fix/cluster-manager-crash-due-to-overpass-exception #72

Merged
kscheidecker merged 24 commits from fix/cluster-manager-crash-due-to-overpass-exception into main 2025-11-24 19:22:23 +00:00
Showing only changes of commit 0514fa063f - Show all commits

View File

@@ -102,52 +102,57 @@ class ClusterManager:
selector = sel,
out = out
)
except Exception as e:
self.logger.warning(f"Error fetching clusters: {e}")
if result is None :
self.logger.debug(f"Found no {cluster_type} clusters, overpass query returned no datapoints.")
self.valid = False
else :
points = []
for elem in result:
osm_type = elem.get('type')
# Get coordinates and append them to the points list
_, coords = get_base_info(elem, osm_type)
if coords is not None :
points.append(coords)
if points :
self.all_points = np.array(points)
# Apply DBSCAN to find clusters. Choose different settings for different cities.
if self.cluster_type == 'shopping' and len(self.all_points) > 200 :
dbscan = DBSCAN(eps=0.00118, min_samples=15, algorithm='kd_tree') # for large cities
elif self.cluster_type == 'sightseeing' :
dbscan = DBSCAN(eps=0.0025, min_samples=15, algorithm='kd_tree') # for historic neighborhoods
else :
dbscan = DBSCAN(eps=0.00075, min_samples=10, algorithm='kd_tree') # for small cities
labels = dbscan.fit_predict(self.all_points)
# Check that there are is least 1 cluster
if len(set(labels)) > 1 :
self.logger.info(f"Found {len(set(labels))} different {cluster_type} clusters.")
# Separate clustered points and noise points
self.cluster_points = self.all_points[labels != -1]
self.cluster_labels = labels[labels != -1]
self.filter_clusters() # ValueError here sometimes. I dont know why. # Filter the clusters to keep only the largest ones.
self.valid = True
else :
self.logger.info(f"Found 0 {cluster_type} clusters.")
self.valid = False
if result is None :
self.logger.debug(f"Found no {cluster_type} clusters, overpass query returned no datapoints.")
self.valid = False
else :
self.logger.debug(f"Detected 0 {cluster_type} clusters.")
self.valid = False
points = []
for elem in result:
osm_type = elem.get('type')
# Get coordinates and append them to the points list
_, coords = get_base_info(elem, osm_type)
if coords is not None :
points.append(coords)
if points :
self.all_points = np.array(points)
# Apply DBSCAN to find clusters. Choose different settings for different cities.
if self.cluster_type == 'shopping' and len(self.all_points) > 200 :
dbscan = DBSCAN(eps=0.00118, min_samples=15, algorithm='kd_tree') # for large cities
elif self.cluster_type == 'sightseeing' :
dbscan = DBSCAN(eps=0.0025, min_samples=15, algorithm='kd_tree') # for historic neighborhoods
else :
dbscan = DBSCAN(eps=0.00075, min_samples=10, algorithm='kd_tree') # for small cities
labels = dbscan.fit_predict(self.all_points)
# Check that there are is least 1 cluster
if len(set(labels)) > 1 :
self.logger.info(f"Found {len(set(labels))} different {cluster_type} clusters.")
# Separate clustered points and noise points
self.cluster_points = self.all_points[labels != -1]
self.cluster_labels = labels[labels != -1]
self.filter_clusters() # ValueError here sometimes. I dont know why. # Filter the clusters to keep only the largest ones.
self.valid = True
else :
self.logger.info(f"Found 0 {cluster_type} clusters.")
self.valid = False
else :
self.logger.debug(f"Detected 0 {cluster_type} clusters.")
self.valid = False
except UnboundLocalError as ule:
self.logger.warning(f"Error fetching clusters (most likely due to overpass): {e}")
self.valid = False
except Exception as e:
self.logger.warning(f"Error fetching clusters: {e}")
raise Exception from e
def generate_clusters(self) -> list[Landmark]: