Merge modifications for more separate backend functions #69
File diff suppressed because one or more lines are too long
@ -146,7 +146,7 @@ class ClusterManager:
|
||||
self.valid = False
|
||||
|
||||
else :
|
||||
self.logger.debug(f"Detected 0 {cluster_type} clusters.")
|
||||
self.logger.debug(f"Found 0 {cluster_type} clusters.")
|
||||
self.valid = False
|
||||
|
||||
|
||||
|
@ -55,7 +55,12 @@ class LandmarkManager:
|
||||
self.logger.info('LandmakManager successfully initialized.')
|
||||
|
||||
|
||||
def generate_landmarks_list(self, center_coordinates: tuple[float, float], preferences: Preferences) -> tuple[list[Landmark], list[Landmark]]:
|
||||
def generate_landmarks_list(
|
||||
self,
|
||||
center_coordinates: tuple[float, float],
|
||||
preferences: Preferences,
|
||||
allow_clusters: bool = True
|
||||
) -> tuple[list[Landmark], list[Landmark]]:
|
||||
"""
|
||||
Generate and prioritize a list of landmarks based on user preferences.
|
||||
|
||||
@ -63,16 +68,17 @@ class LandmarkManager:
|
||||
and current location. It scores and corrects these landmarks, removes duplicates, and then selects the most important
|
||||
landmarks based on a predefined criterion.
|
||||
|
||||
Args:
|
||||
Parameters :
|
||||
center_coordinates (tuple[float, float]): The latitude and longitude of the center location around which to search.
|
||||
preferences (Preferences): The user's preference settings that influence the landmark selection.
|
||||
allow_clusters (bool, optional) : If set to False, no clusters will be fetched. Mainly used for the option to fetch landmarks nearby.
|
||||
|
||||
Returns:
|
||||
tuple[list[Landmark], list[Landmark]]:
|
||||
- A list of all existing landmarks.
|
||||
- A list of the most important landmarks based on the user's preferences.
|
||||
"""
|
||||
self.logger.debug('Starting to fetch landmarks...')
|
||||
self.logger.info(f'Starting to fetch landmarks around {center_coordinates}...')
|
||||
max_walk_dist = int((preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor)
|
||||
radius = min(max_walk_dist, int(self.max_bbox_side/2))
|
||||
|
||||
@ -89,6 +95,7 @@ class LandmarkManager:
|
||||
all_landmarks.update(current_landmarks)
|
||||
self.logger.info(f'Found {len(current_landmarks)} sightseeing landmarks')
|
||||
|
||||
if allow_clusters :
|
||||
# special pipeline for historic neighborhoods
|
||||
neighborhood_manager = ClusterManager(bbox, 'sightseeing')
|
||||
historic_clusters = neighborhood_manager.generate_clusters()
|
||||
@ -113,6 +120,7 @@ class LandmarkManager:
|
||||
landmark.duration = 30
|
||||
all_landmarks.update(current_landmarks)
|
||||
|
||||
if allow_clusters :
|
||||
# special pipeline for shopping malls
|
||||
shopping_manager = ClusterManager(bbox, 'shopping')
|
||||
shopping_clusters = shopping_manager.generate_clusters()
|
||||
@ -120,7 +128,10 @@ class LandmarkManager:
|
||||
|
||||
|
||||
landmarks_constrained = take_most_important(all_landmarks, self.n_important)
|
||||
|
||||
# DETAILS HERE
|
||||
# self.logger.info(f'All landmarks generated : {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.')
|
||||
self.logger.info(f'Found {len(all_landmarks)} landmarks in total.')
|
||||
|
||||
return all_landmarks, landmarks_constrained
|
||||
|
||||
@ -236,188 +247,63 @@ class LandmarkManager:
|
||||
continue
|
||||
|
||||
tags = elem.get('tags')
|
||||
n_tags=len(tags)
|
||||
|
||||
# Skip this landmark if not suitable
|
||||
if tags.get('building:part') is not None :
|
||||
continue
|
||||
if tags.get('disused') is not None :
|
||||
continue
|
||||
if tags.get('boundary') is not None :
|
||||
continue
|
||||
if tags.get('shop') is not None and landmarktype != 'shopping' :
|
||||
continue
|
||||
|
||||
# Maybe a bit too inefficient
|
||||
# for key in tags.keys():
|
||||
# if 'disused:' in key or 'boundary:' in key :
|
||||
# break
|
||||
# if 'building:' in key or 'pay' in key :
|
||||
# n_tags -= 1
|
||||
|
||||
# Convert this to Landmark object
|
||||
# TODO: convert to proto landmark and store rest to memcache
|
||||
landmark = Landmark(name=name,
|
||||
type=landmarktype,
|
||||
location=coords,
|
||||
osm_id=id,
|
||||
osm_type=osm_type,
|
||||
attractiveness=0,
|
||||
n_tags=len(tags))
|
||||
n_tags=n_tags)
|
||||
|
||||
# Browse through tags to add information to landmark.
|
||||
for key, value in tags.items():
|
||||
# Extract useful information for score calculation later down the road.
|
||||
landmark.image_url = tags.get('image')
|
||||
landmark.website_url = tags.get('website')
|
||||
landmark.wiki_url = tags.get('wikipedia')
|
||||
landmark.name_en = tags.get('name:en')
|
||||
|
||||
# Skip this landmark if not suitable.
|
||||
if key == 'building:part' and value == 'yes' :
|
||||
break
|
||||
if 'disused:' in key :
|
||||
break
|
||||
if 'boundary:' in key :
|
||||
break
|
||||
if 'shop' in key and landmarktype != 'shopping' :
|
||||
break
|
||||
# if value == 'apartments' :
|
||||
# break
|
||||
|
||||
# Fill in the other attributes.
|
||||
if key == 'image' :
|
||||
landmark.image_url = value
|
||||
if key == 'website' :
|
||||
landmark.website_url = value
|
||||
if value == 'place_of_worship' :
|
||||
# Check for place of worship
|
||||
if tags.get('place_of_worship') is not None :
|
||||
landmark.is_place_of_worship = True
|
||||
if key == 'wikipedia' :
|
||||
landmark.wiki_url = value
|
||||
if key == 'name:en' :
|
||||
landmark.name_en = value
|
||||
if 'building:' in key or 'pay' in key :
|
||||
landmark.n_tags -= 1
|
||||
landmark.name_en = tags.get('place_of_worship')
|
||||
|
||||
|
||||
# Set the duration.
|
||||
if value in ['museum', 'aquarium', 'planetarium'] :
|
||||
# Set the duration. Needed for the optimization.
|
||||
if tags.get('amenity') in ['aquarium', 'planetarium'] or tags.get('tourism') in ['aquarium', 'museum', 'zoo']:
|
||||
landmark.duration = 60
|
||||
elif value == 'viewpoint' :
|
||||
elif tags.get('tourism') == 'viewpoint' :
|
||||
landmark.is_viewpoint = True
|
||||
landmark.duration = 10
|
||||
elif value == 'cathedral' :
|
||||
elif tags.get('building') == 'cathedral' :
|
||||
landmark.is_place_of_worship = False
|
||||
landmark.duration = 10
|
||||
|
||||
landmark.description, landmark.keywords = self.description_and_keywords(tags)
|
||||
# Compute the score and add landmark to the list.
|
||||
self.set_landmark_score(landmark, landmarktype, preference_level)
|
||||
landmarks.append(landmark)
|
||||
|
||||
continue
|
||||
|
||||
|
||||
return landmarks
|
||||
|
||||
|
||||
def description_and_keywords(self, tags: dict):
|
||||
"""
|
||||
Generates a description and a set of keywords for a given landmark based on its tags.
|
||||
|
||||
Params:
|
||||
tags (dict): A dictionary containing metadata about the landmark, including its name,
|
||||
importance, height, date of construction, and visitor information.
|
||||
|
||||
Returns:
|
||||
description (str): A string description of the landmark.
|
||||
keywords (dict): A dictionary of keywords with fields such as 'importance', 'height',
|
||||
'place_type', and 'date'.
|
||||
"""
|
||||
# Extract relevant fields
|
||||
name = tags.get('name')
|
||||
importance = tags.get('importance', None)
|
||||
n_visitors = tags.get('tourism:visitors', None)
|
||||
height = tags.get('height')
|
||||
place_type = self.get_place_type(tags)
|
||||
date = self.get_date(tags)
|
||||
|
||||
if place_type is None :
|
||||
return None, None
|
||||
|
||||
# Start the description.
|
||||
if importance is None :
|
||||
if len(tags.keys()) < 5 :
|
||||
return None, None
|
||||
if len(tags.keys()) < 10 :
|
||||
description = f"{name} is a well known {place_type}."
|
||||
elif len(tags.keys()) < 17 :
|
||||
importance = 'national'
|
||||
description = f"{name} is a {place_type} of national importance."
|
||||
else :
|
||||
importance = 'international'
|
||||
description = f"{name} is an internationally famous {place_type}."
|
||||
else :
|
||||
description = f"{name} is a {place_type} of {importance} importance."
|
||||
|
||||
if height is not None and date is not None :
|
||||
description += f" This {place_type} was constructed in {date} and is ca. {height} meters high."
|
||||
elif height is not None :
|
||||
description += f" This {place_type} stands ca. {height} meters tall."
|
||||
elif date is not None:
|
||||
description += f" It was constructed in {date}."
|
||||
|
||||
# Format the visitor number
|
||||
if n_visitors is not None :
|
||||
n_visitors = int(n_visitors)
|
||||
if n_visitors < 1000000 :
|
||||
description += f" It welcomes {int(n_visitors/1000)} thousand visitors every year."
|
||||
else :
|
||||
description += f" It welcomes {round(n_visitors/1000000, 1)} million visitors every year."
|
||||
|
||||
# Set the keywords.
|
||||
keywords = {"importance": importance,
|
||||
"height": height,
|
||||
"place_type": place_type,
|
||||
"date": date}
|
||||
|
||||
return description, keywords
|
||||
|
||||
|
||||
def get_place_type(self, data):
|
||||
"""
|
||||
Determines the type of the place based on available tags such as 'amenity', 'building',
|
||||
'historic', and 'leisure'. The priority order is: 'historic' > 'building' (if not generic) >
|
||||
'amenity' > 'leisure'.
|
||||
|
||||
Params:
|
||||
data (dict): A dictionary containing metadata about the place.
|
||||
|
||||
Returns:
|
||||
place_type (str): The determined type of the place, or None if no relevant type is found.
|
||||
"""
|
||||
amenity = data.get('amenity', None)
|
||||
building = data.get('building', None)
|
||||
historic = data.get('historic', None)
|
||||
leisure = data.get('leisure')
|
||||
|
||||
if historic and historic != "yes":
|
||||
return historic
|
||||
if building and building not in ["yes", "civic", "government", "apartments", "residential", "commericial", "industrial", "retail", "religious", "public", "service"]:
|
||||
return building
|
||||
if amenity:
|
||||
return amenity
|
||||
if leisure:
|
||||
return leisure
|
||||
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_date(self, data):
|
||||
"""
|
||||
Extracts the most relevant date from the available tags, prioritizing 'construction_date',
|
||||
'start_date', 'year_of_construction', and 'opening_date' in that order.
|
||||
|
||||
Params:
|
||||
data (dict): A dictionary containing metadata about the place.
|
||||
|
||||
Returns:
|
||||
date (str): The most relevant date found, or None if no date is available.
|
||||
"""
|
||||
construction_date = data.get('construction_date', None)
|
||||
opening_date = data.get('opening_date', None)
|
||||
start_date = data.get('start_date', None)
|
||||
year_of_construction = data.get('year_of_construction', None)
|
||||
|
||||
# Prioritize based on availability
|
||||
if construction_date:
|
||||
return construction_date
|
||||
if start_date:
|
||||
return start_date
|
||||
if year_of_construction:
|
||||
return year_of_construction
|
||||
if opening_date:
|
||||
return opening_date
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def dict_to_selector_list(d: dict) -> list:
|
||||
"""
|
||||
Convert a dictionary of key-value pairs to a list of Overpass query strings.
|
||||
|
@ -1,12 +1,13 @@
|
||||
"""Main app for backend api"""
|
||||
import logging
|
||||
import time
|
||||
import random
|
||||
from contextlib import asynccontextmanager
|
||||
from fastapi import FastAPI, HTTPException, BackgroundTasks
|
||||
|
||||
from .logging_config import configure_logging
|
||||
from .structs.landmark import Landmark
|
||||
from .structs.preferences import Preferences
|
||||
from .structs.preferences import Preferences, Preference
|
||||
from .structs.linked_landmarks import LinkedLandmarks
|
||||
from .structs.trip import Trip
|
||||
from .landmarks.landmarks_manager import LandmarkManager
|
||||
@ -140,7 +141,7 @@ def new_trip(preferences: Preferences,
|
||||
# upon creation of the trip, persistence of both the trip and its landmarks is ensured.
|
||||
trip = Trip.from_linked_landmarks(linked_tour, cache_client)
|
||||
logger.info(f'Generated a trip of {trip.total_time} minutes with {len(refined_tour)} landmarks in {round(t_generate_landmarks + t_first_stage + t_second_stage,3)} seconds.')
|
||||
logger.debug('Detailed trip :\n\t' + '\n\t'.join(f'{landmark}' for landmark in refined_tour))
|
||||
logger.info('Detailed trip :\n\t' + '\n\t'.join(f'{landmark}' for landmark in refined_tour))
|
||||
|
||||
background_tasks.add_task(fill_cache)
|
||||
|
||||
@ -224,3 +225,45 @@ def update_trip_time(trip_uuid: str, removed_landmark_uuid: str) -> Trip:
|
||||
trip = Trip.from_linked_landmarks(linked_tour, cache_client)
|
||||
|
||||
return trip
|
||||
|
||||
|
||||
# TODO: get stuff to do nearby. The idea is to have maybe thhe 3 best things to do within 500m and 2 hidden gems.
|
||||
@app.post("/landmarks/get-nearby/{lat}/{lon}")
|
||||
def get_landmarks_nearby(lat: float, lon: float) -> list[Landmark] :
|
||||
|
||||
# preferences = {"sightseeing": {"type": "sightseeing", "score": 0},
|
||||
# "nature": {"type": "nature", "score": 0},
|
||||
# "shopping": {"type": "shopping", "score": 5},
|
||||
# "max_time_minute": 30,
|
||||
# "detour_tolerance_minute": 0},
|
||||
|
||||
# Find the landmarks around the location
|
||||
_, landmarks_around = manager.generate_landmarks_list(
|
||||
center_coordinates = (lat, lon),
|
||||
preferences = Preferences(
|
||||
sightseeing = Preference(
|
||||
type='sightseeing',
|
||||
score=5
|
||||
),
|
||||
shopping = Preference(
|
||||
type='shopping',
|
||||
score=2
|
||||
),
|
||||
nature = Preference(
|
||||
type='nature',
|
||||
score=5
|
||||
),
|
||||
max_time_minute=30,
|
||||
detour_tolerance_minute=0),
|
||||
allow_clusters=False
|
||||
)
|
||||
|
||||
if len(landmarks_around) == 0 :
|
||||
raise HTTPException(status_code=500, detail="No landmarks were found.")
|
||||
|
||||
# select 5 landmarks from there
|
||||
if len(landmarks_around) > 6 :
|
||||
landmarks_around = landmarks_around[:2] + random.sample(landmarks_around[3:], 2)
|
||||
|
||||
logger.info('Suggested landmarks :\n\t' + '\n\t'.join(f'{landmark}' for landmark in landmarks_around))
|
||||
return landmarks_around
|
||||
|
@ -2,6 +2,7 @@
|
||||
|
||||
from .landmark import Landmark
|
||||
from ..utils.get_time_distance import get_time
|
||||
from ..utils.description import description_and_keywords
|
||||
|
||||
class LinkedLandmarks:
|
||||
"""
|
||||
@ -35,18 +36,23 @@ class LinkedLandmarks:
|
||||
Create the links between the landmarks in the list by setting their
|
||||
.next_uuid and the .time_to_next attributes.
|
||||
"""
|
||||
|
||||
# Mark secondary landmarks as such
|
||||
self.update_secondary_landmarks()
|
||||
|
||||
|
||||
for i, landmark in enumerate(self._landmarks[:-1]):
|
||||
# Set uuid of the next landmark
|
||||
landmark.next_uuid = self._landmarks[i + 1].uuid
|
||||
|
||||
# Adjust time to reach and total time
|
||||
time_to_next = get_time(landmark.location, self._landmarks[i + 1].location)
|
||||
landmark.time_to_reach_next = time_to_next
|
||||
self.total_time += time_to_next
|
||||
self.total_time += landmark.duration
|
||||
|
||||
# Fill in the keywords and description. GOOD IDEA, BAD EXECUTION, tags aren't available anymore at this stage
|
||||
# landmark.description, landmark.keywords = description_and_keywords(tags)
|
||||
|
||||
|
||||
self._landmarks[-1].next_uuid = None
|
||||
self._landmarks[-1].time_to_reach_next = 0
|
||||
|
||||
|
16
backend/src/structs/proto_landmark.py
Normal file
16
backend/src/structs/proto_landmark.py
Normal file
@ -0,0 +1,16 @@
|
||||
from typing import Optional
|
||||
from uuid import uuid4, UUID
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
# Output to frontend
|
||||
class ProtoLandmark(BaseModel) :
|
||||
"""fef"""
|
||||
|
||||
uuid: UUID = Field(default_factory=uuid4)
|
||||
|
||||
location : tuple
|
||||
attractiveness : int
|
||||
duration : Optional[int] = 5
|
||||
|
||||
must_do : Optional[bool] = False
|
||||
must_avoid : Optional[bool] = False
|
38
backend/src/tests/test_nearby.py
Normal file
38
backend/src/tests/test_nearby.py
Normal file
@ -0,0 +1,38 @@
|
||||
"""Collection of tests to ensure correct implementation and track progress of the get_landmarks_nearby feature. """
|
||||
from fastapi.testclient import TestClient
|
||||
import pytest
|
||||
|
||||
from ..main import app
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def client():
|
||||
"""Client used to call the app."""
|
||||
return TestClient(app)
|
||||
|
||||
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"location,status_code",
|
||||
[
|
||||
([45.7576485, 4.8330241], 2000), # Lyon, Bellecour.
|
||||
([41.4020572, 2.1818985], 2000), # Barcelona
|
||||
]
|
||||
)
|
||||
def test_nearby(client, location, status_code): # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Test n°1 : Verify handling of invalid input.
|
||||
|
||||
Args:
|
||||
client:
|
||||
request:
|
||||
"""
|
||||
response = client.post(f"/landmarks/get-nearby/{location[0]}/{location[1]}")
|
||||
print(response)
|
||||
print(response.json())
|
||||
suggestions = response.json()
|
||||
|
||||
# checks :
|
||||
assert response.status_code == status_code # check for successful planning
|
||||
assert isinstance(suggestions, list) # check that the return type is a list
|
||||
assert len(suggestions) > 0
|
123
backend/src/utils/description.py
Normal file
123
backend/src/utils/description.py
Normal file
@ -0,0 +1,123 @@
|
||||
"""Add more information about the landmarks by writing a short description and keywords. """
|
||||
|
||||
|
||||
def description_and_keywords(tags: dict):
|
||||
"""
|
||||
Generates a description and a set of keywords for a given landmark based on its tags.
|
||||
|
||||
Params:
|
||||
tags (dict): A dictionary containing metadata about the landmark, including its name,
|
||||
importance, height, date of construction, and visitor information.
|
||||
|
||||
Returns:
|
||||
description (str): A string description of the landmark.
|
||||
keywords (dict): A dictionary of keywords with fields such as 'importance', 'height',
|
||||
'place_type', and 'date'.
|
||||
"""
|
||||
# Extract relevant fields
|
||||
name = tags.get('name')
|
||||
importance = tags.get('importance', None)
|
||||
n_visitors = tags.get('tourism:visitors', None)
|
||||
height = tags.get('height')
|
||||
place_type = get_place_type(tags)
|
||||
date = get_date(tags)
|
||||
|
||||
if place_type is None :
|
||||
return None, None
|
||||
|
||||
# Start the description.
|
||||
if importance is None :
|
||||
if len(tags.keys()) < 5 :
|
||||
return None, None
|
||||
if len(tags.keys()) < 10 :
|
||||
description = f"{name} is a well known {place_type}."
|
||||
elif len(tags.keys()) < 17 :
|
||||
importance = 'national'
|
||||
description = f"{name} is a {place_type} of national importance."
|
||||
else :
|
||||
importance = 'international'
|
||||
description = f"{name} is an internationally famous {place_type}."
|
||||
else :
|
||||
description = f"{name} is a {place_type} of {importance} importance."
|
||||
|
||||
if height is not None and date is not None :
|
||||
description += f" This {place_type} was constructed in {date} and is ca. {height} meters high."
|
||||
elif height is not None :
|
||||
description += f" This {place_type} stands ca. {height} meters tall."
|
||||
elif date is not None:
|
||||
description += f" It was constructed in {date}."
|
||||
|
||||
# Format the visitor number
|
||||
if n_visitors is not None :
|
||||
n_visitors = int(n_visitors)
|
||||
if n_visitors < 1000000 :
|
||||
description += f" It welcomes {int(n_visitors/1000)} thousand visitors every year."
|
||||
else :
|
||||
description += f" It welcomes {round(n_visitors/1000000, 1)} million visitors every year."
|
||||
|
||||
# Set the keywords.
|
||||
keywords = {"importance": importance,
|
||||
"height": height,
|
||||
"place_type": place_type,
|
||||
"date": date}
|
||||
|
||||
return description, keywords
|
||||
|
||||
|
||||
def get_place_type(tags):
|
||||
"""
|
||||
Determines the type of the place based on available tags such as 'amenity', 'building',
|
||||
'historic', and 'leisure'. The priority order is: 'historic' > 'building' (if not generic) >
|
||||
'amenity' > 'leisure'.
|
||||
|
||||
Params:
|
||||
tags (dict): A dictionary containing metadata about the place.
|
||||
|
||||
Returns:
|
||||
place_type (str): The determined type of the place, or None if no relevant type is found.
|
||||
"""
|
||||
amenity = tags.get('amenity', None)
|
||||
building = tags.get('building', None)
|
||||
historic = tags.get('historic', None)
|
||||
leisure = tags.get('leisure')
|
||||
|
||||
if historic and historic != "yes":
|
||||
return historic
|
||||
if building and building not in ["yes", "civic", "government", "apartments", "residential", "commericial", "industrial", "retail", "religious", "public", "service"]:
|
||||
return building
|
||||
if amenity:
|
||||
return amenity
|
||||
if leisure:
|
||||
return leisure
|
||||
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_date(tags):
|
||||
"""
|
||||
Extracts the most relevant date from the available tags, prioritizing 'construction_date',
|
||||
'start_date', 'year_of_construction', and 'opening_date' in that order.
|
||||
|
||||
Params:
|
||||
tags (dict): A dictionary containing metadata about the place.
|
||||
|
||||
Returns:
|
||||
date (str): The most relevant date found, or None if no date is available.
|
||||
"""
|
||||
construction_date = tags.get('construction_date', None)
|
||||
opening_date = tags.get('opening_date', None)
|
||||
start_date = tags.get('start_date', None)
|
||||
year_of_construction = tags.get('year_of_construction', None)
|
||||
|
||||
# Prioritize based on availability
|
||||
if construction_date:
|
||||
return construction_date
|
||||
if start_date:
|
||||
return start_date
|
||||
if year_of_construction:
|
||||
return year_of_construction
|
||||
if opening_date:
|
||||
return opening_date
|
||||
|
||||
return None
|
Loading…
x
Reference in New Issue
Block a user