most static helpers up and running

This commit is contained in:
2024-12-16 16:23:27 +01:00
parent 795e2b5b92
commit 65c21c6033
14 changed files with 1437 additions and 250 deletions

11
nbody/checklist.md Normal file
View File

@@ -0,0 +1,11 @@
# N-Body project - Checklist
### Task 1
- [ ] Compute characteristic quantities/scales
- [x] Compare analytical model and particle density distribution
- [ ] Compute forces through nbody simulation
- [ ] vary softening length and compare results
- [ ] compare with the analytical expectation from Newtons 2nd law
- [ ] compute the relaxation time
### Task 2

View File

@@ -1,3 +1,4 @@
ID MASS X Y Z VX VY VZ SOFTENING ?
0 92.4259 -0.00381649 -0.0796699 -0.019072 3779.62 354.734 -73.4501 0.1 0.0130215
1 92.4259 -0.0322979 -0.249461 -0.01089 3250.59 -674.28 -18.3347 0.1 0.0130215
2 92.4259 0.067577 -0.810356 -0.00684857 2190.86 199.053 3.86061 0.1 0.0130215

422
nbody/notebook.ipynb Normal file

File diff suppressed because one or more lines are too long

7
nbody/utils/__init__.py Normal file
View File

@@ -0,0 +1,7 @@
# Import all functions in all the files in the current directory
from .load import *
from .mesh import *
from .model import *
from .particles import *
from .forces import *
from .integrate import *

77
nbody/utils/forces.py Normal file
View File

@@ -0,0 +1,77 @@
import numpy as np
import logging
logger = logging.getLogger(__name__)
def n_body_forces(particles: np.ndarray, G: float, softening: float = 0):
"""
Computes the gravitational forces between a set of particles.
Assumes that the particles array has the following columns: x, y, z, m.
"""
if particles.shape[1] != 4:
raise ValueError("Particles array must have 4 columns: x, y, z, m")
x_vec = particles[:, 0:3]
masses = particles[:, 3]
n = particles.shape[0]
forces = np.zeros((n, 3))
logger.debug(f"Computing forces for {n} particles using n^2 algorithm")
for i in range(n):
# the current particle is at x_current
x_current = x_vec[i, :]
m_current = masses[i]
# first compute the displacement to all other particles
displacements = x_vec - x_current
# and its magnitude
r = np.linalg.norm(displacements, axis=1)
# add softening to the denominator
r_adjusted = r**2 + softening**2
# the numerator is tricky:
# m is a list of scalars and displacements is a list of vectors (2D array)
# we only want row_wise multiplication
num = G * (masses * displacements.T).T
# a zero value is expected where we have the same particle
r_adjusted[i] = 1
num[i] = 0
f = np.sum((num.T / r_adjusted**1.5).T, axis=0) * m_current
forces[i] = -f
if i % 1000 == 0:
logger.debug(f"Particle {i} done")
return forces
def analytical_forces(particles: np.ndarray):
"""
Computes the interparticle forces without computing the n^2 interactions.
This is done by using newton's second theorem for a spherical mass distribution.
The force on a particle at radius r is simply the force exerted by a point mass with the enclosed mass.
Assumes that the particles array has the following columns: x, y, z, m.
"""
n = particles.shape[0]
forces = np.zeros((n, 3))
logger.debug(f"Computing forces for {n} particles using spherical approximation")
for i in range(n):
r_current = np.linalg.norm(particles[i, 0:3])
m_current = particles[i, 3]
r_particles = np.linalg.norm(particles[:, :3], axis=1)
m_enclosed = np.sum(particles[r_particles < r_current, 3])
# the force is the same as the force exerted by a point mass at the center
f = - m_current * m_enclosed / r_current**2
forces[i] = f
if i % 1000 == 0:
logger.debug(f"Particle {i} done")
return forces

69
nbody/utils/integrate.py Normal file
View File

@@ -0,0 +1,69 @@
import numpy as np
import scipy.integrate as spi
import logging
logger = logging.getLogger(__name__)
def ode_setup(particles: np.ndarray, force_function: callable) -> tuple[np.ndarray, callable]:
"""
Linearizes the ODE system for the particles interacting gravitationally.
Returns:
- the Y0 array corresponding to the initial conditions (x0 and v0)
- the function that computes the right hand side of the ODE with function signature f(t, y)
Assumes that the particles array has the following columns: x, y, z, vx, vy, vz, m.
"""
if particles.shape[1] != 7:
raise ValueError("Particles array must have 7 columns: x, y, z, vx, vy, vz, m")
n = particles.shape[0]
# for scipy integrators we need to flatten the n 3D positions and n 3D velocities
y0 = np.zeros(6*n)
y0[:3*n] = particles[:, :3].flatten()
y0[3*n:] = particles[:, 3:6].flatten()
# the masses don't change we can define them once
masses = particles[:, 6]
logger.debug(f"Reshaped {particles.shape} to y0 with {y0.shape} and masses with {masses.shape}")
def f(y, t):
"""
Computes the right hand side of the ODE system.
The ODE system is linearized around the current positions and velocities.
"""
n = y.size // 6
logger.debug(f"y with shape {y.shape}")
# unsqueeze and unstack to extract the positions and velocities
y = y.reshape((2*n, 3))
x = y[:n, ...]
v = y[n:, ...]
logger.debug(f"Unstacked y into x with shape {x.shape} and v with shape {v.shape}")
# compute the forces
x_with_m = np.zeros((n, 4))
x_with_m[:, :3] = x
x_with_m[:, 3] = masses
forces = force_function(x_with_m)
# compute the accelerations
a = forces / masses[:, None]
a.flatten()
# the [:, None] is to force broadcasting in order to divide each row of forces by the corresponding mass
# reshape into a 1D array
return np.vstack((v, a)).flatten()
return y0, f
def to_particles(y: np.ndarray) -> np.ndarray:
"""
Converts the 1D array y into a 2D array with the shape (n, 6) where n is the number of particles.
The columns are x, y, z, vx, vy, vz
"""
n = y.size // 6
y = y.reshape((2*n, 3))
x = y[:n, ...]
v = y[n:, ...]
return np.hstack((x, v))

View File

@@ -0,0 +1,18 @@
import numpy as np
from pathlib import Path
import logging
logger = logging.getLogger(__name__)
def load_data(file: Path) -> tuple[np.ndarray, list]:
try:
data = np.loadtxt(file)
columns = []
except ValueError:
data = np.loadtxt(file, skiprows=1)
header = file.read_text().splitlines()[0]
columns = header.split()
logger.info(f"Loaded {data.shape[0]} rows and {data.shape[1]} columns from {file}")
return data, columns

0
nbody/utils/mesh.py Normal file
View File

12
nbody/utils/model.py Normal file
View File

@@ -0,0 +1,12 @@
import numpy as np
M = 5
a = 5
def model_density_distribution(r_bins: np.ndarray):
"""
Generate a density distribution for a spherical galaxy model, as per the Hernquist model.
See https://doi.org/10.1086%2F168845 for more information.
"""
rho = M / (2 * np.pi) * a / (r_bins * (r_bins + a)**3)
return rho

124
nbody/utils/particles.py Normal file
View File

@@ -0,0 +1,124 @@
import numpy as np
import logging
logger = logging.getLogger(__name__)
def density_distribution(r_bins: np.ndarray, particles: np.ndarray, ret_error: bool = False):
"""
Computes the radial density distribution of a set of particles.
Assumes that the particles array has the following columns: x, y, z, m.
"""
if particles.shape[1] != 4:
raise ValueError("Particles array must have 4 columns: x, y, z, m")
m = particles[:, 3]
r = np.linalg.norm(particles[:, :3], axis=1)
density = [np.sum(m[(r >= r_bins[i]) & (r < r_bins[i + 1])]) for i in range(len(r_bins) - 1)]
# add the first volume which should be wrt 0
volume = 4/3 * np.pi * (r_bins[1:]**3 - r_bins[:-1]**3)
volume = np.insert(volume, 0, 4/3 * np.pi * r_bins[0]**3)
density = r_bins / volume
if ret_error:
return density, density / np.sqrt(r_bins)
else:
return density
def r_distribution(particles: np.ndarray):
"""
Computes the distribution of distances (to the origin) of a set of particles.
Assumes that the particles array has the following columns: x, y, z ...
"""
if particles.shape[1] < 3:
raise ValueError("Particles array must have at least 3 columns: x, y, z")
r = np.linalg.norm(particles[:, :3], axis=1)
return r
def remove_outliers(particles: np.ndarray, std_threshold: float = 3):
"""
Removes outliers from a set of particles.
Assumes that the particles array has the following columns: x, y, z ...
"""
if particles.shape[1] < 3:
raise ValueError("Particles array must have at least 3 columns: x, y, z")
r = np.linalg.norm(particles[:, :3], axis=1)
r_std = np.std(r)
r_mean = np.mean(r)
mask = np.abs(r - r_mean) < std_threshold * r_std
return particles[mask]
def mean_interparticle_distance(particles: np.ndarray):
"""
Computes the mean interparticle distance of a set of particles.
Assumes that the particles array has the following columns: x, y, z ...
"""
if particles.shape[1] < 3:
raise ValueError("Particles array must have at least 3 columns: x, y, z")
r_half_mass = half_mass_radius(particles)
r = np.linalg.norm(particles[:, :3], axis=1)
n_half_mass = np.sum(r < r_half_mass)
logger.debug(f"Number of particles within half mass radius: {n_half_mass} of {particles.shape[0]}")
rho = n_half_mass / (4/3 * np.pi * r_half_mass**3)
# the mean distance between particles is the inverse of the density
return (1 / rho)**(1/3)
# TODO: check if this is correct
def half_mass_radius(particles: np.ndarray):
"""
Computes the half mass radius of a set of particles.
Assumes that the particles array has the following columns: x, y, z ...
"""
if particles.shape[1] < 3:
raise ValueError("Particles array must have at least 3 columns: x, y, z")
# even though in the simple example, all the masses are the same, we will consider the general case
total_mass = np.sum(particles[:, 3])
half_mass = total_mass / 2
# sort the particles by distance
r = np.linalg.norm(particles[:, :3], axis=1)
indices = np.argsort(r)
r = r[indices]
masses = particles[indices, 3]
masses_cumsum = np.cumsum(masses)
i = np.argmin(np.abs(masses_cumsum - half_mass))
logger.debug(f"Half mass radius: {r[i]} for {i}th particle of {particles.shape[0]}")
r_hm = r[i]
return r_hm
def relaxation_timescale(particles: np.ndarray, G:float) -> float:
"""
Computes the relaxation timescale of a set of particles using the velocity at the half mass radius.
Assumes that the particles array has the following columns: x, y, z ...
"""
m_half = np.sum(particles[:, 3]) / 2 # enclosed mass at half mass radius
r_half = half_mass_radius(particles)
n_half = np.sum(np.linalg.norm(particles[:, :3], axis=1) < r_half) # number of enclosed particles
v_c = np.sqrt(G * m_half / r_half)
# the crossing time for the half mass system is
t_c = r_half / v_c
logger.debug(f"Crossing time for half mass system: {t_c}")
# the relaxation timescale is t_c * N/(10 * log(N))
t_rel = t_c * n_half / (10 * np.ln(n_half))
return t_rel