import astropy.units as u import numpy as np import logging logger = logging.getLogger(__name__) M_SCALE: int = None R_SCALE: int = None def seed_scales(r_scale: u.Quantity, m_scale: u.Quantity): """ Set the scales for the given simulation. Parameters: - r_scale: astropy.units.Quantity with units of length - the characteristic length scale of the simulation. Particle positions are expressed in units of this scale. - m_scale: astropy.units.Quantity with units of mass - the characteristic mass scale of the simulation. Particle masses are expressed in units of this scale. """ global M_SCALE, R_SCALE M_SCALE = m_scale R_SCALE = r_scale logger.info(f"Set scales: M_SCALE = {M_SCALE:.2g}, R_SCALE = {R_SCALE:.2g}") def apply_units(columns: np.array, quantity: str): if quantity == "mass": return columns * M_SCALE elif quantity == "position": return columns * R_SCALE elif quantity == "volume": return columns * R_SCALE**3 elif quantity == "density": return columns * M_SCALE / R_SCALE**3 ## Derived quantities elif quantity == "force": # using F = GMm/R^2 => F = M_SCALE**2 / R_SCALE**2 (G = 1) return columns * M_SCALE**2 / R_SCALE**2 elif quantity == "velocity": # using the Virial theorem: v^2 = GM/R => v = sqrt(GM/R) => v = sqrt(M_SCALE / R_SCALE) (G = 1) return columns * np.sqrt(M_SCALE / R_SCALE) elif quantity == "time": # using the dynamical time: t_dyn = 1/sqrt(G*rho) => t_dyn = sqrt(4/3 * pi * R_SCALE**3 / M_SCALE) (G = 1) return columns * np.sqrt(4/3 * np.pi * R_SCALE**3 / M_SCALE) else: raise ValueError(f"Unknown quantity: {quantity}")