
N-Body project

Computational Astrophysics

ADVICE: using a low level programming language (such as for example C/C++) can significantly

improve the performances of the code you are going to build up, especially in the second task, where

time integration is involved. Higher level languages (such as Python) can be used, but be aware it

will typically take way longer to complete a simulation, modulo optimization tricks (NumPy, ...).
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1 Task1

1.1 Step 1

• Preliminarly, verify the form of the density function ρ(r) by inferring it from the particle dis-

tribution and compare it with the analytical density function described in the original paper

by Hernquist (from 1990 on Astrophysical Journal available on the web). Use Poissonian error

bars1 when comparing the numerical density profile with the analytical expected values.

• Note that the initial conditions are given in a system of units in which G=1. Assume reasonable

units of length and mass for your calculations (units of velocity and time follow automatically

from the assumption G=1) and discuss your choice.

1Poissonian error: the exercise requires to compare the Hernquist density profile with the density profile of the data.

The simplest way to do that is to divide the space in spherical bins (shells) and count how many particles you have in

all the bins, as you would do when building a histogram. Then you can compare these values to the expected values,

i.e. the average amount of particles you would expect in each bin given the Hernquist density profile. In doing that

you should consider that the number of particles you count in a given shell is a random variable that follows a Poisson

distribution with λ = expected number of particles (average value). When you compare the 2 values you would need

some error estimate to evaluate how similar they are, and the standard error you have is the standard deviation of the

Poisson distribution, i.e.
√
λ. Please be careful about how you choose your bins, in order to have reasonable results.
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1.2 Step 2

• Compute the direct N-Body forces between particles (note that the array potential[i] is not

needed for this purpose). Start by assuming a softening of the order of the mean interparticle

separation2 in the system, then repeat the force calculation by experimenting with different

values of the softening and discuss your results.

• To check the direct force calculation result and its dependence on the softening choice, compare

it with the analytical force expected based on the application of Newton’s second theorem

for spherical potentials3 and plot the result (use the book ”Galactic Dynamics” by Binney and

Tremaine as main reference for the theoretical notions, in particular sec. 2.2 (most recent version

of the book) or 2.1 (1987 version).

• Compute the relaxation timescale of the numerical model given the number of particles and the

physical crossing timescale (use the half-mass radius Rhm and the circular velocity computed

at the half-mass radius, vc =
√

GM(Rhm)/Rhm). Keeping in mind how the relaxation time

formula is derived, do you expect varying the value of the gravitational softening to change the

relaxation timescale? In particular, do you expect it to increase or decrease if the softening is

increased above the interparticle separation? Can you explain why?

2 Task 2 (choice 1): tree-code

• Compute the force on particles (a subset of them would be fine) using multipole expansion

(tree-code). For multipole calculation decide on a criterion (distance based) to group particles,

eventually experimenting with different orders of the expansion. Finally, compare the tree-code

result with the direct summation result, in terms of accuracy as well as computational cost. Try

different softenings for the direct summation and different opening angles for the tree-code.

• Using an appropriate time integrator among those that you have studied and tested earlier,

integrate the equation of motions using direct summation for a few systems’ crossing timescales

(see definition at Task 1 Step 2). Repeat the integration with different force softenings and

attempt to measure the magnitude of numerical relaxation in runs with different softenings,

comparing them. Try different timesteps, justifying the choice.

• OPTIONAL: Attempt to write a full gravity tree solver scheme with a time integrator of your

choice and evolve the system for at least a few timesteps.

3 Task 2 (choice 2): Particle-Mesh code

Download and use the appropriate initial condition set provided. They represent a 2D stellar disk

(total mass M = 10) with a central massive particle (black hole for instance) with mass M0 = 1.

2Use the number of particles contained in the half-mass radius Rhm to estimate this value.
3If we assume spherical symmetry we have F⃗ (r) = −GM(r)

r3
r⃗ and M(r) is the mass included within the radius r.
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Always assume G=1 and choose again reasonable units in order to get the correct time and length

units. There are two different sets to experiment with, one with ∼ 1000 particles, the other with

∼ 10000 if your code is able to handle them. Each of the two sets come in two versions, one is very

regular with particles on a grid, the other adds some noise and random distribution. The softening

for time evolution is provided.

• Compute the force on particles using a Particle-Mesh method. In practice, you should build an

uniform 3D grid4, compute the density on the grid starting from the particle distribution5, solve

the Poisson equation on the grid (Fourier transform for example), assign the accelerations from

the grid to the particle again. Try different grid spacings and justify them. Finally, compare

the PM results with the direct summation result, in terms of accuracy as well as computational

cost. Try different softenings for the direct summation and different grid spacing for the PM.

• Using an appropriate time integrator among those that you have studied and tested earlier,

integrate the equation of motions using direct summation for a few orbits. Verify that the initial

configuration is stable and in equilibrium (the disk should not shrink or expand) at least for a

few orbits with the softening that has been provided. Try also different softenings and check

what happens. Try different timesteps, justifying the choice.

• OPTIONAL: Attempt to write a full gravity PM solver scheme with a time integrator of your

choice and evolve the system for at least a few timesteps. They disk may not be in equilibrium

and expand/shrink right away. Why is that? (look at the acceleration comparison with different

grid spacing and softening). You can adjust the velocities in the initial conditions in order the

disk to be in equilibrium.

4You can also try to built a 2D grid but be careful of what you are really calculating (Σ vs ρ).
5In case you want to check, the density distribution should behave as Σ = Σ0(r/0.1)

−2 where Σ0 ∼ 72.5. Σ is basically

the vertical sum of the volume density Σ(x, y) =
∑

z ρ(x, y, z)h where h is the vertical grid spacing.

3


	Task1
	Step 1
	Step 2

	Task 2 (choice 1): tree-code
	Task 2 (choice 2): Particle-Mesh code

