better structure. most of task 1 done

This commit is contained in:
Remy Moll 2025-01-03 14:20:22 +01:00
parent 65c21c6033
commit 77a4959fe2
13 changed files with 1032 additions and 430 deletions

View File

@ -4,8 +4,16 @@
- [ ] Compute characteristic quantities/scales
- [x] Compare analytical model and particle density distribution
- [ ] Compute forces through nbody simulation
- [ ] vary softening length and compare results
- [ ] compare with the analytical expectation from Newtons 2nd law
- [x] vary softening length and compare results
- [x] compare with the analytical expectation from Newtons 2nd law
- [ ] compute the relaxation time
### Task 2
### Questions
- Procedure for each time step of a mesh simulation? Potential on mesh -> forces on particles -> update particle positions -> new mesh potential? or skip the creation of particles in each time step?

File diff suppressed because one or more lines are too long

366
nbody/task1.ipynb Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,7 +1,14 @@
# Import all functions in all the files in the current directory
## Import all functions in all the files in the current directory
# Basic helpers for interacting with the data
from .load import *
from .mesh import *
from .model import *
from .particles import *
from .forces import *
from .integrate import *
# Helpers for computing the forces
from .forces_basic import *
from .forces_tree import *
from .forces_mesh import *
# Helpers for solving the IVP and having time evolution
from .integrate import *

View File

@ -16,7 +16,7 @@ def n_body_forces(particles: np.ndarray, G: float, softening: float = 0):
n = particles.shape[0]
forces = np.zeros((n, 3))
logger.debug(f"Computing forces for {n} particles using n^2 algorithm")
logger.debug(f"Computing forces for {n} particles using n^2 algorithm (using {softening=})")
for i in range(n):
# the current particle is at x_current
@ -41,7 +41,7 @@ def n_body_forces(particles: np.ndarray, G: float, softening: float = 0):
f = np.sum((num.T / r_adjusted**1.5).T, axis=0) * m_current
forces[i] = -f
if i % 1000 == 0:
if i % 5000 == 0:
logger.debug(f"Particle {i} done")
return forces
@ -71,7 +71,7 @@ def analytical_forces(particles: np.ndarray):
f = - m_current * m_enclosed / r_current**2
forces[i] = f
if i % 1000 == 0:
if i % 5000 == 0:
logger.debug(f"Particle {i} done")
return forces

185
nbody/utils/forces_mesh.py Normal file
View File

@ -0,0 +1,185 @@
## Implementation of a mesh based force solver
import numpy as np
import matplotlib.pyplot as plt
from scipy import fft
import logging
logger = logging.getLogger(__name__)
#### Version 1 - keeping the derivative of phi
def mesh_forces(particles: np.ndarray, G: float, n_grid: int, mapping: callable) -> np.ndarray:
"""
Computes the gravitational forces between a set of particles using a mesh.
Assumes that the particles array has the following columns: x, y, z, m.
"""
if particles.shape[1] != 4:
raise ValueError("Particles array must have 4 columns: x, y, z, m")
mesh, axis = to_mesh(particles, n_grid, mapping)
# show_mesh_information(mesh, "Initial mesh")
grad_phi = mesh_poisson(mesh, G)
# show_mesh_information(mesh, "Mesh potential")
# compute the particle forces from the mesh potential
forces = np.zeros_like(particles[:, :3])
for i, p in enumerate(particles):
ijk = np.digitize(p, axis) - 1
forces[i] = -grad_phi[ijk[0], ijk[1], ijk[2]] * p[3]
return forces
def mesh_poisson(mesh: np.ndarray, G: float) -> np.ndarray:
"""
'Solves' the poisson equation for the mesh using the FFT.
Returns the gradient of the potential since this is required for the force computation.
"""
rho_hat = fft.fftn(mesh)
# the laplacian in fourier space takes the form of a multiplication
k = np.fft.fftfreq(mesh.shape[0])
# TODO: probably need to take the actual mesh bounds into account
kx, ky, kz = np.meshgrid(k, k, k)
k_vec = np.array([kx, ky, kz])
logger.debug(f"Got k_square with: {k_vec.shape}, {np.max(k_vec)} {np.min(k_vec)}")
grad_phi_hat = 4 * np.pi * G * rho_hat / (1j * k_vec * 2 * np.pi)
# the inverse fourier transform gives the potential (or its gradient)
grad_phi = np.real(fft.ifftn(grad_phi_hat))
return grad_phi
#### Version 2 - only storing the scalar potential
def mesh_forces_v2(particles: np.ndarray, G: float, n_grid: int, mapping: callable) -> np.ndarray:
if particles.shape[1] != 4:
raise ValueError("Particles array must have 4 columns: x, y, z, m")
logger.debug(f"Computing forces for {particles.shape[0]} particles using mesh (using mapping={mapping.__name__})")
mesh, axis = to_mesh(particles, n_grid, mapping)
show_mesh_information(mesh, "Mesh")
spacing = axis[1] - axis[0]
logger.debug(f"Using mesh spacing: {spacing}")
phi = mesh_poisson_v2(mesh, G)
logger.debug(f"Got phi with: {phi.shape}, {np.max(phi)}")
phi_grad = np.stack(np.gradient(phi, spacing), axis=0)
show_mesh_information(phi, "Mesh potential")
show_mesh_information(phi_grad[0], "Mesh potential grad x")
logger.debug(f"Got phi_grad with: {phi_grad.shape}, {np.max(phi_grad)}")
forces = np.zeros_like(particles[:, :3])
for i, p in enumerate(particles):
ijk = np.digitize(p, axis) - 1
# this gives 4 entries since p[3] the mass is digitized as well -> this is meaningless and we discard it
# logger.debug(f"Particle {p} maps to cell {ijk}")
forces[i] = - p[3] * phi_grad[..., ijk[0], ijk[1], ijk[2]]
return forces
def mesh_poisson_v2(mesh: np.ndarray, G: float) -> np.ndarray:
rho_hat = fft.fftn(mesh)
k = np.fft.fftfreq(mesh.shape[0])
kx, ky, kz = np.meshgrid(k, k, k)
k_sr = kx**2 + ky**2 + kz**2
logger.debug(f"Got k_square with: {k_sr.shape}, {np.max(k_sr)} {np.min(k_sr)}")
logger.debug(f"Count of zeros: {np.sum(k_sr == 0)}")
k_sr[k_sr == 0] = 1e-10 # Add a small epsilon to avoid division by zero
phi_hat = - G * rho_hat / k_sr
# 4pi cancels, - comes from i squared
phi = np.real(fft.ifftn(phi_hat))
return phi
## Helper functions for star mapping
def to_mesh(particles: np.ndarray, n_grid: int, mapping: callable) -> tuple[np.ndarray, np.ndarray]:
"""
Maps a list of particles to a of mesh of size n_grid x n_grid x n_grid.
Assumes that the particles array has the following columns: x, y, z, ..., m.
Uses the mass of the particles and a smoothing function to detemine the contribution to each cell.
"""
# axis provide an easy way to map the particles to the mesh
max_pos = np.max(particles[:, :3])
axis = np.linspace(-max_pos, max_pos, n_grid)
mesh_grid = np.meshgrid(axis, axis, axis)
mesh = np.zeros_like(mesh_grid[0])
for p in particles:
m = p[-1]
if logger.level <= logging.DEBUG and m <= 0:
logger.warning(f"Particle with negative mass: {p}")
# spread the star onto cells through the shape function, taking into account the mass
ijks, weights = mapping(p, axis)
for ijk, weight in zip(ijks, weights):
mesh[ijk[0], ijk[1], ijk[2]] += weight * m
return mesh, axis
def particle_to_cells_nn(particle, axis):
# find the single cell that contains the particle
ijk = np.digitize(particle, axis) - 1
# the weight is obviously 1
return [ijk], [1]
def particle_to_cells_cic(particle, axis, width):
# create a virtual cell around the particle
cell_bounds = [
particle + np.array([1, 0, 0]) * width,
particle + np.array([-1, 0, 0]) * width,
particle + np.array([1, 1, 0]) * width,
particle + np.array([-1, -1, 0]) * width,
particle + np.array([1, 1, 1]) * width,
particle + np.array([-1, -1, 1]) * width,
particle + np.array([1, 1, -1]) * width,
particle + np.array([-1, -1, -1]) * width,
]
# find all the cells that intersect with the virtual cell
ijks = []
weights = []
for b in cell_bounds:
w = np.linalg.norm(particle - b)
ijk = np.digitize(b, axis) - 1
# print(f"b: {b}, ijk: {ijk}")
ijks.append(ijk)
weights.append(w)
# ensure that the weights sum to 1
weights = np.array(weights)
weights /= np.sum(weights)
return ijks, weights
## Helper functions for mesh plotting
def show_mesh_information(mesh: np.ndarray, name: str):
print(f"Mesh information for {name}")
print(f"Total mapped mass: {np.sum(mesh):.0f}")
print(f"Max cell value: {np.max(mesh)}")
print(f"Min cell value: {np.min(mesh)}")
print(f"Mean cell value: {np.mean(mesh)}")
plot_3d(mesh, name)
plot_2d(mesh, name)
def plot_3d(mesh: np.ndarray, name: str):
fig = plt.figure()
fig.suptitle(name)
ax = fig.add_subplot(111, projection='3d')
ax.scatter(*np.where(mesh), c=mesh[np.where(mesh)], cmap='viridis')
plt.show()
def plot_2d(mesh: np.ndarray, name: str):
fig = plt.figure()
fig.suptitle(name)
axs = fig.subplots(1, 3)
axs[0].imshow(np.sum(mesh, axis=0))
axs[0].set_title("Flattened in x")
axs[1].imshow(np.sum(mesh, axis=1))
axs[1].set_title("Flattened in y")
axs[2].imshow(np.sum(mesh, axis=2))
axs[2].set_title("Flattened in z")
plt.show()

View File

View File

@ -0,0 +1,15 @@
import logging
logging.basicConfig(
## set logging level
# level=logging.INFO,
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(message)s',
datefmt='%H:%M:%S'
)
# silence some debug messages
logging.getLogger('matplotlib.font_manager').setLevel(logging.WARNING)
logging.getLogger('matplotlib.ticker').setLevel(logging.WARNING)
logging.getLogger('matplotlib.pyplot').setLevel(logging.WARNING)