anyway/backend/src/overpass/overpass.py
Helldragon67 a3243431e0
Some checks failed
Build and deploy the backend to staging / Build and push image (pull_request) Successful in 1m49s
Run linting on the backend code / Build (pull_request) Successful in 28s
Run testing on the backend code / Build (pull_request) Failing after 10m55s
Build and deploy the backend to staging / Deploy to staging (pull_request) Successful in 24s
better cache
2025-01-27 17:02:41 +01:00

316 lines
12 KiB
Python

"""Module allowing connexion to overpass api and fectch data from OSM."""
import os
import urllib
import math
import logging
import xml.etree.ElementTree as ET
from .caching_strategy import get_cache_key, CachingStrategy
from ..constants import OSM_CACHE_DIR, OSM_TYPES
RESOLUTION = 0.05
class Overpass :
"""
Overpass class to manage the query building and sending to overpass api.
The caching strategy is a part of this class and initialized upon creation of the Overpass object.
"""
logger = logging.getLogger(__name__)
def __init__(self, caching_strategy: str = 'XML', cache_dir: str = OSM_CACHE_DIR) :
"""
Initialize the Overpass instance with the url, headers and caching strategy.
"""
self.overpass_url = "https://overpass-api.de/api/interpreter"
self.headers = {'User-Agent': 'Mozilla/5.0 (compatible; OverpassQuery/1.0; +http://example.com)',}
self.caching_strategy = CachingStrategy.use(caching_strategy, cache_dir=cache_dir)
def send_query(self, bbox: tuple, osm_types: OSM_TYPES,
selector: str, conditions=[], out='center') -> ET:
"""
Sends the Overpass QL query to the Overpass API and returns the parsed JSON response.
Args:
query (str): The Overpass QL query to be sent to the Overpass API.
Returns:
dict: The parsed JSON response from the Overpass API, or None if the request fails.
"""
# Determine which grid cells overlap with this bounding box.
overlapping_cells = Overpass.get_overlapping_cells(bbox)
# Check the cache for any data that overlaps with these cells
cell_key_dict = {}
for cell in overlapping_cells :
for elem in osm_types :
key_str = f"{elem}[{selector}]{conditions}({','.join(map(str, cell))})"
cell_key_dict[cell] = get_cache_key(key_str)
cached_responses = []
hollow_cache_keys = []
# Retrieve the cached data and mark the missing entries as hollow
for cell, key in cell_key_dict.items():
cached_data = self.caching_strategy.get(key)
if cached_data is not None :
cached_responses.append(cached_data)
else:
# Cache miss: Mark the cache key as hollow
self.caching_strategy.set_hollow(key, cell, osm_types, selector, conditions, out)
hollow_cache_keys.append(key)
# If there is no missing data, return the cached responses
if not hollow_cache_keys :
self.logger.debug(f'Cache hit.')
return self.combine_cached_data(cached_responses)
# TODO If there is SOME missing data : hybrid stuff with partial cache
# Build the query string in case of needed overpass query
query_str = Overpass.build_query(bbox, osm_types, selector, conditions, out)
# Prepare the data to be sent as POST request, encoded as bytes
data = urllib.parse.urlencode({'data': query_str}).encode('utf-8')
try:
# Create a Request object with the specified URL, data, and headers
request = urllib.request.Request(self.overpass_url, data=data, headers=self.headers)
# Send the request and read the response
with urllib.request.urlopen(request) as response:
# Read and decode the response
response_data = response.read().decode('utf-8')
root = ET.fromstring(response_data)
self.logger.debug(f'Cache miss. Fetching data through Overpass\nQuery = {query_str}')
return root
except urllib.error.URLError as e:
raise ConnectionError(f"Error connecting to Overpass API: {e}") from e
def fill_cache(self, xml_string: str) :
# Build the query using info from hollow cache entry
query_str, cache_key = Overpass.build_query_from_hollow(xml_string)
# Prepare the data to be sent as POST request, encoded as bytes
data = urllib.parse.urlencode({'data': query_str}).encode('utf-8')
try:
# Create a Request object with the specified URL, data, and headers
request = urllib.request.Request(self.overpass_url, data=data, headers=self.headers)
# Send the request and read the response
with urllib.request.urlopen(request) as response:
# Read and decode the response
response_data = response.read().decode('utf-8')
root = ET.fromstring(response_data)
self.caching_strategy.set(cache_key, root)
self.logger.debug(f'Cache set')
except urllib.error.URLError as e:
raise ConnectionError(f"Error connecting to Overpass API: {e}") from e
@staticmethod
def build_query(bbox: tuple, osm_types: OSM_TYPES,
selector: str, conditions=[], out='center') -> str:
"""
Constructs a query string for the Overpass API to retrieve OpenStreetMap (OSM) data.
Args:
bbox (tuple): A tuple representing the geographical search area, typically in the format
(lat_min, lon_min, lat_max, lon_max).
osm_types (list[str]): A list of OSM element types to search for. Must be one or more of
'Way', 'Node', or 'Relation'.
selector (str): The key or tag to filter the OSM elements (e.g., 'amenity', 'highway', etc.).
conditions (list, optional): A list of conditions to apply as additional filters for the
selected OSM elements. The conditions should be written in
the Overpass QL format, and they are combined with '&&' if
multiple are provided. Defaults to an empty list.
out (str, optional): Specifies the output type, such as 'center', 'body', or 'tags'.
Defaults to 'center'.
Returns:
str: The constructed Overpass QL query string.
Notes:
- If no conditions are provided, the query will just use the `selector` to filter the OSM
elements without additional constraints.
"""
if not isinstance(conditions, list) :
conditions = [conditions]
if not isinstance(osm_types, list) :
osm_types = [osm_types]
query = '('
# convert the bbox to string.
bbox_str = f"({','.join(map(str, bbox))})"
if conditions :
conditions = '(if: ' + ' && '.join(conditions) + ')'
else :
conditions = ''
for elem in osm_types :
query += elem + '[' + selector + ']' + conditions + bbox_str + ';'
query += ');' + f'out {out};'
return query
@staticmethod
def build_query_from_hollow(xml_string):
"""Extract variables from an XML string."""
# Parse the XML string into an ElementTree object
root = ET.fromstring(xml_string)
# Extract values from the XML tree
key = root.find('key').text
cell = tuple(map(float, root.find('cell').text.strip('()').split(',')))
bbox = Overpass.get_bbox_from_grid_cell(cell[0], cell[1])
osm_types = root.find('osm_types').text.split(',')
selector = root.find('selector').text
conditions = root.find('conditions').text.split(',') if root.find('conditions').text != "none" else []
out = root.find('out').text
query_str = Overpass.build_query(bbox, osm_types, selector, conditions, out)
return query_str, key
@staticmethod
def get_grid_cell(lat: float, lon: float):
"""
Returns the grid cell coordinates for a given latitude and longitude.
Each grid cell is 0.05°lat x 0.05°lon resolution in size.
"""
lat_index = math.floor(lat / RESOLUTION)
lon_index = math.floor(lon / RESOLUTION)
return (lat_index, lon_index)
@staticmethod
def get_bbox_from_grid_cell(lat_index: int, lon_index: int):
"""
Returns the bounding box for a given grid cell index.
Each grid cell is resolution x resolution in size.
The bounding box is returned as (min_lat, min_lon, max_lat, max_lon).
"""
# Calculate the southwest (min_lat, min_lon) corner of the bounding box
min_lat = round(lat_index * RESOLUTION, 2)
min_lon = round(lon_index * RESOLUTION, 2)
# Calculate the northeast (max_lat, max_lon) corner of the bounding box
max_lat = round((lat_index + 1) * RESOLUTION, 2)
max_lon = round((lon_index + 1) * RESOLUTION, 2)
return (min_lat, min_lon, max_lat, max_lon)
@staticmethod
def get_overlapping_cells(query_bbox: tuple):
"""
Returns a set of all grid cells that overlap with the given bounding box.
"""
# Extract location from the query bbox
lat_min, lon_min, lat_max, lon_max = query_bbox
min_lat_cell, min_lon_cell = Overpass.get_grid_cell(lat_min, lon_min)
max_lat_cell, max_lon_cell = Overpass.get_grid_cell(lat_max, lon_max)
overlapping_cells = set()
for lat_idx in range(min_lat_cell, max_lat_cell + 1):
for lon_idx in range(min_lon_cell, max_lon_cell + 1):
overlapping_cells.add((lat_idx, lon_idx))
return overlapping_cells
@staticmethod
def combine_cached_data(cached_data_list):
"""
Combines data from multiple cached responses into a single result.
"""
combined_data = ET.Element("osm")
for cached_data in cached_data_list:
for element in cached_data:
combined_data.append(element)
return combined_data
def get_base_info(elem: ET.Element, osm_type: OSM_TYPES, with_name=False) :
"""
Extracts base information (coordinates, OSM ID, and optionally a name) from an OSM element.
This function retrieves the latitude and longitude coordinates, OSM ID, and optionally the name
of a given OpenStreetMap (OSM) element. It handles different OSM types (e.g., 'node', 'way') by
extracting coordinates either directly or from a center tag, depending on the element type.
Args:
elem (ET.Element): The XML element representing the OSM entity.
osm_type (str): The type of the OSM entity (e.g., 'node', 'way'). If 'node', the coordinates
are extracted directly from the element; otherwise, from the 'center' tag.
with_name (bool): Whether to extract and return the name of the element. If True, it attempts
to find the 'name' tag within the element and return its value. Defaults to False.
Returns:
tuple: A tuple containing:
- osm_id (str): The OSM ID of the element.
- coords (tuple): A tuple of (latitude, longitude) coordinates.
- name (str, optional): The name of the element if `with_name` is True; otherwise, not included.
"""
# 1. extract coordinates
if osm_type != 'node' :
center = elem.find('center')
lat = float(center.get('lat'))
lon = float(center.get('lon'))
else :
lat = float(elem.get('lat'))
lon = float(elem.get('lon'))
coords = tuple((lat, lon))
# 2. Extract OSM id
osm_id = elem.get('id')
# 3. Extract name if specified and return
if with_name :
name = elem.find("tag[@k='name']").get('v') if elem.find("tag[@k='name']") is not None else None
return osm_id, coords, name
else :
return osm_id, coords
def fill_cache():
overpass = Overpass(caching_strategy='XML', cache_dir=OSM_CACHE_DIR)
with os.scandir(OSM_CACHE_DIR) as it:
for entry in it:
if entry.is_file() and entry.name.startswith('hollow_'):
# Read the whole file content as a string
with open(entry.path, 'r') as f:
xml_string = f.read()
# Fill the cache with the query and key
overpass.fill_cache(xml_string)
# Now delete the file as the cache is filled
os.remove(entry.path)