Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m56s
Run linting on the backend code / Build (pull_request) Failing after 25s
Run testing on the backend code / Build (pull_request) Failing after 1m9s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 15s
379 lines
16 KiB
Python
379 lines
16 KiB
Python
import math
|
|
import yaml
|
|
import logging
|
|
|
|
from OSMPythonTools.overpass import Overpass, overpassQueryBuilder
|
|
from OSMPythonTools.cachingStrategy import CachingStrategy, JSON
|
|
|
|
from ..structs.preferences import Preferences
|
|
from ..structs.landmark import Landmark
|
|
from .take_most_important import take_most_important
|
|
|
|
from ..constants import AMENITY_SELECTORS_PATH, LANDMARK_PARAMETERS_PATH, OPTIMIZER_PARAMETERS_PATH, OSM_CACHE_DIR
|
|
|
|
# silence the overpass logger
|
|
logging.getLogger('OSMPythonTools').setLevel(level=logging.CRITICAL)
|
|
|
|
|
|
class LandmarkManager:
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
radius_close_to: int # radius in meters
|
|
church_coeff: float # coeff to adjsut score of churches
|
|
nature_coeff: float # coeff to adjust score of parks
|
|
overall_coeff: float # coeff to adjust weight of tags
|
|
N_important: int # number of important landmarks to consider
|
|
|
|
|
|
def __init__(self) -> None:
|
|
|
|
with AMENITY_SELECTORS_PATH.open('r') as f:
|
|
self.amenity_selectors = yaml.safe_load(f)
|
|
|
|
with LANDMARK_PARAMETERS_PATH.open('r') as f:
|
|
parameters = yaml.safe_load(f)
|
|
self.max_bbox_side = parameters['city_bbox_side']
|
|
self.radius_close_to = parameters['radius_close_to']
|
|
self.church_coeff = parameters['church_coeff']
|
|
self.nature_coeff = parameters['nature_coeff']
|
|
self.overall_coeff = parameters['overall_coeff']
|
|
self.tag_exponent = parameters['tag_exponent']
|
|
self.image_bonus = parameters['image_bonus']
|
|
self.name_bonus = parameters['name_bonus']
|
|
self.wikipedia_bonus = parameters['wikipedia_bonus']
|
|
self.viewpoint_bonus = parameters['viewpoint_bonus']
|
|
self.pay_bonus = parameters['pay_bonus']
|
|
self.N_important = parameters['N_important']
|
|
|
|
with OPTIMIZER_PARAMETERS_PATH.open('r') as f:
|
|
parameters = yaml.safe_load(f)
|
|
self.walking_speed = parameters['average_walking_speed']
|
|
self.detour_factor = parameters['detour_factor']
|
|
|
|
self.overpass = Overpass()
|
|
CachingStrategy.use(JSON, cacheDir=OSM_CACHE_DIR)
|
|
|
|
|
|
def generate_landmarks_list(self, center_coordinates: tuple[float, float], preferences: Preferences) -> tuple[list[Landmark], list[Landmark]]:
|
|
"""
|
|
Generate and prioritize a list of landmarks based on user preferences.
|
|
|
|
This method fetches landmarks from various categories (sightseeing, nature, shopping) based on the user's preferences
|
|
and current location. It scores and corrects these landmarks, removes duplicates, and then selects the most important
|
|
landmarks based on a predefined criterion.
|
|
|
|
Parameters:
|
|
center_coordinates (tuple[float, float]): The latitude and longitude of the center location around which to search.
|
|
preferences (Preferences): The user's preference settings that influence the landmark selection.
|
|
|
|
Returns:
|
|
tuple[list[Landmark], list[Landmark]]:
|
|
- A list of all existing landmarks.
|
|
- A list of the most important landmarks based on the user's preferences.
|
|
"""
|
|
|
|
max_walk_dist = (preferences.max_time_minute/2)/60*self.walking_speed*1000/self.detour_factor
|
|
reachable_bbox_side = min(max_walk_dist, self.max_bbox_side)
|
|
|
|
# use set to avoid duplicates, this requires some __methods__ to be set in Landmark
|
|
all_landmarks = set()
|
|
|
|
bbox = self.create_bbox(center_coordinates, reachable_bbox_side)
|
|
# list for sightseeing
|
|
if preferences.sightseeing.score != 0:
|
|
score_function = lambda score: score * 10 * preferences.sightseeing.score / 5
|
|
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['sightseeing'], preferences.sightseeing.type, score_function)
|
|
all_landmarks.update(current_landmarks)
|
|
|
|
# list for nature
|
|
if preferences.nature.score != 0:
|
|
score_function = lambda score: score * 10 * self.nature_coeff * preferences.nature.score / 5
|
|
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['nature'], preferences.nature.type, score_function)
|
|
all_landmarks.update(current_landmarks)
|
|
|
|
# list for shopping
|
|
if preferences.shopping.score != 0:
|
|
score_function = lambda score: score * 10 * preferences.shopping.score / 5
|
|
current_landmarks = self.fetch_landmarks(bbox, self.amenity_selectors['shopping'], preferences.shopping.type, score_function)
|
|
# set time for all shopping activites :
|
|
for landmark in current_landmarks : landmark.duration = 45
|
|
all_landmarks.update(current_landmarks)
|
|
|
|
|
|
landmarks_constrained = take_most_important(all_landmarks, self.N_important)
|
|
self.logger.info(f'Generated {len(all_landmarks)} landmarks around {center_coordinates}, and constrained to {len(landmarks_constrained)} most important ones.')
|
|
|
|
return all_landmarks, landmarks_constrained
|
|
|
|
|
|
|
|
def count_elements_close_to(self, coordinates: tuple[float, float]) -> int:
|
|
"""
|
|
Count the number of OpenStreetMap elements (nodes, ways, relations) within a specified radius of the given location.
|
|
|
|
This function constructs a bounding box around the specified coordinates based on the radius. It then queries
|
|
OpenStreetMap data to count the number of elements within that bounding box.
|
|
|
|
Args:
|
|
coordinates (tuple[float, float]): The latitude and longitude of the location to search around.
|
|
|
|
Returns:
|
|
int: The number of elements (nodes, ways, relations) within the specified radius. Returns 0 if no elements
|
|
are found or if an error occurs during the query.
|
|
"""
|
|
|
|
lat = coordinates[0]
|
|
lon = coordinates[1]
|
|
|
|
radius = self.radius_close_to
|
|
|
|
alpha = (180 * radius) / (6371000 * math.pi)
|
|
bbox = {'latLower':lat-alpha,'lonLower':lon-alpha,'latHigher':lat+alpha,'lonHigher': lon+alpha}
|
|
|
|
# Build the query to find elements within the radius
|
|
radius_query = overpassQueryBuilder(
|
|
bbox=[bbox['latLower'],
|
|
bbox['lonLower'],
|
|
bbox['latHigher'],
|
|
bbox['lonHigher']],
|
|
elementType=['node', 'way', 'relation']
|
|
)
|
|
|
|
try:
|
|
radius_result = self.overpass.query(radius_query)
|
|
N_elem = radius_result.countWays() + radius_result.countRelations()
|
|
self.logger.debug(f"There are {N_elem} ways/relations within 50m")
|
|
if N_elem is None:
|
|
return 0
|
|
return N_elem
|
|
except:
|
|
return 0
|
|
|
|
|
|
def create_bbox(self, coordinates: tuple[float, float], reachable_bbox_side: int) -> tuple[float, float, float, float]:
|
|
"""
|
|
Create a bounding box around the given coordinates.
|
|
|
|
Args:
|
|
coordinates (tuple[float, float]): The latitude and longitude of the center of the bounding box.
|
|
reachable_bbox_side (int): The side length of the bounding box in meters.
|
|
|
|
Returns:
|
|
tuple[float, float, float, float]: The minimum latitude, minimum longitude, maximum latitude, and maximum longitude
|
|
defining the bounding box.
|
|
"""
|
|
|
|
lat = coordinates[0]
|
|
lon = coordinates[1]
|
|
|
|
# Half the side length in km (since it's a square bbox)
|
|
half_side_length_km = reachable_bbox_side / 2 / 1000
|
|
|
|
# Convert distance to degrees
|
|
lat_diff = half_side_length_km / 111 # 1 degree latitude is approximately 111 km
|
|
lon_diff = half_side_length_km / (111 * math.cos(math.radians(lat))) # Adjust for longitude based on latitude
|
|
|
|
# Calculate bbox
|
|
min_lat = lat - lat_diff
|
|
max_lat = lat + lat_diff
|
|
min_lon = lon - lon_diff
|
|
max_lon = lon + lon_diff
|
|
|
|
return min_lat, min_lon, max_lat, max_lon
|
|
|
|
|
|
def fetch_landmarks(self, bbox: tuple, amenity_selector: dict, landmarktype: str, score_function: callable) -> list[Landmark]:
|
|
"""
|
|
Fetches landmarks of a specified type from OpenStreetMap (OSM) within a bounding box centered on given coordinates.
|
|
|
|
Args:
|
|
bbox (tuple[float, float, float, float]): The bounding box coordinates (min_lat, min_lon, max_lat, max_lon).
|
|
amenity_selector (dict): The Overpass API query selector for the desired landmark type.
|
|
landmarktype (str): The type of the landmark (e.g., 'sightseeing', 'nature', 'shopping').
|
|
score_function (callable): The function to compute the score of the landmark based on its attributes.
|
|
|
|
Returns:
|
|
list[Landmark]: A list of Landmark objects that were fetched and filtered based on the provided criteria.
|
|
|
|
Notes:
|
|
- Landmarks are fetched using Overpass API queries.
|
|
- Selectors are translated from the dictionary to the Overpass query format. (e.g., 'amenity'='place_of_worship')
|
|
- Landmarks are filtered based on various conditions including tags and type.
|
|
- Scores are assigned to landmarks based on their attributes and surrounding elements.
|
|
"""
|
|
return_list = []
|
|
|
|
if landmarktype == 'nature' : query_conditions = []
|
|
else : query_conditions = ['count_tags()>5']
|
|
|
|
# caution, when applying a list of selectors, overpass will search for elements that match ALL selectors simultaneously
|
|
# we need to split the selectors into separate queries and merge the results
|
|
for sel in dict_to_selector_list(amenity_selector):
|
|
self.logger.debug(f"Current selector: {sel}")
|
|
|
|
query_conditions = ['count_tags()>5']
|
|
element_types = ['way', 'relation']
|
|
|
|
if 'viewpoint' in sel :
|
|
query_conditions = []
|
|
element_types.append('node')
|
|
|
|
query = overpassQueryBuilder(
|
|
bbox = bbox,
|
|
elementType = element_types,
|
|
# selector can in principle be a list already,
|
|
# but it generates the intersection of the queries
|
|
# we want the union
|
|
selector = sel,
|
|
conditions = query_conditions, # except for nature....
|
|
includeCenter = True,
|
|
out = 'body'
|
|
)
|
|
self.logger.debug(f"Query: {query}")
|
|
|
|
try:
|
|
result = self.overpass.query(query)
|
|
except Exception as e:
|
|
self.logger.error(f"Error fetching landmarks: {e}")
|
|
continue
|
|
|
|
for elem in result.elements():
|
|
|
|
name = elem.tag('name')
|
|
location = (elem.centerLat(), elem.centerLon())
|
|
osm_type = elem.type() # Add type: 'way' or 'relation'
|
|
osm_id = elem.id() # Add OSM id
|
|
|
|
# TODO: exclude these from the get go
|
|
# handle unprecise and no-name locations
|
|
if name is None or location[0] is None:
|
|
if osm_type == 'node' and 'viewpoint' in elem.tags().values():
|
|
name = 'Viewpoint'
|
|
name_en = 'Viewpoint'
|
|
location = (elem.lat(), elem.lon())
|
|
else :
|
|
continue
|
|
|
|
# skip if part of another building
|
|
if 'building:part' in elem.tags().keys() and elem.tag('building:part') == 'yes':
|
|
continue
|
|
|
|
elem_type = landmarktype # Add the landmark type as 'sightseeing,
|
|
n_tags = len(elem.tags().keys()) # Add number of tags
|
|
score = n_tags**self.tag_exponent # Add score
|
|
website_url = None
|
|
image_url = None
|
|
name_en = None
|
|
|
|
# Adjust scoring, browse through tag keys
|
|
skip = False
|
|
for tag_key in elem.tags().keys():
|
|
if "pay" in tag_key:
|
|
# payment options are misleading and should not count for the scoring.
|
|
score += self.pay_bonus
|
|
|
|
if "disused" in tag_key:
|
|
# skip disused amenities
|
|
skip = True
|
|
break
|
|
|
|
if "name" in tag_key :
|
|
score += self.name_bonus
|
|
|
|
if "wiki" in tag_key:
|
|
# wikipedia entries count more
|
|
score += self.wikipedia_bonus
|
|
|
|
if "image" in tag_key:
|
|
# images must count more
|
|
score += self.image_bonus
|
|
|
|
if elem_type != "nature":
|
|
if "leisure" in tag_key and elem.tag('leisure') == "park":
|
|
elem_type = "nature"
|
|
|
|
if landmarktype != "shopping":
|
|
if "shop" in tag_key:
|
|
skip = True
|
|
break
|
|
|
|
if tag_key == "building" and elem.tag('building') in ['retail', 'supermarket', 'parking']:
|
|
skip = True
|
|
break
|
|
|
|
# Extract image, website and english name
|
|
if tag_key in ['website', 'contact:website']:
|
|
website_url = elem.tag(tag_key)
|
|
if tag_key == 'image':
|
|
image_url = elem.tag('image')
|
|
if tag_key =='name:en':
|
|
name_en = elem.tag('name:en')
|
|
|
|
if skip:
|
|
continue
|
|
|
|
# Don't visit random apartments
|
|
if 'apartments' in elem.tags().values():
|
|
continue
|
|
|
|
score = score_function(score)
|
|
if "place_of_worship" in elem.tags().values():
|
|
score = score * self.church_coeff
|
|
duration = 10
|
|
|
|
if 'viewpoint' in elem.tags().values() :
|
|
# viewpoints must count more
|
|
score += self.viewpoint_bonus
|
|
duration = 10
|
|
|
|
elif "museum" in elem.tags().values() or "aquarium" in elem.tags().values() or "planetarium" in elem.tags().values():
|
|
duration = 60
|
|
|
|
else:
|
|
duration = 5
|
|
|
|
# finally create our own landmark object
|
|
landmark = Landmark(
|
|
name = name,
|
|
type = elem_type,
|
|
location = location,
|
|
osm_type = osm_type,
|
|
osm_id = osm_id,
|
|
attractiveness = int(score),
|
|
must_do = False,
|
|
n_tags = int(n_tags),
|
|
duration = int(duration),
|
|
name_en = name_en,
|
|
image_url = image_url,
|
|
website_url = website_url
|
|
)
|
|
return_list.append(landmark)
|
|
|
|
self.logger.debug(f"Fetched {len(return_list)} landmarks of type {landmarktype} in {bbox}")
|
|
|
|
return return_list
|
|
|
|
|
|
|
|
def dict_to_selector_list(d: dict) -> list:
|
|
"""
|
|
Convert a dictionary of key-value pairs to a list of Overpass query strings.
|
|
|
|
Args:
|
|
d (dict): A dictionary of key-value pairs representing the selector.
|
|
|
|
Returns:
|
|
list: A list of strings representing the Overpass query selectors.
|
|
"""
|
|
return_list = []
|
|
for key, value in d.items():
|
|
if type(value) == list:
|
|
val = '|'.join(value)
|
|
return_list.append(f'{key}~"^({val})$"')
|
|
elif type(value) == str and len(value) == 0:
|
|
return_list.append(f'{key}')
|
|
else:
|
|
return_list.append(f'{key}={value}')
|
|
return return_list
|