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ABSTRACT 
A potential-density pair which closely approximates the de Vaucouleurs R1/4 law for elliptical galaxies is 

presented. It is shown that the intrinsic properties and projected distributions of this model can be evaluated 
analytically. In particular, the distribution function, density of states, and projected surface brightness and 
velocity dispersion are expressible in terms of elementary functions. 
Subject headings: galaxies: photometry — galaxies: structure 

I. INTRODUCTION II. MODEL 

It has long been recognized that the observed luminosity 
distribution of many elliptical galaxies and bulges is well rep- 
resented by the empirical law 

log10 

where R is the projected radius on the plane of the sky, Re is 
the effective radius of the isophote enclosing half the light, and 
I is the surface brightness (de Vaucouleurs 1948; Kormendy 
1977). Although convenient for representing the observable 
properties of galaxies and bulges, the de Vaucouleurs profile is 
less useful for theoretical analyses since its deprejected mass 
density, p(r), is not tractable analytically (e.g., Young 1976). 
This fact motivates interest in density profiles resembling that 
of the R1/4 law but which have simple analytic forms. 

The model proposed by Jaffe (1983), p(r) oc r~2(r + rj)~2, 
where r} is a scale length, has been widely used in numerical 
studies of spherical galaxies since many of its intrinsic proper- 
ties can be computed analytically. However, the distribution 
function derived from the Jaffe model deviates from that of the 
R1/4 law at large negative energies (e.g., Binney and Tremaine 
1987) and involves special functions. Although it is arguable 
whether the de Vaucouleurs law fits observations better than 
the Jaffe profile (Jaffe 1983), it is clearly of value to have models 
whose properties can be expressed in terms of elementary func- 
tions. 

The deviation of the Jaffe distribution function from that of 
the R1/4 law can be traced to the fact that r~2 as r -» 0, 
while pÄi/4~r-3/4 in the same limit. Consider the density 
profile 

.. Ma 
p{r) = T" " 

1 
2n r (r + a)3 (2) 

where M is the total mass and a is a scale length. This mass 
distribution is quite similar to Jaffe’s, but now p(r) ~ r-1 as 
r->0, and hence it more closely resembles the R1/4 law at small 
radii. Moreover, as summarized below, a number of the intrin- 
sic properties and projected distributions of the model defined 
by equation (2) are simpler than those of the Jaffe profile. 

a) Characteristics 
The cumulative mass distribution corresponding to equa- 

tion (2) is 

M(r) = M 
(r + a)2 ' (3) 

Note that M(a) — M/4. The half-mass radius, r1/2, follows from 
equation (3) by setting M(r1/2) = M/2, with the result 

ri/2 = (1 + ^)a . (4) 
The potential, <p(r), is found by integrating Poisson’s equation. 
For the density in equation (2) 

<p(r) = 
GM 

r + a ’ (5) 

where G is the gravitational constant. Defining dimensionless 
forms of the density and potential by 

and 

Ina3 

p(r) = 
r(r + a)3 (6) 

a a 
= — (p(r) = . 

* GM^y) r + a (7) 

it is possible to relate the density to the potential in the particu- 
larly simple form 

jL_ 
i - $ ’ 

Note that since 0 < $ < 1, p($) can be expanded in the pure 
power series 

oo 
P = I • 

n = 0 
Equation (8) can be inverted to yield $ = $(p); the result is 
given in Appendix A. 

For a nonrotating, spherical system the velocity dispersion is 
determined by the Jeans equation 

-j{pvl) + 2ß't = 
p dr r 

d(p 
(9) 
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where_ ß(r]_= 1 — vj/vj, vj is the radial velocity dispersion, 
and tg = vl are the angular velocity dispersions. For an iso- 
tropic system ß(r) = 0, and equations (2) and (5) yield 

r 
r + a [ 

25 + 52 - + 42 
a 

Note that v, is nowhere divergent. If r a, 

—T GM r a 
v; ~ In- . 

a a r (11) 

and so v* goes to zero at the center, while - GM/5rm the 
limit r_5> a. If, instead, all stars arc on circular orbits, = 0 
and 2vj = rd(p/dr. Defining then = v?, where 
vc is the circular velocity, given below^_The corresponding 
model with purely radial orbits, i.e., v$ = v# = 0, is not of prac- 
tical interest since its distribution function is not everywhere 
nonnegative. 

For a spherical, isotropic model the kinetic energy is 

T(r) = 6^ J pvf r2 dr . 

From equations (2) and (10), 

T = 

As r/a 0, 

-4 r (r/a)2 + r/a + 1~| 
a (1 + r/af J ' 

(12) 

(13) 

The total kinetic energy, 7Jot, follows from equation (22) in the 
limit r -► oo, with the result TioX = GM2/12a. The total poten- 
tial energy, Qtot, is defined by 

flu., = 2n\o p(r)<p(r)r2 dr . 

For the model here this integral yields 

Q tot 
GM2 

6a 
(14) 

Note that 2Ttot + Qtot = 0, in accord with the virial theorem. 
Other quantities of interest are the local escape velocity, 

ve = y — 2(p(r) and circular velocity vc = y/GM^/r. From 
equations (3) and (5), 

2GM 
r + a 

y/GMr 
r + a 

(15) 

(16) 

As r/a co, vc ~ r 1/2, and consequently the rotation curve is 
asymptotically Keplerian. 

Of fundamental dynamical importance is the distribution 
function,/, here normalized so that fdrdv is the mass in the 
six-dimensional volume element drdv centered on the phase- 

space point (r, v). For a spherical, isotropic model / can be 
expressed solely as a function of the total specific energy, E. 
Obtaining/(F) for the present model is straightforward, owing 
to the simple relation between density and potential (eq. [8]). 
Inverting the relation between p(r) and f(E) using an Abel 
transform (e.g., Binney and Tremaine 1987) gives 

f(E) = 
M 

S^TtVr2 (1 - q2)512 

x [3 sin-1 q + q(l - q2)1/2(l - 2q2)(Sq* - Sq2 - 3)] , (17) 

where 

and 

(18) 

fGM\112 

V° = (-) ' 
(19) 

Note that 0 < q < 1. This distribution function is everywhere 
nonnegative. Asq-+0, 

RE)' 
M 16 i 1° 2 40 ¿ 

i+Tí +ÿ^ + 5 

In the limit q -> !,/(£) diverges according to 

(20) 

fiE) 
3M 

128jt2a3i;2 (1 — q2)5/2 
H 

(i-<z2) + ... ; (2i) 

however, as shown immediately below, this is not a serious 
difficulty since these energies contain vanishingly little mass. 

The mass of stars, dM, with binding energies in the energy 
interval $ to S + dS is given by the differential energy distribu- 
tion dM/dS, where £ = — F. If the distribution function/^) 
depends on energy alone, then 

dM 
= g{£)R£), (22) 

where g{£) is the density of states (Binney and Tremaine 1987). 
Using a procedure similar to that employed above in comput- 
m%RE\ g(£) can be evaluated explicitly for the model here 
with the result 

9(<?) = 2^n
q
2fV° [3(89

4 - 4q2 + 1) 

x cos'1 4 - 4(1 - q2)ll2(4q2 - l)(2q2 + 3)] . (23) 

In the limit -► 0, 

g(S) ~ v9 (j _ Aq2 + + ..^ (24) 
g 

while as ^ 1 , 

40967r2aV 43 
105 

*(l-42)7'2 l--(l-42) + - (25) 

Note that #(1) = 0; i.e., no states are available at the origin, 
r = 0. 

The differential mass distribution is given by the product of 
equations (17) and (23). In particular, as -► 0 , 

dM 
d£ 

16 M 

5 v2
g 

(26) 
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while as -> 1 . 

dM 
dS 

32 M M 2\ (27) 

So, dM/dS goes smoothly to zero at the center, despite the fact 
that f(£) is divergent there. 

It is also possible to include the effects of anisotropic velocity 
dispersion using the procedure introduced by Osipkov (1979) 
and Merritt (1985a, b). The distribution function now depends 
on both the energy and specific angular momentum, L. First, 
define 

e=-£-Ä, (28) 
a 

and 

PöW = (l + r^jP(f), (29) 

where ra is the anisotropy radius. In the limit rfl -► oo, Q —E 
and pQ(r) -► p(r). Then the distribution function corresponding 
to pQ(r)’/ö(ß)’ can a8ain be computed using an Abel transform 
(e.g., Binney and Tremaine 1987), with the result 

/e(ß) =m + 3 3 4 id - 2g2), (30) 
^/2nóaóVg ra 

where 

§ = (31) 

/is defined by equation (17), and, by convention,/Q(0 = 0 for 
ß < 0. 

b) Projected Distributions 
The projected surface brightness of the present model can be 

computed by integrating its luminosity density along lines of 
sight. Let T be the constant mass-to-light ratio. Then the 
surface brightness is 

M 
I{R) = 2^a2T(l — s2)2 [(2 + S2)Z(S) “ 3] ’ (32) 

where s = R/a, R is the projected radius and 

X(s) = ■■ > sech 1 s for 0 < s < 1 , 
v1 -s2 

(33) 

X(s) = -r—- sec 1 s for 1 < s < oo . 
V« -1 

(34) 

Recall that sech-1 s = i sec-1 s, so X(s) is continuous at s = 1. 
For computational purposes, the relations sec-1 s = cos-1 1/s 
and sech 1 s = ln[(l + ^/l — s2)/s] can be used to express 
equations (33) and (34) in more convenient forms. In the limit 
s -► 0 X(s) ~ In 2/s, and so I(R) diverges logarithmically: 

I(R) ~ 
M 2 

7ra2T n s * 

As s -► oo, X(s) ~ n/2s, implying 

I(R)~ 
M n 

2na2Y 2s3 * 

(35) 

(36) 

At the point R = a, X(l) = 1, and so 1(a) = 2M/(157ra2T). 
(More detailed expressions can be found in Appendix B.) 

The cumulative surface brightness, defined by S(R) = 
2n I(R)RdR, is 

Ms2 X(s) - 1 
“ T 1 - s2 (37) 

for all s. Note that S(R = a) = M/3Y, and the total luminosity 
is S(R = oo) = M/Y. 

The effective radius, Re, can be computed from equation (37) 
by setting S(Re) = M/2Y. A numerical solution gives 

Re » 1.8153a . (38) 

From equation (4), the effective radius and half-mass radius for 
the model here are related by 

ri/2 - l-33Re (39) 
For a spherical, nonrotating system the line-of-sight velocity 

dispersion, op, is given by 

I(R)o2
p(R) = - pv2rdr 

(40) 

where ß(r) is defined following equation (9). If the model is 
isotropic, i.e., ß = 0, then equation (40) yields 

o2JR) = 
GM2 

Una I(R)Y 
{i_l_ 
[2 (1 - s2)3 

x [ —3s2X(s)(8s6 - 28s4 + 35s2 - 20) 

- 24s6 + 68s4 - 65s2 + 6] - 67rsj . (41) 

For the case of purely circular orbits, v2 = 0, and 

*2
P(R) = 

GM2R2 f 1 
2na5YI(R) [24(1 - s2)4 

x [ —X(s)(24s8 - 108s6 + 189s4 - 120s2 + 120) 

- 24s6 + 92s4 - 117s2 + 154] + . (42) 

Limiting forms of equations (41) and (42) can be found in 
Appendix B. 

Figure 1 compares op(R)/vg for models with isotropic and 
purely circular orbits. For values of s = R/a > 4, op(R) was 
computed using asymptotic expansions given in Appendix B. 
At smaller radii, the general forms in equations (41) and (42) 
were employed except near R = a where Taylor series expan- 
sions, also given in Appendix B, were used. Note, in particular, 
that (jp dips to zero at the origin in both models owing to the 
logarithmic divergence of the projected surface brightness 
there. 

c) Comparison with R114 Law 
The distribution function f(E) defined in equation (17) is 

plotted in Figure 2 as a function of energy, for various values of 
a, in units such that G = 1 and M = 1. Also shown is the 
distribution function for the R1/4 law, found by numerical inte- 
gration (e.g., Binney 1982). The latter is normalized so that 
G = 1, M = 1, and its effective radius is also unity. The corre- 
sponding differential energy distributions, dM/dE, are shown 
in Figure 3. 
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Fig. 1.—Projected velocity dispersion op as a function of s = R/a for 
models with isotropic {solid curve) and purely circular {dotted curve) orbits. In 
both cases, op is measured in units of vg = {GM/a)112. 

As can be seen in Figures 2 and 3, the agreement between the 
present model and the R1/4 law is quite good, especially for 
values of a « 0.45. In fact, for a = 0.45 the distribution func- 
tions and differential energy distributions agree to <35% for 
energies between — 2.0 < E <—0.03. This energy interval 
comprises &97% the mass of the R1/4 law and «94% the mass 
of the model here. Larger discrepancies occurring for E < 
— 2.0 and E > —0.03 are confined to «2% and «0.4% the 
mass of the R1/4 law, respectively, and «0.2% and «6% the 
mass of the present model, respectively. Slightly better agree- 
ment at large negative energies can be obtained by reducing a. 
The choice a — 0.45 is roughly the mean of the a’s for which the 
two models would have either the same half-mass radius or the 
same central potential, <p(0) = —2.62175 (Young 1976). Over 
the range in energies where the agreement is especially good, 
the differential energy distribution of the model here is well 
fitted by an exponential, dM/dE oc exp (—ß\E\). The value of 
ß is similar to that inferred for the R1/4 law (Binney 1982). 

Fig. 3.—Differential energy distributions for the Æ14 law {solid curve) and 
for the present model as a function of energy. Units are again such that 
G = M = Re = 1, where Re is the effective radius of the Ri/A law. The curves 
for the model analyzed here have the same meanings as those in Fig. 2. 

The projected surface brightness, I(R), normalized to its 
value at the effective radius, I(Re), is shown in Figure 4 as a 
function of(R/Re)1/4 for the current model and the R1/4 law. As 
for the distribution functions, the agreement between the two is 
quite good. The surface brightness profiles agree to within 
«35% for radii in the range 0.06 < R/Re < 14.5. This interval 
in radius encloses «94% the total light of each model. Larger 
discrepancies occurring for R/Re < 0.06 and R/Re > 14.5 are 
confined to «4% and «2% the light of the R1/4 law, respec- 
tively, and «0.2% and «5.5% the light of the current model. 

It is also of interest to compare the ratio r1/2/Re for the 
present model and the R1/4 law. As noted in equation (39), 
ri/2/Re « 1.33 for the model here, while this ratio is approx- 
imately 1.35 for the R1/4 law (Young 1976). 

in. CONCLUSIONS 

A new mass model for spherical galaxies and bulges 
described by the de Vaucouleurs profile has been presented. Its 

Fig. 2.—Distribution functions for the K1/4 law {solid curve) and for the 
present model as a function of energy. Units are such that G = M = = 1, 
where Re is the effective radius of the R1/4 law. The curves for the model 
discussed here refer to four different values of a: a = 0.55 {dotted), a = 0.5 
{short-dashed), a = 0.45 {long-dashed), and a = 0.4 {dashed-dotted). 

Fig. 4.—Surface brightness profiles for the R1/A law {thick curve) and the 
present model {thin curve) as a function of {R/RJ11*. Surface brightness is 
normalized to its value at Re where Re refers separately to the effective radii of 
the two models. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

0A
pJ

. 
. .

35
6.

 .
35

 9H
 

SPHERICAL GALAXIES AND BULGES 363 No. 2, 1990 

intrinsic properties and projected distributions are similar to 
those of the Jaffe model but can all be expressed in terms of 
elementary functions. The results here are not intended to be 
comprehensive. More generally, it is of interest to consider the 
density field defined by 

ß> y) ( «Y  
Ana3 \r) [1 + (r/a/P ’ 

(43) 

where C(a, ß, 7) is a constant. For the special case p(r) ~ r-4 

when r > a (de Zeeuw 1985a, b), there are nine combinations of 
integer (a, ß, 7) which satisfy the constraint a + /fy = 4. The 
two with a = 3 and a = 4 have divergent cumulative mass pro- 
files at the origin and hence are not representative of the 
normal stellar population of elliptical galaxies. Three others 
have a = 0. While of considerable theoretical interest (de 
Zeeuw 1985a, b; de Zeeuw and Pfenniger 1988), these models 
do not approximate the R1/4 law well at small radii. Four 
models remain, having (a, /?, y) = (1, 1, 3) (the model presented 
here), (1, 3, 1), (2, 1, 2) (Jaffe’s model), and (2, 2, 1) (a modified 
Jaffe model; Jaffe 1983). Those with (a, ß, 7) = (1, 3, 1) and 
(2, 2, 1) lead to potentials which cannot be expressed analyti- 
cally in terms of the density. Thus, Jaffe’s model and that 
analyzed in the current paper are unique, given the above con- 
ditions. It is possible that other simple, analytical potential- 

density pairs may yet be found for less restricted values of a, /?, 
and 7. 

The model discussed here should be useful for many theo- 
retical and observational purposes. Since the distribution func- 
tion is known analytically for both isotropic and anisotropic 
velocity dispersions, it can be used to construct equilibrium 
A/-body realizations and to perform linear stability analyses. 
Owing to the simple relation between its density and potential, 
the model here may, perhaps, be generalized more easily than 
other approximations to the R1/4 law to include nonspherical 
effects, such as rotation (e.g., Lynden-Bell 1962; Dejonghe 
1986; de Zeeuw 1987). Finally, since the kinematic properties 
of this model are also known analytically, it can be used to 
infer dynamical aspects of galaxies directly from observations. 
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readings of the manuscript and Martin Weinberg for dis- 
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numerically. This work was supported in part by a grant from 
the Pittsburgh Supercomputing Center, where some numerical 
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nology grant No. 88-240090-2. 

APPENDIX A 

The quartic relating p and \¡/ defined by equation (8) can be inverted using standard procedures (e.g., Press et al 1986), with the 
result 

^1/4 
«A = V -«1/2 + . -« + 4 l + T , 

(Al) 

where 

,g+f's 

« = 1 2 P + 
1 
2 ' 

■ p112 + . 
64 pV13 

■21 + 4/ ' 
(A2) 

(Note that the solution to the general quartic equation given by Abramowitz and Stegun 1972 apparently contains a sign error.) 

APPENDIX B 

Computation of the projected distributions defined in § II/) is simplified through the use of the following asymptotic and Taylor 
series expansions. In the limit s = R/a -*■ 0, 

X(S) ~ lnM21nM Hl21nM £ + • • • , 

and I(R) diverges logarithmically : 

I(R) 
M 

7ca2T 

As s —► oo, 

implying 

ln--^ + I 121n- - !3 1 ^ + ( 180In- - 171 j + 
s 2 \ s / 4 V s / 32 

„. . Tr 1 n 2 3tc 
X{s)^2s~72+4Y~2?+\6?+'"’ 

Min 4 971 32 75n 
~ 27ta2r V2¡I_¡3 + 4¡5_3? + Í6¡?+" 

] 

(Bl) 

(B2) 

(B3) 

(B4) 
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In the vicinity of the point R = a , 

X(S) = 1 - |(S - 1) + Ä(5 - l)2 - £(S - l)3 + - l)4 — 693(5 — l)5 + • • •, 

I(R) = 
] 

For the case of isotropic orbits, 

°2p(R) 
GM 1 

a [[8 In (2/s) - 12]7r 4 In (2/s) - 6 + 

as s -► 0, while 

in the limit s -> 00. Near R = a. 

rtR) 

For purely circular orbits, 

.D. GM 8 1 fi /8 75 \ 1 /64 
a 15n s |_ \7E 64 / s \7r2 

= a. 

297 \ 1 / 512 1199 75n 
~i + 56 J s2 ' V ^ 21tc + 512 

\ 1 1 

J 

332 - 105tc 18784-5985tc , 707800 - 225225tc 
+ ^ (s - 1) + ^7^ (s - l)2 + 28 

gm r 
a L- 

22638 

60 In (2/s) - 77 s2 + 

4 In (2/s) — 6 24 In (2/s) — 36 ']• 
as s —► 0, while 

2.m GM 16 1 f /8 375 \l /64 753\ 1 /512 
^~s;L1+6■ »'J;+1?~s¡)?+6?- 

3491 4875 
84tc ~ 2048 

in the limit s -► oo. Near R = a. 

<?2P(R) 
GM r3157T - 976 21945tc - 68928 

a L 168 4312 
(5-1) + 

91591571 - 3070640 
196196 

”)?+'■] 

] 
(s - l)2 + 

(B5) 

(B6) 

(B7) 

(B8) 

(B9) 

(B10) 

(Bll) 

(B12) 
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