 A = np.vstack((A,l)) | ||||
|                 b.append(1) | ||||
|  | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     def init_eq_not_stay(self, L: int):  | ||||
|         """ | ||||
|         Generate constraints to prevent staying in the same position (e.g., removing d11, d22, d33, etc.). | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[list[np.ndarray], list[int]]: Equality constraint coefficients and the right-hand side of the equality constraints. | ||||
|         """ | ||||
|  | ||||
|         l = [0]*L*L | ||||
|  | ||||
|         for i in range(L) : | ||||
|             for j in range(L) : | ||||
|                 if j == i : | ||||
|                     l[j + i*L] = 1 | ||||
|          | ||||
|         l = np.array(np.array(l), dtype=np.int8) | ||||
|  | ||||
|         return [l], [0] | ||||
|  | ||||
|  | ||||
|     def respect_user_must_do(self, landmarks: list[Landmark]) : | ||||
|         """ | ||||
|         Generate constraints to ensure that landmarks marked as 'must_do' are included in the optimization. | ||||
|  | ||||
|         Args: | ||||
|             landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_do'. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         L = len(landmarks) | ||||
|         A = [0]*L*L | ||||
|         b = [0] | ||||
|  | ||||
|         for i, elem in enumerate(landmarks[1:]) : | ||||
|             if elem.must_do is True and elem.name not in ['finish', 'start']: | ||||
|                 l = [0]*L*L | ||||
|                 l[i*L:i*L+L] = [1]*L        # set mandatory departures from landmarks tagged as 'must_do' | ||||
|  | ||||
|                 A = np.vstack((A,l)) | ||||
|                 b.append(1) | ||||
|  | ||||
|         return A, b | ||||
|      | ||||
|  | ||||
|     def respect_user_must_avoid(self, landmarks: list[Landmark]) : | ||||
|         """ | ||||
|         Generate constraints to ensure that landmarks marked as 'must_avoid' are skipped in the optimization. | ||||
|  | ||||
|         Args: | ||||
|             landmarks (list[Landmark]): List of landmarks, where some are marked as 'must_avoid'. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         L = len(landmarks) | ||||
|         A = [0]*L*L | ||||
|         b = [0] | ||||
|  | ||||
|         for i, elem in enumerate(landmarks[1:]) : | ||||
|             if elem.must_avoid is True and elem.name not in ['finish', 'start']: | ||||
|                 l = [0]*L*L | ||||
|                 l[i*L:i*L+L] = [1]*L         | ||||
|  | ||||
|                 A = np.vstack((A,l)) | ||||
|                 b.append(0)             # prevent departures from landmarks tagged as 'must_do' | ||||
|  | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     # Constraint to ensure start at start and finish at goal | ||||
|     def respect_start_finish(self, L: int): | ||||
|         """ | ||||
|         Generate constraints to ensure that the optimization starts at the designated start landmark and finishes at the goal landmark. | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         l_start = [1]*L + [0]*L*(L-1)   # sets departures only for start (horizontal ones) | ||||
|         l_start[L-1] = 0                # prevents the jump from start to finish | ||||
|         l_goal = [0]*L*L                # sets arrivals only for finish (vertical ones) | ||||
|         l_L = [0]*L*(L-1) + [1]*L       # prevents arrivals at start and departures from goal | ||||
|         for k in range(L-1) :           # sets only vertical ones for goal (go to) | ||||
|             l_L[k*L] = 1 | ||||
|             if k != 0 : | ||||
|                 l_goal[k*L+L-1] = 1      | ||||
|  | ||||
|         A = np.vstack((l_start, l_goal)) | ||||
|         b = [1, 1] | ||||
|         A = np.vstack((A,l_L)) | ||||
|         b.append(0) | ||||
|  | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     def respect_order(self, L: int):  | ||||
|         """ | ||||
|         Generate constraints to tie the optimization problem together and prevent stacked ones, although this does not fully prevent circles. | ||||
|  | ||||
|         Args: | ||||
|             L (int): Number of landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             tuple[np.ndarray, list[int]]: Inequality constraint coefficients and the right-hand side of the inequality constraints. | ||||
|         """ | ||||
|  | ||||
|         A = [0]*L*L | ||||
|         b = [0] | ||||
|         for i in range(L-1) :           # Prevent stacked ones | ||||
|             if i == 0 or i == L-1:      # Don't touch start or finish | ||||
|                 continue | ||||
|             else :  | ||||
|                 l = [0]*L | ||||
|                 l[i] = -1 | ||||
|                 l = l*L | ||||
|                 for j in range(L) : | ||||
|                     l[i*L + j] = 1 | ||||
|  | ||||
|                 A = np.vstack((A,l)) | ||||
|                 b.append(0) | ||||
|  | ||||
|         return A, b | ||||
|  | ||||
|  | ||||
|     def link_list(self, order: list[int], landmarks: list[Landmark])->list[Landmark] : | ||||
|         """ | ||||
|         Compute the time to reach from each landmark to the next and create a list of landmarks with updated travel times. | ||||
|  | ||||
|         Args: | ||||
|             order (list[int]): List of indices representing the order of landmarks to visit. | ||||
|             landmarks (list[Landmark]): List of all landmarks. | ||||
|  | ||||
|         Returns: | ||||
|             list[Landmark]]: The updated linked list of landmarks with travel times | ||||
|         """ | ||||
|          | ||||
|         L =  [] | ||||
|         j = 0 | ||||
|         while j < len(order)-1 : | ||||
|             # get landmarks involved | ||||
|             elem = landmarks[order[j]] | ||||
|             next = landmarks[order[j+1]] | ||||
|  | ||||
|             # get attributes | ||||
|             elem.time_to_reach_next = get_time(elem.location, next.location) | ||||
|             elem.must_do = True | ||||
|             elem.location = (round(elem.location[0], 5), round(elem.location[1], 5)) | ||||
|             elem.next_uuid = next.uuid | ||||
|             L.append(elem) | ||||
|             j += 1 | ||||
|  | ||||
|         next.location = (round(next.location[0], 5), round(next.location[1], 5)) | ||||
|         next.must_do = True    | ||||
|         L.append(next) | ||||
|          | ||||
|         return L | ||||
|  | ||||
|  | ||||
|     # Main optimization pipeline | ||||
|     def solve_optimization( | ||||
|             self, | ||||
|             max_time: int, | ||||
|             landmarks: list[Landmark], | ||||
|             max_landmarks: int = None | ||||
|         ) -> list[Landmark]: | ||||
|         """ | ||||
|         Main optimization pipeline to solve the landmark visiting problem. | ||||
|  | ||||
|         This method sets up and solves a linear programming problem with constraints to find an optimal tour of landmarks, | ||||
|         considering user-defined must-visit landmarks, start and finish points, and ensuring no cycles are present. | ||||
|  | ||||
|         Args: | ||||
|             max_time (int): Maximum time allowed for the tour in minutes. | ||||
|             landmarks (list[Landmark]): List of landmarks to visit. | ||||
|             max_landmarks (int): Maximum number of landmarks visited | ||||
|         Returns: | ||||
|             list[Landmark]: The optimized tour of landmarks with updated travel times, or None if no valid solution is found. | ||||
|         """ | ||||
|         if max_landmarks is None : | ||||
|             max_landmarks = self.max_landmarks | ||||
|  | ||||
|         L = len(landmarks) | ||||
|  | ||||
|         # SET CONSTRAINTS FOR INEQUALITY | ||||
|         c, A_ub, b_ub = self.init_ub_dist(landmarks, max_time)          # Add the distances from each landmark to the other | ||||
|         A, b = self.respect_number(L, max_landmarks)                                   # Respect max number of visits (no more possible stops than landmarks).  | ||||
|         A_ub = np.vstack((A_ub, A), dtype=np.int16) | ||||
|         b_ub += b | ||||
|         A, b = self.break_sym(L)                                         # break the 'zig-zag' symmetry | ||||
|         A_ub = np.vstack((A_ub, A), dtype=np.int16) | ||||
|         b_ub += b | ||||
|  | ||||
|  | ||||
|         # SET CONSTRAINTS FOR EQUALITY | ||||
|         A_eq, b_eq = self.init_eq_not_stay(L)                            # Force solution not to stay in same place | ||||
|         A, b = self.respect_user_must_do(landmarks)                      # Check if there are user_defined must_see. Also takes care of start/goal | ||||
|         A_eq = np.vstack((A_eq, A), dtype=np.int8) | ||||
|         b_eq += b | ||||
|         A, b = self.respect_user_must_avoid(landmarks)                      # Check if there are user_defined must_see. Also takes care of start/goal | ||||
|         A_eq = np.vstack((A_eq, A), dtype=np.int8) | ||||
|         b_eq += b | ||||
|         A, b = self.respect_start_finish(L)                  # Force start and finish positions | ||||
|         A_eq = np.vstack((A_eq, A), dtype=np.int8) | ||||
|         b_eq += b | ||||
|         A, b = self.respect_order(L)                         # Respect order of visit (only works when max_time is limiting factor) | ||||
|         A_eq = np.vstack((A_eq, A), dtype=np.int8) | ||||
|         b_eq += b | ||||
|          | ||||
|         # SET BOUNDS FOR DECISION VARIABLE (x can only be 0 or 1) | ||||
|         x_bounds = [(0, 1)]*L*L | ||||
|  | ||||
|         # Solve linear programming problem | ||||
|         res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3) | ||||
|  | ||||
|         # Raise error if no solution is found | ||||
|         if not res.success : | ||||
|             raise ArithmeticError("No solution could be found, the problem is overconstrained. Try with a longer trip (>30 minutes).") | ||||
|  | ||||
|         # If there is a solution, we're good to go, just check for connectiveness | ||||
|         order, circles = self.is_connected(res.x) | ||||
|         #nodes, edges = is_connected(res.x) | ||||
|         i = 0 | ||||
|         timeout = 80 | ||||
|         while circles is not None and i < timeout: | ||||
|             A, b = self.prevent_config(res.x) | ||||
|             A_ub = np.vstack((A_ub, A)) | ||||
|             b_ub += b | ||||
|             #A_ub, b_ub = prevent_circle(order, len(landmarks), A_ub, b_ub) | ||||
|             for circle in circles : | ||||
|                 A, b = self.prevent_circle(circle, L) | ||||
|                 A_eq = np.vstack((A_eq, A)) | ||||
|                 b_eq += b | ||||
|             res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq = b_eq, bounds=x_bounds, method='highs', integrality=3) | ||||
|             if not res.success : | ||||
|                 raise ArithmeticError("Solving failed because of overconstrained problem") | ||||
|                 return None | ||||
|             order, circles = self.is_connected(res.x) | ||||
|             #nodes, edges = is_connected(res.x) | ||||
|             if circles is None : | ||||
|                 break | ||||
|             # print(i) | ||||
|             i += 1 | ||||
|          | ||||
|         if i == timeout : | ||||
|             raise TimeoutError(f"Optimization took too long. No solution found after {timeout} iterations.") | ||||
|  | ||||
|         #sort the landmarks in the order of the solution | ||||
|         tour =  [landmarks[i] for i in order]  | ||||
|          | ||||
|         self.logger.debug(f"Re-optimized {i} times, score: {int(-res.fun)}") | ||||
|         return tour | ||||
| @@ -525,6 +525,13 @@ class Optimizer: | ||||
|  | ||||
|         self.logger.debug(f"Optimizing with {A_ub.shape[0]} + {A_eq.shape[0]} = {A_ub.shape[0] + A_eq.shape[0]} constraints.") | ||||
|  | ||||
|         print(A_ub) | ||||
|         print('\n\n') | ||||
|         print(b_ub) | ||||
|         print('\n\n') | ||||
|         print(A_eq) | ||||
|         print('\n\n') | ||||
|         print(b_eq) | ||||
|  | ||||
|  | ||||
|         # A, b = self.respect_user_must_do(landmarks)                      # Check if there are user_defined must_see. Also takes care of start/goal | ||||
|   | ||||
		Reference in New Issue
	
	Block a user