{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# automatically reflect changes in imported modules\n", "%load_ext autoreload\n", "%autoreload 2\n", "\n", "from pathlib import Path\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import astropy.units as u\n", "\n", "import utils\n", "import utils.logging_config\n", "import logging\n", "logger = logging.getLogger(\"task2 (mesh)\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "DATA_ROOT = Path('data')\n", "DATA_NAME = 'data0.txt'\n", "# DATA_NAME = 'data1.txt'\n", "# DATA_NAME = 'data0_noise.txt'\n", "# DATA_NAME = 'data1_noise.txt'\n", "NBINS = 30\n", "CACHE_ROOT = Path('.cache')\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "09:38:46 - utils.load - Loaded 1008 rows and 9 columns from data/data0.txt\n", "09:38:46 - task2 (mesh) - Fetched 1008 points, columns: ['ID', 'M', 'x', 'y', 'z', 'vx', 'vy', 'vz', 'eps']\n" ] } ], "source": [ "points, columns = utils.load_data(DATA_ROOT / DATA_NAME)\n", "logger.debug(f\"Fetched {points.shape[0]} points, columns: {columns}\")\n", "# points = points[1:100, ...]\n", "points = points[::5]\n", "# TODO remove\n", "# reorder the columns to match the expected order (x, y, z, mass)\n", "particles = points[:, [2, 3, 4, 1]]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAGNCAYAAAAhPhc6AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/XecZHd554u/T+XU1TmH6TA905M0OfSMAkiCkYgiCCxswHgvLHuvbLB8WYeLw8/2XozXeIUX1lqwWdsXa8GAEUEgkEYBSTMjaULnnHOo0FXdleuc8/uj5pSqu6tDVVfX9IzO5/UCSdV1QlWd8/2c53k+z+cRZFmWUaFChQoVKrIEzc0+ARUqVKhQ8daCSjwqVKhQoSKrUIlHhQoVKlRkFSrxqFChQoWKrEIlHhUqVKhQkVWoxKNChQoVKrIKlXhUqFChQkVWoRKPChUqVKjIKlTiUaFChQoVWYVKPCpUqFChIqtQiUeFChUqVGQVKvGoUKFChYqsQiUeFSpUqFCRVajEo0KFChUqsgqVeFSoUKFCRVahEo8KFSpUqMgqVOJRoUKFChVZhUo8KlSoUKEiq1CJR4UKFSpUZBUq8ahQoUKFiqxCJR4VKlSoUJFVqMSjQoUKFSqyCpV4VKhQoUJFVqESjwoVKlSoyCpU4lGhQoUKFVmFSjwqVKhQoSKrUIlHhQoVKlRkFSrxqFChQoWKrEIlHhUqVKhQkVWoxKNChQoVKrIKlXhUqFChQkVWoRKPChUqVKjIKlTiUaFChQoVWYVKPCpUqFChIqtQiUeFChUqVGQVKvGoUKFChYqsQnezT0DFWw+yLCOKIoIgoNFoEAThZp+SChUqsgiVeFRkFaIoEolE8Pv9aDQaNBoNer0erVaLTqdDEASViFSouM0hyLIs3+yTUHH7Q5ZlotEoXV1dlJWVYTQaEQQBSZKQZTlOOAoB6XQ6tFqtSkQqVNyGUCMeFdsOSZKIRCJIksT8/DwFBQWYTKZ4xAMxYlLIKRKJLCMiJSLSarXx96tQoeLWhUo8KrYNsizHSUeJajQaTfzflX8CcaJRiUiFitsfKvGo2BbIskwkEkEUReBNYlEIJ5F0kmEjIgLQaDTL0nIqEalQcWtAJR4VGYcS5YiimFS1lk5ZcS0iikQihMPh+N9VIlKhYudDJR4VGYMik45Go0iSlJR0lIhnq0hGRArhTU1NEQgE2LVr1zIiUlRzKlSouLlQiUdFRrAytbZWf06miCfZfrVaLUBcrq38e7KIKFE1p0KFiuxCJR4VW4bSm7NWlJOIbC70ChHB8ohIISKNRrNKrKASkQoV2w+VeFSkDaXYH41GkWV5Uy4E2xXxJDu3lcfdDBGtrBGpRKRCReahEo+KtCBJEtFodMPU2kokyqdvJhKJSCEpSZIIh8OEQiGViFSo2EaoxKMiJSi1nEAggMFgSMtZYLsjnlTPR3m/SkQqVGQHKvGo2DSU1Nr8/DydnZ3cfffdaS3yNyPVlgqSEZHyv1AoRDgcBojXtCwWi0pEKlSkAJV4VGwKib05K10HUkG2iCeTSIzqtFptnIQmJibwer3s27cvHhElGp6qztsqVCSHSjwq1kWy3hzF9iYdZIN4tnuxT+whUiTaChkFg8H4exQiUlJzKhGpUBGDSjwq1sRavTk7nXhg++tIChKtgGB5RLSSiFY6b6tEpOKtCpV4VCSFUlhP1puzFfJ4Kyy0axGRJEkqEalQgUo8KlZASa0pjtLbYXtzq6faFGz2c6xHRKFQiGAwGE9hqkSk4q0AlXhUxJEN25tbUVyQaayUoCtEJIoioiguk2+r01lV3I5QiUcFwLIoZ6MFTpkcmg5utxpPJrCW83aiqGN6epqamhoMBoM6nVXFLQ+VeN7iSLS9gdVP48mw0yOeW30xXklEwWCQoaEhKioq4nL2tWpEKlTcClCJ5y2MxJHUwKYXrsQn83QbSLebgG6liGcjKN+xXq9fNkhPnc6q4laFSjxvQSiF7dHRUYqKiuLWN5uF8t6tEI/P58NoNKLT3dqXYDaiq2SGp+p0VhW3Mm7tu15FykgUEHR0dHDu3DmMRmNK+0gknnSOPzc3x8jICAB2u538/HwKCgqw2+0ZWRx3mqotU8dZ63NtNJ0VVCJSsbOgEs9bCCtHUqe78KRLPIuLi8zOzqLRaDh79iyiKLKwsIDb7aajo4NoNEpeXh75+fnk5+eTk5OTNoncTqk2SI1M15vOqkREK8eEq9NZVWQTKvG8BbDWSGqNRpOWOi1V4pFlmcnJSbq7u7HZbOTm5mI0GpFlGYvFQkVFRTz95na7cbvdjI6OAsSJqKCgAIvF8pZcHLdKopuZRaROZ1WRTajEc5tjvd6cdAv8qRBPNBqlq6sLh8PB0aNHcTgcSclOEARsNhs2m43q6mpkWWZxcRG3243T6WRwcBCdThePhvLz8zGbzeue3+2CdA1Z18J6RDQ3N4fX66Wurk6dzqpi26ASz22MjUZSp9uPo+xno20XFxdpaWnBaDRy9uxZTCYTTqdzU4QlCAJ2ux273c6uXbuQJAmPx4Pb7WZ6epre3l6MRuMyIkqsVb2VU23p7FshonA4zOLi4rIakTqLSEWmoRLPbYiVvTlrORCka/a5UcSjjAzo6emhtraW3bt3bznK0mg0cYIBltWHxsfH6erqwmq1xv9+OxFPNj+LEl2pQ/FUbCdU4rnNsLI3Z72G0K2k2tbaNhqN0tHRgcvl4tixYxQWFmbkmCuh1WopLCyM7z8SicSJaG5ujnA4zBtvvBEnq7y8vGXppUwg0ymw9ZBNpd5KQ1hQp7OqyCxU4rlNkJin34ztDZC2uACSE4jX66WlpQWz2bymTHulR1mmFie9Xk9xcTHFxcXk5uYyNjZGdXU1breb3t5eQqHQtki3s4FsRzzrfS/rEVHidFaViFSsB5V4bgOsFBBs1sMrU9Y3siwzPj5Ob28vdXV1NDQ0ZDzKSuf8ysrKKCsrAyAQCMQVc5mWbm83shlZpXqsRCJaOYsoFAqtaXiqOm+/taESzy2Olb05qdzMmYh4IpEInZ2duN1ujh8/TkFBwYbb3gyvNrPZjNls3lC6XVBQQH5+/o6Tbu9U4lmJtUZAqNNZVSRCJZ5bFIqAYHR0lNLS0riPVyrYasTj9Xq5fv06ZrOZs2fPbsoBYSeMRVhPuu1wOBgYGNi0dDsbuBnigkxhPSKanp5mdnaWffv2qUPx3mJQiecWhBJpRKNROjs7435rqSJdObWycHR2dtLQ0EB9ff2mF4mdOBZhq9Lt7UY2U22SJG27dDtRFRkKheKRtzqd9a0DlXhuMSTrzUl3IU9HTh2JROI1kv3791NTU5PS9rfCWISV0u1oNBonokTptlLXiEQi6PX6TJz6mrhVUm2pQLmGFTGDOp31rQOVeG4RJPbmJI6kTjdqgdQjHo/HQ0tLCzabDZPJhM1mS+uYtxp0Ol1S6fbIyAiLi4u8/PLL5OTkbJt0+1ZOta0HhXgSsVIYs950VpWIbl2oxHMLQJIkotFoUtubdJtAU9lWlmVGR0fp7++noaGBuro6Xn755bR7gHZaqi1VKNLtxcVFQqEQ9fX1caFConRbESpsVbq9k1VtWz3WRt/LWs7biveg8veVqbnNKjtV3ByoxLODsZnenK0q0zbaNhKJ0N7ejtfr5cSJE/H001YIZLsXt2wvOEajcU3p9uTkZEak29kkg0w32q6FdOpJaxFRsqF4KhHtXKjEs0Ox2ZHUWyGejSKehYUFWlpayMnJ4ezZs8sEDFtxPbjZqrbtRqal22+lVFuqSIWI1OmsOwcq8exAJPbmJN5UybDVGk+yRU2WZUZGRhgYGGD37t3U1tauWox2OvHsFHLLhHT7dk61ZfpY6xHRG2+8QWNjIzk5OepQvJsMlXh2ENaam7MethrxrNw2HA7T3t7O4uIiJ0+eJC8vL+m26RLeWyHiWQ/pSLeV7bKBWy3i2QiJRBQIBOJpN3U6682FSjw7BOvNzVkPWxEXrCQBt9tNa2srdrudc+fOrSsR3qqz9XYim7n8bEi3jUYjkiQxPz9PXl7etkq3t7uPJxGbERdkEony7WTTWZMNxVOJaHugEs8OgOL0u9koJxGZEBfIsszw8DCDg4M0Njaya9euDc9hq6m27V7cbtV0XjLp9ujoKNPT0wwODuL3+7ddun27NKsmQiGYZPLttYbiqWPCtw8q8dxEKP5Vfr8fs9mcVi/CVmo8Go2GaDTK1atX8fl8nDp1itzc3E0fdyvE81ZOt6UCvV6P3W7H7XZz8uRJQqHQbSXdzpaCTrneNjreekSUOBRPnc66NajEc5OgpNYmJyeZnp7m5MmTaV28W4l4QqEQc3NzFBUVcfbs2ZRSODtZXHC7LQKJZLDd0u3bNeJR7pFUSVklou2BSjw3ASttb7ZyA6ZTa5FlmaGhIWZmZsjNzeXIkSNZi7Teaqq2TGGt32c7pNvZqmdkQ1yQeCxInXhWIpGIEmcRqWPCU4NKPFnEyt4c5Ukp3YhF2Ucq24dCIdra2ggEAlRWVqZNelttIL1dkI0FZbPf160o3c4W8STOqsoUlH0lI6KlpSXa29s5duzYqmZWlYhU4skaVo6kVm64raTKILXIw+l00tbWRn5+PkePHmVsbIzFxcW0jquq2rKHdMkgHen27Zxq224/t0QiEgQBv9+PTqdTp7MmgUo824zEnHCyi3+rxLOZ7WVZZnBwkOHhYfbu3Ut1dXVcNpopKXYq24miyNWrVxFFkYKCAgoKCsjNzc3o0+/tFFVlCpuRbitSY61WmxXp9u2Y1oNYhKUQylrTWROJ6K02nVUlnm3EZnpzMpFqW2+RTUytnT59GrvdHv/bdrgebASPx0MgEKCwsBCbzYbb7aazszNeFFdqETabbcfffNkit+2KQpJJt9944w2ArEm3b2fiWc95+60+nVUlnm3CZkdSb2fE43Q6aW1tpbCwkKNHj6LT6VZtm62IR5Ik+vv7GR0dRa/X09TURDQaXVUUd7lcDA8Px5/OFSJKZQLo7XaTZiv9pSx2lZWVFBcXJ5Vu5+bmxoloq9LtbKfasiXd3uzxUiGiH/zgBxw7dowjR45s96lnBSrxZBip2t5sR41HlmUGBgYYGRmhqamJqqqqjBuMphIthUIhWlpaiEQiHDx4kL6+vlX7SiyKS5KE1+tdVoswmUxxEsrPz98wBXS7pdpuhmVOonRbWQyVh4OJiQlEUdySdPutkGpLBesR0RNPPMHv/M7vqMSjYjXSsb3JdMQTDAZpa2sjFApx5swZcnJy1tw2GzUel8sVj7qOHz/O4uLihttpNBry8vLIy8ujrq6OaDTKwsJCPBrq6OggJycnTkS5ubnLbvLbMeLJ5rGSfX+CIGxKup0oVHirSrcheaotVSQSkc/nS2vw4k6FSjwZQrKR1JuBQhzpplM0Gk2c6BwOB21tbRQVFXHs2LFVqbWV2KrrwXoLYqINT2LUpXzGVD6rTqejqKiIoqIigHgKyOVy0dXVRTQaJTc3Ny5UyOZCnS2S22kS5/Wk2/Pz85uSbmcz1ZYJIkgFmUztKSS/3kPkrQaVeLaIZL05qXqtKfvZCvH09fUxOjrKvn37qKyszLrBaCIikQhtbW0sLS2tsuHJRAPpyhSQ3++PE9HIyAgQ+z4nJycpKChIqT60E7ETIp6NkI50W021bR5+v1+NeFTEIEkSfr+flpYWjh49mpYeX7kZ0r0xRFHE4XBgMBg2TK2txHao2jweDy0tLdhstqQ2PJl2LhAEAavVitVqpaqqCkmSmJ6eZmBggNnZWfr6+jAajcvqQ4kD7baCW13Vtp3H2ox0WxAEJiYm4orG20W6DZmPsHw+H1arNWP7u9lQiScNrOzNcTqdQHrpkETiSRXz8/OMjY2h1+s5c+bMhqm1ZMfeSsSTeM6yLDM+Pk5vby8NDQ3U1dWtWStILJpmGhqNhpycHLRaLceOHYsveC6Xi9HRUTo7O+MSYaV/KJtqp3RxqxHPSiSTbl+8eBHIjnQ728STyVSbKIpqxPNWx0oBgbLYi6KY8sIPbxKPsr/NQJEmj42NUVJSkvaxMxXxRKNRurq6cDgcHDt2LL64bLTddkI5xsoFLxwO43K5cLvddHd3E4lE4hLhgoKClJVZ2UA2U23Zqrvo9XoEQaCurg6bzZYV6XY2HzAymWrz+XwAao3nrYpkvTmJ/kzpQCm4b3b7QCBAa2sr0WiU5uZm3G43s7OzaR07EzWepaUlWlpa0Ov1nD17FpPJtKntbhYMBsOy+lAgEIgT0djYGPCmMkupD91sIroVU22bQSLJ3U7Sbcgs8fj9fgA14nmrYb3eHKXBK5WIZSU2K6mem5ujvb2d0tJS9u3bh1arZWFhIevuA8q2Pp+PS5cuUVNTQ2Nj46bVUDtlLIIgCFgsFiwWC1VVVXFllsvlYm5ujv7+fgwGQ7w+VFBQkLH6UKq4HYlnLQXddki3b0aqLVPXis/nw2AwbGsNLNtQiWcDZMv2Zr3tJUmir6+P8fFxDhw4QEVFxaa33cpx1zuf+fl5vF4vR48epaSkJKXtd+pYhERlVm1tLaIosrCwEI+Gurq6sNlscRLK1mJ2K6ja0jlOutJtxf05Ven2rRrxLC0tYbVab3rknUmoxLMONtubs50RTyAQoKWlBUmSOHv27CplSzZtbxLPJxgMUlhYmDLpKN/hreAsoNVqV9WHEusQwWAQo9GITqeL14e2Y3HbCVFIpqFc7+kKclKVbqdbB00XmVS1KcRzO0ElniRI7M1RbsT1bpCtRjxrba+k1srKymhqakr6BJUt2xuIqeja2tooKyujtLQUj8eT1jG3G9t1DIPBQGlpKaWlpQB0dXURCoVYWlpifHwcWZaX+cttlP7ZaVAeBrIV8cDWB7Mp+9hIuq3VarFareTk5Gy7dBsyK2bw+/1qxHO7Q5IkotHoTbW9kSSJ3t5eJicnOXDgAOXl5Wtuu53uAwoSvd/2799PZWUlo6OjO3YeT7ag0+nQ6/U0NjYm7dzX6/XLiMhoNKZ1nGymvyA7v9FWIp6NkEy63draiiAIWZFuQ+ZVbWrEc5sisTdHudFTsb3JVKrN7/fT2tqKLMs0NzdveMFtd8SjjFUIBoPLGlS3Mo8Htj/Vlu1U3srOfVEUVz11W63WOAnl5eWllPq5XYknG2k9vV6PXq+nqKiIysrKbZduQ+ZTbbeTog1U4gFW296kQjqQOXHB7Ows7e3tVFRUsHfv3k09MW2lxrORXY/b7aalpSU+sTRxoUw30soG8eyEqEqr1ca94xoaGohEInF5cH9/P8FgELvdHiei9Ra7bJHodkYhK5Hqw91WkSguSCbdViT1mZBuK8fLdKrtdsJbnngkSSIcDsd7CtJ5SsnEaIOJiQk8Hg8HDx6krKwsK8dOJIHEG0uWZUZHR+nv72fPnj3U1NSsuvG2GvHcLtjs59Hr9ZSUlMTFGIFAYFmfiiRJywbhJeb0b9dUWzavhbVUbYp0u7KyksrKyoxIt0FNtW2EtyzxKL05Xq+XV155hXe+851p3whbSbX5/X4WFxfR6XScPXsWi8WS8rG3UuOB5TdlJBKho6MDj8fDyZMnycvLW3PbnaxM28nnBqzqU1HkwU6nk8HBwbhSLj8/n2g0mhVFVraJJ9t9NVuRbrtcrk1Lt0FNtW2EtyTxJPbmKAvoVp4q0021zczM0NHRgV6vp7q6OmXSga3b3sCbKRav10tLSwsWi4WzZ8+u2wCXiRrPdi1wt1pUJQgCOTk55OTkUFNTE5cHu1wuJicn8Xq96HS6uGouPz9/W4go26q2W8G0M1G6XVtbu6F0W2kyzmSqTY14bgMkptY0Gs0yr7V0b4RUIx5RFOnt7WVqaopDhw4xPT29pWgrEzWeiYkJuru7qauro6GhYcPz2cnEky1sV1S1Uh6seMrJsszg4CCBQGDVILxMLOLZrLvslFRbqtiMdNtisSDLMgsLC3Hl41bg9/vjEv7bBW8Z4lFSa8oNrMiklacSURTTvkBSiXh8Pl9c2qmk1mZnZ7csiU5nIVfe393djdPp5OjRo/Fha5vZdicTz05PtaUCjUaD1WqloaEBYFkxfHJyMl4fUp640+35yLZP263qFp2IZNJth8NBd3c3o6OjdHd3b1m6fbtNH4W3CPGsZ3uj/PtWVWmbiXimp6fp7OyksrKSvXv3xm+8rdSIEus0qV7Qivmg3+/n3LlzGxp8JmKny6lvJ6z8rkwmExUVFct8zBQiGh4eRqPRLPOX2+zvejs6JCjIFtHp9XoKCgoAOH369Cq3i3Sk2yrx3ILYjO2NVqvdch+OIsVe6xx6enqYmZnhjjvuWGUzkwllWqrEo0i3AQ4dOpQS6SjHzaZVT6r7v52wHiEkFsOV+pDX68XlcjE1NUVvby9mszlOQut17d8sZ+psHS9bRJfoXp8J6fbtSDzZe+TIMpQoJxwOb2h7s9UG0PVSbUtLS1y+fBmv18vZs2eTeptlQpm22YVckiR6enpob2/n4MGDaacftholbjeyFVHtNJLTaDTk5eVRX1/PiRMnuOuuu+I1u8HBQV5++WWuXLnC4OAgbrd7lWPG7RjxKM3h2SaelUiUbh88eJA777yTEydOUFhYiMfj4fr167z88su0t7czMTGBw+FAkqQtEc/Xv/51amtrMZlMnD59mtdff33d93/ve9+jqakJk8nEoUOH+NnPfrbmez/72c8iCAKPP/54yud1W0Y8idNBYePu6ExEPMm2n5qaorOzc8OxARtFTBsdGzY3DygYDNLS0oIoinFXhM7OzrRTZltZ3Ht6evB4PPEn8VRSQm81bCUS0el0FBcXU1xcDMScKJQn7s7OzvjY6YKCgqza7meb5CA7Lgmw+ezDRtLtr3zlK7z88stEIhEuXbpEc3MztbW1mz6P7373uzz22GM88cQTnD59mscff5zz58/T29ub9AH44sWLPPLII3zpS1/iPe95D08++SQPPfQQ165d4+DBg8ve+8Mf/pDLly8vc8pPBbdVxKMICMLhMKIobrohNNNjDURRpKOjg+7ubg4fPrysnrOZ7VOBokLaaHun08nFixexWq2cOXMmLs9MN3JJV023tLSELMuEw2H279+PxWJhenqaS5cucfnyZfr6+nA4HFt6ENhpUchWkckUmNFopLy8nP3793Pu3DlOnjxJYWEhCwsL9Pb2xvu4pqamCAQCGTlmMmQ7AoHsEU+6zaOKdLu2tpajR4/yzW9+k7//+79HEAReeOEFGhsbaWho4Etf+tKm9ve3f/u3fPrTn+ZTn/oU+/fv54knnsBisfCtb30r6fu/+tWv8sADD/CFL3yBffv28Rd/8RccO3aMr33ta8veNzk5yW//9m/zr//6r2k/rNw2Ec9m5uashUyk2pTtlYmcSkNosuayZNtv1flgre1lWWZoaIihoSH27dtHVVXVsr+nSyDpRDxKXUkQBPbv34/JZFqmBlpYWFhmKZObmxuPhtKxLVGVc+tDEASsVitWq5Xq6mpcLlfcU07pUTGZTMuMTjMVFWUz1ZZNXzjIXPOo2WzmwQcfxGAw8I//+I/s37+fl19+eVNrVTgc5urVq/zhH/5h/DWNRsP999/PpUuXkm5z6dIlHnvssWWvnT9/nqeeeir+35Ik8fGPf5wvfOELHDhwIL0Pxm1CPMlGUqeCTKTaJElicnKSrq6ulCZywtbrJWuRRzgcpq2tDb/fz+nTp7Hb7Rk7dirEI8sy/f39jI6OcujQITo7O1e9R6/XL0sJ+f3+uKXM2NgYgiBsOi2nRjzpQ6fTUVdXR11dHdFoND4Ib3h4mI6OjlX9Q+nWCLOZatuKHVa6x8ukdFup8dhsNh588MFNbaNkDVb2/5SWltLT05N0m5mZmaTvn5mZif/3l7/8ZXQ6Hb/zO7+T4qdYjluaeBRzz0gkAqQW5SRiqxEHxCKdnp4ejhw5El88N4tMj1UAWFhYoKWlhdzcXJqbm9d8Ut3uiCccDtPa2kowGKS5uRmbzUZXV9eG2yojqSsrK5EkKT6SWnkSN5vNcRJK1en5VkQ2jTsV6HQ6ioqK4r1diquzy+WKN7UqUWmqZprZTLXdjOmjmTpeNBolGAzuCFXb1atX+epXv8q1a9e2fD3esnerklrr7u5GFEX279+/JcubdCOexcVF+vv7EUWRu+++O60CeSZrTLIsMzY2Rl9fH7t376a2tnbd72Ur/TgbnbOi1FHITyGHVI+p0WjIzc0lNzc3/iS+0uk5MS2nWP3cDu4IkL2U3kbf10ppcGJUOjIysiwqVTzM1tpftlNtt/LYayA+jmSzKCoqQqvVMjs7u+z12dnZNU2Iy8rK1n3/yy+/zNzcHDU1NfG/i6LI7/3e7/H4448zMjKy6fO7JYknsTdHq9USiUS2tMCkU+ORZZnJyUm6u7spKSlhYWEhbVVWJtytlQF2HR0duN1uTpw4Ebf12I5jb0QeigVPQ0MDdXV1y36fLT8trVBqBQIBXC5XPC2nYHp6msLCwm1Vy92MSGS7kEr6K7E+VFVVtSwqnZ2dpa+vL+5hphBRovdftlNtt6pLgtLknWrEYzAYOH78OBcuXOChhx6Kn9eFCxd49NFHk27T3NzMhQsX+PznPx9/7dlnn6W5uRmAj3/849x///3Ltjl//jwf//jH+dSnPpXS+d1SxLNybo7itbaV+gykHvFEo1G6urpwOBwcPXoUrVaL2+1O+/iZSLX5fD66urowmUycPXt209Mu04141krRSZJEV1cXs7OzHDt2LC4eWIlMPsUn2tpLkoTL5aKtrY3p6Wn6+vq2LS2XTXHBTie4lVGpKIpxscjo6CidnZ3YbLZljtu3WrH/ZhzP5/NhMpnSIrLHHnuMT37yk5w4cYJTp07x+OOP4/P54iTxiU98gsrKyrhK7nOf+xz33HMPX/nKV3j3u9/Nd77zHa5cucI3vvENgGXWQAr0ej1lZWXs3bs3pXO7ZYhnZW+OIiPeqjAAUkt1LS4u0tLSgtFo5OzZs5hMJjweT8YmkKYDxRmhrq6O3bt3p7R4ZFJcEAgEaGlpAVhX0bedzgWKJBXg6NGjyLK8blouHbVctrFTUm2pQKvVLluoFOsYl8tFT08PoVAIo9GI0Wjc9t/hVk+1peu999GPfpT5+Xn+5E/+hJmZGY4cOcIzzzwTFxCMjY0t+17Onj3Lk08+yRe/+EX+6I/+iMbGRp566qlVPTyZwI4nno1GUmu12rSbLxVspoFTcXDu6emhtrZ22QKf6T6gzUIhnFAoRF1dHY2NjWkdOxNmn06nk9bWVkpKSti3b9+6N142LXM2k5ZTSGgnN7Hu9IhnIxgMBkpLSyktLUWWZbq6ugiHwywuLsZ/h8TRAuvVh1LFzUi1ZSqq3upIhEcffXTN1NqLL7646rWHH36Yhx9+eNP7T6Wuk4gdTTwre3OSWbZnKuIJhUJr/j0ajdLZ2YnT6UyaPlJqROneuOkQj9/vp6WlJT7LJV3Vy1YiHojdZGNjYwwMDCTtE1pr25vVA7MyLXcrqOWyGfFkY4FWpM25ubnU19cjy3L8d5ifn6e/vx+DwbDM6HS92VAb4WZEPFs530QoxLPTo/JUcfPvqjWw2d6c7U61KcPRzGYz586dS1o7UZ7ut0I8qXyGubk52traqKiooKmpiStXrmx5rEKqUD5na2srXq+XU6dOkZubu+lts7GYbnSMVNVyNystl83R19m0sVGOJQjCsmFroijGB+EpM25sNluchHJzc1N6ILiVU2234xA42IHEo9jeRKPRdR2lFWSKeFbuQ5ZlxsfH6e3t3XA4WrIR0qlgsxGPJEn09/czNjbGwYMHKS8vj2+/FafodEhLsVOJRqMbTitNdsydiFTScptRDGYKtyPxrHevaLXa+PcMsfqQIlRYOVpAeSBY777brlk82Tje7Tj2GnYY8aRje5MJ4lkZcSTKko8fPx6/AdY7B4g96aSTmtkM8YRCIVpbWwmHw/FGzFS2X+/YqZLWzMxMfKTC4cOHU04r3CpjERLTcrIsx8cNKGk5ZUCb3W7fMWm5rWCnzuMxGAyUlJTEjS2VBwJl6mfiSPCCggIsFsuyz3ErN5D6/X4sFktG9rWTsGPulM3MzUmGTEc8Ho+H1tZWzGbzpmXJifWOdLDRFFGXy0VraysFBQUcO3Zs1QK3FcudVLZVIq7x8XEOHjxIa2trWseE7NQtMnkMQRBWpeXa2toQRZGBgQECgQB2uz3+pG632zO2iO/EPp6beayVDwSKo7PD4WBwcBC9Xr+sf+hmyKkzmWpTI55tQGJvzkZzc5JBqc9s5eZUiGd0dJS+vj7q6+upr69PqZluO6aIyrLM8PAwg4OD7N27l+rq6qTntFV3681a37S0tBAKheLu1q2trVuy20n8560GnU6HyWTCbDZTV1e3LC03Pj4OsMxbbjNmsevhrZRqSwWKuCYnJ4ddu3bF60NKNNTV1YVer8dgMOBwOLISmWYy1aYSzzZA6bZPx1FawVbTXBC74QKBAENDQ5vu+E92Huku/spnSLxgI5EI7e3tLC4ubli430qNZzPbKtY3eXl5qyKurRDPdi10N4PIVj6FLy4u4nQ6mZmZoa+vD5PJtKw+lMq1eiv28dysYyXWhxoaGohEInR1dREMBuOCEbvdHn8o2Mzo6VSR6QZSVVyQISi9ObOzs0xOTnLo0KG0L0LlBk6XeDweT9y08ty5c2nLIDMxRVTZ3uPx0NLSgs1mo7m5ecNz2uqx19t2fHycnp6epL5vW/F5ywZulmQ7UaWV6PLscrkYHBxMOS33VhMXZBJ6vR6TyYTVamX37t0EAoG4cnFychJJkuKD8PLz8zMiXc50qq2ysjIj+9pJuGkRjxLpeDyeLf3QSm9POl5ro6Oj9Pf3U1VVxeTk5Ja091tJtSmfXxTF+EKfzONsve0znWoTRZHu7m7m5ubWtL7ZSg/QTh6bnWmsdHlOXPw2m5bLFvFkcxx1Nk1CFXd2s9mM2WymoqIiXh9yu904nU4GBwfR6XTL6kPpNBSrqbaNcVOIR6mJ6PX6LQsD0rHNUdJYXq+XEydOYDAY4gtAuthKqk0hz56eHhYWFtb1OEuGrdZ4Vm4bCAS4fv06giDEbYHW2nYnRjw7vWa0cvFbaa65Mi13O6basi1kSEYEifWhmpoaJEmK14cmJyfp6emJNxQrqrmNsipKO0gmU22pOlPfCrhpEU+mfNYgNWWbMqcmJycn3n8SDAa3LFDYSsSjjIMOBoPrLvTbceyV2zocDlpbWykrK2Pfvn0bjuzO1vTSnYhMLNQrmyeTpeUEQWBubg6DwbBhz8pWcDum2lI5lkajiRNMfX39sqm4ym+xchDeyv0q13UmIx5VTp1hZMJnTdnPRguvLMuMjIwwMDCwql6hXDxbESikG/FMT0/T0dGBRqOJj4NOFZmIeBIVdNttfXO713i2gpVpuWAwyJUrVwgGg3H5eibVcom4nVNt6Rxr5VTcYDAYT5FOTU0RjUaX9Q9Zrdb4OpTJsQhqxJNBCIKATqeLCw22chFuRDzhcDiuEDt58iR5eXmrtof0+3Ag9cVfkiR6e3uZnJzk8OHDm5rKuRa2UjNRIp6WlhY8Hk/WrG+28+l6p6faUoHJZEKn01FbW0tBQcGGabmtSIWz2eGfzVRbplJfJpOJ8vJyysvLkWUZn88XJ6Lh4eG4BRPE1pxMPBQo7tS3G256xAMxocFWCvvrRU5ut5vW1lbsdjvnzp1LOgI6MeJJF6mku5TxAbIsc/bsWSwWCz09PdumTFsP4XCY+fl58vLy0rK+2WmptqAvxETfFAMXRzF4rdTsraK8oRS94aa3rG0JSh1wo7Rcolou1bTcWz3VlgoEQcBms2Gz2aiurkaSJLxeb3yC5+XLl+MPBUpUtNb4+bWgTHlVI54MI7EHZ6v7Sea1pqSOGhsb2bVr15o3VSbqTZtNtc3Pz9PW1kZpaemy8QFbrdOks5DPzMwwPj6O2WzmxIkTKS86W1G1bQfxBH0hrj/XzszwHAFvCOekG+e4G9e0m0P37EerzV73eiax1neVLC23lSbWnWqZs1Vkg+Q0Gg15eXlotVrm5uZobm6OPxQMDw/T0dGxqn9oM9GlWuPJMJQnuEzUeVaSRjgcpq2tDZ/Pt+nU0VYWfmX79RZhWZYZGBhgZGSE/fv3r9Lmb2cvzkpIkkRfXx8TExNUVFQQDofTWnC2EvGIosj09HR8pEMmFrzpoVlmh+cpbyjFFXJQVFWALMJ49xQVDWWU7Cra8jFuBjZLCCaTiYqKik2r5Vam5W5nVVu2p52ufCgIhUJxf7nOzk6i0Sh5eXlxIlrrHrhdVW03/REw06Or3W43r776KlqtlrNnz266XpGJYW5rfY5wOMyVK1eYnp7mzJkzSRvCMi2JXguhUIgrV67gcDhobm7GbrdnfaSCKIqMjY0xOjrK1atXefXVV+nu7mZ2dpZIJJLWuQA4JpwYrQa0ujefJI1mA6Ik4XEspr3f9ZCtxTOdaFRJyR07doy77rqLxsZGBEFgcHCQl19+matXrzI8PIzH44kLTLKxQCuuFdmMeLJZu0p2LKPRSHl5Ofv37+fcuXOcPHmSwsJCPB4P165d45VXXqGjo4PJycm483skEiEcDqdFPF//+tepra3FZDJx+vRpXn/99XXf/73vfY+mpiZMJhOHDh3iZz/7WfxvkUiE3//93+fQoUNYrVYqKir4xCc+wdTUVMrnpeCmJ74zZfIZjUYZHBxkaGiIPXv2UFNTk7Ln21ZTbcm2d7vdtLS0kJ+fz9GjR9cs/mYj4lGk5InWN263e0uihlS3dTgcOBwOcnNzOXz4MEB89srIyAidnZ3xOkVhYWFKZps6vQ4xmuR7kGW0uswvcjutv0aWZSRRQqNdbT21XlpuYmIiTgSKfVQm1XLJzhO4rVJtCjbjWiAIAlarFavVGq8PKdGpYrH0ta99LV5vDYfDKZ3Dd7/7XR577DGeeOIJTp8+zeOPP8758+fp7e2NO3wn4uLFizzyyCN86Utf4j3veQ9PPvkkDz30ENeuXePgwYP4/X6uXbvGH//xH3P48GHcbjef+9zneN/73seVK1dSOjcFN514dDpdRiTV09PTaDSalFRZidgq8awcn53ojLAZItzO0QaJs4VWSsm3w/VgrXNQ5Oy5ubkUFRXFFwMl/bN7925CoRBOpzO+ICb+vbCwcF238NK6EsZ7p/EvBlC+ac+8F7PNREHF+v577lkPjgknYlTCXpRD6a6iZZHTzcRG37Esy0z2TTPcPo5vwYct30btoWoqG8vWvOaSpeW6urpYWlri8uXLGI1GCgsL45NYUy2MrwflerudU22pINlAwoWFBX74wx8CsHv3bo4ePcr999/Pxz/+cQ4cOLDu/v72b/+WT3/603zqU58C4IknnuDpp5/mW9/6Fn/wB3+w6v1f/epXeeCBB/jCF74AwF/8xV/w7LPP8rWvfY0nnniC3Nxcnn322WXbfO1rX+PUqVOMjY1RU1OT0ueFm1zjga0v+Mp8FIPBwNmzZ9OWk261xqPVauNPJtFolPb2djweT1L59lrbb0fEI4oiXV1dzM/PJ50ttNUhcpvZVhTF+Hwj5WJdazuj0bhsQVRm4ExNTdHb24vFYomTUG5u7rKny9LaYnYf3cVw+zjuSS+Tuhly8+3sOdlAXrF9zfMbah2l45UeAotBBAE0Wg01+6s4et9B9MbMLbhbwXqL9Ej7ONeea0cjCJhzTMyNOZgbc3DsHYeoPVi9qX3b7XbMZjNFRUWUlpbGC+NDQ0NxZZXyvW+1ifV2jngykdbT6XR84AMfYN++ffzyl7+kv7+fF198keeee46xsbF1iSccDnP16lX+8A//MP6aRqPh/vvv59KlS0m3uXTpEo899tiy186fP89TTz215nEUq7PNrG3JcNMjnnTFBbIsMzg4yPDwMAUFBWi12i31MGSqxrO4uMj169exWCwpyZO3Y6aO3++npaVlXeub7Y54AoEA165dQ6fT0dzcjNFo3DRhrZyBE4lE4r5a3d3dRCKRZaoti8VC05lGyupK8Ok83HF4HxV1ZdgL186Rexxeui72otVqqd5bAUA4EGa4bYzCigIajuxK7UvZBqz3XYWDEfqvDmEw6im8EdXZC3NwTLrovzpEZWPZpslTKfivl5ZTjDVXfu+pIJsRTyb6BFNBJg1ClR6e8vJyPvaxj/Gxj31sw20cDgeiKFJaWrrs9dLSUnp6epJuMzMzk/T9MzMzSd8fDAb5/d//fR555BHs9rUf6NbDTSeedMQFoVCItrY2AoEAp0+fjt8UW0EmUm0+n4/Lly9vOCp7re0zGfEo1jfl5eU0NTWteeNtZ8TjdDppaWlZdQ7pquH0en18EqXSwJc4AMxgMMSfyovrC6jZX7nhouicdOP3BqhsLI+/ZjAbMFmMTPZNb0g8N9s1emnBx9KCn8LyvGWv2wtzWJjz4PP4ySvZXOp5reOsTMstLS3hdDqZm5ujv78fo9G4TC23UVoum8SjHGsnp9rWwk6cPhqJRPjIRz6CLMv8/d//fdr72RGptlQiHqfTSVtbGwUFBfFivdfrzfj461QgiiIzMzMsLS1x/Pjx+JNiKthqqk1ZyGVZZmhoiKGhoaSy7ZXYSk/NWtFSYn0rmf1OJvp4Ehv4ampqEEWRhYWFuMuwLMt0dnZSXFwcb6ZMttDJkgzy6kVQo9UgZqD2mCmstUjrDTp0Bi2RUHRZZBMJRdDqtej0qc392YgMEo01a2tr49+70q/S2dkZT8utNe8mnYGP6UK5Pm+2qi0dKBFPKt9TUVERWq023siqYHZ2lrKysqTblJWVber9CumMjo7y/PPPpx3twE2OeJSwfjMLfmIfTFNTE1VVVRmrE21lHz6fj5aWFkRRxG63p0U6kJmIJ3F43OnTpzd1YWR6eqkoinR2duJ0OtesbyUKGzKlDNNqtRQWFsZdvV944QWKiopYXFxkdHQUjUazTKSgpEDzSnMxmA34PH6subGnSzEq4vP62XOyPumxfB4/C3MeXBMLWBq3/4l0ve/Ilm+ltLaEkfYxdEYdBqOecDCCa2aB+iO12PI3b7eSjsR55fee6GfW3t6+Ki1nNpuz3sMD2RMy3Oyx1waDgePHj3PhwgUeeughIPYdXLhwgUcffTTpNs3NzVy4cIHPf/7z8deeffZZmpub4/+tkE5/fz8vvPBCSu75yXDTU21arXbD3o1gMEhbW1t87PJKXXumiCfVBXh2dpb29nYqKyvJy8tjZGQk7eNnwmH60qVLWCyWTQ2Pi4SjBBYDRIKRjKnplHEKGo2G5ubmdQ1Pt1uKrNFoKCkpoa6uLm5noijluru7sdlsFBYWkp+fT90dNQxcG8brXESr0xLyhyivK6G6aXm0KMsyPa8N0HO5nyW3D4fLwUTNLLaP2Le9OXU9142D5/YSDUWYHp5DikpodRqq9pZz4OyelI6RiQbSlX5mS0tLuFwu5ufn42k55f6NRCIZVcslg0Jy2Uy1ZeozpTt99LHHHuOTn/wkJ06c4NSpUzz++OP4fL64yu0Tn/gElZWVfOlLXwLgc5/7HPfccw9f+cpXePe73813vvMdrly5wje+8Q0g9jt9+MMf5tq1a/z0pz+NZ3ggpjhNx+5sRxCP0jCVDA6Hg7a2NoqKilaNXU7cRzYjnsTO/4MHD1JWVsbc3NyWa0TpNk8qBcXy8nJ279697uIhSRL9V4boeX0AvyeAKEQRzWEiZ6Np+ZmFg2EkSYr3CJWUlLB///51b/RsD4JT7Ezy8vKor68nHA7H64JdXV1E5Ah5e2yEF6KYjWYqGyqo2luO2bacOCd6p2i50IHRaqRyTzniSATPrJfXfnad+3/jTsw529P7shFJW/MsnHnfcRwTLoK+EGabicKqArRaDZFQBNf0ArIsU1Cej8G09qKYaeeCxLTcrl274mm56elpJEnilVde2TAtt1VkU1igHC+TEU86xPPRj36U+fl5/uRP/oSZmRmOHDnCM888ExcQjI2NLftOzp49y5NPPskXv/hF/uiP/ojGxkaeeuopDh48CMDk5CQ//vGPAThy5MiyY73wwgu87W1vS/kcd2yqTZIkBgYGGB0dZd++fVRWVq55U2SCeDQazaYatRR7+mg0SnNzc/zCyIQqLtXtFQJUfLkaGxs33Kb/yhCXfnIVo9mALd+K2+Fm6Mo4Lc93cPKBI5s+9kjnONee7kQKyFyyX4NckbsebKa2rnbDbbM1j2etYxgMBsrKyigrK1v2VO50OvF4PDjCM8hTkXgPi/KwM9IxEUsdlcaK9Vq9lsKaAtwzC0wPzVF/eHsUcJshBK1OS2lt8bLXJvqmuX6hg4WZBWQgvzSXw28/QM2+5HW/7bbMUdJyGo0Gr9fL8ePH4w8Aa6Xltno+2Saem51qU/Doo4+umVp78cUXV7328MMP8/DDDyd9f21tbcbv1x0R8awUFyiLezgcTppa28w+0jmPjcjL6XTS2tpKcXEx+/fvX3aBbaVWks72oVCIlpYWIpEIx48f5/XXX99w4YiEo/S8PoDRYqC4KpajFfT5TM1MMdgyQtOp3eQUbHyhD7WO8sq/v4Zr2o3OrGVuZo7C/CI8oz6o2/jcBUHA7w3gnHJjzTVjsqY+g2gzx9js+xKfypXmPafTSV9fH6FQiLy8PAoKCnDOujCalzewajSx44QCqXWXp4pUF+CFOQ+v/eQqgcUgxTVFCIBjys3ln1zFmmuJS68TkS2vNqWWpNjIrJeWS0UtlwyZVJll+3i369hr2AHEszLiUdybS0pKOH78+KZ6cxTS2MqNs17EkqgUW2tIWiZMRlOZonr9+nUKCgo4fvx4/Lw3CvP93gA+j38VuZhsRgJLQZYWfBsSTzQSpfPVXkRJwpRvQNBoOHaoiSWXj97XB9h9tC5epE+GoC9I+/O9jHVOYM/pxZxjpun0bvY179kR7tEre1j8fn88GnL7nUz3zLOLKmw2W2zMcTi20OQkFPFlWcbjWESMiNiLcrY8kiGdp82J3mm8jkVq9r95rZbVFjPWPclY92RS4slW0T/ZcdZKy610d041LfdWTLXdCrjpxKOQhiRJ9Pf3MzY2tikZ8Mp9wNZ+9LUiHsXp2u/3r6sUy0aqLdH6JnHUg1Ib2ujzGy0GjGYDQV8wXr8QBIGQP4wxN9a7shF8ngCzE3Ms+BcwWQzk5uai1+uxF9mZHpjB61xck3hkWeb1n12n/41hLLlGCsryWHQt8cbTLej0OppO797w+KkgE+kBi8WCxWKhqqqKisIqnv32SzjGnSyYPQR8QcK+CLsP12HKN8REDM4lrv2yjanBWaSoSG6xnTvu2U/dHanbiiR+hlQJwefxo00ipdYbdSy5fWseKxuL9GbIYKVaTnF3TjUtl02DUMh8qi1dlexOx46o8UQiEd544w0ikQjNzc0ph5eJc33S/dGTRRxKwdxut9Pc3LxuqL/dqTZFpuxwOFZZ3yg38UYLrclipP5wLdeea0On12HLsxJYCrLo8FF1Tzl5pRs3Gs7NzzI7P0txaTF6szZ+s4cDYXQG3bpd8q7pBUY6xikoz0Vr0GAwGSioyMcx7qLvjUEajtYmjQ7CwQiD14cZ6RgnGhap3ldB47F6rHnZba4rrirk/kfupudyP45JFzOzM9TfUcuuwxV093YTaY0w+PI4vvkglQ3lGE023HNeXv331zFaDFTsTt5HsRmkSjy5xXaikeiyRV6WZCLBSLxGtRLZTrWlgvXScgMDA/Hm4ZVpuZtR41FTbRvjpkc8Xq+XUChEcXHxssFoqSATA+USI5b1TDXXgiItTvdCX494FOsbjUaT1PpGOd5miO/gnXuJhMIMtY2xMOdFq9dQ2lDIsXfcsaEarru7m5mZGU7fd4Khq2NEhAg6nY5wMMLc6Dx1h2ooWNFBnwifx0/AF8RabCYYDMZft+Za8Hn8hHyhVcQTjUS5+MM36LsyiMEUG3kwNTjLeO8U937szjWjq+1aQEt2FVFcU0hwKUhXTzclZcVUV1cjyzIdl7tpmevFUmRixjGNXq/HarXhmV6k78pgWsSTbtRWtaec4upCJnqnKSjPQxAEXNML5JfnU7P/5ogLFGw1pZdKWi6bM4YgsxHW7Tp9FG4y8QwNDdHX1wcQl+6lA0Wnn4mxBtFoNG5oeeLECfLz13c1Ttwe0n/CWot4lJrXetY3ylC9zRCP3qjn1LuOsfdUI0sLPrQGDdc7r2LOWbvAHwqFuH79OpIkcfbsWRAFdOi4+qsWPLNLRIslqvdWcvLBo+t+dkuOCZPFSNAXQr5xb8pyrPZktpsxWlen+ib7Zxi4PkLJruJ4KlCMikz0TTHUOsqhu/et2iYSjuKdW8I1vYDVat2WscfmHDN6o27ZaxpRS06OnZr6SkRRxO/34/P58AWXuHaphbwma7yB1WKxbHrUgbL/VGDLt3LuAydp/1UPsyPzyLJMzf4Kqpuq8HsC6I36VXLxbBJPJn+T9dJySquB4naSKbXcWsh0qm2nWeZkCjeVeIqLi7Hb7bz22mtbvhgzMU8nEolw6dIljEYjZ8+eXdeCfyWUcxdFMS2z0pXEkyhoOHDgABUVFetun2pvTG5RDrlFOUQiEYSuteXNipChsLCQAwcOxG+quz/SjL5YQ3AxRNPBJkp3FW1oz1JYWUD1vkquPHcdU66BSGEUr2uJgC/IHW/fnzTN5ppaQIxGl9WftDotJouJyb7pVcQz3DbG9QvtdFztYvziHDV7qjj5riMUV2+t03ozMOeYEIQYMWp12vhTedQrUb2vgsLCQsYGx7n2agu2fBtVtRWbVmyls1AWlOdz90fO4FuIOS10vNzDKz+4TCQUJafAxqG793Hgzr3xfe/kVFsqSEzLjY2Nxec/KWk5vV4ffwBIVy23FjKZaltaWlIjnu2A3W6Pp1yi0WhaHbAKtko8TqeTcDhMdXX1hk2YyZBKumut7ZVtI5EIbW1tLC0tpWR9k05aZr3zVrr8E4UMidsVVuYjyzKVm0whCYLAmfccx73gYrhtjPlxB2abiePn71hTWKDTayHJxxKjIgbz8utlZmiOX/3bZSKhMNZCC7Z8C6Nd4/i8ft79H+/HYt++4WYAlY1llO4qZrJ/muKqQrR6HQuzHgxGPbuP1jF8eZKh1nGCS0EEvRtvg4/SA4WEo6Flw+8SfeUy4WlntBi49lw7E73TFNcUYjDqWZjzculHVzBZjew+Vhc/1q2QaksFsixjMBjYtWvXmmm5xCbW3NzctIlDSbVnIuJRTHBVVds2IRP1GUh/hLZSu1AGyW2mCTMZtpruU4hHGatgtVo5e/bspp/G0hU3JFvgJEmip6eH6elpjh49uqayJh0HAkuOmRPvOkxxYz71tQ1Ycy3ryq/L6kuw5FpwTbspKI+lPX0eP5IksWv/cln7wPVh/N4ANfsr8A/5MFlN5ObbGe+ZZqx7chm5+Rb8zE840eo0lNaWrNvRvx4SF1Cjxci5D53i6i9amRmeQ4xK5BbZOXR3ExO907S92EVBeT55JXZ8C36mO+aprK7k+H3H4pLt8fFxBEFYJhteeZxUMTUwy/TgHBWNZfGosqiqgKmB2ZgE/iYQz82axbNeWq6zsxNRFMnPz48r5jabElWOpRwjE/D7/aq4YDug1Cay1QC6Eonzao4fP85rr722bb1Am9k2Go1y+fJlamtrU466tko8yrZKY6rizLBejjldmx9BELDmWyipKdrwnIurCzn2jkNcf66d0a4JQMZgMnDg3F5qDy0fcuaa8WCyLY+CNFoNgiZGVhBbXDte7uH6c+14nUvxyO3sQydWebOlg4KyPO77+F0szHmJhqPkleQSWArwyr+/TkF5PvbC2EKSW2xHkmT63hji0F374mMHlIcPp9PJ5OQk3d3dAAwPD1NYWEheXl7Ki7Z/MYAsSatSmRa7Ca9zCVGU0GiErKbasmkSum6LwQq13MpRG0paTvnfeg+CyvqTSVWbGvFsI9KNVhKRKvHMzc3R3t4eL9pvthdmPaS7+EuSxMjICKIocuzYsaRz0TdCuv5nCvnLsozH4+H69evk5eVtqnk3XeubVLc7cG4v5fUlzAzPI0ZFiqsKKaktWnWD55fmMtk7HTvGjeHXkighS8TTbKOdE1x86gp6o46qPeVIosTs6DwvffcS73v0/LpD41Zirc+g0WgoKMuL/7dz0kXIF1o1F8eSY8Y9u4B/MRA/v8QxyPX19fh8Pl577TXC4TBdXV2IokheXl58LPVmis+2PEvMEioQXpae9C34qd5XiVb75nW7U/p4bsaxko3a8Hg8uFwuRkdHV418WJmWy+R3qJCgWuPZRmTT5DPRAy6xaJ+JJtR0Um1KhKH4xKVDOsqxtzLeYGZmhsHBQRoaGqirq9vUE2m2iAdihXIl1bYWGo/VMdQyyvTgLJFwFP9SgHmHk+Lqwrg/2cC1YaLhKOX1se9Zo9VQ0VAW6+jvmuTgXU2EgxGmBmaIhCIUlOcn7fJPBbZ8KyabCZ/HT27RmwvJ0sISkXCU3tcHGbGMU7G7jPL6kmXfvfKEvW/fPgRBwOfz4XQ6l9nKKCSUn5+f9GGhvKGUqr0VDLePUVgZMwpdmPOi1Wnj6cd01XPpYC1xwcK8l/4rQ8yNOcjJt9JwtHbZgL50IElS2pOJtVptnGTgzbSc2+2Op+UUOyVFuq3VajPyHYbDYaLRqEo82wHlB9LpdFlJtYVCIVpbWwmFQqsaVRNrTemqXFJNtbndblpaWigoKODgwYO8/PLLaach0hUXSJIUHyN+5MgRiouLN97oBrZi9rkdJqFl9SXc/ZEzXHuunanrM5i1fnbtr+bku47E60iLriWMluXpOEEjgBCz85kenOXF715ifsyBJEpY7Gb2n91D8/tPoNWl90CSU2Cj8Xgd155rj+0zx8zSgo+B6yPo9Tpef/oaACaricP3HuDMe48lbQpOfCJP9JVzuVwMDAwQDAbJzc2NixRsNlusSVuv466HT2O2m+h8pYf5MSeiJLH7SG1sEB7ZJZ5k4oK5MQe/+NaLzI87MZoNREIRui/1c+eHT3Pg3N4tHStT0dVaaTll+KBOp0OSJGZnZzdMy20Eny/mLqGm2rYRmYp41iMvl8tFa2srBQUFSccrZKIXaLNRhyzLjI2N0dfXx549e6ipqdlyqi+diCccDtPa2oosyxw6dCgl0oGtRzx+vx+tVpuSbH0j1N1RQ1VTBdaf6dnbtIdde2qWLTylu4qZ6J1eRvDRSBRBEDBZjbzw5KvMTzgpry9Fq9ey6Fzi6i/ayC22J+0Z2ixOPHAErU5L35Uh3DMLBP0htFoNNQersBfEnmq9jkWuP9tO1Z7yeIS2HiGs9JULBAI4nc54aijxib2goICqPeV0vNyDNdeCvdiOx7HEz7/5PPd8tJm9ZxrWPE6moUQGibj2y3YcE05q9lfFjVfnxxy8/vR1ag9WrytAWQ/bZRKaLC03OTnJ8PDwptJyG2FpaQlBENQ+nu3EdooLZFlmZGSEgYEB9u7dS3V19Zo3VzaMPhMndCY2qCbKmtMhnlRrPF6vl+vXr2O32zEYDOsObVvvmOlGLsFgkNdffx1JkrDb7XGl0VojqlOB3qDDXmIjr3T1zb7nZAMD10cY75kivzQXSZRwzXio2V+BoNEwP+6korEsHt3Yi3LwLwbovtRP3R01TPbPIEbElAe/GUx6Tr/nGIfu3od/McCVZ1oQo2KcdJRjuWc9jHVPrhpdsJnvxGw2U1VVRVVVFZIkxesTY2NjtLd10P7jXkJLUWr2V2EyGhEEgbkxB1d/2UbNwcpNH2erWBmF+L0BJvqmyC/Li5MOxPq+JnqnmR2ZT3vkRLbqSVqtFqvVitFo5NSpU4RCofgk1mRpuY3UcoqwIJt2P9nEjiCeTIkLVpKXMgra6/Vy6tQpcnPX9yLbqtHnRtv7/X6uX7+OTqdbNaEzsQE1nRA9lYhnenqajo4O6uvrqa+v56WXXlr/vL1+Zkcd6PRayhtK442iycjONe2m49VexromMOeY2HtyN/vONMYXckmSmJycJBgMUl24i9H2CfreGEFrHcNeZcFW+GZ3f2FhIXq9HlGUWHQtoTfo0n7yVVBUVcD9n7yb1gsdTA/Po9UJHH77fo694xBjXZOxp/EVKTWjxchk/wzf+X+fwjO/iCxLWHMt5NXZuPNDBWscKTksdvMNIcHqqZjRiEhgKcDcmINIODaYL11i12g0cVlwQ0MD0yOztAb7sOQZmZmZQZZlLGYzeosB94wb55QLuDmpNkG48RAjLf+ssiwjaLZ2TtkUMiS6FhiNxmUzn1am5RLVcvn5+at6GBXiyabdTzaxI2o8mYp4QqFQ/L89Hg8tLS3YbDbOnj27qebUrab81ot45ufnaW1tpbKykr179666GVbKmtM59kaLlCzL9PX1MTY2xuHDh+NChvW2vX6hndeevoZn3otGq6V0VxFvf+Qc1U2VqyIex6SLH3/9GWaG57HYzUTCUQavjzA7Os+9H7uTcDhMS0sLwWAQz7iPnh+9zKJrCYNRHyvkj+dz5681oDNpGBsbo7u7G990kInWWYILIUxmEw1Haznz3uPLxjfIshx3XLblW+NKvbVQ0VBKeX0Jfk8AjVaITw7NK7GjN+gILAWX2cm4Jl14HIvxkdKCRsDrWKTnlUGqGyuprq5e61BrompPOT2X+4mEouiNOubHnQy3jeGeXSAaiuL3+LnzQ6cpqS/MyOJjtpjIsedgthmx5lkJhUIE/H4WHAu43V56+3ox5OpwuVzk5eVtq6PzSnGBOcfMrgNVtL3UjS3fhlYX+9v8mJP80jzK6tMT3ED2FXTJvrdU1XI2m21Ldjlf//rX+a//9b8yMzPD4cOH+e///b9z6tSpNd//ve99jz/+4z9mZGSExsZGvvzlL/Oud70r/ndZlvnTP/1TvvnNb7KwsMC5c+f4+7//+7R7HmEHRDzrTSFNBYkzeSYmJujp6Yk/0W/2xs2E39tK4lAK98PDw+ta3yg1pkw4HyRDJBLhwk9eoOfSINqgntlLHg7e2cTBu5rWTNMNXB/mhf/9KlqdlsrGcsSoyPTQHD//xxd45A8fWkVYLc93MDM8z66DVfGb3etcpP2lbmoOVTDpGicvL4/S4jJe+sfXsWit7DpQFSew8a5Jul7s56HPP0hDQwODbSP88Ns/w+teRG/T4lnyMPGDScYHp/joF96HNcfKzPAcr/30GhN90whA1d4Kzrz3ePy7XwuCIKxyty7fXUb9kVq6L/eTU2DDYNTjcXiJRKIYzAbKEhRnucV2Rvslrj3TgQETBrOBujuqyS3a2GUCYPexOgauDzPcOoYoSoy0jxEJR6moL2XXwSrmRh08+08v8a7/896MEE9eSS7VTRV0X+pDjMaucbPZjDfi52jzHew/3sTAwAC9vb2Ew2Fyc3PjarlMP3knI4Nj77wDx4SLid5JNFotkiiSU2Cj+f0nVnnKpXqsbI1F2Gw9aaVaLnEU+/Xr1/n4xz9ORUUFfr+fnp4empqaNv39f/e73+Wxxx7jiSee4PTp0zz++OOcP3+e3t7epIrZixcv8sgjj/ClL32J97znPTz55JM89NBDXLt2Le6f+dd//df83d/9Hf/8z/9MXV0df/zHf8z58+fp6upKK0UPO4B44E2ftK3uIxqN0t7ejsPh4NixY/Hu5FT2kcnRBor1jc/n29Qk1a1KotfadnFxkWefep62p3vQYyCnQM/08BzjPVM4p90YapIv0t2X+oiEIpTXx2a1a3VaqvaWM9o5wWDrCMV78uPbybLMUOso9kLbspvPXpjD1PAMLz3zCm//0J3U19fT8mo7Sw4fu06+OaNGEAQKKvOZHprDM+8lrySX3suDEIWDp/chyzKhUBCPe5GBliF+8p2fU7arhJanuvE5A5RUFyHfOGfnlJuau0oIBcK0PN/JUMsIsgz1h3exr7kRUxIzUgCtVsPbP3aO/LJcel8fJBKKUHuwGo1WQ89rA8tu/kgogmvSg2N0gYA7BDLkldq599fvovH4xmNYTVYj5z/1NnpfH+S5/+9ldAYde042UFRVgE6vo3KPidHOcYZaxiC1bN6a2H92T2we0tVhJFFCb9RRd0cN5z50ipxCK8PDwzQ3N8eH37lcLoaGhjLubZaYaotGooT8YXKL7bz3/3wnQ62jOKfdWOxm6g7VbNlj72al2lJB4ij2pqYmfvSjH/GVr3yFV155JT4C5Z3vfCd/+Zd/uaFn49/+7d/y6U9/mk996lMAPPHEEzz99NN861vf4g/+4A9Wvf+rX/0qDzzwAF/4whcA+Iu/+AueffZZvva1r/HEE08gyzKPP/44X/ziF3n/+98PwL/8y79QWlrKU089xa/92q+l/HlhBxFPIBDY0j6i0Shut5vc3NykowM2ex6ZSrUlWt9sNMsncfvNEI/XuchQ6yiBpSAF5fnU31Gz5rYzMzO0tbUx37OAQTBRs78yftN7HF7aXuqi6cFa5D2ricc961k1llqj0SAIAn5PAEEoWKa60ht1+JcSfkcZnA4nngUP9+45R0NDw7J9rczpIwMCsaQ/MDM8hzXPGt+/yWTGVG4m5A6zq7wWz6yHuXEH9nIr7iUXZrOZ/OpcZobn0ORLzLa4GeuYQq/XgQD9V4cYbhvl3Z+9H0mUmB6aQxAEKnaXYrxhQmqyGjnz3uMcf+cdRMNRTDYTA9dG6HtjkHAwjMEUS9lODcyy6Fhi14FKdu2vQpJkZoZmefE7r1Kxu3RTtShzjpkj9x1kpHMcvUFHWV1JrB7g9RNcDBLyhfE4veQUbl31FwlHufSjK+gNenYfq0WSZML+MGJUwjHuwlZkiacorVYrVquV6urqeFrI6XQyPDwcTwsp0ZDdbk85GpJlGVmUufJMC60vdBFYDGAvtnP0voMcuGt1Gnor2AmptlSg0Wg4ceIE73jHOwgEAjz99NO8+uqr/PKXv9zQPiccDnP16lX+8A//cNn+7r//fi5dupR0m0uXLvHYY48te+38+fM89dRTQMwxY2Zmhvvvvz/+99zcXE6fPs2lS5duXeLJRKptZmaGgYEBdDodJ0+eTPtCy4TDtSRJTE1N0dnZSV1dHQ0NDSml+jYinqG2UZ75h+dxTLkRhNg2DUdqqb+nEqv1zYVclmX6+/sZHR2lqbGJvh+Pk1eyfJGwF+YwNjuJd24p6XFLa2OGl4mISY9jqaaVNZ79zXt4/slXCPlD6E16ZmZmmB91Urd3F0fOHXpzv7uKsBVZmRtzUr47Fv5LkoRzys2e4/XxJsu8YjujnRPLji9GRWQgt8COc9xFUXEh5bWlN2oWARaXFnF7XETaQoQ9EWr2VmHLzUEQIBwM0391mF/8rxeZHpjFPetBEKCwooC7P3qGPSfeJEa9UR8fald7sIq6QzUMXB8hp8CKoBUYah3FlGOkuFZRt8lo9To6X+nln7/4XU48cIT9Z/dgy9+4D6OoqpDe1weJRqKMdEwwP+YgEooQ9IUw5hg5WFS/4T42wljXJBO901TtLV/mSzc9OEvbi13UHK5Iep2uTAsFg8F4NDQ+Pg4Q/3thYeGmpPGSJHHtFx10vdCPyWrEbDMxP+rgmX98ATEicuS+9EekrMR2yam3+1jKEDiTycR9993Hfffdt+E2ygiI0tLSZa+XlpbS09OTdJuZmZmk75+ZmYn/XXltrfekg5tOPJC+uECSJHp7e5mcnKSuro6ZmZkt/fBbrfEIgoDD4WBycjLlZkzl+OsRT9AX5Nl/fomFeS+79lei0WgIBcL0vjFISAjQ/MFYbSMxxdfc3IzRYEJv1BP0h5btT4zGUh4Gkz5pqu3gXfvovzrMWPckhRX5iBERx5SLmqZKGo7sYmFxYdn5Hn77AaYGZ+l5fQCnwwGCQE19Ffd+7C5yi9+sfRjMBpruqWfu+gKjHRPoDFrEiERxdSFn3nc8vgDuP7eX0c4JnFNu8styiYaizIzMU1xdSO3BaubHY+qvWDRkwmQykSfnEXZGCQT9iJKE2+PG7XVjNpsxm834FwO8/L3XKKsvoaKhFBmZuVEHP//GBaYH5/A6vGj1OuoP76LxeB1anRa9Uc87f+ttFF/ooO+NIcKhMPmluWgsAmabKSbZbx9nenAWn9fP1OAsz/7zS/S8NsBDn3tgQxueplO76b7YR9uL3SzMezCZY4t3bnEuS+4l2n7Wy/n3vjPtBlaAJfcSkiitMkO12M14HItEQtFNPSCZTKa4r5wsy3i9XpxOJ1NTU/T09GC1WuPR0Fq+cksuH32XBskpsMWnoeYU2JgdnefqL9vYf25v2qatK3ErpNqS4XaePgo7hHjSiXgCgQAtLS3IsszZs2cJhUJMTk5u6Ty2UuMJBoPMzMwgiuKG5prpHn+se5L5CReVu0vjN5PRbCC3KIex9imOPXiIpaUlrl27hsViWZbi29e8h1997xLWXAtmmwlRlJgZmqW4upDi2sKkx63cXca7PnMfr/30GrOj82h1Wu64Zz/nHjqJyWpC41suLjBZTdz5aycJmpaoj1RR31BH3R27KKpcXqQQBIGyxmLuuvccvVcGWXL7KSjPo/F43bLi/N5TDSy6lrj2yzYmeqbQ6rVU7C7lbY+cw2I303iiIT7orKiqAFkGx7iT3CI7Zq0R76SP6prqWDQUCOD1epkemwEEavMqiUpRDEYjxTWFXPl5K2M9UxSW5yMDbS92cfjeAzQ/dAKdVos1z8KdHzzFmfceQxJlnv2nl3j5J5dii69zidnheQStgL0wh5qmSjQ6LX1vDHLpR1c4/1tvX/d3L6oq4P5P3EX/1aGYyEQrUFCUT+WecmRBYrh7hIm+6VVu3KnAXpiDJEnMjTkwWY3k5NsQNAJLC36q9pSj1WtSTpkJgrDMVy4SicSjoa6uLqLRaNzlubCwMD6AzetYIrAYpLR6ebHbXpiD17mI17m46ppJF9lOtW1ltEsi0iGeoqIitFots7Ozy16fnZ2lrCz56JKysrJ136/8c3Z2lvLy8mXvOXLkSErnl4gdQTyppriUqZylpaXxcdnRaDTrRqMKFOsbg8FAbm7uhqTjmHBy5Ret9F8bxmg2cPDOJo69846NlWmhKLIorXry1Rm0SF4Jr8fL5cuXqampobGxcdlCcuL8YRwTLgauDRGNxD5jYUU+93/8bhzB2TUVYPV37GLXgWq88160eu2yp/eVqTZlfs+5B89QU1OTbHfLtiuqKiS/fG23ZUEQOPngEZpO78Yx4UJnWN5HVNFQyn2/cSev/vANpvpjhFJQkcedHzxFd083nbOD+Bb8Ma80kwmDxojZaMacayISieD1LiII4HeEWHQvkVeWR3VTrHg7N+bgZ//zAld+3kpOgZVdB6s594GTlNQUgR6OveMQrZfameqbRY7ILHl8WHLMFFUX4ppxMzviYNHt46f/41kiYZG3P3J23bpPUVVhjGhkmUgoyqJzieG2Ucx2EyFfmMBicM1tN4IkSYz3TTI/5sQ968FoMWAvtFFYkY/OqOfw2/dnxDFar9dTWlpKaWnpKqfngYGBuK+coAOdQUcoEMaS8+aMpJA/jN6oXzb0b6vIdsSTyVRbqj5tBoOB48ePc+HCBR566CEg9vkvXLjAo48+mnSb5uZmLly4wOc///n4a88++yzNzc0A1NXVUVZWxoULF+JE4/V6ee211/hP/+k/pfy5FNx04lFqPJtJtcmyzMDAACMjI+zfv5/Kyje7uzNhu5Nqqm2l9Y0kSbjd7nW3cUy6+O5f/5jpoVly8q0sOhd55h+fZ6J/mqqz648JKKsrwZZnYWHOG09RyLKMe9ZDTrmFRb+XI0eOJH26seSYef+j5xnrnsQ55cZkNVJ7sBpbnhXn1bl1j6vVashPcFtWoBCIkvKcmpralJowVceDnALbsr6dwGIAnzdAToGNfc17qD1YzfTQHOFghILyPIqqCnBF5+FuHYNvjOKcciPLMnqTnj2nGnDPLFBUWARCrCDb0d+DKEmERD/T0zNoJA3j3VN4nYvkFuWQX2rn+nPt9L42wF0Pn6bujl2U15fQ/NFjOPoXGLg8itlmou5wDZFghNHOCXQGHQaTHo1ey7VftBIOhPnA5x9cc3G32M3kl+bR+UoPSws+ZElGo9UyP+5EQiIaSb/Prf2lbl75/us3ZhuZWZj14px0E42IPPL/fICmM4243e6MSqaT9a4onfyWAhMaO/S3DVLeUEpuQSyNujDn4cSDRzZVF9sMZFlOas+zXch0qi0xwtgsHnvsMT75yU9y4sQJTp06xeOPP47P54ur3D7xiU9QWVnJl770JQA+97nPcc899/CVr3yFd7/73XznO9/hypUrfOMb3wBiv+PnP/95/vIv/5LGxsa4nLqioiJObungphMPbI40FF+xQCCQVJqspKm2Ok9HcYneCKIo0tHRgcvlilvfjI+Pb5iqu36hnZmhWWr3V6HRxp6OAr4g3Zf7MZQK1OxaO1IorMjn6Dvu4OJTb+Dz+DFaDCy6l5C0USqP1FBSUrJmSA0xOXTdoRrqDi0/RroGo4qE++rVq3Hj1c2kGBXiURwJTBZjXFUGMSPP1he7GLw+gt6oY++p3Ry6OyapfuUHr9H+UjchfxhbvpXj5+9g/517Gbg+TPfFfiLhKCW7CrHXm6k/Uk/QHWJqYAZ7YQ4nHzxCSV0x3/kvP2SwZZSS2iIEILQYISfXRuPB3YiIjHZN4HF6QQtROcKid4mFWQ+jHRPMjzso2VXMoXv2UXIkl71HGrnrfc387//yFGgE5sZm0Oq16E16fB4/Or0W96yHyz++wv7mRprOJG+60+q0NByt5ZXvvwZCrBFWjIhob0xgHWwZ5eCdTSn/RrIs0/J8JxqNhrLaYkpriwn5QwT9ITxzXnIKbPHfY7siA1mWmRtxMNk/jVanIxoQ+eCj7+HFb19ktGuCif4p9EYduw5V03jnLsLhcEZSVtkc9aAcL5PEk45B6Ec/+lHm5+f5kz/5E2ZmZjhy5AjPPPNMXBwwNja27Ps4e/YsTz75JF/84hf5oz/6IxobG3nqqafiPTwA//k//2d8Ph+f+cxnWFhY4M477+SZZ55Ju4cHdhDxrBfxKKms/Px8jh49mtTmPNFdeis26Jup8fh8PlpaWtDpdJw9ezau5NlMxDTUOoo11xInHQCz1YQYEVmYXtzw+Hd9+AwF5Xl0vtKLc9ZNXoGNvWfqqT9Ym7YkPV3PtWAwSDAYxGazcebMmZS+9/H2afp/9l3mx50YzAYO3NnEuQ+cJBqO8r3/+hNGOycwWY1IosTA1WFGO8fR6XVce7adnMJYBLToXuKX33qJV37wOouuJexFORjMBkY7J3A87+SNnHb0ej06gx6PY5G5MQfWPCsLc17csx7cswvkltgpripg0elDikrYcq1oJS1GkwlBK2CymRhuGyMcjCDoQZRF5scd/PC//YyyvUXc+/E7uet9Z2l+33Fe+M5FFmY9aLQaFl0+xKiIVh9Cp9PinHLz1N89w/9RVUhRVfL6hS3fQm5JDoGlEAuzHgSNQH5ZLrocDSPtY4QCYYzm1BZkSZRi47dNuvhDmclixGQx4p1fZGkh5viwXcPZRFHi+W+/wrVfthFYiqULQ1IA66ft/NZffIyJ3mkW3UtozRp0dg0O9zzDY0MZGUedbeLJZKrN7/en7Uz96KOPrplae/HFF1e99vDDD/Pwww+vuT9BEPjzP/9z/vzP/zyt80mGm048SqpNSdkk/nCyLDM6Okp/fz+NjY3s2rVrzZtDIZ5oNLol4tmIOObm5mhra0tqfbMZ4jLbTMyFl5OskhLQG3Ubbq/Varjj7v2U7yumtbWV6upqGhsbGR0djVupp4p0Glfn5+fp6upCo9Fw7NixVb+LfzFA+0tdDLWNojPq2Xuygf3Ne9DpdfRfGebqDzvIteeSU2AjEorw8r9dZmHWQ2ltMaOdE1TtLY/XcgJLQVoudAJQWJkfrzOZc2Kk0Pv6AIfffiBeQzFZDPRfGyJkj3DqwaMIgoDH4aX1+U5MNjMHz+0hr9hOz+sD+Dx+SmqK8C/6ufzTa1jtFkL+EKFAmIajtZhNJgRZQ2FpPq7pBdzTHmRkxIjIaOsEP5z9ObN9Th7+wnsp2VXIP33x3/A6FuO1JY1GILAYQNAITA3McvknV3jPf3pn8t9B0BDyh4kEI2h0GjSCgGd+EWEByirKlhlobgYhf4hLP77KSMc4HkesYF/RUEpBeR6hQBiNTkveDbXhdhFP98U+Lv/kKjn5VoqqC0CGnpY+fvXd12g4VMeuA6sFE4md/B0dHUiSRH5+flwtZzabkxxpNW4G8aiqts3hphMPLCcNJcRWXAg8Hs8yF+e1oDQ2bpfXWmJ9aS3rm80s4AfubGKodZSlBR+2PGssDTHmwF5go2pf+YbnL8syQ0NDDA0NLTuPdNNlkJqzdaLbd11dHePj46sWLJ/Hz3f/6ikGro+g1cXIuO2FTk48cIR3f/YdXHumDTEsUtlYHu9iN1lN9F0ZYnpoFpPVGCcdiJF10Bcjg9qDy33RNDoN0VB0WQTpW/DHFlLeXFAdEy4EjQZBkNHqtSzNLMR6giQZa54VMSridU6xEPBgthlv9NSMx4gxGMHnDSBJMjq9jpxCG64pNyF/GOfEAj/5+1/S3znI+37nHdzzsTP8/IkXiEZF8IfxLfiIRkX0Rh2LrkUufPsV7v2Nu5YV1RO/W/9iAAHILcpBEDQE/UFc025sedZ4X9Fmf6effeMC15/rwJpnZWnBz/yYA6/DS1VTJZIosvtoXXx8+HYRT9elPmRZxq4MwBPAVmTBt+Bn4NoIZXWrbVwSO/llWWZpaQmn08ns7Cx9fX2YzeZlBptrLfaiKG7o25dJZDrVphLPNiMxTQZvdv2bzeZNG3wq+9lqA2iy7cPhMG1tbfj9/nWtbzaTarvjnv1M9U/T9lIXjkkXIGAvtHHfb9yFrmR9k9BEMj59+jR2+5vS463a7WyGtCRJorOzE4fDQU1RLa1Pd9NxtQt/v8jht+2nak+MBK8/107/1WEqG8vii+XSgo9rz7bRcLQWx6QLY85y5ZLFbsY56SISMiJFV38OrV6LXooZeCpjogGkqIRGq1keDQggiTJaw5vTIP3eADq9FkHQIEsyjkkXeqMeMSzinl7A4/CSV5pLcDGIVq9Fq9PiW/DhW/AjRkUMJn3sf5bYohn0hdGbdBiMevyeAL0vDvIdV4B7PnuKvNqYh5zf60cQNBiMutixRImFGQ+tz3fS/P4Tqz7jZP80Go0Gn8fPotuHTh8TKBhtRvSG1G7Vyf4Zui/1U1RZgCXXjL3AxszwLK5ZD3Nj89z/8bt52yNn4wSfbDhbJuD3+Fef+w036lAglHyjxLcKAjk5OeTk5FBbWxt3KHG5XPT19REKhZaNAk/0lcumog0yl2pTFIEq8WwjlCcSpc4zOTlJV1dXyl3/kDnngUQoc2tsNtuG1jebSbXpDTre/dl3cOie/UwNzKA36Kg/XEthRT6dnZ1rbu/3+7l27RoGgyEpGac6jycRm4mWQqEQ169fR5ZlCnUlfP/LT+OeXcAf8vOr6cu0PN/BBz/3LvY176Hn9QGMFsOyJ3RbnhXHpIvpgVnMOWYiM3PL9h8JRRA0AruP1dLyXAeBxSDmnFjxcmHWQ15xDnlleUz1z1BSU4jJZmLJ7UOWZcp3lzI77MBebENn0BEJRUCWCS2FGO+ZQqfXsbTgY2HOS26xjdGuCdwzHgBkSUIURSLhKFqDFv9SAJ1eR35JLvMTrhuW/RAJRokEI/i9ARAEtDoNkijhvxEJSVGZkWuTFHx/gI889gG+1vctZofnkWWJcCi2fzEqYbIYee2n11YRjxgVuf5cB35vAEuOmWgkSiQcBQ1YC80pRTu+BT+vP30dx6QrrhArrMwnvzwXx6QLAXjHb96zzHwzUxGPJElEQlEMJj2CIFBzoIrhtjEkMfaAgAzRsIhWq6N0V2oN1hDr+SsuLqa4uBhZlpcNvxsaGkKn08VJSK/XZ5141Ihnc7jpxKNAq9XS39+P2+3m6NGj8amKqe4jkxGPQoKbdbnerBxbo9FQe6Ca2gPVq15PRh4Oh4PW1lYqKiqSjlRYb9vNIBlpybIcK47rtHHyzc/Pp2lvE9/8vW/j9wSobqpgdm6WqqpKJvtnePb/+xW7j9ej0a4dQWl0Gg6/fT/9bYN4nYtY8yxEQlFmhuao2F3Gvb9+F2JUovOVHqJjUSDmDtD8/hPc8fb9PPMPLzLcNspYzxQCUHfHLnbtr+Rn//MCQ22jyLKELIOg1RD0hei53E80IiIIMW+4hVkvXscSMhANRWMjr/1hJFGKpegkmaguynwoSjQcwZRjiqVwo2GQY5EUxNJ4UVFEkEGWICpEkUSZ68+2U7OvkiNvO8gzA88jiRIygAwanUAkHKH36gCTE5MUFRfFhSm9bwwxNTATqx9FRSx2CzqDFo9jEb8ryO5NGI9CzCT1Z994nsn+aebHHCwt+CitLWbXvphjuICALd+K3rj81t8q8YiixLVftnHl5y14nYsUlOdz6t1HOfy2/fRcGmC8e5KcwpyYiGbKy4l7j9J4YmtWQMqETovFQnV1NZIkxUeBj4yM4PP5EASBoaEhCgsL0/KVSwVqqm3z2BHE4/f7iUQi+Hw+zp49u+ni4UpkyuRTkiR6enqYnp5OyfomE+7Wieq+xHrKyr6lZNtuZWhY4vfWd2WQiz96g8m+GTRGgdw6C/c/cg+NexuZ7J9mbtxJUVUBgkaILfKCQFFlAY5xJzNDszSdbqT/2vAyFZbXuYjRYqTuYA2FNXlcvXSd0GwY1/QCOkPM9frd//F+bHkW3vd/vZMD5/Yw2ReTJpfXlxDyhxlpn+DcB07gmffiml5AEAT6rw7xxs9asBfn0HCsFteUm7kxBwarnpp9lYy2TwJhDCY9Wr0uljoTRZBB0AgIQkz5lWhYKkkSYjBGNCFfGI029j6NVot4473ijXSgTGw/YkRCRiYUDPPMPzzPBx57zw2zUwGBGOEKmhhxRcNRuq71oLXFel2sRhvf++uncc95kCWZpQVfXC4vI2CwGDY1dts17ean/+NZljx+6u6oIRKKsOhcYmpgFostNoDOvxjg7AdOLquhwdaJ5+V/u8SFb7+CVqfFnGNivGeKyf4Z3v3Z+/nwF97DGz9vof/qMAaznqa31fPQ5x5IWaG3ETQaTbz2s3v3bmZnZ+nv78fv9zMxEfP8SxwFvhU58EokE0dtZV8q8WwzvF4vFy9eRK/Xs3v37rRJBzIX8SgjmVO1vtlK1LFye1EUaW9vZ2FhYVPTUzMV8XRf7ue7X/4Rfo8fwQDehUWMw0YqCgdp3Nt4o0CvRDQCsaWX2D81AoJG4Nj9hxi4PkLvawPIxBR7BqOeM+89Tu2haoLBIIce3MPhvUeZHp7FkmOhZn9lvBag1WnZc6KBPSca6HltgB9/7ZexJlBJIrAUJOQPsft4PZYcM6Od4wSWAhjMegruqME15cZsMxMOhVh0+tDpteQU5LPo8hEJhbEVWAguhQj6QhhMesLBMLIUI484+cSCmjdJSY4RrN6sRxMR0Wg1BJferE/Et7sRVS26fFx7rg0pKt6IkN6soWi1GpAEDhw4QFF1AQ6Hg+//15/Sf3WYSCiCJc+CyWYk7I8giTJ5pTaKGwvXnUkjRkVG2se59KMrTA3N0ni0Dq1eS+2hGkY7xlmY9TDcNkbdHTUce8cdnH7PsVX72Eofz6Jrideevo7JaqKwIiYCyi2yMzc6z8UfvsEdb9vPu//j/YiiRCQS5uLFi+Tkb/+iqtVqMRgMHDx4EFmWWVxcxOl0Mj09TW9vLxaLJW7nk5ubu6VoRbl/MhHxBINBJElK2bngVsJNJ56cnByOHDnC4OBg2k/sCrZKPEtLS4TDYYqLi9m/f3/KF5ESdaT75KOQx8oR2Ztx/M1EjUeWZX71vUv4PH7MRQai0SiNNQ0EPEGuX2jnzHuPU1ZbTFldMWPdk5Q3lNxIP0nMjTmpbqqgvL4UrU7LR3///XRf6mOkcxydQU/jsToaj9fF1YeCIFBcXUh++Zs3vCzLdLzcw/XnOnDPLFBQkc/A1WHEqEhZXQmCEBs2FwlF4rWQUCCMyWIkuBTC61i8UUuIFWbCgTDRsMiSy09gMYgUFfF7g7HrTIZQIBznTUGIpecEAQSNBjEqxr9TWYyp2WQp9l3lFNhAhqDvTfJRoif5xufoudQXJ534/jVC/O8WuwWdTsflf7vO9Z90ggjI4HP5MJj1GGx6wksRIpEotccr17ymvM5Fvv83P2W4bQznpBuPw4sYEak/vAtbroWm042M90xispn45F9+hPKG0qSRzVYinrlRB0vuWEovEfYiOwvzXlxTbsobStFqNShjt7I1Ylv5zgRBwG63Y7fbqaurIxKJ4Ha7cTqddHd3E4lE4r5yBQUFWCyWlM5RWXcyQTxKW0S6fTy3Am468Wg0GoqKihgZGdny+Ot0xyso/UJ9fX0AHDx4MK0bQ7notkI8wWCQS5cuUV5eTlNT06b3k0rEE2+eLLJTWJEfX2B9C34mB6YRtRHAQGlJCRqtFl2hjvHuSSYHZiirK+H8b72d7//NTxjvncLr9SJ6oaiigAd+6964j5zRbODIvQc5cu9qi/v4ELAb/nrK9/Xy91/jwr+8jBgRMZoN9F0ZwutYpKm5EZ1eSzQSRavXEglHcU66KaoswGQxsiB5QBAQoxL2ohzcMwuEAmFcwSjRG0X92IF5M0CLn0zsNRlAkjDZzeQW5uBxLqHTafB5AjHykWRkSYoV/sNR8svzmB93EA2JCBpFJBOL1iLhCGH/8sGGsnTj/7QabHlWgr4Q//ZXP+KVH7xOyB+KybTzbfgXg4QD0Ru/u0BxQyGVd5TwyiuvxHtZCgsLMRgMREJRfv4Pz9P72gAlu4oxWYz4lwJ4HIuMdIzTdHp3LE2oETh630Eqdq/tarFZ4gksBuh+bYBF5xL5pbnsPdWA6YbqLhKMLEvhhYNh9AYdpiQihmwQz3oqM71eT0lJCSUlsRlIfr8fp9OJ0+lkcHAQg8GwbPjdRr2ByrqTic+1tLSERqPZUvZnp+OmE4/yQ2Vy/HUqiEajdHZ24nK5OHz4cFy5lc4FpFzk6UQesiyzsLCA2+3m4MGDVFWl5kS8KWVaIMzPv3mBa8+1E1wKYrQaOHTXPg69a2+sXyKwhNfnRSfoKCoqin8H4o30kmLeWH/HLn7rSx+j5cUOXn/5DU7fdZLD9xygqCq1aZHXX2qn79IQjnEXucU59L4+iNFioGRX7NihYBj37AKzQ3PkFdvR6bVY7RYC3iDhYMzaqLAin7lRB6FgGM+8F/fsAoGlEJIoIUakGLFActKR3/ybki4TEAj4guQV51DeUIp7xoPREsFsHEarEZge1xIVc8gtzCEcDuGa9CAAWp0GlKgzyc8vCIAmdhI5+Vb+5hNfZ2Z4PtbwbNQT8oeQZBl7kQ2/N4DBbKC4qpAPfO5BJEuEvXv3xscPvPDUy4y+PsXC5CLzw04KK/Ljcu+8IjuuWQ/uWQ+zo/OEAhHyy/I48cDhdX+LzVzzUwMzfPevfszs8A1Fokagem8FD//n91K9r5L+q0OU15eiv/F53DMejr3jYNxXELLvFr2ZYyUOv1N85RSRwuDgIIFAALvdHlfL5eTkrPquFGFBJohHscvJVv/RzcBNJx4F6c7kWbmPVIjH5/Nx/fp19Ho9Z8+eXUYc6UYsQMrkJ4oinZ2dOJ1O7HZ7yqSjHHsjwvvFt57npX+7iL0wh6KqAgKLQS79+ApOp4s73reH9s42Ttx/mJZnugj6QrHxCVGR6aFZympLaDhaG99XUWUB93ykmWihn3vuP7tptwjFtHFxJMiP/ul7hP1hzFYz/stBFh1LNJ6oj6f9jBYjOr2WJY8/nlIrrinCMeEiGhFZmPUQ8AXR6bUE/BITvVNEw9FYHUoroNNpQRCIhqMYzAZC/tAq8tFoNSDEIrRIKBqvdZhsMRujX//9Mk69vYfFeR+LriU8LgdvvFjP+EgVu++q4dJ3rrHo9CPc6COKhpNfw7IMiDIIMNw+TiQcQUCINZca9OiNMRn4ktuHgIBGEDj7gRNU7CllcnISq9WGENWwOBag75lRFt0+0MgE/CGmBmcIBoPUHKii5kAlRoshRmphkYN37uXOD51eN9qBjft4RFHix1/7BdODs5TvLkWn1xIJxZpsn/mHF3jXf7yPpx4PM9E3HVuEdVoaj9fyjk+9LaXjZBLp3sdarTYeWTY2NhIMBuOS7dHR0WUiBiX6zLSUWiWeLCATU0ghNeJRrG+qqqrYs2fPqsJ+OrY7giCkXOQPBAJcv34djUZDY2Nj2lP9Njqu17kY8zkrsJFXEnsC1Rv1yEDXq30UH8rl3ne9DdNpE1GfRO/rg8xHRASguKaQhz734Cq7euXG2GxtbmHOg2PaFUujvThCjiWHgj15BIMhXAYX7pkFRrrGMeToMJlM5BbnYLaZ8Xn8eB0eQhYTXsciuw5WUdlYxmjXJO7pBZY8fpDAaDGg1Wuw5dtwTroRtAIWmxmvcxExHE2eZhNAp9dS0ViKvdDOfR+/i+BSEEEjsPeYlrqa/w8IYC/dj7VAosA3Qe0BLxHjGbqGBAxaIxe/d5XgUjBWM7qxVmi0mpiwQlx+UBkIhyLIooTJakISJUL+MDkFVoKaMIIGTBYjb/vYOd79H+9nbn6OkWsTXP5WK/MTLmaGZkEQ2HtqNxqNgN8VxL8YYNHpZ8GxgMagQdREqdxfyie//GHq9tVuakFcGfEo5K8s3JN900z2zVBcXYBOr71x/egoKM9jqG0UrU7Lp770CIMtI7E0XFkudXfUJFXP3WqmnSaTicrKSiorY7U2r9eLy+WKjwGx2WxYrdaMKdvSNQi9lbAjiAdipBGJRDZ+4wb7CIXW74ZOtL45ePDgMutxJfe8XbY7K+FyuWhpaaGkpIT9+/czN7f+eIL1sJH7gMexSMAXWpX2CEb9BP0hdJI+Pt7443/6MEOto8yNObDYzew92YDFvlrdt1niCQVC/OybF7jyTCvBpZhiZ2HOS/2RWvR6PXq9HovZgmdyEd9CAN+Cn4AxgBgV0Zm11NRUojcZiEZE9pys48S7jjDUMkrXpf6Y0mxRg96iI+ANIoo31GMGLdGwIhCQkZL9JnLM+UDSCMiizAc+9yAH73rTAVoX/j5C1IOkqYs1jRrAbKhHIw0jatuAw7ztN5qprKvgys9bGGwZRYyKiBERUZRWEx2g0QixOpAoEQ5F0Jv1hPzhmFWOIGC2WDj5rsM0HqvjuX/+FcM9Y3T8qgeLxYLVbo6JJESJsa4J6g/voqSmiPHeSUKBCFIAtLIWQdLQdFcD0+4pJl+ZiD+ZrzeaWiGewFKQiz98g2vPthH0hak/sou7Hz5NOBCO/R4r+n90Bh1+b5BwMILBpGffGu7bCm6FiGc9aDQa8vLyyMvLo76+Pu4rNz09TTQa5eWXX141/C5VqBFPFqHVatN2V07cx3rpuo2sb5SIJdPuByuROMdn79698aFpW5FEazQawoEwHa/04PcGKG8opWpPefzizSu2Y7Ya8Xv9sbTSjWmRkUCU3PwcbAVvEkssTVJP4/H1G/w2QzyyLPOzb17g+SdfISfPSn55HgszHryuRSb7pmm80Rip1WkoqytlvHuSgDvWdyOKEtX7KzjxkYNImihWiw1pCX7ytV/Sf2WYoC8UT1GZrEbMdjOLzkUCS0EMZh2BiMjCvDcpAbz5IZSne5b18sT+5OGGcmD5Z0IPsguILbxvf+QcZx86yf/83X/m4g+vvClmWAElrSdFRTQaATEqxkZnizKCRkCj07L7eB1Lbj/f++sfI0kys6PzRCNR9p7Ix1Zow2gxEg5F8Mx78Xn8FFUXIMsS473TQCwFevLBo5x+z9GYS3YSCbFCQomuz7IsI4ky//ZXP6LtpW6MN/zyrv2ileHWUT7y++8np8DGwpx32XRQz5yXwsp8itdw3F6JnVjj2QoUXzmlB6+pqQmXy8Xc3Bz9/f2YTKZlo8A3k0m53Xt4YIcQTzZSbUr3fU5OzrrWN5loAl3vc4iiSFdXF/Pz86vMT7dCPBM90/zyq68iBC4h3kjjHH77fh7+v9+H0Wwgp8DGsXfewQtPvko4HCEkBdHJOsSAzIG3NZJTnPqFvhHxxMZCL3L1F63Y8qzkleYBULyriLlxB85JF5WNZVjsZsQbKafj5w9z4vwRfB4fRVUF7D+7N2YSGgwy2DXEN/70X/E4FolGI+hNWrRaDUGfhN8TIKfQGlO9BcNERTFGKFKSc1vRfiRLMDfu5Nv/vx/w6b/5dXYfi5GhpKlAK8ogiyDcSNnIEoIcRhZ2xXfndS7y079/lis/byUcSh61CxrlO5GIRmUMRh1iMMqSO+aioDfosNjN9F8ZIrAYoGZ/JSUV+cxPOBGiAhN90zTlW8krzWVmeA4pCsGlICariXAowqF79vEf/uoRcgpsyybUrpQQu1wunE4nbS1tOCfc5OXns+dwA5FIhKmeGbou9VNYWRDvG8orsTPRO8W1Z9s496FT/OJbLzA9MIvJZoyJIEwG7v5I86YtfbKZavPMeWn5ZRc/6HoGQRA4eE8Td33odDzVnEkoNR7FV27Xrl1Eo1EWFhZwOp309/cTDAbJy8uL14dsNlvSqGZpaUlNtWUL2ykuSMX6Zjv83hQEg0GuX78OxAYwreycTjfaCvqC/NuXf4xnapGGg3XojXp8C35e++k1iioLeeC33g7AO3/zbczPzXPt2Tb0GgPmPDOnzu/jxPsPMeNIvbaUaMaYiLHuSV76t4v0Xx1C0AjMjjqo2luxbLuafZX0Xx1msn8akzX2PZTUFPHB3303NftWOzR0vNjDd//qR0z3zqE36pGiMiChNWjR6DSEQxG8riUEjYApx0RgKYAYluJF/2UEtIqLZCL+MBN9U/zyn16i45Veui/2oTNIHL+rgHveO4IlrxAZgbkRF11X8ghhZkkzS2lxKU/+1b/T/qsegv5wUvEc3BAXyDfcDmSZkD9ywyxTA7KMyWKk9lA1g9dGEASB2ZF5cgps6PSx6zEcjOB1LlFaW0xgMYBregHXzAJBf5ji6iI++Pl3bbigKqOp53pdvPa/OpgbnUcURWwllzjwYAMLE4v4l3wUVOYukz3b8qwMtozw0T98P/YCG2/8vAXHpIu9pyo59e6j7D+7Z93jJiJbqbZF1xI/+W/PMTvoILcwF2SZC//yMoPXRvg//vrXMzblVEGyepJOF1OHKvZffr8/Pu5hZGQErVYbT8kp3nKQuRqPy+Xit3/7t/nJT36CRqPhQx/6EF/96lfXjaaCwSC/93u/x3e+8x1CoRDnz5/nf/yP/xEfJNfa2spf/dVf8corr+BwOKitreWzn/0sn/vc51I6tx1DPNsR8UiSRHd3NzMzM5v2f8uE7U4y4lGG2RUVFa3ZnJqu7U3P6wPMjTqwl9nQG3WxxSLfStAf4vWfXeP+j9+FoBHo7e+h4W1VvPPjb0MMyLGxzmV5zM7OIs+nb7eTeM7D7WP8w+//K+6ZBSx2M0F/TBItRkX2ntodX3QErYbqpgru/PBpkCG/NJdDd+8jt9i+6hg9rw3wvb/5KR6HF41Wg86gIxqOEgmL6I1gthqJhKMIWgGtXkPNiQqGLo0R9sceZGRJjjV3JvuIN5o+o9EokUiEi0+9QV6RnfCNJtWWCyLPfTefP3giQufrEj/751w8bjNLC88RWAryA+szSFEZi92MJEoxyXSiA4ICpVcoYc3V6XVYc81EQlGiERHnhCvmkGDSEwmLeJ1L2ItzmB2Zv+G4LSFLEkarkabTu7nnkXPkFtrYe6oBc5IxC5FwlNnhOXQGHaW1xQiCwGjnBN/9qx8RWAySX5aLLMm4phe4/v1u9pyrQ5JkFtwLIIDBYMRoMBAKhMkvy0UQBI7cd5Aj9x1Mu+UgWxHPtWfbmRlwULyrAHtu7JqKRqKMdk5w/UI7d334TEaPtxlVm+IrV1VVhSRJeDwenE4no6OjcYPgZ555Bo/Hk5Eenl//9V9nenqaZ599lkgkwqc+9Sk+85nP8OSTT665ze/+7u/y9NNP873vfY/c3FweffRRPvjBD/Lqq68CcPXqVUpKSvj2t79NdXU1Fy9e5DOf+QxarXbN4XPJsCOIR3GnziTxKNGFLMsp+b9ttcaTbPvx8XF6enrYs2cPNTU1a96w6aba/J4AsiSj1SreabHXDSY9gaUgXvcivYM9CIKQ1AlhK64HiaIGWZa58K8v455ZoGJPGZobXmUhfwjnlJvZkXmKKgsILAVZmPNw8oEjvHeNoWgKIuEoP/kfv2BudB7zDcNOjSBgzbOw5PIhRUUiERGr3czecw3svrcad/8iXb/sj1neSPKNOk6yc7/hNCDKcY4I+kIEzCECSwGQIRIR6b0S4XffbcOWb8VoNhHyLxLyh5FEGe/8UsxxYMGnBDRrf1cJ7gZGswExKhH0hWJjHXRaPI4lbHkW3HMx52wxKlJYmYfXuUjYF2HR7SMSjlK5uyzWO9O0tnff9ec6+OX/egHHlButRkPN/ire/zvneeOZFnxuHxWNZfHrsLyhhOHOMQRJQ2l1MX5vgPzyPCLRMAtODx7XInvvq2VgYGBVbShVZCviGW4bQ6MVlqnqdHodGq2G4fbxbSGeVL4TjUZDfn5+PNUeCoVobW1leHiYl156CYhNBj1//jznz5+nurp6vd2tQnd3N8888wxvvPEGJ07EnND/+3//77zrXe/ib/7mb5LOE/N4PPzjP/4jTz75JPfeey8A/+t//S/27dvH5cuXOXPmDL/1W7+1bJv6+nouXbrEv//7v996xAOxiCdTqTZFLZaO9c1WazyJ2ydGXMePH4+rxtZCuqRXWluMwawnGAgsiz6W3D4qm8po6bhOcXExBw4cSHpzpDv6OnFbWZYJBkIMXh/BVmCNkw5Azb4KAktBAosB5iecmCwGTr3rKO//7QfW3XdgKci//Mm/ce3ZdqLhKIGlYMyJIBLFaI2NpjZajJSV5nLig4coP1LEsePH+H8/+HdIonwjvbXifDUCeqOOcCCSlIwkUSLoCyIIGsLBMJIcM/90zyyyMBcbrx3yhzCajUTC/vh2G5EO3GgyRSAaiRLyh2NP/9rYfCCtXoter6O4pohFty/+WZ2TC5jtJu7+0BkO3NWE1W5h97E6DCY9kXCU68+20/ZSF+FAmL2ndnPq3UeZHprl3778I0KBMHkluUhRid7XB/iXP/ZisZvQ3xhZoCBmYwRhf4T3/V/n+fHXf8n8qBOQ0Rv13PnQad7+G814l7x0dnYiiuIyF4VUzDazJS4w2WJj05M1eq7ne5cutirdNhqNnDp1ih/84Af8zu/8DpFIhKamJv7pn/6JP/mTP2FiYiKl7+3SpUvk5eXFSQfg/vvvR6PR8Nprr/GBD3xg1TZXr14lEolw//33x19ramqipqaGS5cuceZMcrL2eDwbrm0rsWOIJ1MRTzgc5urVqzQ1NVFVVZXy01WmUm3BYJCWlhYkSdp0xLVexCNGRYbbxwj6QlTvrViWkqq7o4b9zXv51VMXcRvdmCxmvK5F0MoUHrBTX1+/7tjwrThby5LMaz+5RvsLPXhdizgmnJisRvKK36w3CIKG3KIc3vt/vZP6O3ZhL8qheBMuBy9//zLtL/dgzbPiW/BhtBgIazVEw1EkKUYsFY1lnPzIQUr3FnH06FEiAZGJvukbAoLYwi7Jb7oJVOwuQWPQMN4xvcYHikmso4oFCgkRnSTjmfPeUKbFxl/HzUXX+Po0N6JQWZYRNBr0xliaMPbfYLaaCPpDNz5TLAKy5lkori6ksCIfrUlDwS47JoOJZ775PEaLkRMPHObM+47z73/7M6480xJPX3VfHqDl+Q7shTkEFoPLfNmMFgMzI3PU7KskHIwsS5XF+k8gt9TOkfsOsutgNb2vDRAKhqnaU0HdHdXL1G/KRNCZmRn6+vriSjlFubXeApluqm1uzMGr//46/VeGMOeYOfaOQ5x6z7E1B+Qdumsfrzz1Gj6XD1NFjGi8zkX0Rj0H79yb8vE3QiYbSIPBIHv37uWLX/wiX/ziFwmFQil/ZzMzM5SULJ/uqtPpKCgoWLNXcGZmBoPBQF5e3rLXS0tL19zm4sWLfPe73+Xpp59O6fx2FPFsJeKJRqMMDAwgiiJnzpxZ9eWlch5bFRcsLS0xODhIYWEhBw4c2PQFuZZzwmjXBE/+5b8zNTCDGBWx5ll420fP8uCn70Oj0aDRaHjk//kAjqU5vMN+IuEI+ZV2qk+V8b5PPrjhWId0U3yyLHPlB+2MvjaNRqtBb9DhXwzimlnAbDOTVxqrIcyPO8ktsnPygaPklayu4ayF1396jUgwgsGoY0mWCfnD6E16xIiIwaSj/nA1d3/2BIXlBdxxxx3odDq6Xml/c+w1QqzuonxOrYaP/9lH6HtjkMmumVgaLglCgTCC9kYzcDKfN5m4ZY+y39jT9fKUniKf1um1sd6eiIj2hhFpjIxAkmX0Bt2NCaqxWtHZD5zgno80k1Ng4/qrrTz5pz8k4A5hzjEjznp46vGfc+UXrUwPzGIvzIlPZI2N655Ab9RhtBiXPWjElG4ChRX5uKY9zI44KCjLRZJjNZ6cIitNZxuAWL3tzPuOJ/1uVk4ETTTb7Orq2jAaSifVNjM8xzf/728zO+LAaDUgRkQGro8w0j7OI3/8gaSL8r6zjRy4r5HBi2NMDcwiACarkXs+2kzTBr1G6SDdpvNkWCkuSEyN/8Ef/AFf/vKX192+u7s7I+exETo6Onj/+9/Pn/7pn/LOd66fMl+JHUE8ipw63c5fxfpGWeA3GiGwHrY62iAYDDI7O8vevXvXjTLWOjYsJx6/18+3/uh/Mzs8R2FlPjqDDq9jkZ998wJ5Jbmc+8ApACw5Zo4/dJBD+w/R292PpIly4uSJTfUDpJtqG+ueYPDSGDqjDnuxDaPBSG6Rnd43Bpnon8bnjaWi7IU5fOB335US6XS+2kv3awOE/OHYtM8btRqCsXRYfmkuhz+8l6r6ymXD8QKLAcSIGCcVjVYTl1WbLEYOnGuirK6En//D8wQWg2seXxblN40fNbwpDkgC5XrR6LQgxxYhi918w1g0dt46nZZwMBzr8REENFoBg8lAbmEO1lwzkiRTVFXAf/72o7HRCTfwxk9bWZhZpPbAm1FHYClI72uD6HTaZY7QyqjsoC+0jHCB+H/XHd7FkfsO8cw/PI9zyo2gEahsLGP/+QYKK/NJFSvNNpNFQ4pyKy8vL637+8XvXGR2dJ7yhtIYmQM+j59rz7Vz6j3H4r1gidBoNJz4wCGa330S96gXgN3HaqnaW7EtNaZMD4FbS9X2e7/3e/zmb/7mutvX19dTVlbG3NzyKb/RaBSXy0VZWXL7pLKyMsLhMAsLC8se3GdnZ1dt09XVxX333cdnPvMZvvjFL278oVZgRxAPvOnsHI1GV411Xg+zs7O0t7dTXV3Nrl27ePHFF7d0EaQb8SjD47xeL2VlZdTW1qa8j2Qmo20vdTM3Ok9pbTHaG1Yl+WV5zAzP88q/vxYnHogRSE9/D9ZcK4cPH153THciUhUXKDWdwZYRNOjILcolEo4N8tNqtBRW5yFGJN7xm/eQU2Dj4J1Ny5oON4LXucSTf/nvsaK7VsBgNiCJMpFwBGueFa1ew9GP7OPk246tEmvIkowkyRjMesSIRDQSjY8kMJj1GC16ag9W03R6N60vdsUjldjnSvyQiZ/3RrXqhvu0GFlxfdx4rxgRYxJpYuSg0+swWgyxYXIagbySXOxFOUwNzoAMZXXFlO4qRhQlpgdn2X9uzzLSARhuGcdoNSxbrM22mNVOOMlvJsvyDR++WD0tVuMRcU67KazI4/Db9pNXksv+s3uY6J1Cq9NSuaeMru6uLddeNhMNGY1GdDodfr+f0GIEvUG3obS5+2IflhxznHQArLkWPPOLjLSPJSUeiN1HVXvLOXLu0JY+12aQrbHXytjvjdDc3MzCwgJXr17l+PFY9Pr8888jSRKnT59Ous3x48fR6/VcuHCBD33oQwD09vYyNjZGc3Nz/H2dnZ3ce++9fPKTn+S//Jf/kurHA3Yg8Wx20Zdlmf7+fkZHRzl06BBlZWXxbbdyEaRDPKFQiJaWFqLRKGVlZSkRZyKSEc/CvBcQ4qSjwGwzxoaj3cjVO51OIpEIhYWF3HHHHSkrbDYb8ShRqSjGxmJrNAJmkwmN1YIsyYQjYYJeF4IBTA0a8kuthIUgoVBoU3OFADpe7sY966F6bwXjvVOEA2E0ulg6y+PwcOCdjbzjw2+nrHz1k5veqI+r+SRRUko9CEJMIed1LFJcXcRv/OmHGel4nIU5TzyNJtyY/mY0G2IiBlG6IQAQkMRYbUJnjM3qicm6Y0aZAjeIW1ZSWjJiRCIiRZAl6QZRxaJKn8ePGBWRpZj4Q6MRCAcilDeUsOd4A66ZBQrK8uKfx2DWv5nuS/gNDCZ9bLiZawlrriU+qjwajnLXh09jyTHz7D//CueUC41WQ9WeihtRZywbYDDpqT+8a9k+Mx0JJIuG+vv76Xt9iO/96dN4ppcwGPTsO7uHD//ueyiuTt7uoDcZ8Hn8y15T0qm6NWo8kF2XhFRVbeshE84F+/bt44EHHuDTn/40TzzxBJFIhEcffZRf+7VfiyvaJicnue+++/iXf/mX+LDJ//Af/gOPPfYYBQUF2O12fvu3f5vm5ua4sKCjo4N7772X8+fP89hjj8VrP1qtdtOTmmGHEI/SqLbZRT8cDtPa2kowGKS5uTn+I6XrDp2IleOnN4LH4+H69evk5eVx/PhxBgcH0z6+MiQtkXiKqwpii2Yosqw73O8NsufGzHpllpBer6e6ujrlG2CzEY8sy4RDYV78zkUu/vANXDMLLDqXiEZEqpsqYrYvaJAj8PaP3MnpM6eYn59nfHyczs5O7HY7RUVFFBcXJ7WWV+Dz+gn5Q8yNO4BYX4ssy+iNWgxWA5/9q9+krLw06bYFFfmYc8wEl4Lx70Gr08R6dcJRel8fpLi6iN1H63j/b5/nf/+/TyFGooiRWLOpzqgnGhVvRM2xFJ+AgFYHyDJSVEajEdAZYhb4ilLNZDQSjUTJLbbHR04jCOQU2DCYYg29HsciWq0GszUmC/d7A5hsJvacamB2ZJ7/+di/oNVp2XuygQ8+9m6Kqgooqi6g/7VhFh0+zDYT+WV5RCNR8ktzqbtjF6/99Co+bwCQMZgMHLyribMPncRiN3PkvoNM9E2hN+ip3lexyrBz5W+7nTJnJRryTvp49Z+uIQZFrLlWwqEQrz99jcGOYT765++lvKpslcfZsXcc4uffvEA4EMZgNiDLMu4ZDxa7eV1vuEymvzZCpo6lzAbKhGXOv/7rv/Loo49y3333xRtI/+7v/i7+90gkQm9vL37/m6T+3/7bf4u/N7GBVMH3v/995ufn+fa3v823v/3t+Ou7du1iZGRk0+e2I4hHwWYk1cpCn5ubS3Nz87KCXib6gRRl3GagOCI0NDRQV1cX93rb7PbJsLLGdPCufVQ3VTLSMUZusT1W43EuojfpuPvhM3R2djI3N8eJEyfo6OhIqz61mYhHlmM1j+/915/w0ncvodHGIgONVoN7euGGX5oJjUZg99E63vnJe+J2LQ0NDYRCIRwOBw6Hg9HR0WVd3QUFBct+x6mBWTzz3pgxpzb2fcSk03qO33cHZVXJSQeg/vAuTDYjsqxIamUiwXCMQAw6Lv34Cnd+KJZqeOh3HmSid5pLP75C0Be60VsjIoZFdAZtzCFBkskrycEzvxiL9mQJg95AJBhFb9SRW5SD1+mLX3MGu56lMR9avRatTkt5Q2w+zdyYg8BSiJLaohtpRwHfgp+FeQ9dr/ai1WnJKbARjUS59lwHrtkF7vrwabpf7o8RfiBM0Be64ZWWz4O/9x6uPtMamyWTa4n/Ru6ZBdyzseZdi93MnhMNm7oGtkI8IX+Ijld6cc8sUFxdyP6ze9a00Ln2sw4Ci0Gq91TGj5dfnM/8uJOZTgdag4b+/n7MZnNcoHDXw6cZbh2l7+rQjVqVgDnHxAOfvpey+pKkx4HsRzzZSLWlgoKCgnWbRWtra1fd9yaTia9//et8/etfT7rNn/3Zn/Fnf/ZnWz63HUU8G5GGYkOeuNCnuo+tngPELuje3l6mpqY4cuTIshAzE15vidsbzQb+jy//Ot//yk/ouzpE0B+isKKA+37jTiL2ACGvRHNzM2azOW1ZdGIvzlpjkUUxNpfntZ9cw5Jjio1/BnIKbEwNzGLJtXD3w2eo2VfJ4bftx7hihILRaFxmLe92u3E4HPT19REMBikoKKCoqAitqKf1+U6MFiORYOTG6AKZSCCK3qDnHZ9827qfRavVsO/0bpwTLiKhCJFgFIj1yYiRKK0vdnHtuXaO3X8IQRD4rS89glav5cX//SpiVIyNztbF5vEoT9h+T4BQIIxWr8Vo0qPRajEYDegMOqx2C16nD0mUKazIJzffjmPEjRgV0Rq0hCMh0Mgs/f/Zu+74KMuse6ZPei+EkAIEklDSgSAiCkLoUVbFRQXsrthdy7eiaxd1117WAugqi1LFBlIFISCk997LlCSTZGYy/fn+iM/LTDJJZiYzk4Bzfj/Wzcw7b5ny3ufee+45nYo/JHL+oF+DwN3HDY1lzeAJeZjElL0EELgL0FDSjD3/+hF6nQHh8eMAHQsquQrKHhXcvNzA5bJRX9KEsJhQhlJMDARtdRKc2nUWa/9v4JzGULB1sLOpohVbn9yBtlrJHxRxFiLjw3HnG+sQEDaQrNBaJYbAjW9yLC6vT21DLydITk5mmuDGttRzNiRi8hVR6G6Rw9PHA9PmxZqVVup/TX/WUttYx5gIPMYupOYyHoPBgJKSEohEomGlb0ZKyx4u8Gg0GuTl5UGj0WDOnDkD2Ce2DIGK6vuIAnVFTZBruuFl8MOsa5OZ54MmBOC+tzdA2tQOlVINNz8hikoKIRT6YPr06Uy2YCsjz3hGw5wni8FggMFgQGNZC5Q9vQg1YlKxWCz4hfpA06vFgrVzLSIRsNlsZjU7depUKBQKSKVSSCQS5BwqgFTUgeCJAZC3K9Al7QGLzYGHrxCevh4YFz34Cpci8erpKPi1BDJRD7iCvuBNCIFGpQWHw8aB9w9hxvw48PhcePi4476314PD5eDCz3lQdvdC3auGplfDBIlepQosFuDp447Q6GC0N3ciNDoIbt5uaKsRI3hCAJQ9KvAFPGiVOnDYbOhZbARHBILL40KlUkOt6rPrYPPY0Bv6VseEGKDT6uHm5QbDHz0LsFjg/SEJJFOo4TvOCywW4OHrAU9fD+g0OnSKZCjN6suEjOdYWOy+LLQqt97CT/4ijD97aXMHTu06i7KzVXDzEiJ1SQLmrE4ZUKrT6w34+vk9aKkWITCsj3GpUWlRk1+PXVsO4N531g84jpe/B7pEPabH/mMOii5muFyuSW9IoVCgvb0dLA7AH8eCm5sb1Nw+3bOh5oacrYRtr1KbK/A4GeZu+r29vcjLy7NY+sZRWmtAn8J1Tk4OfHx8kJycbJa3b23GU1vYgPc3bUVnWyfYHA6UCiWa879G99/lWHTrfJNtA8MDIBKJkJOXjejoaEyaNMkkUNgqfWMs9mkik/9HwAH63hc3DyE4XPYfrpkXr12n0YPD4wwwirMU1HY4MjISOhEL53iF0KjU0Gq1EHjyIXTjgy/kg8fjmzCbBkNqRgKO7TgFSWMHOBw2tCotDH805FlsFqpya3HymzO4et08pq+24aWbEBEbhh8+Poy2WgncPITwDPCEuF7yh9QNGx7e7uAJeGCxgdKzVfD08wCXx4Gnnwemz49DR0snutt7ED93CtpqxNAoNOCwOdBqdBAKBdCydWBzgZ6eHgAs6NV6cHhssLl0kLPvf3S6vu8vl8f5o7R08b3W6/s+I3cf9z6Kd7/Fglajg0+gqd2HJaD7EddL8d7fPoeoTgKegAe9To/y36tRmVOL9S/daHIjrytsRFNFK3yDvZkmP1/Ig3eAJ8rPV0Pa1IHAfnYJ8VfFoKVMhC5pN7z9vaDXG9DR0gHvQC8kXDNtwHmxWCx4enrC09OTUXzunw0Zzw3R+4PBYHCqEra9Sm1KpRKEEFfgcSb6Zyvt7e3Iz89HcHAw4uLiLPpgHVVqa21tRVFR0bAK19ZkPIQQ7Hv7J3S0diA4MhhsNgtdXVxo5Doc+OAQUpckMCwkQghqampQU1ODmTNnMmqx/Y890oyH/lf/h62A8fPjp4yDd6A3pM0dCJ4QAA6XA41KC4VMibnXpdlF8Td+zhSweWy0VkjAYvUNWyo7+nyaJs6JQFlNKYJ6ghAYGDiorLzAXYDrHlqO6ryGvmDKYkHVq4GmVwO1Qg1CCP73yn5Imjtw4xOrwGazIXDjY+ldCzF7ZTLeuecztFS1QdGjgF6nB4vNhpuHAD5B3lB0KdEp6oJBb4BPkBfcPd0gk3Sj5HQ5Hvz4Trh5CiFt7kBPhwLlv1ehKrcOAWF+WLLxahT9Vob6okaw2CzotHqARRCRGAZJbQdEjWJ4B3iBBTa6xN0IjgyEp58HKnNq4DuOwywEOkVdCJ8Siqv/OheFv5agvaUT/uN8wWKx+myz2SykLU20+n2ngeeXL09CVCdBcEQgE+SV3b3IPpSPuZmpmDprMvMalVwFvVY3QD2Ay+dC9Ye5XX9MmTcRcmkvio6UQ1QvAYvFgv84X9z4xCqLsuXBsiHqf0N7Q3SW71IrtSkUCgBwBR5nwLjURm94dXV1qKqqQmxsrFUCefYOPIQQVFRUoLGxEQkJCQNkKMy93tKbf5ekG9X59fDy8/pjcr0P3gEekLX1oOxcFeasTIFer0dhYSFkMplZAzuKkfR4gIulNb1ez2Q/LBYLPR1y7P7XD8g9XAhFdy8UXQqo5Cq4eQrB5rAxOSUamcPorlkCg8GAqupKaFRqXJRxZjGzMUFBgQgLC4NUKkVNTQ34fL4JQcF4YTJ19mRETQtHa40YbA4bcpniD1VrPdw9BXD3dsOvO7OQePV0xM6+eDP1D/XDnf/6K3a8sRv1Oc3olanAd+NjfEwoODwOuqU9fygn8PvIFBw2/EJ80FonxscPfwGVQg11rwY8AQ+Tk6Lx1Neb4PeHD9HVf70Cv/+Yi/Lz1RC48TBzwTQkXB2P7z44iF+/OYP2pk4QlgG+43yw8N654Am4aG1sRY9YAWV7LwgB/Mf54i9/X4HwqWFY89gK7H/nZ4gb2vusFTyEuOqmdKQtT7L6vafZQdHJUgg9BCaZpbu3G3o65ai4UGMSeML+8FKSy5QmWZZcpoBPoDdCIgeWxFksYOHGK7B847WoK2oEj88dVF17OJjLhujcUEVFBYC+mZPAwECb3UAtAc2u7JHxKBQKcLlci0cPLlWMicBDQRll+fn5kMlkDLfc2n3YK/AY07bnzJlj0SrEmqyjj0YOEKNpxb5GP/3/faVGqsowd+7cIWeEbM14aODR6/XM/zemdn/6969QdKoM7t5u8Pb3BIvNgqZXg2nzYjH/hjmYdsVUi43ABoNOp0NBQQFKsyrBYXMRETceyu4++2u+sK/E1ljaAm+hD8ITw6HX6xmCQllZGTQaDUNQCAwMhJubG256ajW2/t9O1BU1/uEKqgdPwEXQhAAI3AVorRHj2I7fEDTBHwFhfavtrq4u1DRXYfUjSxATE4NDnx/H9x/+gi5JN4QeQshlfStS3xAfcP8wXGOxWFD1qNDUqURodBC8/D2hVmpQcqYcW5/6Hx7dei8IIWipaoN3gCcyH8jAuEkXM9a/PLIS19x8JRpLm8ETcuEf6YOGpgZ0dXUh4/H5aK/ogrZHj3FRoUhdkgifIC/odDqkLJ2JyanRKD9XDZ1Gh5iUaIRNDh00Gx8KNOPh8rkDzPPoYqZ/j8cvxAdX3jAHh7aegLS5A0J3AXrlKrA5bCy87coBBBPgIokhKDwAQROG1+uzBlwulxmw7O3tRVZWFvz8/EyyIWMVBXux0IzL0SMFVS1wVqY2WhgzgYcyq5qamuDt7T3sTXYw2KvH09PTg5ycHMax1FIdJmtKbd6BXpicFIW8EyVw977ISuuS9sDL3xOhsUHIyspCcHAw4uPjh/0yjsTeAOi7+XM4HCboAEBldi3Kf6+GT6A3hB59NxKhhwDtLR0Q10sxY36cieOlLaB9PIFAgOjIiQA5C6GHEO5Gq2BlT+8fHjx9Dp8cDocJMsYEhba2NpSXl8PDwwOBgYG4571b8O/bPkGXuBvegZ7w8vMEWCy0VIvQ3d6DU7vOouhkKWYtT8aiu+ehoqockyZNYhQRMu68Bp6+HjjxzRl0tnXBL8QHPR1y+IZcXBBp1BqoezXw8vOAh3cftZkqIFfl1iL7UD5+/uwYGktboNXqIHTnI/nambjt+RuYm7N/qC/8Q32ZwWilUom0tDTweDxIk/to6J2dnahurESAMgB+fn7w9vaGb7A3Zq1IZM6FlnysvXHRwJO6JAE/fXKEmRujLrJCdwGmmRHXXHHftfAO9MKpb8+iu70H4bFhWLB27qBab85q+NMMLjIyckA2VFZWZtIb8vf3h7u7+/A7HQT0926PQPZncB8FxlDgaWtrQ2trKzw9PZGSkmLzl3OkhnIcDgdarRZnz55FVFQUJk+ebNUK0ppSG4vFwnUPL0dzlQjiBinYbDZUvSq4e7lh/i2zUVFbPqyHjzFsyXhoeU0oFOLChQvMgCctXbXViqHT6iBwN10EuHm5oVPUBXmnwqx5m6Xo6upCXl4egoODMXXqVLQHd/aVbzrl4PG5kEl6oO5VQ6/TY+LMSPgZTfVTGJdcqFRLe3s7JBIJ2tvbET03DIU/yyH0EoDNZaOlSgR5pxwsFphzP7bjFJqaG3HXa7ea9M/YbDbm35iOK2+YA7VSA5m4C/++42NIGqR9QQxAp1gGNpsFn35adAI3Pro75Njx8j50tsngHeQNHwEPyp5eZH13Ad6BXrjpydUA+vooFw7loTinFDwvDq67cyWjl8UQL3Q6tLe3QyqVorS0FHq93mQFz+fzTQghdK6M/nco0MCz8NYrUZFdg+rcuj5iAwsQuguw5I6rzdKXOVwOrr75CixYO5ehnw/1XXVWw79/gDPOhmhvqKOjAxKJBJWVlRAKhQxBwdpsiGZx9sx4LneMicBjMBhQV1fHCNGN5AMcScZDCEFjYyP0ej2SkpLMNvCHg7U3/8j4cDz55f04vf88Gkqb0atXICY9Gt7h7khMTERAgOXlCGt7PMYkgvT0dHR1dUEqlaK8vBxqtRr+/v7QEDXAYkGn0ZmU0zS9Gnj4usPNy3ZvE7FYjKKiIpMMIyg8ANesm4f97x5ET3sPw/QCm4W2WjFO7z2PK/9iXmuKgsfjITQ0FKGhoSCEICpsIsTl29BaJYbBYIBS1gsWWPDy84CXnwfUGjVYChaa8yVw45hf+bJYLAg9BAiNDsZ972zA/nd+Rk1BH215xvx41ObXQ6fSAUbtt155Hw27s60LPsE+4Av73j8PH3fotXpkfXcBq+5fAkmDFO/dvxWtNW0gLIDH5aH6RBPuf/92hE8Zx+yPy+UiJCQE/r7+mDxxMtTavqHc1tZWlJeXw9PTEwEBfdmQl5cX8/nS86c3R3O/L3rz9PT1wIMf3YHsXwpRV9gAvhsfCVdPw+TkqCHfcxaLZba0NthxHI2hMivjhUpERMSg2RAN6sNlQ/ae4fHw8HDKezSaGBOBh81mY86cOairq0N7e/uI92XLHI9Wq0VBQQHkcjkADEsiGOr41ga+wPAArN6UAa1Wi1OnTgEAZs+ebfXKx5qgZ0yXZrPZ4HK5zIpvypQpTOlKFa6C0I+HtkYxfIK84eYhhFqhhUatxeLrZoEvtL4cSghBfX09ampqMH369AHv9bJ7FuHw9pNQdinB5rAh9BDA098TKrkK+97+CakZCRabebFYLERNicA/vn4Ep3adxam9Z1GT3wBPfzfwPfno7umbKfH09kBvjwr73zvYJ5wZE4JZy5IZywFjRM+IwMOf3v2HNw8LPkFe2Pv2T/j5k6N9vaA/hk+VchUi48ejrrjPqsAYfLc+Fenu9h58/vT/0FzdCq9AD3h5eUKv6xMN/XLzt3h654PMTaitVoz97x1EwfFiEAJMvzIWqx/IwKxZs6DRaJhsqLCwECwWi/k8fXx8mEzcuB9hHIyMadkCdwHmZqZibmYq7A1nZTzWBIP+2ZBSqWTey6qqqmGzIXurFrgyHieCyt2M1IWUy+VCrVZb9Rq5XI6cnBx4eHggNTUVp06dsnkgzFblAoVCgZycHLBYLIwfP96mL581mmv9mWv992NcumI/I8BXL+yBTCyDTNQFnhsP0+bHYNaaBKt/dFTFWyKRICUlxSx5pKWyDVq1FuMmh5gENh6fiy5JN2ry6zHtCuvMvHyDvbHy/sVIXDgdL934Fnh8Lgzsvhsxl8tBR0sXertVOPj5UXC4HLDYbBz87Dge+eweE+sB4/fIuM+zetMSsNksnNx1FsqeXvAFPCxYm46UxQl4995PoVaqIfS4GCx7e1TwC/GBqFGMmqI6ePq69bEVWQCHx4GnvwfqihvRXNGK8KlhkIm78e87PkZbraSv18YCzv2Qg+rcWjz9v4cQNCEA48aNw7hx42AwGNBc14LvP/oF+UdKoNXqEDMrEtduvAqTpkfDzc2NWXjQa6F/l/9ehaaKVvgEemHG/DiLspieDjnO7L+A2sIGePq6I21pogn7zRjO6vHYehwWi8XMlRlnQx0dHSgvL4dGo4Gvry8TiNzd3Z1miXA5YcwEHmDk/RnA+lIbtVWIiIhATEwM82O0dRVDV4/WfPGlUiny8vIwYcIEaDQam9NsSzIeuuodLOgYQ96pwOdP7UDhyVJo1VqwwUHUjAhkPp4Bz3FC1NbXoqyijGGTBQUFDWmDTJlrarUas2bNGpTeymb3GaiZZVexWCMiM4RPHYfY2ZNx4Zc8CD0F8PbzgrJHBVW3Cjw+F76hPtDr9dBqtKgva8InT3+JBz++E97e3kO+V1weF9c9tAyLNyxAe0snfIO84R3YV+6KnR2Dgl9LoNPowRPy0NvTC2IgmPuXNBQVFIEFFty9PC4yyPGH/YJejV55n2fQb3vOQVQvhf84X4bq7O7thvaWTvz6zRn85fGVzGtVCjU+e+R/qC1oYAY7i45UoqGwFRl/vxJ+oT4m2VBHRweUXb34+P4vUZVd1ze7xGIhcEIA7n3rNhMV6/6QNnXg33d8jNYaMYihT33h1K5zyHwoA0vvWjhg+7FQarMGlmRDNPjYI/ORy+WX/QwPMIYCjz0EPgHLAw8hBFVVVairq2NsFYCRK1zTL54lX3xacqqsrMS0adMQFhaGkpISm5lpQ5X5jGd06LbD3QC2/WMnsg/lw83bDW7ebtAoNagvasTZPTm4/72NDJtMIpFAJBIxbDL6QzW+WRsz19LS0oZkCYbHhiFsUijqS5rAF/L7Bi41Okga2+Hl7zmgbGUN5HI54jMnQqlWoqmgFT3tir6sR8BDSGQgMwxpcCdgEwWqc+rx27HT8PT3YFh0AQEBg56/h487I9oJ9H2v73rjFnz7+gHkHC6AqkcFb39PzLkuGd5TBYgJmIGs7flQyJQmJA1FlxJefh4Y/0ePpya/r59kPF/DZrPB5rBRmV1rcg5nD2SjrrABPkFeDAXaoDegs00GVY0e0xZOg1QqRXV1NXp7e0EIQclP1SjN6lNj4Av7vIzE9RJ8/MiXeOGHv/dR2s18n7977yBaqkTwDfYGh9s36CrvVODA+78gadEMhPaTOBotcoE9MFg21NTUBI1Gg1OnTg3IhqyFvZSpxzrGTOABLFOnHg6WBB668u7p6RkwkElr3iOxNgBgUeZRXFwMqVSKtLQ0hsE0EgfUwV47mBLBUBDVSVBwogRCLyHTT3HzEoKAIO9oEUT1EoREBjE/RMomowrUOTk5YLPZCAwMhLu7O+rr6xESEmLiFjoYOBw2/vrMdfjwoe1ob+6ARq1l3EKJgeDlm97BFdelYcNLN1mV/bS3t6OgoABT4idj8ReLIGlsR6eoC/XFjfjq+T3MXA4AsFks8AU8sDQsxE2ahpxj+Thy4gx0Bh0mJIYidVkCQsaFIDAwcNjSiKefB25/9Wb85bEV6O6QQ8/Voqq2ErFxsQgLC0PG7Vdj79s/ob2lEwI3fp//EIeNZXctZCjlXv6eZi1QDQYDvPtJ5FTl1MJgICZzN2wOGxweB6VZlbjpqUzmxlhRUYEAn0CUnPwBYBPoiQ5aTV/G5R3oBWljOwpPljJyNpScwGazodXokHu0CAI3PvM5sFgsePp5oFPUhcJfSwcEnrFearMGNBvS6XQghPSxMvtlQ5Sg4OfnZ1E25Cq1jQKckfHQXopQKER6errZWaGRKExbkjGp1Wrk5ubCYOhTljYuT7HZbGi1WpuOba7H059EYGmZQ9rcAa1Gy1CGKfhCPuSdCnS0dCIk0rT3wePxTPoMMpkMDQ0NqKqqAovFQm9vL5qbm5kBz6EwddZk/OObh3Fo63H8+J8j4At58Av1AU/QZ/L26zdZiIgbj2vXX2XR9bS0tKC0tBRxcXGMEVZwRCCCIwLhF+KDPf/6EfI/sgz6vim6ehEWE4qtT/8P9UVNoHf+poI2yGoVWPzAPGYwkWZDfn5+g97wvAO9IFN2orqqCgkJCYzY7dK7F8I70BvHvj4FcUM7omdGYOEtVyJ99cXm/qxliTi973f0tMvh6d93jgqZElwuF7NXJJscR+AhMPs5G/SGvsXDH/JLjY2NSElJgU5hAIfFgcCbD66gb/GnUqn6jP00WrQ0tGGabir4/D6xVbo41Gv71LxZbPPfKb1u4G/ImaU2Z3nx0BJb/2xIJpMxKgr9e0Nubm5m3we5XD6kCPLlgjEzHmsvcsFQ+xCLxcxAZkpKyqADqiMJgDRjGkpoNCsrC25ubpg9e/aAnshIMx5jOjXNdCjDx5offHBkIHgCHtS9pt5CaqUafAEXQRFD/zhYLBa6u7vR0dGBhIQEpKenIyCgT+T09OnTyMrKQmVlJWQy2aAU8OCIQHgHeIHH5yE4MrCv7MZiMVnAyV1nh70OepMtLy9HYmIiE3T6H2fhrVdCp9Gjo1WG7nY5OlpkEHrwETYpBPVFjfDy94RfiC/8Qnzh7umGst+qgQ4uFixYgJiYGOj1ehQVFeHEiRPIz89Hc3OzCcmFDobW1NQgJSXF5ObCZrNx5V9m47l9j+O98y9j8+5HMTczzeTzir9iKlY/kAE2h42OVhk6WmUAgIw7r0bK4pkm15O6eCZ4Ai7kMgVTYu2jdrMwe0UyysvL0dzcjNTUVPj6+sI32Bt+ob5QydXgcrkQCoXw9PQEh8UFX8gD35eDc+fOIScnBw0NDVAoFH1MSD4XcXMm92m26fWggVnZ3UeuiJs70KTtUi61DQZzvR3qNzV16lSkp6cjLS0N/v7+kEqlOHfuHLKyslBeXg6pVGpyr1EoFINKYlmDjo4OrFu3rm/I2NcXd9xxB8PYHQwqlQr3338/AgIC4OnpiTVr1kAkEpndtr29HeHh4WCxWJDJZFaf35jKeLhcrtWN+f4wFzSMBTanT5+OcePGDfLqPoyk1EZfby54tLW1obCwcEg/IXuV2qwhEZhDUHgA0jIS8dvec31Wy3+UgNRKDebfMGdIQcfBmGt0EJIOeFJSBQCGnNC/f9LTIWd8bIzB5XHQJe0e8hroeUilUqSmpg75g/7L4ysQGh2Mk99moaO1E5HTJ2Dx+qvw9Yt7+26yRtbjAncBFN29KPi1FKkZiSailT09PZBKpWhqakJJSQm8vb0REBCAnp4e9PT0IC0tbchSylCzJyv/thipGQkoOlUGYiCIv2KqyZwPRfwVU5Fxx9U4tPUEOttkAPpKZ7NXpcAv1pMp79Ksk8vjYtndC/Hf53ahU9QFoYegTyVCrUNaRgKWr80wGV4tKioCIQQBAQGYty4N1fn1kIm6wfnDnpzNYWPBX6/A+CmhA37Lzsp47DlbMxyGy67694ao3JNxNiSRSFBRUYHW1lakpaWN+JzWrVuH1tZWHD58GFqtFhs3bsTdd989pDHcI488gh9//BG7du2Cj48PNm3ahOuvvx6nT58esO0dd9yBmTNnorm52abzG1OBh354Op3OJrkcug/joKHT6VBYWIiuri7Mnj0b3t7DT9mP1MzNnNBoVVUV6uvrhxUatUfgoQwb+pitP/Rbn78BbC4b53/Kg7JLCb6Qj6tuSse6zWsGfY0lzDXjAU+DwcAMrlZXV6OwsBB+fn4MQSEiPrxvv1od07Pos+DWYlJitMXnMRTbDvhDoeCGOZh/w5wBzw02kkvfVr3egN/2nMOp3efQ096DqbMnY8nGqxGY6AeJRILq6mpoNBrw+XzU19ebdV21FOMmhmDcxKEHm1ksFv7y+EqkLElA/vFi6LV6TJ09GRr3Xih7+6R4+otQLlg7F2wOGz9/chTtrZ1w8xRi0W2zcN1Dy8BisQYM5XZ3d0MikUCplGLBg2moOd0ESXUn/IJ8MTczFWnLEpnvovFU/+Wa8VhzLGO5J8qUO3z4MI4dO4YLFy6gtLQUdXV1WLp0Ka6++mqrez6lpaU4ePAgzp8/j9TUvnLte++9h2XLluHNN980m/V3dXXh888/x44dO3DNNdcAALZt24a4uDicPXsWc+Zc/F189NFHkMlkePbZZ/Hzzz9bdW4UYybw0FIbYDujDDC96SuVSuTk5IDP51ul/WZPTx8a+Lq7uzF79uxh0+iRBB4Wi8WU1ujfI1ldunkKsfHltYifOwWt1WLEz41B3Jwpg25vDXONgs1mw8/PD35+foiJiYFSqWRM4SoqKsD15yEo0g+imnZGNZkqY0fEhWH/uz/DL9QXaRmJzLAn7aHxeDykpqaCx7NdwDQ1IwH1xY0mgU+lVIPDZWPGVfEghOCLZ77Bsa9PwWDou6k2lrXg9x9y8ej2eyDTtcPDwwNz5syBXC6HVCpFZWUlent7TURNR6IVZg4sFgsTZ0Zi4sy+DDMvLw8wYND3g8Vi4aob0zFvzWz0tMvh7i0cdDiYxWLBx8cHPj4+mDx5MtRJakgX9JFK2tvbAY4WNTU1DF2bfi9pCbz/IKsjMNqlNktBs6HMzExkZmZiwYIFuPrqq6FSqfDQQw8hLi4OP/zwg1X7zMrKgq+vLxN0AGDRokVgs9k4d+4crrtuoDttdnY2tFotFi1axDwWGxuLiIgIZGVlMYGnpKQEL7zwAs6dO4eamhqbrhkYQ4EHsA+lus/ZkUAsFqOwsBBhYWEWMan678MewU+pVDI3wMGIDP1ha5mPEAIulwuZTIbc3FwmYxiJFHxdUSPev/9ztNaIYdAbwBPwMGdVCu7c8tcBNyWquRYUFITY2Fibf/Tu7u6IiIhgGrTt7e3g/1OAgx8fR112M1g6FsJiQqDo6sWuN75nXEK/3XIAj3x2N0JjgpCbmws/Pz+LhFWHw6Jb5yPncCFqCxoYFXE2m43Zy5OQtGgG6ooaceKbM+DyuQz7jxgIuqTd+PzZr/HXl1dj+vTp4HA4EAgEZl1XKyoq4O7uzgShoVw1rQUNwgKBADNnzhz2BsnhsOEbPHxVwBj9bc1lMhmkUilqa2uhVCrh5+cHX19fiEQi+Pj4mLBXrdGTswbOdh+1tULTHyqVCvPmzUNmZiajKWct2traBlRVuFwu/P390dbWNuhr+Hw+w66lCAkJYV6jVqtx880344033kBERMTlE3iAkVOq6Q8rLy8P06ZNw/jxQ/uym4M9ejzd3d0oKCjAuHHjrLoR2yr0SQUj09PTGYHMioqKQedqhoO6V4O37vwPxA1SuHu7gcPjQK3U4Lfd5xAwzg83PbWa2ZZqrk2cOBGRkZF2q+FTbbKQkBCkL5gNcasYbS0ifP3sPojqJRB6CcDn88ECCx2tnXj3vs+w6sVrEBUdOcCd1VZ4+nngqa8fwG97zqHwZCm4fC5SlyRg9spkcDhsFJ0qg06jg3fARfYfAQE4QEuxCFNjYs3e7E1cV436J4WFhTAYDAgICGACka03td7eXuTk5MDb2xvTpk1zyo2YzWbD398f/v7+mDJlCnp7e9HW1oba2lro9XoIhULU1dXB39+fKXsb/9aM6dojgcFgGFGmaw3s1U+iZTc6x0MVRCieeuopbNmyZch9lJaWjvg8BsPTTz+NuLg43HLLLSPe15gLPCPJNnQ6HYqLiwEAiYmJNuutjbTHo9VqUVVVhbi4OERERFj1WmsDT38SgXET01ilmc7V0CDU3zitP3KPFELS2A4PX3dmRkPoIYBep8fxHb/h+keWgcvnoqGhAdXV1WY11+wJFouFkLAQcAgPojIp3D3dwOVzoTf0UXo5Ajba6sTQiPWYuHBwh1hb4O7thsUbF2DxxgUDnjMmHQB9/R61Wg0Omw2+kD9gzqj89yoc+PAXVGXXwjvAE1f/dR4Wb7yKCbDG/ZOGhgaGoBAUNLTran9QGSiq+j1aopNsNhutra0IDAxEXFwckw3RprqxNUF/uvZIsqHRoFPbAwqFYtAB0sceewwbNmwY8vUTJ05EaGgoxGKxyePUMpwOyvdHaGgoNBoNZDKZSdYjEomY1xw7dgyFhYXYvXs3gIs+TYGBgfjHP/6B559/3pJLBDCGAo+xC6ktGQ8ta3G5XKZuaitsDX6URaVSqRAVFWV10AEsDzyWKBH0b+LLZDJIJBIT9WkaiPo3m43ZUMbg8rnolavQI1NA1NEKsVg8qOaaI6DsUvaV/YQ8cHlccMGFTquFhmgBAjTXt+DkyZMICAhgWHKOXPkmLZqBb7YcgKKrFwIPPrRaDbgcLrQ6HVIWJ5jYQheeLMW/Nn4ElULd52ba3oP//nMXagsb8Ld3NzA9OeP+iUqlYoZya2trmaFFc66rFF1dXcjNzcWECROGtGl3NHp7e5GdnQ1fX1+m7NnfmoCWGysrK+Hu7s4EIdoLtTUbcnapzRmBh753wyE9PR0ymQzZ2dlISenzRTp27BgMBgNmzzav7J6SkgIej4ejR49izZo+8lB5eTkaGhqQnp4OANizZw96ey/amZ8/fx633347Tp06hUmTJll1nWMm8FDYctNvb29HXl4eU9Y6fvy4Xe2vLQF1K1Wr1fDz87O5t2JJ4DEeCgUsIxH0L4FQqZuWlhaUlZXBy8uL+WJ7enr2OVmyWYwhGHOdvRoEhgegpqEKWp12SM01RyAkOhhe/p7okvaAJ+BBq9FAp9cDBhbcPIRYefMyCP34zI26qKgIvr6+zM3a3lPhodHB+MtjK7DztX3olnaDzeJAy9UjdGIwbjDSTyOkrw+lUqjh6XdR9l6tVOPM/vNYeuc1ZjXRhEIhwsPDER5u6rpqvHgwdl1tb29Hfn4+Jk+ebNPCx15QKBTIzs4eNOMy56HU0dEBqVTKyEYZew3xeDyrsqGxzGobDAaDwS6SOXFxccjIyMBdd92Fjz/+GFqtFps2bcLatWsZRltzczMWLlyIL7/8knF6vuOOO/Doo48yZdAHHngA6enpDLGgf3CRSqXM8fr3hobDmAw8lmY8xlpncXFxCA8PZ/Yx0h6NNa+nZQ1PT0/MmTMHhYWFI9J6GyrwGCtL29qQNf7RR0dHQ6PRMCvPuro68Hg8BAQHIDxuHBqKmqHXGcDhsqFW9g2Txi2KBpvDRlqSZcw1e0LgxsfK+5fg6xd2QybuAofPBgwsgABX3TKPkWjx9vZGdFQ0NFqNyarazc2NCUL2aOITQhB7bTSW4Sr0VKug6dVhcmIU5q2Z3Sdz8wcUMiXqihvBF/JMbsJ8Nz4UMiVKz1YOKcYplynQ2daFgPF+iI0NNMkYqE6eQCCAWq1GVFQUJkyYMKLrGgmoe29YWJjFRoo8Hm9AuVEqlaK5uRmlpaXMPJSfnx88PT1Nsn1gYDbkzDkee5XaKJHAHlptX3/9NTZt2oSFCxeCzWZjzZo1ePfdd5nntVotysvLoVQqmcfeeustZlu1Wo0lS5bgww8/HPG5mMOYCTzGpTZLbtp6vR7FxcVob2830ToD7MNKszT4SSQS5OfnM+rWlJlnb701YHg7A1vB5/MRFhaGsLAwZlUtkUiw4P5ZOPHpWTQVtEGnATx83RG/eDLm3zwHcXFxTvth98c1t16BFlEzLuwrhLJTBS8/Dyy6bT5W3Hct5J0KfPv6AZzafRYalRZT0ibhxr+vRHJ6MlPnlkgkJk18GoisLcnR0mp7eztW3bp8yBsGl88Fh8OGTtt/uLmPjCBwM08g6JWr8OVzu/Db7rPQanQQugtw7YarcNNTq00yhoaGBlRUVMDX1xdNTU1oampyWrnRGLTMFxERMeiQ9HAwLjdOmjSJWRhJpVI0NjaCzWYzJTm6eOhP0XbWoCpgv1IbDTz2yMr9/f2HHBaNiooaoBgiFArxwQcf4IMPPrDoGAsWLLDKeNIYYybwAJbL5vT29iI3NxdsNnuA1hlgPzr0UCCEoK6uDlVVVQPUEEYqMjqU0Ke9g05/GA+3xcbG4oqr01FdUoP66kYIfLjw8vWCh4cHent7R0XMUKFQIDc3F2krE7D+yZuhVenAd+ODw+kTrXxl7Tuoyq0Dm80Ci81C8W9leCW7Bv/49hHEzp5sojJAm/j19fUoLi6Gj48PU250d3cf8j3W6/UoLCyEUtk3kDncgKrQQ4DUjAT8tud36HV6RslZ2a2Em6cQKUtmmn3dRw9tx9nvc8Dh9KknqBRqfPfeIeh1etz2/I0AgLq6OtTW1iIlJQV+fn4ghDBDubTcSK+Nlhsd8f3p7OxEXl4e4yhrLxgvjIwHjuvr61FSUgIfHx8mg3Vzc4NarUZvby9YLBa0Wq1D6NrGsFd2pVAowOfzB/RbL0eMqcADDJ/xdHR0IC8vD8HBwYPOaTi61GacbdH6aP/j2yvjscXOwF5gsVjw8vKC/zg/dCja4W7wgrKtF03aZlRVVTFlq6CgIPj4+Dg8A5LJZMjLy0NYWBiTXXI9L36FL/ych6rcOvCFPIZtRnXK9r71I/5v50Mm19a/iS+RSBgFBYFAwFxb/5KcVqtFbm4uWCwW0tLSLM4mbn7metQWNqK5sg0sVt+58YV8bHh5LfxCfAds31TRivM/54HL4zC22VweFyqlGke+OInMB5dC1NGGlpYWpKSkMPRkFovVp8Hm64vJkyejt7eXyRiqq6vB5/OZIGSpavJwkEqlKCgowNSpU20aYbAU/QeOja+tpqYGPB4Per0enp6e8PPzA2CeoDDS4Wpj2DPjGW7Bc7lgzAUeDodjVp2ZEMKUE6ZOnTrkimqkYqNDBS6VSoXc3FwAMJttAfbJeGgKay2JwJ4wGAwoLy9H6YUK/PZJNprK20AMBvDd+Mi482pce890ppkNDK63Zg/QWaGhmuYV2TVgsUwpzjSLLjtXNeT+hUIhJkyYgAkTJkCv1w86V+Pl5YXCwkK4u7tjxowZVt1wAsb54eWfn0bWgQuoLWiAl78n5mamYXyMeYprU3kL9Fr9AJtvHp8LtUqLrOO/wz2Ej9TU1EGzz/bWThz54iSqcmvhHeiF+TfMQVhsMKRSKUpLS6HRaExmhobL3MyBDmvHx8cPq4Nob7i5uTGfm1KpxPnz58Hn86FWq5GVlcXQtf38/CAQCOxG1zaGvXo8crn8T2GJAIzRwGNM2QP6PtiSkhJIJBKkpqYyK5mh9jHSUpu5jKWrqws5OTkICAjAtGnTBv2ysdlsaDQas88NB2M/H5rtGD/uLFCtM3mXHIfe+A0dLZ3g8Lhg8zjQqrQ48N4h+Ab6YOX9i5nSDtUlKywsZKjallggDAdqrTDcrJCHt1tfz4QQkwBtMBgYOR1LwOFwBpTkpFIp6urqmHKIj48PU260ZjEg9BDg6puvwNU3XzHsttRtVK/TM06iALUbICA8/ZBlvqbyFvwz8010Sbth0PfJ+ZzadQ5rn16N6x9Z3mfa9oeMT2trK8rKyuDp6cksICwZOG5tbUVpaSlmzJjh0Dmu4UCHZYOCghAXFwcAjPwSlSmi9hV+fn52G16lv1N7ldosndO61DGmAg+LxRpQajPOMObOnWvRiswRPZ6WlhYUFxdj8uTJiIqKGvLLYQ8/H1qbdmZpjcJYc03fxkZ7Syf4Ah7jfsl340OlVOOHjw9j+X19GlC0tEP11ixxJR0O1EqgpaUFycnJw1I201enYd/bP0OlUEP4hyeNTtO3ul2wdq5N7wUtyRkMBjQ0NCAiIgLu7u5MaUcgEDA36qG8eGxBTMpERE6fgNqC+j8sv/vICRq1BpPnROGapQuGVDX44tld6JJ0My6uhBBoVFp8u+UArrhuFkKiguDl5QUvLy+G3Wg8cMxisZhr8/f3H1BSbGpqQkVFBRISEhAQEGC367YWSqUS2dnZTF+Sfr/6q0NQunZZWRl0Op2JSZu1dG0K+ju3R8ajVCpdGc9owbhM1tnZyeiOxcfHW/zh2rPHQ29+DQ0NSExMtGiAa6RCnwBQXV2N0NBQpw1mUnR3dzPveWxsLHYf+aEvAHJMf3wcLgddkm6oFGrGH4fC3d0dkZGRjAUCpTNbo55A+2jd3d2YNWuWRSKa42NCsfGVtdj2j51QKf7wwmEB06+MReaDSwdsbzAYoFVpwXfjDxkMaZkvJiaGoSnTkhxlyRUXF0On05mw5Eaq38VisfDoZ/fgjfUfoLG8FWqlHmADE6aH4YnPNw25f2VPLwpPloDNYTNGbSwWC3whD5peDS4czMPye681eQ2fzzcx8jNWDT924FeU/lIDUWU7gsb7I3nFDPhOdbdoQeBI0HmhkJAQTJkyZdDPkcvlmmSxcrkcEokEra2tKC8vh6enJxOEvLy8hqVrUxj3XkcKV6ltFEEznoaGBpSXl2PKlCmIiIiwatVvr4xHp9MhPz8fCoUCc+bMsZhfb0uPx7isNmPGDEgkEoa5Z6nMzUhhTnMtJCqor8/0h88KhV6nh3+oL4QeQzNw+ruS9h+ANL5RUzYPVVMmhGDWrFlW3cAX3TYfM+bH4ewP2ejt7kXsnBjMuCoeHKNz12p02POvH3Dw82NQyJQImhCA6x9djoW3XDnge0ZX9ebKfBwOx2QSv6enBxKJBI2NjSZSN0FBQTYzyUKigrDl2LPIP1GE7DO5CJscgowbrx32e0AMZHA/BwAG/dA0WOMmvkakx3fPfgGtWtsnwFsnRcmZCsxdm4qEhASnDmsaQ6FQ4MKFCxg3bhxDNrEElDTj5eWFiRMnMpke9RoCYELXpj5h5rIhvV5vN8bcn8X2GhhjgYc2zxUKBaqqqpCSkgJ//8ENxwbDYAQFa16v1+tx9uxZCAQCpKenWzUHYW2prb8SQUhIyACZm7KyMmg0Gqb0YY8VtfHxB9Ncm7MiGTte2nuxx8NmQafVgQVg+b2LrPrB0fmLgIAAE/UE4yFBX19fiMVieHh4WKSmbA4hUUFYvSlj0Oc/fHAbTn57lqnNt9VJ8NFDX0AlV2PFfdcy70lNTQ0aGhqQlJQ0bF+RxWLB29sb3t7emDRpEtRqNcOSq6mpMWGS+fv7W/W+qVS9UPC7MPf6VMTHx1t0g/XwccfUWZNQfKYCXKOel1atA5vDRuLC6RYdmxCCrf+3E1q1DjwB7+J3VWfA2W9zMGVBJDyD3E0ICs6gA8vlcmRnZ2P8+PEjFoQ1zvSMqeiNjY0oLS2Fj48Pkw25u7ubZENqtZr5vY80+Awll3O5YUwFHpVKhcrKSuj1elxxxRU2N6UtHUIdDD09PdBqtTZZKgDWZTz0S2yORNBf5oaWB+iKms5mBAcH2+znQplrg2muCdwF+MfOh/DOPZ+isbwFei0BX8hDxp3XYMV9i206JjBQPUGtVqOxsRF1dXXMNpWVlXbvnTRXtuHUrnN9/cQ/GvYccKBVa7Hrze+xeONV4Al4jINqWlqaTTcDgUAwQOpGIpGgtLQUWq3W4hu1LSoAFLc89xe8+Jd/o1euupj9sFhYetdCTIgdaAZmDp2iLjSUNIHNYcNgICCkjzrM4XD6glGPG1KXpjIqAzTTowskLy8vu/coe3p6kJ2d7RAtuv5UdGOtvLq6OnC5XGbx5O3tjdbWVgiFQiYbMqZqW/uddWU8o4Tq6mq4ublBpVKNiAk1klJbQ0MDysrKAMCkUWnt8S0V+rR0KLR/eYDOnUgkElRVVcHd3d1kpsaS87bELRQAIuLD8ebJf6I6rw5ymRLR0yfAJ8g6z5bh0N3djYaGBkyePBnh4eHMjbqoqGjECgPGqLhQDYNeD67AdB8cLgfyTgWaKlrRQ2RQKBQm9tAjQX/HSbqAMM706I3amNVEBzKjo6MRFRVl9XFjUibilYP/h58+PYqyc1XwDfbBNX+9AldcP8uKc2cDLBYMBj3YLDY4HE6fB9IfCyUOl8NkerRsRXt6DQ0NYLPZJgSFkdLsu7u7kZOTg8jISERHD+5Aay8Ya+UZl4qrq6uhVCrBZrMRGRkJjUYDoVDIZISA9XRtV+AZJcTHx6Onpwe//fbbiPZjS+AxGAwoLS2FSCRCQkICcnNzB9ByLYUlGY9xpmMLc8147oT6uYjFYov7QpQtKBAILHLpZLFYmJzkmB96U1MTysvLMW3aNEaC3bh3QunMVGGAin5ShQFr4OnrAfxx4zR+z4mh7+/aphp4BXogNTXVbqVMY/RfQKjVapMVNY/HY8qodXV1mDp1KqNBaAvCp4bh7jdvtfn1XgGeCJ8Wivr8JrB5bCboaNU6cPkcpCxJMNm+v8oALRXbw3WVjjPYGohHCmOpHmovP378eHR1daG+vp4x+qPZEGAdXVuhUCAkZGhb88sFYyrwsNlsppE3kpqptYFHo9EgNzcXOp3OpJ9jqxTGcBlPfw+dkZYKjA3TLOkL9WeujZbmGiEE1dXVaGxsRHJystk+Sn/dLjqpbiylb02ml3B1PHyDvdEl7gaL1yerQ2cxJswcB/9xvjb3lmxBf/fOjo4O1NfXo6mpCSwWC1KplKE1O1tKRa/XIz8/H9fck47dzxyEQqaAVq8Dm8MCm83Cbf+8AQHjBu99GZeKR+q6Sp117S3HYy0IISgrK4NUKjXJiI0ZjmVlZUw51d/fH35+fhZ5Dbl6PKMI+oPX6XQ2rzitCTy0hu7t7Y2UlBRwuVwmaOj1epvKOkPprfUXM7R3/Xu4vpC7uzuUSqWJqOlowGAwoKSkBJ2dnVb1UYwn1WmmJ5FIkJeXBwBMgB1MPYEv5OPxbX/Dqze/A2V37x8DmgZ4h3rihs3LkZCQMGqBmM1mQ6lUoqurC0lJSRAIBCYKzV5eXg7tnRhDp9Mx83NLb1iMuQvScXjbCVTn18MvxBdX//UKxM2JsWqftrqu0rEKYzr7aIAQgvLyckilUqSmppqUYfszHOlgrkgkYpyAjb2GzNG1XXTqUQKVNwFgFzr0cBCJRCgoKEB0dLQJM4YGhJEMgfY//lAkAkfBuKwTHR2N6upq1NXVwdPTEw0NDZBKpVb3hewBrVaLgoICaLV9fj62ruSNMz1CCJPpVVVVoaioCH5+fsz1GQ8ex8+dgo/yXsfpfb+juboVWoEK89fMRWz84E6dMlEXftl+AtV59fAL8cGi9fPtWnqkLLrGxkYTkofxcCfNFurr68Hlck16J/bM0LRaLXJycsDj8ZCQkAAOh4OAcX5Y+3/X2e0Y/T87Wk41dl2lAai8vByxsbEO1YAbDjToUPWUoXp//X931AmY0rUJIczwqpeXF4RCIXp7e3Hu3Dmn9K3GAsZU4AEuBh9HBh76I6+pqcGMGTPM2sGO5Bz6l9qMM53RUCIwZq6lpaXBx8fHJFtw5rxQ/96SvTTdWCwWM3diTNVua2tjBgTp9Xl5ecHTzwPJK6eDV0iGNU1rKGnC00tegaJLCUIIOBw2fv7sGO59ez2W3nnNiM+d3tTEYjFSU1PNZn/9eyeUfNHfTdZWvTUKtVqNnJwcRovOWQsk43Iq7Xs1Nzejq6sLXC4XXV1d4PP5Dp9lMwdCCCoqKiwKOuZg7ATc32vo73//O+RyOdRqNXx9fbFp0yYHXcXYwpgLPIDt9tcUQwUNKmcvk8kwe/ZspglozT6GA5vNZoINHTIbraBDmWsqlcqEuTZYX8h4sDM4ONiu80I9PT3Izc1lpE0ceVOjZZ2oqCgTKRiaLbi7u0Mmk2HatGnDClt+9PAXUHb39g1lgmqlAZ88/l+kr0yBb4jt6hIGgwHFxcXo6uqymEVnPA9FDeHoFD7VW6NByBqJIpVKhezsbHh7e2PatGmjVnIUCATg8/no6elBfHw8hELhgCBr7LrqSNCgQ8cNRnq8/kF2+/btuPHGG9HZ2QmDwYCFCxdi6dKlePTRRzF9umWzVpcixlTgoT8Qe2U8/ZlLKpWKkW1JT08fssQz0owH6Lvp037PaAQd4+xiKPl+S+eF6AS+LWhvb0dBQQFDg3Xme2E8IKjX61FWVobW1lbweDyUlpZCLBYzZav+QVYm7kbJmQqz+zXoDTj7Qw4y7rjapvPS6/UMnT0tLc2mkuNgbrK0bEUzWdr3GixboHpnAQEBiIuLG1WhSqp2PX36dIblRYOsOR1AGoTsbc1Bg45IJEJqaqrNs3KDQavV4plnngGPx0NVVRV8fHxw+vRp/PTTTyNaeF8KGFOBh8IeGQ/Q98OmpRzKiqG6b8N9Qe2ht6bRaCAQCEYl6NjKXHPEvFBLSwtKS0sRFxfHeL6PBqjunlQqxezZs+Hp6ckE2aamJmamxjjIajWDK2CwWCxo1bYpZFBZIABISUmxm0OouZKcVCpFRUWFSbZg3PeiKgChoaFD6p05AyKRCEVFRWbVrlkslkkma9w7odYcxgSFkbyn9LviqKCj0+lw5513orKyEsePH0dgYCCAPlfPBQsW2PVYYxFjMvDYI+MBLgYeOlEdExPDaJA56hyo5pq7uzuysrIQGBiI4OBgp9oPm9NcsxXm5oUs7QsRQlBbW4v6+nokJiaOqoKxwWBAUVERenp6TEqO/WdqaJA1Vp4OiQ6EuK59gM0vMRAkWSg9YwzaRxEKhQ6lbveXKKLZgnHfy9vbG21tbYiIiBix9MxI0draipKSEsycOdMiMd7+vRMqdVNXV2fiKGut6yoNOm1tbQ4JOnq9Hvfddx8KCwtx/PjxUbWTGC2M2cAzkoyHru51Oh1qa2vR3NyMpKQkZlVh6TnYIvRJZ0LS09Mhl8shFosZ+2HaAO7PsrIXjDXXpk2bZvdhNEv6QvT6uFwuM++QmpoKLy8vu56LNdBqtcjPz4de3+dfM1jPqr/MDZ3LSF+fhO+ePwwWhwWiJ3+4hwIZd1yN8KnWZXC9vb3Izs6Gj4+PU/so5rKFhoYG1NbWgsViobm5GWq1mjHyc3YDv6WlBWVlZUhISLDqd0oxmNQN9Yiy1HWVEIKqqiq0tbUhJSXFIUHnwQcfxLlz53DixAmnG+eNFbBI/2XcKEOtViMvLw8+Pj4johb+8ssv8PHxgUajQXJystW9iezsbAQFBVk8rDac/A1dbYrFYnR1dcHLywvBwcEjUi42hjFzLTEx0al2CrTBLRaLIZFI0NPTAw6HAzabjZkzZw4rsOlI0OxCIBAw1GBrQQjBhaN52PvvH1FX0AR3XyFmr0nE4o0LrNLJk8vlyMnJQXBwMKZOHZy67QxQ59iYmBiMHz+eWURIpVKoVCqGiu6MBn5zczPKy8sd5utDFxG09zWY6yoNOi0tLUO6utoKg8GARx99FIcPH8bx48dHRX1hrGDMBR6NRoOCggK4ublh8uTJNu1DoVDgt99+g4+Pj83189zcXPj5+Vn05bBWiUCj0TAlnfb2dgiFQiYI2TJPY8xcS0pKcviNYiio1WpkZ2eDEAKhUIjOzk6b+kL2gEKhQE5ODvz8/Czq61mK3t5e5vOz9Pq6urqQm5vrEGFLayGRSFBQUDBoz42y5KRSKWQyGWPkRxv49jx3ajuRmJhokxK9tTBmAUqlUnR1dTGuq729vWhvb0daWppDgs5TTz2FAwcO4Pjx45g0aZJd93+pYUwGnpKSErBYLMTGxlr9eqlUyjRtExMTbUrbAaCgoAAeHh5DfkFoP4eW5KgqrTXQ6/WMzhqVR7FmnsaYuTZjxgyn9ZHMQS6XMwGb3uiN+0ISiYQRjQwODnboTAa90Y8fP95qVWdrYNzgNr4+45IVzS6GmxdyBtra2lBcXGzCGBsK9ProjZp+P4dSh7AUtCyclJQ0amZylAVIbc25XK7J788evyeDwYDNmzfjm2++wYkTJzBlyhQ7nPmljTEZeMrLy6HVajFt2jSLX0cIQX19PSorKxEfH4+6ujrExMTY3LgrLi4Gj8cb9EvSX4nAlqDTH8Z9E7FYDK1Wa6Kz1v9HMFY014CLSsoTJkwYtEltfH0SiWRAX8he80JSqRQFBQWYNGkSIiMj7bJPS0BdO+n1qVQqeHh4QC6XM4aGowla0po5c6ZNCzLj65NKpVAqlSYsOWsy7fr6etTU1Ixq0AEu6gU2NzcjJSXFxDFXqVQygrRU1NTa3zghBC+++CK2bduG48ePIz4+3kFXcmlhzAUerVaLyspKyOVyJCQkDP8CXNT9kkgkzBf57NmziIyMtLl5V1paCgCIi4sb8Jw1dga2guo90b6JXC6Hn58fU5Lr7u62G3NtpKCraGuUlM31hewxL0Sp28ZK16OF6upq1NbWMvp4VGstODjYxP7AGaDZRUJCgt1KWrRvKZVKrSqp1tbWoq6uDsnJyU63du+P6upqNDU1ISUlZYBihLEgbWdnJwQCgQlBYbiFHiEEr7/+Oj788EMcO3YMM2bMcOSlXFIYk4GntrYW7e3tSE5OHnZ7tVqN3NxcGAwGJCcnM43C8+fPY9y4cTZLyldUVJjNupwRdMyB9hXEYjE6OzsB9DmVTpw40S7kBFtAs0wqPWQJBXYwUBaSWCxGR0eH1X0h43NxVJPaGtCba2JiYp99tJHWWnt7O2N/QEs6jsxWnXGjNy45SqVSADApOdKSHFUjT0lJGVWmIz2XwYJOf9CSOL0+nU43pJkfIQRvv/02/vWvf+HIkSMW3cv+TBiTgaehoQGtra1IS0sbcltqCuXr64sZM2aY9AtycnLg7+9vM3OkuroaCoUCM2fOZB6zt52BtaDMNZFIhPDwcMjlcrS3t0MgEDCZkK+vr1POi+qLiUQiu7PojPtCxrYAg/WF6IR5W1sbkpKSBpVBcgboDEhrayuSk5PN3lyp/QG9Piqh7whLc8rSGuxcHAEq2GpcsqLMxp6enkH16JwJGgBtORdjMz+pVIru7m54eXkxtu3p6en4+OOP8eqrr+LQoUOYNcty470/C8bkHI8lygVtbW0oLCzExIkTzbKELHUBHQzGczz9SQSjrbk2e/ZsEx8QepOm09vUDttRzXuqd6dQKIZ0LrUV1s4LGWud2XvuwhpQM8GOjo4h6biUgGDsSCoWi81KFNnSVwAGCo86U27fWLA1JiYGCoUCZWVlTKZeUFBgwpJzdm+SqoDbGgD7q3vQbDY7Oxu33347gL4F9D//+U+zpXoXxmDGo9PpmMnqefPmDXieNgNra2sxc+bMQZk5RUVFEAgEiImxzjOEoqGhARKJBMnJySYeOvYgEVgLylzj8/mYOXPmoEwb2vylfRM6r0DFPu3B0NFoNMjLywOLxUJiYqJTWXTGVFixWMzMC3E4HMycOXNUm9R6vR5FRUVQKBQmJV9rYTz42NHRAaFQyJSshjNLoyCEMF5H9hC2HAmM9c5SUlIgEAhMslkATBB2hrpHTU0NGhoaHJJ1EULw2Wef4amnnsKqVauQn5+P2tpaLFq0CN9///2okn/GGsZk4KHaS/01i3Q6HQoLC9Hd3T1s6WAocoAlaG5uZuq/VGV6NL44tjLXBiMn0JW0LTcjpVLJmOZNmzbN6dPtxug/LySTyUY8D2UrdDodo4yQmJhot1KZcTYrlUphMBhM+ibmbtJUGkgul48oANoDxh425lQAqMwNvT6FQmHCIrN3lkblmxzRXyKEYMeOHXjkkUfw3XffYeHChQCAqqoq5OTk4MYbb7Tr8S51jMnA09nZifPnzzMfHtDXXKfmVJb8uCsqKqDRaGyWFm9tbUVVVRWSk5MhEAhGpXlvT821/kOPnp6ezE3aEoYVnYsZN27cqAtJ0gBoLDszWF/I0RIw1Dady+UiISHBbv5C/WHuJt1/IWGsdp2cnGy3AGjr+ZaWlqK9vd1iDxv6HZVKpejo6ICbmxsThCzN9gaDo4POrl27sGnTJuzevRsZGRl23f/liDEXePR6Pbq7u3Hq1CksWbIEwEXr25CQEMTFxVn0BayurraKkm0MWtLJz88fQGN2xgrS0ZprWq2WCUJSqZShiQYHB5slJ9AAOBYGIGkGOJSSsrPmhajNhoeHh9NM0yiUSqUJ1dfd3R16vR4cDgepqamjHnRoqS81NdWm34yxNbZxtmeL8rQjgw4A7N+/H3fddRd27tyJlStX2n3/lyPGZOBRKBQ4fvw4Fi9ezMxlTJ061aqbXl1dHTo6OqyiMVISgTFzTaVSQSwWMxprVDY/ODjYIQ1bg8HA1MSdoblGdaxoSQ4Ac4MOCAhAS0sLKisrMX369FFX0aUKABMnTrSYrWiuL2SPeSEqxzMW/GtoBmhM83eGm6w5UGO77u5upKSk2GWhRl076UKCluRoRjvUZ1hXV4e6ujqHBZ0ffvgBGzduxH//+19cf/31dt//5YoxGXhUKhWOHDmC8PBw5gZs7VxGY2Mj2trahqVkUxgHHMA8iYBqrInFYrS3t8Pd3R3BwcEIDg6Gl5fXiG8+o625Rmmw9BpVKhUAICoqChEREaO6iqaS+SP19DG2PqDNe2v7QpTG72g5Hkug0WgYEdSZM2eCxWINyPaMVdFtMZuzFMb9JUokcAT6D3YORsCgQSc5OdkhFPtDhw7hlltuwdatW3HTTTfZff+XM8Zc4DEYDFAoFDh27Bjc3d1t9sNoaWlBQ0MD5syZM+y2/eVvLCmZUBIE1Vjj8Xgm5Spryy6WMtecAcrQ6urqQkhICGQyGXp6euDr68vcpJ0ZFOvr61FdXW2z1Mtg6N8XAkyzPXOZApUGio6OHnV1YVrq8/T0xPTp0wd854yzPYlEwsyb0Gu0p3qCwWBAYWEhlEolUlJSnLZI0el0JjNRBoOBWaRSSw5HBJ1jx45h7dq1+Oijj3DLLbfYdfFx8uRJvPHGG8jOzkZrayv27duHzMzMIV9z4sQJPProoyguLsaECRPwzDPPYMOGDSbbfPDBB3jjjTfQ1taGhIQEvPfee6M2YzTm5njkcjnOnTsHAJg5c6bNcxlcLtciPx1blQi4XC5jQkUHAqllLyHEqlmasaS5Rp0xDQYD5syZw9xAqBOpWCxGRUUFPD09mWt0lPwLHcZsaWlBSkqK3cuOg80LUbfO/n0hiUSCwsJCTJ06FePHj7fruVgL6utDBVnNvf+D2WJLJBLU1dUxi6WgoCCLJGAGg8FgYDJ1ZwYdoO8zpFUHWpKrqqpCR0cHAKC8vNwmM7ihcOrUKdx8881455137B50gL4ybkJCAm6//XaLyne1tbVYvnw57r33Xnz99dc4evQo7rzzTowbN47pk3/zzTd49NFH8fHHH2P27Nl4++23sWTJEpSXl49KCX3MZTzd3d1obGxEQ0MDkpOTbZ7NaG9vR3FxMebPnz/oNoQQZlDVXvM5tFxl6SyNPZlrI0Vvby9yc3Ph7u4+QAnCGFRIkZYceTyeiXKCPQIn1d+TyWRISkpy6gCkuUxBKBRCpVIxLrajCYVCgezs7BH5+uj1enR2djLXqNPpTFiAlgYPvV6P/Px8aLVaJCcnj2qmDlwUH6UB0JglZ63WmjlkZWXhuuuuw5YtW3Dvvfc6/PfKYrGGzXiefPJJ/PjjjygqKmIeW7t2LWQyGQ4ePAgAmD17NtLS0vD+++8D6Pt9TZgwAQ888ACeeuoph16DOYy5jMfLywuTJ09GS0vLiO2vB3u9MYmAEGJXJQLjqe0pU6YwszTUjtff358JQmKxGFVVVQ5hrlkLmnUFBwcjNjZ2yPeDx+Nh3LhxGDdunIlTJ832jO2+bWls016XRqNBWlqaQ/sS5tA/U6ipqUFNTQ28vLxQVVWFpqYmJttz5rwQ0Cc5k52djfDw8BFZVXM4HIYhFhsbi56eHkgkEtTX15vYRg/VvNfr9cjLy4Nerx8TQaehoQE1NTUmPR1q2278PS0qKoJer7dapuj8+fNYs2YNXnzxRacEHUuRlZWFRYsWmTy2ZMkSPPzwwwD6+oDZ2dl4+umnmefZbDYWLVqErKwsZ54qgzEXeCgskc0ZCoMFnv4kAkfK3xhLa0yaNAlKpRJisZhh6rFYLISHh4+6WCK1EbAl6+JwOMwNis6a0HIcLVfRQGvJj9t4LiY1NdVhczGWgKpkNDU1IS0tDT4+PiZ9Ier7NFxfyF7o6upCTk4OoqKiRuTO2x8sFgve3t7w9vbGpEmTmLKqRCJBVVUVM09DCRh0biovLw+EECQnJ4/q5wRcVN8eTAi1//eUBtqGhgaUlJQwbNXBHIFzc3ORmZmJf/zjH3jwwQfHTNAB+uTD+i9cQ0JC0N3djd7eXnR2dkKv15vdpqyszJmnymDMBp6hMhZrXk8IYb4ktpAI7Al3d3eEh4ejs7MTbm5uCAsLg0wmw5kzZ+Dh4cHUqp0pmd/c3IyysjLEx8eP2P/d2PeeanRJJBITDTJ6jebICXRI2MvLy2yz3Jnor3VG5VX694XMBVp7zwsBQEdHB/Ly8pwySyUUCplMwbh5T7UAAwIC0N3dDT6fj+Tk5FFVsACGDzr9YS7Q0t5XTU0N+Hw+goKC0NHRgaSkJFRVVWHVqlV4/PHH8fjjj4+poHOpYswFHvqhcjicEWc8tKTGYrEGzOeMxpfHmLk2e/ZspjRh3DOpr69nvviDDXTaA3Q139jYiKSkJLvbDvcvVxmvoisrK5lAGxQUBC8vL8jlcuTk5CAkJMTmvoW9YDyLkpaWNiiDj81mm5RVaaBtbm5GaWkpvL29mWscSY+KZqSjQWro37xvb29HSUkJtFotent7kZ+fz5SrRkMTrrGx0aqgYw5CoRDh4eEIDw83Kcndc889aG5uBiEEGRkZuPPOO8dk0AkNDYVIJDJ5TCQSwdvbG25uboyeobltRsuzaswFHgpLWWmDga7CdDodeDzeqHjoGGMo5pq5nolYLEZ+fj5jNUwZcvZs3Hd2diItLc0pEvXGq2hjl8f6+npwOBxotVqMGzcOMTExo/rjps1y2l+yNGvpH2iN54Wqq6shFApt6guJRCIUFRWNCWM7nU6H6upqeHl5YebMmcw1ikQilJeXw8PDg8n2vL29Hf45NjY2oqqqCklJSXZjPBqX5Hbt2oVrr70WcXFxaGtrw/jx45GWloaPP/7YJkUURyE9PR0//fSTyWOHDx9Geno6AIDP5yMlJQVHjx5lSAoGgwFHjx7Fpk2bnH26AMZo4GGxWHYptQF9PxY2mz2qQYc23i3poRh/8SnFVywWo7S0lLHCpj0TW+rqVNBSq9UiLS1tVEQkjQNtS0sLSkpK4OvrC6lUipMnTzLXHxgY6NQyDqWSA0BKSsqImuUCgYBZRdNylVgstqov1NLSgrKyMsycOXNEJnv2AB1UFQqFmDlzJthsNtzd3REZGYnIyEiTxUROTo7D1ROMg44jVMmrq6uxatUqrF+/Hm+++SbYbDba2trw008/jbgkPRzkcjmqqqqYv2tra5GXlwd/f39ERETg6aefRnNzM7788ksAwL333ov3338fTzzxBG6//XYcO3YM3377LX788UdmH48++ijWr1+P1NRUzJo1C2+//TYUCgU2btzo0GsZDGOOTg30fclLSkrAYrEQGxtr0z4IITh8+DBSUlKY1Zezgw4hhPmBjJS5RhuiVL6nt7eXYchZ2k+gpT465T4WGsJVVVWMe6mxECZVTrD2Gm2FWq02ubE6KuD1t66gygJ0MUEZfI2NjaisrBwTbqqUFUVp9sNl3QaDAZ2dnUwgMu59mXPrtBZNTU2orKx0WNCpq6vD0qVLsXLlSrz77rtO7zWeOHECV1999YDH169fj+3bt2PDhg2oq6vDiRMnTF7zyCOPoKSkBOHh4di8efOAAdL333+fGSBNTEzEu+++i9mzZzv4asxjzAae8vJys9bTloCSCAoKCiCRSJiJ++DgYKet8B2tuaZQKJibV3d397CN+56eHuTm5jLaYqPduKdsscTExEFvHuaukZar7Gn4RocxfX19ER8f77T3xty8kLe3N7hcLmQy2Yjm2OwFaj8xmDrCcBjsGodikA2FpqYmVFRUOOy9aW5uxuLFi7F48WJ89NFHLg8dB2FMBh6tVovKykqb1KUpiUCv14PNZkOtVjNZgkwmYxq+9r55GYP6BvX29jpFc81YVcDY8oAKmXZ2diI/Px8RERFm3VqdCWOXzuTkZIub7pR5JBaL0dHRwfQTRqqTJ5fLkZ2dPSZIDSqVCiUlJczUvTGN2VmW5v3PJzs7Gz4+PnYLyGq1msmEqG07HVwdbqiTBp2kpCTGStueaG1tRUZGBubNm4fPPvts1Nl6lzPGbOCpra1Fe3u71erSQ5EINBoNE4TozcveFObR1lyjlgdUVYDL5UKj0SA6OnpEA4f2AM1CqQiqrdmnsU5ee3s7OBwOU46zZiJdJpMhNzcXkZGRiI6OHtX3hjp1trW1Ma6h7e3tjBYg4Lx5IcAySZ6RwphBJpFIGJ01WpIz/u00NzejvLzcYUFHLBZj6dKlSE5OxhdffDHqZejLHWM28DQ0NKC1tdVidWlKlbaURGBMYaaeNCEhIQgODraZkdPd3Y28vDxmGny0y1k1NTWoq6uDr68vuru7wWazmUA7Em0uW+Aoy2zaT6AlOb1eb6KcMNgNhFosxMTEYMKECXY5F1thbJpmzqmT9oXogmKwvpC90NvbiwsXLjjV8sHY+kAqlUIulzNupAaDAbW1tQ4LOlKpFMuXL0dsbCx27NjhkMWiNQKdCxYswK+//jrg8WXLljGEgQ0bNuCLL74weX7JkiWMRM5Yx5gMPDqdDs3NzaitrWUogYOBzupQBpwtJAJqMUxvXnQFTW/QluzPGuaao2EwGFBWVgapVIqkpCR4eXmZvUE7iz1GB0Npn8BRx6I3L3qNlIDR3xKgra0NxcXFdhmaHSms9a8ZqmdiD48opVKJ7OxsBAUFjWrpkVofNDU1QS6XQygUIjQ01O625p2dnVixYgUiIiKwa9cuhxBYvvnmG9x2220mAp27du0aVKCzo6MDGo2G+bu9vR0JCQn47LPPGMLAhg0bIBKJsG3bNmY7gUDgkMDsCIzZwNPW1oby8nLMmzdv0O36KxHYg7lmrDQtFosBgAlCg83RUHbWWNBcM+4vJScnm72RGd+gKXuMStsEBQXZdcVHSQ10fsmZNzJjAzh6gxYIBJBKpWOCokxVnXt7e21WdTbnL2RrX4iKj4aEhIy6vTlwkU4+Y8YMGAyGAfYVgYGBQ2a1w6GrqwsrV65EcHAw9u3b5zBNwJEKdL799tt49tln0drayiwsNmzYAJlMhv379zvknB2NMRt4pFIp8vPzsWDBArPb2GpnYA2MlabFYjGj4EtLHCwWy6luocNBrVYzOmcJCQkWBRC6gqbXSK2+6Qp6JCxA6l0zFnooKpWKyQIBMCZ+zhp27A8qsKnT6ewmsEkzdxqIAMv7QpRkERYWNurmdsDFoJOYmGiiqmFsViiRSKBSqZjvqzXW9D09PVi9ejW8vLzw/fffO4ztqtFo4O7ujt27d5soTK9fvx4ymQzffffdsPuYMWMG0tPT8cknnzCPbdiwAfv37wefz4efnx+uueYavPTSS6NOvbcUYzbwdHZ24vz581i4cOGA550RdMwds3+WwOVywWKxmHLWaIJaMfv6+mLatGk29296e3uZLEEmk8HLy8uEIWcp6MT91KlTER4ebtO52AvU16e1tRXJyckDGvd0aNdZvS86qEr7XY5oZPd3kx3KidReitf2QmtrK0pLSy2aYTIuO3Z1dTE+UVSKydy1KBQKXH/99eBwOPjxxx8darnR0tKC8ePH48yZMyZtgyeeeAK//vor4z02GH7//XfMnj0b586dM+kJ7dy5E+7u7oiOjkZ1dTX+7//+D56ensjKyrok2HhjMvDo9Xp0d3fj1KlTjJERhbUkAkeAMn6APr0upVLJNHuDg4OdbhFN6dL2tmI2tvru6Ohg6L3DETDo8OP06dNHxWTKGMb07cEa99SXRiwWM+QEWsqxd1CgCgB8Ph8JCQlOuUkM1Rfy8PBAcXExIiMjMXHiRIefy3CwJuj0h0ajMXGU5XK5JmVHLpeL3t5e/OUvf4FWq8XPP//s8AXjSAPPPffcg6ysLBQUFAy5XU1NDSZNmoQjR46YXayPNYxZziAV+aQBpj+JYDQ11/oz14ztDsrKypw6sCoSiVBcXIwpU6bYPbPg8/kYP348xo8fz9gBiMVi5OTkmBAwqPkbZdKN1MTPXtDr9Ywd82DyQGw2GwEBAQgICMDUqVMZZlVNTQ2KiopMlBNG2gOg6giWKgDYC4PpyLW2tqKqqgo8Ho+pMozGvBDFSIIO0Pd9pVJMxguK0tJSPPTQQwgODoZEIoG7uzuOHTvmlCoFJe7YItCpUCiwc+dOvPDCC8MeZ+LEiQgMDERVVZUr8IwE/UU+6VAoJRCMJc01d3d3REVFISoqihnmFIlEqKiosLlUZQnq6+tRXV3NSM44Ev3tAPpbfQcGBkKtVkMulztNeHQoUL8Yg8GAtLQ0i3ooLBYLPj4+8PHxweTJk5ksobW1FWVlZSNij42WOoI5CAQCeHl5obKyEpMnT4aHh4eJ7YEz54Uo2traRhR0+qP/guKdd97BfffdB5FIBLVajWXLlmHlypW45ZZbHFoKHolA565du6BWq3HLLbcMe5ympia0t7ePOkvTUozJUpvBYIBGo8GhQ4cwf/588Pl8GAwGsFisUfvB2sJcMy5Vtbe3221g1XjYcLRJDYQQdHR0oLS0FCqVCiwWy4SAMRqulMZmcgkJCXYpl9GJe2vLjsDF/hvNkke7h0IHZydNmmTi7WOucT9YX8ieaGtrQ0lJCWbOnInAwEC771+r1eK2225DXV0djh07Bo1Ggx9//BEHDhzAE088MSRz1h745ptvsH79evznP/9hBDq//fZblJWVISQkBLfddhvGjx+PV1991eR1V155JcaPH4+dO3eaPC6Xy/H8889jzZo1CA0NRXV1NZ544gn09PSgsLDQ6Y69tmDMBh6tVovDhw8jLS0N7u7uo1Zas5fmmrmBVRqErJlL0Ov1KCoqglwuR1JSksNkfyyFsaJzQkKCiUSRQqFgblzBwcFO+UGoVCqTmSFHLFSMXUglEgkzmEuVmI2PSdliY8HyAbhoKDdcadbeGmuDwdFBR6fT4fbbb0dZWRmOHTs2aj3HoQQ6FyxYgKioKGzfvp3Zvry8HLGxsfjll19w7bXXmuyrt7cXmZmZyM3NhUwmQ1hYGBYvXowXX3xx1Mc5LMWYDTwajQYnT56EUCjEuHHjEBwc7PTVs6M014YaWKX9EnMwnv5PSEhwOomhP+hNnvYs+pdllEolk/F1dXU5XCePZhbOnLg3tq6QSCQm1hU8Hg+FhYWIiIgYdTo5cFGtwRZDOXvOC1HQ/qSjgo5er8c999yD3NxcHD9+fNT9jFy4iDEZePbv3w+NRoP09HRGQl4ulzuVOeYszTXaBBWJRJBIJCCEMBlCQEAAE4SUSiVyc3MdPv1vKahjqKXyQPTGZW+RT4ru7m7k5OTYndlnDYytK9ra2tDb2wt3d3dERERYNWPiCFAX09jYWISFhY1oXyOZF6KgdHtHDfLq9Xo88MADOH36NE6cOOF051YXhsaYDDxvvfUW3nnnHXR0dCAjIwOZmZm44oormEHH7u5u+Pn5MUHI3iUcylxztoVA/4FVrVaLoKAgeHp6oq6uDmFhYWNiopz2CGxVuzYW+ZRKpeDxeCYZn7X76+joQH5+PqKjoxEVFWXVax0BmllERUWBw+GYZHz2LlVZAolEgoKCAodIBNnSF3J00DEYDHjkkUdw5MgRnDhxApGRkXY/hgsjw5gMPEDfl+f8+fPYs2cP9u3bh5aWFixevBirV6/G1Vdfjd7eXohEInR1dcHHx4cR+BzpqpIy1+hNbLRu8nRgta6uDmKx2KRpb29ZG2sgFotRVFRkN3FNY6tv49UzlSgabvVMz8eW8pEjQJl+/W/ylGhC7QCEQiHzWdpTe2yw85k+fbpT6v/9PZT6B1v6+3Jk0HnyySfx/fff4/jx45g0aZLdjwFYJ/q5ffv2AU6fAoEAKpWK+ZsQgueeew6ffvopZDIZrrjiCnz00UeIiYlxyPmPNsZs4DGGwWBAfn4+du/ejb1796Kurg6LFi3CqlWrcO211zIN7c7OTqaPEBISYnVPZixprgEXBzHj4+Ph6elpImtjz/kSS9HU1ITy8nKH3cTMZXxDWX3TuamxMKgK9M2hlJSUYMaMGUOeT/8en6NsomlmMdz5OAr9mYDUomPSpEkO6XkZDAZs3rwZ3377LY4fP44pU6bYdf8U1op+bt++HQ899BDKy8uZx1gslslvaMuWLXj11VfxxRdfIDo6Gps3b0ZhYSFKSkpGtUTrKFwSgccYhBAUFxdj9+7d2LdvH8rKyrBgwQJkZmZiyZIl0Ol0zBfd09OTyYSGmrsghKC8vBwikQgJCQmjPvhICEFVVRWam5vNOnTSgVVadqQZX1BQkENM5wghqK2tRX19PRISEky0sxwF436JRCJhGHK0JNfa2orq6uoxYQ0NXDQps/Z8KDmB9r9osDXnSWMN6DCmM2a8LD2f4uJi+Pr6Qi6XA4CJfcVIgy0hBC+++CK2b9+OY8eOIT4+3h6nbRbWin5u374dDz/8MGQy2aDnHhYWhsceewyPP/44gD4B05CQEGzfvh1r16512LWMFi65wGMMOs+yZ88e7N27F/n5+bjyyiuRmZmJpUuXAgAThKgoZEhIiEl93dluocOByuR3dXUhKSlp2EHF/u6j9h5YJYSgrKwMEolkVDXpjJWmu7q6wGKxEB4ejsjIyFH/zOrr61FTU4PExMQRydITQiCXy03o6LSXaQ05gWaCYyUo0x4TzbzsPS9ECMGWLVvw0Ucf4dixY5gxY4aDrsQ20c/t27fjzjvvxPjx42EwGJCcnIxXXnkF06ZNA3BR7iY3NxeJiYnM66666iokJibinXfecdj1jBYu6cBjDCrXQntCFy5cQHp6OlavXo1ly5aBz+czzWyhUIiQkBD4+vqioqICAoFgVNxC+0Or1SI/Px96vR6JiYlW/wD7D6waB1tbBlaNZ4aouOZoggZBsViM8ePHo6urC52dnQ5xkrX0fGpra9HQ0ICkpCS7D/L29vYyGR8VbDVWTjB3nTTz6q/qPFroH3TMYbi+0FCfJyEEb731Fv7973/j6NGjSEpKctSlALBNey0rKwuVlZWYOXMmurq68Oabb+LkyZMoLi5GeHg4zpw5gyuuuAItLS0mfcEbb7wRLBYL33zzjUOvaTRw2QQeYxBC0NjYiL1792Lv3r04c+YM0tLSsHr1aqxYsQLu7u44ceIEKioqMG/ePIwfPx6hoaGjIo9P0dvbi9zcXLi5uWHmzJkjLj30Z47x+XyrBlZpEDQYDEhMTBz1mSGDwYCioiL09PSYBEF7DeZaC1oObWlpQUpKisMlgjQajYndt7nrpD1BRzl1WgtKJLCmZ9q/LyQQCJhg6+PjY8IwJYTg/fffx2uvvYZDhw4N2ty3J0Yq+gn0fWfj4uJw880348UXX/xTBp4xq9U2ErBYLERERODhhx/GQw89hNbWVuzbtw979uzB5s2bERkZifr6etx2222YNm0aJBIJI3xJe0LOFEvs6elBTk4OgoODMXXqVLvQt7lcLkJDQxEaGmrSzM7NzR12YJXOMAmFQiQlJY36zJBer0d+fj40Gg3S0tJMgiCPx2OEIY2vkw7aGjPk7EWLp5mXVCpFamqqQ2X1Kfh8PsLCwhAWFmYyR0Ov083NDT09PWMq6BQUFFhNRBEIBIwwrfF1Uh05f39/FBYWYsWKFdi5cydeeeUV/Pzzz04JOsDIRD8peDwekpKSUFVVBQDM60QikUngoWoplyMuy4xnMBBC8Oqrr+KFF15ATEwMysvLERcXh9WrV2P16tUIDAxkSlUsFospUw2lJjBS0ME+Z9G3jS2wxWLxgIFValPt7+/v1BmmwaDVapGbmws2m22Vd42xooCx3QG9Tlv12wwGA0pKSiCTyZCSkjLq5UeDwYDy8nI0NzeDx+NBr9czbrKjpZVHv9P2ZIcSQtDV1YXCwkLceeedaG1tBQA88sgjeOyxx5yqSjB79mzMmjUL7733HoC+zyAiIgKbNm2yyFFUr9dj2rRpWLZsGf79738z5ILHH38cjz32GIC+WcLg4GAXueBywHPPPYePPvoIBw4cwOzZs9HZ2YnvvvsOe/fuxeHDhzFx4kQmCIWFhTFBiBAyrP21LWhubkZZWZlDBvssAf0xi0QiiMViaDQaJhDFx8ePes+L2gi4ubmZleSxFMYmfhKJBL29vSZ0dEvLiAaDAYWFhVAoFEhJSRkTYoyUbZicnAwvLy+GnCCRSOzqJmspaNCJj493SDAghODrr7/Gww8/jHXr1qG4uBi///470tLS8N133zmFNm6t6OcLL7yAOXPmYPLkyZDJZHjjjTewf/9+ZGdnM+y7LVu24LXXXjOhUxcUFLjo1JcDLly4gICAAERHRw94rqurC99//z327t2LgwcPYvz48UwQioqKglQqhUgkgl6vR1BQEEJCQmyeuTD2rXEWPXk40EFDX19fqFQqqFQqZuU8GgOrSqWScVS1t42AsdV3T08P4580FB3duNyXnJw86j0v+h1qbGxESkqKWbYhdZOVSCTo7OyEp6cnc52OIGE4I+js2rULmzZtwu7du5GRkQGgryR18OBB3HrrrU7L0K0R/XzkkUewd+9etLW1wc/PDykpKXjppZdMiBB0gPSTTz6BTCbDvHnz8OGHHzpsFmm08acKPJaip6cHP/30E/bu3YuffvoJgYGBWLVqFVavXo2pU6cymZBGo2FWk7T2OxyMHTGTkpJG3bcG6GuYlpaWYtq0acwNw5jWS1fOdFbI0St92vMKDQ11uESQSqViMgTjm7Mxc4x6+xBCkJiYOOqZICEE1dXVaG5utpjYoNVqmSBESRj0u2uPfiaVCYqLi3NY9r5v3z7cfffd+Oabb7BixQqHHMMF58AVeIaBUqnEoUOHsGfPHvzwww/w8vLCypUrkZmZiWnTpqG9vR0ikQgqlQqBgYEICQkZ1DJZp9Mxq+akpKRRT6EJIairq0NdXd2QmRel9dIZGh8fH+bmbO8eB9WBi4yMdLqic3/mmFAoREBAADo6OsDn88cE0YIQgsrKSrS2ttpMbBhMpshW8zdnBJ0ffvgBGzduxFdffYXrrrvOIcdwwXlwBR4roFKpcOTIEezZswcHDhwAn8/HihUrkJmZicTERObHrFQq4e/vz2QIPB6PYYrRmSF7mJONBMZqDbQ/YAmM/XZohmCJOoQloKUae+nAjQR6vR5tbW2oqKiAXq9n6OhBQUHw8/MbFdIFHZgWiURISUmx24CwsXKCWq02UU4YrqTojKBDy2hbt27FTTfd5JBjuOBcuAKPjdBqtTh+/Dh2796N7777DgaDAcuXL8d1112H1NRUyGQyiEQiyOVyeHp6ore3FwEBAQ4zJ7MGg83EWAtavhGJRIwrJ82ErLU6aGtrQ3Fx8agRLfpDpVIhOzsb3t7eiIuLY+w5xGIxDAaDCRPQGVmQMYU7JSXFIX5G1PzNuMQ6VP+Lmso5MugcO3YMa9euxUcffYRbbrnFIRmwNYKfn376Kb788ksUFRUBAFJSUvDKK6+YbL9hwwZ88cUXJq9bsmQJDh48aPdzv1ThCjx2gE6nw6lTp7B7927s378fSqUSy5cvx+rVqyGXy7F582a8/fbb4PP5DrVzsPRc8/PzodPpkJSUZLcm+WBWByEhIcMOctLBR0cZglkLpVKJ7Oxss4ZylAlIb87GGYKjSBiEEKYv6EwKd385Jk9PTybgajQa5Ofn28XfZzCcPHkSN9xwA9555x1s3LjRIUHHWsHPdevW4YorrsDcuXMhFAqxZcsW7Nu3D8XFxYw6+oYNGyASibBt2zbmdQKBYEzMV40VuAKPnaHX63HmzBns2bMHX331Fdrb25GQkIAnnngC8+fPh1wud4idgyVQq9Um5naOKvcZ9xDEYjFjDR0cHGxSpjIWH01KShp1cVbgosFdSEjIsMQGcxmCLdpqQ4GK4nZ1dSElJWXU+oL9FSIMBgP8/f0RHR3tkDm3M2fO4Prrr8eWLVtw7733OqzXZ63gZ3/o9Xr4+fnh/fffx2233QagL/DIZDLs37/fIed8OeCyVC4YTXA4HMybNw+nT5+GRqPBW2+9hebmZjz77LNoa2vDtddei8zMTMZTSCwWo6Kiwim20Lm5uQ6hJ/cHh8NhMoC4uDhmYLWoqIiZEwoKCkJHRwdEIhFSU1NHTXzUGNTFNDw8HJMmTRr2ZsdiseDp6QlPT09MnDiR+Tzb2tpQXl7OaI7Z2v+igrE9PT2jGnSAiwoRAoEAUqkUERER0Ov1KCwsNPlM7VF6PH/+PNasWYOXXnrJoUFHo9EgOzsbTz/9NPMYm83GokWLkJWVZdE+lEoltFrtAGLOiRMnmIXWNddcg5deemlMCLaOFbgyHgfg/PnzyMzMxA8//MBw9Q0GA/Ly8hhPofr6eixatAirV6828RSyxs7BUnR1dSE3NxdhYWGIiYkZVXM7OrDa3NzMqAmMGzduUCags0DZdPZyMR1MsNXS/hftw8nl8jEzrNrZ2Ync3FwT0z1zpUdj5QRrS7m5ublYsWIF/vGPf+Cxxx5z6HfVHrprf/vb33Do0CEUFxczC4OdO3fC3d0d0dHRqK6uxv/93//B09MTWVlZo86KHCtwBR4HgZIKzIEQgqKiIsZTqLy8HFdffbWJpxB1qhzMzsFSUKbYpEmTxoQFMF0lK5VKTJkyhZG1oWoCxkxAZ4E2yR3FpjPX/zKeoemffVKFBKVSiZSUlFEfVgXMB53+oKVHGnDpcC691uF6U4WFhVi2bBkee+wxPP300w5fII008Lz22mt4/fXXceLECcycOXPQ7ajtwZEjR7Bw4UK7nf+lDFfgGWVQWjP1FCooKMD8+fMZOwcWizXAzsHSVTN1xBwrTDE6iGkwGJCUlGQSXGivhDIBnUXCoArKjmySG8NgMJjM0Bhr5fn7+4PFYiE/Px9qtXpMKCQAF4POlClTEB4ebvHrKDlBIpGgo6ODsa8ICgoa8P0tKSnB0qVLcf/99+O5555zSlZui7cOxZtvvomXXnoJR44cQWpq6rDHCgoKwksvvYR77rnHHqd+ycMVeMYQjD2F9u7di+zsbMZTaMWKFeDxeMwPmc6VhISEmLVzqKurQ01NzZgxA9NoNMjJyQGfz0dCQsKQJQdnDaxSa2hHWXkPB3NW3xwOBxwOZ0wIkAJ9JcicnByrg05/UHICVU7g8XiorKxEcHAwoqKisGrVKmzcuBGvvPKKU0vBtgh+vv7663j55Zdx6NAhzJkzZ9hjNDU1ISIiAvv378eqVavsev6XKlyBZ4yCEIKGhgbGUygrKwuzZs3CqlWrsHLlSnh4eDCrZmM7Bx8fH2ayPTk5Gd7e3qN9KYzitZeXl9VzTGq1mind0P6XsembrWhubkZ5efmYsYbW6XTIzs6GWq0Gl8tlhpBphjAaPR7a94qJiRlR0OkPmvW9/vrr+Oqrr9Dd3Y3Y2Fi88MILWLp0qVNsJiisFfzcsmULnn32WezYsQNXXHEFsx9KMpHL5Xj++eexZs0ahIaGorq6Gk888QR6enpQWFg4Jnp1YwGuwHMJgBCClpYWxlPot99+Q0JCAjIzM7Fy5Ur4+vpCIpGgubkZYrEY48aNQ2xsLEJDQ0d9WFWhUCA7OxuBgYEDZmKsBR1YpQ17WwdWGxoaUFVVNWZcOo214JKSkpjAQzOh7u5u+Pj4MCU5R7Ae+4MGncmTJztMRaKurg5LlixBWloaYmJisH//fjQ0NOC5556ziMpsL1gj+BkVFYX6+voB+3juuefwz3/+E729vcjMzERubi5kMhnCwsKwePFivPjii6OSVY9VuALPJQZCCMRiMfbv3489e/bgxIkTiIuLYyaj3dzc8N5776G9vd1hdg6WgrLpLKUnWwOdTsfo5BkPrA4nellbW4u6uroxMzek0+lM/IbMlSD7Z32Otvp2RtBpamrCkiVLsHjxYnz00UfMd7OsrAw6nQ7Tp093yHFdGBtwBZ5LGIQQdHR04L///S/++c9/oru7GzExMVizZg3jKWRPOwdr0NHRgfz8fEycONHhbLr+opfUxM94YJUqOjc1NQ1qI+BsUJM7Lpc7bN/L+DXGQqZ8Pt+uKtNdXV3IyclxaNBpbW1FRkYG5s2bh88++8xFMf4TwhV4LnFUV1djyZIlTH360KFD2Lt3Lw4dOoTw8HDGUyg6OnpEdg7WgHr7xMbGDkq9dRSMnUdFIhGjq6bVatHd3e00q+rhoNVqGbLFzJkzbfoMzAXckVh906AzadIkREREWH0+lkAkEmHp0qVISUnBl19+6Qo6f1K4As8ljq+//hoXLlzAv/71L5MbTU9PD3788Ufs3bsXP//8M+MplJmZialTpzKZELVzoE3skQ5xUm+fGTNmOMUNcihQ1lhpaSmUSqXJjXk0B1Ypw08oFGLmzJl2KYEaB1yJRAKdTmcyyDnctToj6EilUixbtgzx8fHYsWPHqCu0uzB6cAWePwGUSiUOHjyIPXv24Mcff4SXlxcThKZPn86UbszZOViD+vp6VFdXj5mmvfH0f1JSEnQ6HWPzbav99UhBZVrc3d0xY8YMh/TdCCHo6elhyAnDXaszgk5HRweWL1+O6OhofPvttw57v61RmgaAXbt2YfPmzairq0NMTAy2bNmCZcuWMc9TZ9BPP/0UMpkMV1xxBT766CPExMQ45Pz/LHAFnj8ZVCoVDh8+zHgKCQQCrFy5Etdddx3jKUSHOOnNKjg4eMgbhXH/JCkpCT4+Pk68IvPQ6/UoKCgYdBCzv/21vcU9zUGtViM7OxteXl6YNm2a08geQ1l9a7VaZGdnO7QXJ5PJsHLlSoSGhmLv3r0OoxRbqzR95swZzJ8/H6+++ipWrFiBHTt2YMuWLcjJyWHIDVu2bMGrr76KL774AtHR0di8eTMKCwtRUlIy6kaOlzJcgedPDI1GY+IpRAhhjO3S0tKY0k13d/egSgJUsp/6xIyF/oler0deXh70ev0AhQRz6O3tZXyFurq6HCLYSv19fHx8MG3atFHTy+tvdUAIQUBAAKZMmWKTJNNw6O7uRmZmJry9vXHgwAGH3qytVZq+6aaboFAo8MMPPzCPzZkzB4mJifj4449BCEFYWBgee+wxPP744wD6ssOQkBBs374da9euddi1XO4Y3SEPK9HR0YF169bB29sbvr6+uOOOOyCXywfdvq6uDiwWy+y/Xbt2MduZe37nzp3OuFEVGd0AACVwSURBVKRRBZ/Px5IlS/Dpp5+ipaUF33zzDdzc3HDfffdh2rRpePXVVyGVSpGamoqgoCC0tbXh1KlTOH/+PBoaGqBUKlFYWIjOzk6kpaWNiaBDV/CEECQnJ1tULnRzc0NERATS0tJw5ZVXIiwsDB0dHThz5gzOnj2LmpoayOVy2LpG6+3txYULF+Dr6zuqQQcAhEIhJkyYgJiYGLDZbISEhIDNZuPcuXM4c+YMKisrIZPJbL5WY8jlcvzlL3+Bm5sb9u/f79CgQ0uYixYtYh4bTmk6KyvLZHugz7CNbl9bW4u2tjaTbXx8fDB79myL1atdMI9Lqru3bt06tLa24vDhw9Bqtdi4cSPuvvtu7Nixw+z2EyZMQGtrq8ljn3zyCd544w0sXbrU5PFt27YhIyOD+XsszHg4E1wuF9dccw2uueYavPfeezh9+jT27NmDRx99FF1dXcjIyEBmZibjKVRXV4dvv/0WSUlJiIqKssuNaqSgTXtqL24LY0ogECA8PBzh4eEMdVkkEqG2thZCoZDJhMzJFJkDDTqBgYGIjY0d1aBD0dPTg5ycHEycOJFR4tbr9Whvb4dYLGbmisx5KFkKpVKJG2+8ESwWC99//73Dh16lUin0ev2AIc2QkBCUlZWZfU1bW5vZ7dva2pjn6WODbeOCbbhkAk9paSkOHjyI8+fPM6J87733HpYtW4Y333zTrMAjh8NBaGioyWP79u3DjTfeOEBuxdfXd8C2f1ZwOBzMnz8f8+fPx1tvvYVz585hz549eOaZZyASibBgwQLk5+cjKCgIN9xwA9rb21FbW2t3OwdroFKpkJOTA09PT7vZi1MPmnHjxkGv1zMkjOzsbIsGVqmTaVBQEKZOnTpmgk52djaioqJM7B84HA5zPQaDgfFQKi4uZmbAgoKCLKLfq1Qq3HzzzVCr1Th48OCIpI1cuDxxyZTasrKy4Ovra6IEu2jRIqZMYAmys7ORl5eHO+64Y8Bz999/PwIDAzFr1ixs3bp1TKzgxwLYbDbS09Px5ptvorKyEnv27MHvv/+Ojo4OlJSU4IknnkB5eTkSExMxYcIEdHV14ezZs8jKykJ1dfWISlSWgmYVPj4+dgs6/UH18GbMmIEFCxYgNjaWsRE/efIkSkpK0N7eDoPBAKCvoX/hwgUEBwePuaATGRk5pOcQm81mbL+vvPJKJCcnQyAQoKqqCidOnEBeXh5aWlqg1WoHvFatVuOWW25BZ2cnfvrpJ6cRTWhAFIlEJo+LRKJBF5ShoaFDbk//a80+XbAMl0zG09bWNoCZwuVy4e/vb3Ha+/nnnyMuLg5z5841efyFF17ANddcA3d3d/zyyy/429/+BrlcjgcffNBu5385oLa2Fvfddx+WLVuGTz/9FGVlZdi1axfefvtt/O1vf8M111yD1atXIyMjA3q9HmKxGHV1dVbbOVgDqgXnzBs8m81mMgDj+RmaHfj6+jI6XcPZZzsLxkEnOjra4texWCz4+PjAx8cHkydPZhhyDQ0NKCkpgZ+fH9RqNUJCQhAREYENGzagpaUFR48ehZ+fnwOvyBR8Ph8pKSk4evQoY3FgMBhw9OhRbNq0yexr0tPTcfToUTz88MPMY4cPH2a8eaKjoxEaGoqjR48iMTERQB9Z4ty5c7jvvvsceTmXPUY98Dz11FPYsmXLkNuUlpaO+Di9vb3YsWMHNm/ePOA548eSkpKgUCjwxhtvuAJPP3R3d+Pmm2/Giy++CDabjRkzZmDGjBl4/vnnUVZWht27d+OTTz7Bgw8+iCuvvBKZmZlYvnw5gD7fmwsXLgxr52ANaK8iLCwMkydPHpUbPJvNhr+/P/z9/TF16lS0traitLQUbDYbTU1NUKlUdhvOtRU06ERERFgVdPrDnNW3RCLB22+/jU8//RSenp4QCoXYu3fvqFhxPProo1i/fj1SU1MZJQ+FQoGNGzcCwACl6YceeghXXXUV/vWvf2H58uXYuXMnLly4gE8++YS53ocffhgvvfQSYmJiGDp1WFiYiX+PC9Zj1OnU1GlzKEycOBFfffUVHnvsMXR2djKP63Q6CIVC7Nq1C9ddd92Q+/jvf/+LO+64A83NzcPK4P/4449YsWIFVCqVS8bcStCZHuoplJOTg/T0dCYICQQCs3YO1uqM0aHHqKioEd1M7Ynu7m7k5OQwN3i5XM7MzygUCkZJwJkDq3K5HBcuXEBERAQmTpzokGPo9XrceuutyMrKQmJiIn799VdER0fj9ttvx9///neHHHMwWKM0DfQNkD7zzDPMAOnrr79udoD0k08+gUwmw7x58/Dhhx9iypQpTr2uyw2jHngsRWlpKeLj43HhwgWkpKQAAH755RdkZGSgqalpWPfIBQsWIDAwELt37x72WC+//DL+9a9/oaOjwy7n/mcFIQT19fWMp9DZs2cxa9YsrF69mvEUojMl5oQ9B0NnZyfy8vIcOmlvLWggjI6ONts/GY2BVRp0JkyYgEmTJjnkGHq9Hg888ABOnz6NEydOYPz48ZDL5Th48CA6Oztx1113OeS4LlzauGQCDwAsXboUIpEIH3/8MUOnTk1NZejUzc3NWLhwIb788ksTmYyqqipMmTIFP/30kwllGgC+//57iEQizJkzB0KhEIcPH8bjjz+Oxx9/HM8//7xTr+9yBvUU2rt3L/bs2YPTp08jMTGR8RTy8/NjbszUDpoqaRsHIalUioKCAkydOtXpAqSDgdoIWDr9r1KpmGuVyWQOGViVy+XIzs5mLCkcAYPBgIcffhjHjh3D8ePHHa5C7sLlg0uG1Qb0CWLGxsZi4cKFWLZsGebNm8fUY4G+4cHy8nIolUqT123duhXh4eFYvHjxgH3yeDx88MEHSE9PR2JiIv7zn//gxRdfRGVlpcWDqkBfRtV/CPXee+812aahoQHLly+Hu7s7goOD8fe//x06nW4E78ilAxaLhfHjx+OBBx7A8ePH0djYiDvuuAMnTpxAamoqVq5ciQMHDiAkJAQJCQngcrkoKSnBr7/+iqKiIojFYrS1tSE/Px/x8fFjJuh0dnYy3jWW3niFQiEiIiKQmpqK+fPnmwys2oMN6Kyg88QTT+CXX37BkSNHXEHHBatwSWU8zsLSpUvR2tqK//znP0xmlZaWNuigKtAXeKZMmYIXXniBeczd3Z2xntbr9UhMTERoaCjeeOMNtLa24rbbbsNdd92FV155xeHXNFZBPYX279+PvXv34siRI4iJiWFETMePHw+JRIL9+/dj6tSpCAsLQ0REhEPsHKxFR0cH8vLyMGXKFLtYQxt77UilUpsGVimNe/z48XY336MwGAx45plnsGvXLpw4ccIlmOmC1XAFnn6gvSTjQdWDBw9i2bJlQ/aSFixYgMTERLz99ttmn//555+xYsUKtLS0MJPQH3/8MZ588klIJBKnNZvHMggh6OrqwoEDB7B371788ssvCA8Px7hx43Du3Dls27YN06ZNc4idg7Vob29Hfn6+w0p+xgOrUqkUXC6XKT8ORsRwRtAhhOCFF17AF198gePHjyMuLs7uxzCHjo4OPPDAA/j+++/BZrOxZs0avPPOO4MOp3Z0dOC5557DL7/8goaGBgQFBSEzMxMvvviiyWyRuffof//7n0uHzcFwBZ5+2Lp1q03suQULFqC4uBiEEISGhmLlypXYvHkzU7N/9tlnceDAAeTl5TGvqa2txcSJE5GTk4OkpCSHXteliJ6eHtx333349ttvwWazMW7cOMbYLi4ujiEmjNTOwVrQPlNcXBzGjRvn0GMBfRkGNXwTi8UAMMDS3FlB57XXXsPHH3+MY8eOYcaMGXY/xmCwtgpRVFSE5557Dhs2bEB8fDzq6+tx7733YubMmSYEIxaLZVYuy6U87ViM+hzPWIOtg6p//etfERkZibCwMBQUFODJJ59EeXk59u7dy+zXnOYTfc4FUxBC8O9//xsHDx5EVlYWYmNjGU+hzMxM+Pj4YNWqVVi9ejXS0tLQ3t7ODDVaaudgCyQSCQoKCjBt2jSnTa+z2WwEBgYyem90YLWkpAR6vR5+fn7o7OxEWFiYQ4POW2+9hQ8//BBHjx51atCxRS5r+vTp2LNnD/P3pEmT8PLLL+OWW26BTqczyZBdclnOxyVFLhgJnnrqqUGVqum/wcQELcHdd9+NJUuWYMaMGVi3bh2+/PJL7Nu3D9XV1Xa8ij8XFAoFfv31V8ZuYc2aNdixYwfa2trw/vvvo6enBzfddBOSkpLw7rvvQq1WY9asWfD390dLSwtOnjyJ7OxsNDY2Qq1Wj/h8RCIRCgoKMH369FG7UdGB1djYWFx55ZWIi4tjaP9NTU0oKChAa2urWTkbW0EIwfvvv49//etfOHjwIDPF7yzYQy4LAGN50b8s65LLcj7+NBnPY489hg0bNgy5zcSJExEaGsqUMyh0Oh06OjqsutnQobWqqipMmjQJoaGh+P333022oRpQrtXWQLBYLLz++utmn3Nzc8OqVauwatUqaDQaHDt2DLt378Ztt90GFouF5cuX47rrrsOsWbMgk8nQ1taG8vJy+Pj4MAOr1pZS2traUFxcPCYsvSl6e3tRUVGB8PBwEzmburo6FBcXm5Qfbc38CCH45JNP8Morr+Dnn39GWlqana9ieNhDLksqleLFF1/E3XffbfK4Sy5rdPCnCTxUW2s4pKenQyaTITs7mxlUPXbsGAwGAxNMLAHt5dAeQHp6Ol5++WWIxWLmR3T48GF4e3sjPj7eyqtxgYLP5yMjIwMZGRn4+OOP8euvv2L37t245557oFarsXz5cmRmZmLu3Lno7u6GWCxGRUWFVbMzra2tKCkpwcyZMy36DjkDSqUSFy5cQGhoKGJiYsBiseDl5QUvLy9MmjQJSqUSYrEYzc3NKC0tZVxHrQm6hBBs374dzz33HH744YcBGocjhbPksrq7u7F8+XLEx8fjn//8p8lzLrms0YGLXGAG1g6qVldXY8eOHVi2bBkCAgJQUFCARx55BOHh4fj1118BXKRTh4WF4fXXX0dbWxtuvfVW3HnnnX9qOrWjoNfr8dtvv2HPnj3Yt28furu7sXTpUhNPIbFYjI6OjiHtHFpaWlBWVoaEhIRR0R8zBxp0QkJCLBIhtWVglRCCr776Co8//jgOHDiAq6++2u7X4Qy5rJ6eHixZsgTu7u744Ycfhg26LrksJ4G4MADt7e3k5ptvJp6ensTb25ts3LiR9PT0MM/X1tYSAOT48eOEEEIaGhrI/Pnzib+/PxEIBGTy5Mnk73//O+nq6jLZb11dHVm6dClxc3MjgYGB5LHHHiMikYj89a9/JV5eXsTHx4fcfvvtJscyd26bNm0iU6ZMIUKhkEyYMIE88MADRCaTmWwHYMC///3vf/Z7ky4h6PV6cvr0afLoo4+S6Oho4uHhQa6//nryxRdfkKamJlJZWUlOnz5NDhw4QI4cOUIKCgqISCQiZWVl5PvvvyeNjY1EoVCMiX8SiYQcPHiQ5OTkELlcbvXrOzs7SUVFBfntt9/Id999x1xvW1sbsz+5XE62bt1KPDw8yMGDB0f74yMlJSUEALlw4QLz2KFDhwiLxSLNzc2Dvq6rq4vMmTOHXHXVVUShUFh0rJdeeon4+fmN+JxdGBqujGeU4aKJOhcGgwE5OTnYvXs39u7di6amJixatAirV6/G4sWLodFoIBaLcezYMUybNg3jxo1DZGSk3e0cbAH1HQoODraL3UL/gdVvvvkGfD4foaGhePvtt/Htt99ixYoVdjr7kcHaKkR3dzcWL14MpVKJffv2mWSyQUFB4HA4LrmsUYQr8IwibB1W7Y9du3bhlltugUKhYBg7LBYL+/btc8m3DwGDwYCioiLs2rUL+/btQ2VlJa655hpwOBwcP34cu3fvhr+/PzPgS8tTPj4+Tg9CNOg4ys1Ur9dj7969ePfdd5GTk4OAgACsW7cO119/PebNmzcmVCI2bdpkMkD67rvvMgOkdXV1iI6OxvHjx7FgwQKcOHFi0PJgbW0toqKicPDgQTz99NOoqqoCIQSTJ0/Gfffdh7vuusshZoIuXIQr8IwibB1W7Y/PPvsMTz/9NCQSCfMYi8VCWFgY1Go1Jk6ciHvvvRcbN24c9VX7WAUhBKWlpYzoJdA3FJyZmYlly5aBzWab2DlQTyFr7RxsgaODDsXBgwdx66234tNPP0VAQAD27t2L/fv3Y/ny5di6datDjunCnxN/GlbbWISLJjp2wGKxsH//fuTk5OD333+Hl5cX9uzZgy+//BKPPPII5s6di8zMTKxYsQJ8Ph8SiQT5+flW2TnYAmcFnaNHj+K2227Df/7zH9x8881gsVhYsmQJPvzwQ8hkMocc04U/L1wZjwNgKU107969+OKLL1BeXm7yXHBwMJ5//vlh7XW7u7tx7bXXwt/fHwcOHBhSKubZZ5/Ftm3b0NjYaPmF/ImgVqtx/fXX49VXX8XMmTOZx8kfnkLU2O7cuXOYPXs24ynk6elpkZ2DLejt7UV2djYCAgIQGxvrsKBz8uRJ3HDDDXj33XexYcMGV1bsgsPhCjwOgIsmenmCEILm5mbGU+jMmTNISkrC6tWrsWrVKvj7+0MsFkMkEkGv1yMoKAjBwcEICAiwukeiUqlw4cIFhwedM2fO4Prrr8frr7+Oe+65xxV0XHAKXIFnFGGrq2p3dzeWLFkCgUCAn376ySLzMJerqn1BCIFIJMK+ffuwZ88e/Prrr5g+fToThKgChlgshkajQWBgIEJCQiyyc6BBx9/fH3FxcQ4LBr///juj2Lxp0yZX0HHBaXBRN0YRcXFxyMjIwF133YXff/8dp0+fxqZNm7B27Vom6DQ3NyM2NpaR26E0UYVCgc8//xzd3d1oa2tDW1sb9Ho9gD5X1c8++wxFRUWoqqrCRx99hFdeeQUPPPDAqF3r5QYWi4XQ0FDcd999OHz4MFpbW7Fp0yb8/vvvSE9Px+LFi7Fr1y74+fkhJSUF7u7uqKqqwokTJ5Cfn4/W1lazJoDOCjo5OTm47rrrsHnzZqcHnY6ODqxbt85ltPhnhrMHh1wwhbXDqsePHzc7HAqA1NbWEkII+fnnn0liYiLh8/mExWIRFotFoqKiSFZW1pDn8u2335KpU6cSgUBApk+fTn788UeT5w0GA9m8eTMJDQ0lQqGQLFy4kFRUVNj1/bjUYTAYSEdHB/niiy/IqlWriFAoJFOmTCF///vfyW+//UZaW1tJQUEBOXLkCDlw4AD57bffSGVlJZHJZKS9vZ0cOnSInD9/3qbhUEv/ZWVlEX9/f/LKK68Qg8Hg9PcoIyODJCQkkLNnz5JTp06RyZMnk5tvvnnI11x11VXkrrvuIq2trcw/4wFtnU5Hpk+fThYtWkRyc3PJTz/9RAIDA8nTTz/t6MtxwQa4As9lip07dxI+n0+2bt1KiouLyV133UV8fX2JSCQyu/3p06cJh8Mhr7/+OikpKSHPPPMM4fF4pLCwkNnmtddeIz4+PmT//v0kPz+frFq1ikRHR5Pe3l5nXdYlh66uLrJjxw6yZs0a4uHhQaKjo8lDDz1ETpw4Qdra2khRURE5evQo+e9//0v2799Pjh8/Tjo6OhwWdM6fP08CAwPJc889NypBh6oQnD9/nnns559/HlaF4KqrriIPPfTQoM//9NNPhM1mk7a2Nuaxjz76iHh7exO1Wm2Xc3fBfnAFnssUs2bNIvfffz/zt16vJ2FhYeTVV181u/2NN95Ili9fbvLY7NmzyT333EMI6VvJh4aGkjfeeIN5XiaTEYFA8KeV4rEWcrmc7Nq1i6xdu5Z4eXmRCRMmkPvvv5/897//JWFhYeTJJ58kx48fJ9999x05efIkKSsrs2sQysnJISEhIeTpp58elaBDCCGff/458fX1NXlMq9USDodD9u7dO+jrrrrqKhIYGEgCAgLItGnTyFNPPWUig7N582aSkJBg8pqamhoCgOTk5Nj1GlwYOVw9nssQGo0G2dnZWLRoEfMYm83GokWLkJWVZfY1WVlZJtsDwJIlS5jta2tr0dbWZrKNj48PZs+ePeg+XTCFh4cH/vKXv+B///sfRCIR3nvvPbS1tWH9+vXo6OhAe3s7VCoV5syZg6CgILS1teHUqVM4f/48GhoaoFKpbD52VVUVVqxYgXXr1uGll14aNSLBSIwWv/rqKxw/fhxPP/00/vvf/+KWW24x2a/LaPHSgWuA9DKEVCqFXq83+0MczOxusB8u/dHS/w61jQuWw83NDbNmzcKTTz6JW265BTfccAP27duHW2+9FSwWCytWrMB1112H2bNnM46j1to5UNTV1WHFihW4/vrr8cYbbzhEDsbRFgfGA9IzZszAuHHjsHDhQlRXV2PSpEk279eF0YEr8Ljgwijh6aefxuzZs7F161ZwOBysWLECWq2W8RS66667oNFosGLFCqxevRrz5s1Dd3c3RCIRqqqqhrRzoGhsbMSyZcuwbNkyvPPOOw7TIHMZLbpgDVyB5zIEnRWhPzwKkUg06I8wNDR0yO3pf0UiEWNuR/92thXy5YL3338fbm5uJnM9PB4PixYtwqJFi/DBBx/gt99+w+7du/Hwww+jp6cHS5cuxerVq3HVVVcxjqM1NTUMhTgkJATu7u5gs9lobW3F8uXLcc011+CDDz5wqPCly2jRBasw2k0mFxyDWbNmkU2bNjF/6/V6Mn78+CHJBStWrDB5LD09fQC54M0332Se7+rqcpELnATqKfTII4+QqKgo4unpSa6//nry5ZdfkubmZlJdXU3OnDlDPvzwQxIeHk7WrVtHIiIiyF//+lei0+lG+/RNkJGRQZKSksi5c+fIb7/9RmJiYkzo1E1NTWTq1Knk3LlzhBBCqqqqyAsvvEAuXLhAamtryXfffUcmTpxI5s+fz7yG0qkXL15M8vLyyMGDB0lQUJCLTj1G4Qo8lyl27txJBAIB2b59OykpKSF333038fX1Zeimt956K3nqqaeY7U+fPk24XC558803SWlpKXnuuefM0ql9fX3Jd999RwoKCsjq1atddOpRgF6vJ7///jt54oknSExMDHFzcyMrV64kn3/+OamoqCCvv/468fT0JFwul0RHR5PHH3+cZGVlEb1eP9qnTghxrtGiVqt15qW5YCFcgecyxnvvvUciIiIIn88ns2bNImfPnmWeu+qqq8j69etNtv/222/JlClTCJ/PJ9OmTRt0gDQkJIQIBAKycOFCUl5ezjz//vvvk8jISCIQCMisWbOYFas5fPLJJ2TevHnE19eX+Pr6koULFw7Yfv369QOGZJcsWTKCd+Tyg16vJ7m5ueQf//gHiY+PJzwej3h7e5OlS5eS7u5ucuDAAbJ+/Xri6+tLioqKRvt0XXCBEOJyIHXBTvjmm29w22234eOPP8bs2bPx9ttvY9euXSgvLx9AnwWAdevW4YorrsDcuXMhFAqxZcsW7Nu3D8XFxRg/fjwAYMOGDRCJRNi2bRvzOoFAAD8/P6dd16UEQggKCwvxf//3f9i1axfc3NyY57RaLbhcrkuPzYUxAVfgccEumD17NtLS0vD+++8D6HP3nDBhAh544AE89dRTw75er9fDz88P77//Pm677TYAfYFHJpNh//79jjx1F1xwwclwDZC6MGLYMrDaH0qlElqtFv7+/iaPnzhxAsHBwZg6dSruu+++Ye0mXHDBhbEPV+BxYcQYamDV0uHSJ598EmFhYSbBKyMjA19++SWOHj2KLVu24Ndff8XSpUsZFW4XRhfWqkzX1dUNUJim/3bt2sVsZ+75nTt3OuOSXHASXHM8Low6XnvtNezcuRMnTpwwMbRbu3Yt8/9nzJiBmTNnYtKkSThx4gQWLlw4GqfqghHWrVuH1tZWHD58GFqtFhs3bsTdd9+NHTt2mN1+woQJaG1tNXnsk08+wRtvvIGlS5eaPL5t2zZkZGQwf/v6+tr9/F0YPbgCjwsjhi0DqxRvvvkmXnvtNRw5csTEctocJk6ciMDAQFRVVbkCzyijtLQUBw8exPnz55GamgoAeO+997Bs2TK8+eabZk0MORzOgO/Dvn37cOONN8LT09PkcV9fX5fiwGUMV6nNhRGDz+cjJSUFR48eZR4zGAw4evQo0tPTB33d66+/jhdffBEHDx5kbl5DoampCe3t7SbKCS6MDrKysuDr62vyuS1atAhsNhvnzp2zaB/Z2dnIy8vDHXfcMeC5+++/H4GBgZg1axa2bt0KFwfq8oIr43HBLnj00Uexfv16pKamYtasWXj77behUCiwceNGAMBtt92G8ePH49VXXwUAbNmyBc8++yx27NiBqKgophfk6ekJT09PyOVyPP/881izZg1CQ0NRXV2NJ554ApMnT8aSJUtG7Tpd6IOtKtPG+PzzzxEXF4e5c+eaPP7CCy/gmmuugbu7O3755Rf87W9/g1wux4MPPmi383dhlDGaQ0QuXF6wZmA1MjLSrIvqc889RwghRKlUksWLF5OgoCDC4/FIZGQkueuuu0yMvqwZWN22bduAYwkEApNtXA6rhDz55JODOtzSf6WlpeTll18mU6ZMGfD6oKAg8uGHHw57HKVSSXx8fEwkmAbD5s2bSXh4uE3X48LYhCvwuHBJwlqH1W3bthFvb28T62TjIEaIy2GVEELEYjEpLS0d8p9arbbZ0I3iyy+/JDwej4jF4mG3/eGHHwgAolKpbL4uF8YWXIHHhUsS1jqsbtu2jfj4+Ay6P5fDqnWgFtYXLlxgHjt06NCwFtYUV111FVmzZo1Fx3rppZeIn5+fzefqwtiDi1zgwiUHWwdW5XI5IiMjMWHCBKxevRrFxcXMcy6HVesQFxeHjIwM3HXXXfj9999x+vRpbNq0CWvXrmUYbc3NzYiNjR3gk1NVVYWTJ0/izjvvHLDf77//Hp999hmKiopQVVWFjz76CK+88goeeOABp1yXC86BK/C4cMnBloHVqVOnYuvWrfjuu+/w1VdfwWAwYO7cuWhqagLgcli1BV9//TViY2OxcOFCLFu2DPPmzcMnn3zCPK/ValFeXg6lUmnyuq1btyI8PByLFy8esE8ej4cPPvgA6enpSExMxH/+8x/8+9//xnPPPefw63HBeXCx2lz4UyA9Pd2E2j137lzExcXhP//5D1588cVRPLNLF/7+/oMOiwJAVFSUWRr0K6+8gldeecXsazIyMkwGR124POHKeFy45DCSgVUKHo+HpKQkVFVVATB1WLV1ny644IJlcAUeFy452Dqwagy9Xo/CwkJmGDU6OhqhoaEm++zu7sa5c+cs3qcLLrhgGVylNhcuSVg7sPrCCy9gzpw5mDx5MmQyGd544w3U19czDW4Wi4WHH34YL730EmJiYhAdHY3NmzcjLCwMmZmZo3WZLrhwWcIVeFy4JHHTTTdBIpHg2WefRVtbGxITE3Hw4EGGHNDQ0AA2+2JC39nZibvuugttbW3w8/NDSkoKzpw5g/j4eGabJ554AgqFAnfffTdkMhnmzZuHgwcPmgiXuuCCC3bAaPO5XXDhUoE1SglXXXWV2an/ZcuWMduMBWvvl156iaSnpxM3N7ch55yMYYnCQ3t7O/nrX/9KvLy8iI+PD7n99ttJT0+PA67AhUsRrh6PCy5YgG+++QaPPvoonnvuOeTk5CAhIQFLliyBWCw2u/3evXvR2trK/CsqKgKHw8ENN9xgsl1GRobJdv/73/+ccTkMNBoNbrjhBtx3330Wv+b111/Hu+++i48//hjnzp2Dh4cHlixZApVKxWyzbt06FBcX4/Dhw/jhhx9w8uRJ3H333Y64BBcuRYx25HPBhUsB1iol9Mdbb71FvLy8iFwuZx5bv349Wb16tb1P1SYMp+xAYYnCA1U1OH/+PLPNzz//bLGqgQuXP1wZjwsuDAN7WHt//vnnWLt2LTw8PEwev9SsvS1ReLCHZYILlzdcgccFF4bBSK29f//9dxQVFQ2QiLkUrb0tUXiwh2WCC5c3XIHHBRccjM8//xwzZszArFmzTB5fu3YtVq1ahRkzZiAzMxM//PADzp8/jxMnTozoeE899RRYLNaQ/8rKykZ0DBdcGAlcdGoXXBgGI1FKUCgU2LlzJ1544YVhj2Mva+/HHnsMGzZsGPZYtsBY4cHYCVYkEiExMZHZpj/pQqfToaOjw6UC4QIAV+BxwYVhYayUQIdJqVLCpk2bhnztrl27oFarccsttwx7HHtZewcFBSEoKGhE+xgMxgoPNNBQhQfKjEtPT4dMJkN2djZSUlIAAMeOHYPBYMDs2bMdcl4uXGIYbXaDCy5cCti5cycRCARk+/btpKSkhNx9993E19eXMZO79dZbyVNPPTXgdfPmzSM33XTTgMd7enrI448/TrKyskhtbS05cuQISU5OJjExMU41PKuvrye5ubnk+eefJ56eniQ3N5fk5uaazNxMnTrVxNzttddeI76+vuS7774jBQUFZPXq1QMM8zIyMkhSUhI5d+4c+e2330hMTAy5+eabnXZdLoxtuAKPCy5YCGusvQkhpKysjAAgv/zyy4B9WWLt7QyYG2IFQI4fP85sA4Bs27aN+ZsOkIaEhBCBQEAWLlxIysvLTfbb3t5Obr75ZuLp6Um8vb3Jxo0bXQOkLjBgEWJGt9wFF1xwwQUXHAQXq80FF1xwwQWnwhV4XHDBBRdccCpcgccFF1xwwQWnwhV4XHDBBRdccCpcgccFF1xwwQWnwhV4XHDBBRdccCpcgccFF1xwwQWnwhV4XHDBBRdccCpcgccFF1xwwQWnwhV4XHDBBRdc+P/26lgAAAAAYJC/9Sx2lUQr8QCwEg8AqwBqTYUXhmAaeAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot the distribution of the particles\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111, projection='3d')\n", "ax.scatter(particles[:,0], particles[:,1], particles[:,2], cmap='viridis', c=particles[:,3])\n", "plt.show()\n", "## Note: colormap corresponds to the mass of the particles" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Choice of units\n", "Recap of the particle properties:\n", "- $\\sim 10^4$ particles\n", "- around 1 black hole (10% of the mass)\n", "\n", "$\\implies$ ???" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "09:38:47 - task2 (mesh) - Considering a globular cluster - total mass of stars: 1.9960278053624618, maximum radius of particles: 0.9000000000000001\n", "09:38:47 - utils.units - Set scales: M_SCALE = 5e+03 solMass, R_SCALE = 1.1 pc\n" ] } ], "source": [ "# Set G = 1\n", "G = 1\n", "\n", "# from the particle number we can estimate the total (stellar) mass, excluding the BH\n", "M_TOT = 1e4 * u.M_sun\n", "# the radius aound the black hole follows from ??? # TODO\n", "R_TOT = 1 * u.pc\n", "\n", "# Rescale the units of the particles - considering only the orbiting stars\n", "M_particles = particles[:,3].sum() - 1\n", "R_particles = np.max(np.linalg.norm(particles[:, :3], axis=1))\n", "\n", "logger.info(f\"Considering a globular cluster - total mass of stars: {M_particles}, maximum radius of particles: {R_particles}\")\n", "m_scale = M_TOT / M_particles\n", "r_scale = R_TOT / R_particles\n", "utils.seed_scales(r_scale, m_scale)\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "09:38:47 - utils.particles - Half mass radius: 0.16294982222188462 for 50th particle of 202\n", "09:38:47 - utils.particles - Number of particles within half mass radius: 43 of 202\n", "09:38:47 - utils.particles - Found mean interparticle distance: 0.07497686469036202\n", "09:38:47 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.00075)\n", "09:38:47 - utils.forces_basic - Particle 0 done\n", "09:38:47 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.0075)\n", "09:38:47 - utils.forces_basic - Particle 0 done\n", "09:38:47 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:47 - utils.forces_basic - Particle 0 done\n", "09:38:47 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.75)\n", "09:38:47 - utils.forces_basic - Particle 0 done\n", "09:38:47 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=7.5)\n", "09:38:47 - utils.forces_basic - Particle 0 done\n", "09:38:47 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=10]\n", "09:38:47 - utils.forces_mesh - Using mesh spacing: 0.1992099685230434\n", "09:38:47 - utils.forces_mesh - Got k_square with: (10, 10, 10), 18.899013258221427 0.0\n", "09:38:47 - utils.forces_mesh - Count of zeros: 1\n", "09:38:47 - utils.forces_mesh - Got phi with: (10, 10, 10), 0.3477529361330639\n", "09:38:47 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=20]\n", "09:38:47 - utils.forces_mesh - Using mesh spacing: 0.09436261666881007\n", "09:38:47 - utils.forces_mesh - Got k_square with: (20, 20, 20), 84.22893563232012 0.0\n", "09:38:47 - utils.forces_mesh - Count of zeros: 1\n", "09:38:47 - utils.forces_mesh - Got phi with: (20, 20, 20), 0.03884710595934048\n", "09:38:47 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:47 - utils.forces_mesh - Using mesh spacing: 0.036589586055252865\n", "09:38:47 - utils.forces_mesh - Got k_square with: (50, 50, 50), 560.2040843578968 0.0\n", "09:38:47 - utils.forces_mesh - Count of zeros: 1\n", "09:38:47 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023263587300085347\n", "09:38:47 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=100]\n", "09:38:47 - utils.forces_mesh - Using mesh spacing: 0.01810999713845851\n", "09:38:47 - utils.forces_mesh - Got k_square with: (100, 100, 100), 2286.780604244788 0.0\n", "09:38:47 - utils.forces_mesh - Count of zeros: 1\n", "09:38:47 - utils.forces_mesh - Got phi with: (100, 100, 100), 0.00028444689035370563\n", "09:38:47 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=150]\n", "09:38:47 - utils.forces_mesh - Using mesh spacing: 0.012032816890653608\n", "09:38:47 - utils.forces_mesh - Got k_square with: (150, 150, 150), 5179.9628808120415 0.0\n", "09:38:47 - utils.forces_mesh - Count of zeros: 1\n", "09:38:47 - utils.forces_mesh - Got phi with: (150, 150, 150), 8.368806772616921e-05\n", "09:38:47 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=200]\n", "09:38:48 - utils.forces_mesh - Using mesh spacing: 0.00900949606385626\n", "09:38:48 - utils.forces_mesh - Got k_square with: (200, 200, 200), 9239.750914059536 0.0\n", "09:38:48 - utils.forces_mesh - Count of zeros: 1\n", "09:38:48 - utils.forces_mesh - Got phi with: (200, 200, 200), 3.5179147539931935e-05\n" ] } ], "source": [ "### Direct N body force computation\n", "epsilon = utils.mean_interparticle_distance(particles)\n", "\n", "epsilon_range = np.logspace(-2, 2, 5)\n", "n_squared_forces = []\n", "\n", "SAVE_FORCES = False\n", "\n", "for e in epsilon_range:\n", " n_particles = particles.shape[0]\n", " cache_file = CACHE_ROOT / f\"n_squared_forces__n_{n_particles}__softening_multiplier_{e:.0f}.npy\"\n", " try:\n", " f = np.load(cache_file)\n", " logger.info(f\"Loaded forces from {cache_file}\")\n", " except FileNotFoundError:\n", " f = utils.n_body_forces(particles, G, e * epsilon)\n", " if SAVE_FORCES:\n", " np.save(cache_file, f)\n", " logger.debug(f\"Saved forces to {cache_file}\")\n", " n_squared_forces.append(f)\n", "\n", "### Mesh based force computation\n", "mesh_size_range = [10, 20, 50, 100, 150, 200]\n", "mapping = utils.particle_to_cells_nn\n", "\n", "mesh_forces = []\n", "for mesh_size in mesh_size_range:\n", " cache_file = CACHE_ROOT / f\"mesh_forces__n_{n_particles}__mesh_size_{mesh_size}__mapping_{mapping.__name__}.npy\"\n", " try:\n", " f = np.load(cache_file)\n", " logger.info(f\"Loaded forces from {cache_file}\")\n", " except FileNotFoundError:\n", " f = utils.mesh_forces_v2(particles, G, mesh_size, mapping)\n", " if SAVE_FORCES:\n", " np.save(cache_file, f)\n", " logger.debug(f\"Saved forces to {cache_file}\")\n", " mesh_forces.append(f)\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv8AAAHLCAYAAABf+PcEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAortJREFUeJzs3XlcU2faP/7PSULCIglSwqZE4qituIDiUq0UVBQZHx2VdqqPWtTW1hadb6XYX7VVp7Yj2ulYHy2jXVRqa6t1qZ2po61SlxG1C0jHirVSNpVVgQQISUhyfn/QnCEmIEuSA+R6v1689Cyc+z6Acp37XNd9MyzLsiCEEEIIIYT0eAK+O0AIIYQQQghxDgr+CSGEEEIIcREU/BNCCCGEEOIiKPgnhBBCCCHERVDwTwghhBBCiIug4J8QQgghhBAXQcE/IYQQQgghLoKCf0IIIYQQQlwEBf+EEEIIIYS4CAr+CSHdUmFhIRiGQXp6Orfvz3/+MxiG6dD1YmJiEBMTc9/zDAYDXnrpJYSEhEAgEGDWrFkdao8QQgjhAwX/hBC7SU9PB8Mw3IdIJEKfPn2waNEi3L59m+/u2cXu3bvx17/+FY899hg+/PBDrFy5ku8uEUIIIW0m4rsDhJCeZ8OGDVAqldBqtbh06RLS09Nx/vx5/PTTT3B3d3dYu6+++ipefvllh10fAL755hv06dMHb7/9tkPbIYQQQhyBgn9CiN3Fx8dj1KhRAICnn34afn5+2Lx5M/7xj3/gj3/8o8PaFYlEEIkc+99aRUUFfHx87HY9k8kEvV7v0IciQgghxIzSfgghDhcVFQUA+PXXX7l9er0e69atQ2RkJGQyGby8vBAVFYXTp09bfX5NTQ0WLVoEmUwGHx8fJCYmoqamxuo8Wzn/e/bswaRJk+Dv7w+JRIKwsDDs2LGj3fdgrjE4ffo0rl69yqU2nTlzBgBQX1+PF198ESEhIZBIJHjwwQfx1ltvgWVZi+swDIPly5dj3759GDJkCCQSCU6cOAEAuH37Np566ikEBwdDIpFAqVTiueeeg16vt/havPDCC1w7AwYMwObNm2Eymdp9T4QQQlwPjfwTQhyusLAQANC7d29un1qtxgcffIB58+Zh6dKlqK2txa5duxAXF4fvvvsOERERAACWZfGHP/wB58+fx7JlyzB48GB8/vnnSExMbFPbO3bswJAhQzBz5kyIRCL885//xPPPPw+TyYSkpKQ234NcLsdHH32Ev/zlL6irq0NqaioAYPDgwWBZFjNnzsTp06fx1FNPISIiAl999RVWrVqF27dvW6UIffPNN/jss8+wfPly+Pn5ITQ0FCUlJRgzZgxqamrwzDPP4KGHHsLt27dx6NAhaDQaiMViaDQaREdH4/bt23j22WehUChw4cIFrF69GqWlpdi6dWub74cQQoiLYgkhxE727NnDAmBPnTrFVlZWsjdv3mQPHTrEyuVyViKRsDdv3uTONRgMrE6ns/j86upqNiAggF2yZAm37+jRoywA9s0337T43KioKBYAu2fPHm7/+vXr2Xv/W9NoNFb9jIuLY/v372+xLzo6mo2Ojr7vPUZHR7NDhgyx2Gfu4xtvvGGx/7HHHmMZhmHz8vK4fQBYgUDAXr161eLcJ598khUIBOz3339v1abJZGJZlmVff/111svLi/3ll18sjr/88susUChki4uL79t/Qgghro3SfgghdhcbGwu5XI6QkBA89thj8PLywj/+8Q/07duXO0coFEIsFgNoynuvqqqCwWDAqFGjkJ2dzZ33r3/9CyKRCM8995zF565YsaJNffHw8OD+rlKpcOfOHURHRyM/Px8qlaqzt8r1USgU4k9/+pPF/hdffBEsy+L48eMW+6OjoxEWFsZtm0wmHD16FDNmzOBqJZozpzIdPHgQUVFR6N27N+7cucN9xMbGwmg04ty5c3a5H0IIIT0Xpf0QQuwuLS0NgwYNgkqlwu7du3Hu3DlIJBKr8z788EP87W9/w88//4zGxkZuv1Kp5P5eVFSEoKAg9OrVy+JzH3zwwTb1JTMzE+vXr8fFixeh0WgsjqlUKshksvbcmk1FRUUIDg6Gt7e3xf7Bgwdzx5trfn8AUFlZCbVajaFDh7bazo0bN/Cf//wHcrnc5vGKior2dp0QQoiLoeCfEGJ3Y8aM4UawZ82ahQkTJuB///d/cf36dS6I//jjj7Fo0SLMmjULq1atgr+/P4RCIVJTUy0Kgzvj119/xeTJk/HQQw9hy5YtCAkJgVgsxr/+9S+8/fbbvBXJNn8b0R4mkwlTpkzBSy+9ZPP4oEGDOtMtQgghLoCCf0KIQ5kD+okTJ+Kdd97h5uE/dOgQ+vfvjyNHjljM0LN+/XqLz+/Xrx8yMjJQV1dnMfp//fr1+7b9z3/+EzqdDv/4xz+gUCi4/bZmFOqMfv364dSpU6itrbUY/f/555+5462Ry+WQSqX46aefWj3vd7/7Herq6hAbG9v5ThNCCHFJlPNPCHG4mJgYjBkzBlu3boVWqwXQ9FAAwGIqzG+//RYXL160+Nzf//73MBgMFtNzGo1GbN++/b7t2mpDpVJhz549Hb8ZG37/+9/DaDTinXfesdj/9ttvg2EYxMfHt/r5AoEAs2bNwj//+U/88MMPVsfN/f/jH/+Iixcv4quvvrI6p6amBgaDoRN3QQghxBXQyD8hxClWrVqFxx9/HOnp6Vi2bBn+53/+B0eOHMHs2bMxffp0FBQUYOfOnQgLC0NdXR33eTNmzMAjjzyCl19+GYWFhQgLC8ORI0faVKw7depUiMVizJgxA88++yzq6urw/vvvw9/fH6WlpXa7txkzZmDixIl45ZVXUFhYiPDwcHz99df44osv8MILL+B3v/vdfa+xceNGfP3114iOjsYzzzyDwYMHo7S0FAcPHsT58+fh4+ODVatW4R//+Af+53/+B4sWLUJkZCTq6+tx5coVHDp0CIWFhfDz87PbfRFCCOl5KPgnhDjFnDlz8Lvf/Q5vvfUWli5dikWLFqGsrAzvvvsuvvrqK4SFheHjjz/GwYMHuYWzgKZR8X/84x944YUX8PHHH4NhGMycORN/+9vfMGLEiFbbfPDBB3Ho0CG8+uqrSElJQWBgIJ577jnI5XIsWbLEbvdm7uO6detw4MAB7NmzB6GhofjrX/+KF198sU3X6NOnD7799lusXbsW+/btg1qtRp8+fRAfHw9PT08AgKenJ86ePYuNGzfi4MGD2Lt3L6RSKQYNGoTXXnvNLsXLhBBCejaGZe9ZfpIQQgghhBDSI1HOPyGEEEIIIS6Cgn9CCCGEEEJcBAX/hBBCCCGEuAgK/gkhhBBCCHERFPwTQgghhBDiIij4J4QQQgghxEXQPP/tYDKZUFJSAm9vbzAMw3d3CCGEENIGLMuitrYWwcHBEAho3JO4Ngr+26GkpAQhISF8d4MQQgghHXDz5k307duX724QwisK/tvB29sbQNN/HlKplOfeEEIIIaQt1Go1QkJCuN/jhLgyCv7bwZzqI5VKKfgnhBBCuhlK2SWECn4JIYQQQghxGRT8E0IIIYQQ4iIo7YcQQgghxEmMRiMaGxv57gbpQdzc3CAUCtt8PgX/hBBCCCEOxrIsysrKUFNTw3dXSA/k4+ODwMDANtW1uFzw/+WXX+LFF1+EyWTC//f//X94+umn+e4SIYQQQno4c+Dv7+8PT09PKj4mdsGyLDQaDSoqKgAAQUFB9/0clwr+DQYDkpOTcfr0achkMkRGRmL27Nl44IEH+O4aIYQQQnooo9HIBf4UcxB78/DwAABUVFTA39//vilALlXw+91332HIkCHo06cPevXqhfj4eHz99dd8d4sQQgghPZg5x9/T05PnnpCeyvyz1ZZ6km4V/J87dw4zZsxAcHAwGIbB0aNHrc5JS0tDaGgo3N3dMXbsWHz33XfcsZKSEvTp04fb7tOnD27fvu2MrhNCCCHExVGqD3GU9vxsdavgv76+HuHh4UhLS7N5/MCBA0hOTsb69euRnZ2N8PBwxMXFcXlQ7aXT6aBWqy0+ehKWZVFdr0eZSovqej1YluW7S4QQQgghxIG6Vc5/fHw84uPjWzy+ZcsWLF26FIsXLwYA7Ny5E8eOHcPu3bvx8ssvIzg42GKk//bt2xgzZkyL10tNTcVrr71mvxvoQirUWvx0S4XKylKYGrUQuLlDLg/C0L4y+Evd+e4eIYQQQghxgG418t8avV6PrKwsxMbGcvsEAgFiY2Nx8eJFAMCYMWPw008/4fbt26irq8Px48cRFxfX4jVXr14NlUrFfdy8edMxnWdZQFMFqEua/nTwCHyFWotLP+ZC9/NxPHT3FCLUZ/DQ3VPQ/Xwcl37MRYVa69D2CSGEEEIIP7rVyH9r7ty5A6PRiICAAIv9AQEB+PnnnwEAIpEIf/vb3zBx4kSYTCa89NJLrVbdSyQSSCQSh/YbtWVgS3KgqSyCUa+FUOwOT3k/MMERgHeg3ZtjWRa/5OVBdvsMAsVa6D39oRO6Q2jUor+mBGW3q/CLlxjyEUMoN5EQQgghbXLz5k0sXLgQFRUVEIlEWLt2LR5//HG+u0Vs6DHBf1vNnDkTM2fObNfnpKWlIS0tDUaj0b6dqS2D+sq/UFZRjnKjDFrGC+6sHgF3LiPwbgmkw35v9weAmno9dLey4S9sQIO3EvgtwDeKvNDgHQrfmgJU3MpGzaCB6N3LwQ8+hBBCCOkRRCIRtm7dioiICJSVlSEyMhK///3v4eXlxXfXyD16TNqPn58fhEIhysvLLfaXl5cjMLBzAXRSUhJyc3Px/fffd+o6FlgW1b9+j1+Lb6PA6A83Tyke6OUJN08pCoz++LX4Nqp//d7uKUD6urtwry+BycufC/w5DAOTlz/c60ugr7tr13YJIYQQ0nMFBQUhIiICABAYGAg/Pz9UVVXx2yliU48J/sViMSIjI5GRkcHtM5lMyMjIwLhx43jsmW2spgrlxXmoEvSGv9QD7m5CCAQM3N2E8Jd6oErQG+XFeWA19v2HI0EjxDCgAWKbxxsghhgGSHD/eWIJIYQQ0vNFR0eDYRh8+umnFvu3b9+O4OBgq/OzsrJgNBoREhLS6bZbm8K9o5/TlqnjWxMTE9Ou87uabhX819XVIScnBzk5OQCAgoIC5OTkoLi4GACQnJyM999/Hx9++CGuXbuG5557DvX19dzsPx2VlpaGsLAwjB49urO3wFHV1qG2vh5evbytcusZhoFXL2/U1tdDVVtntzYBQObdC95eXqivq7Wa2pNlWdTX1cLbywsy7152bZcQQgghncPHFN0sy+Ly5csICgrC4cOHLY5lZWVh5MiRFvuqqqrw5JNP4r333ut02x2Zwr0tn3O/qeNtyczMxKlTpyz2nTp1ChcuXGj/jfGsWwX/P/zwA0aMGIERI0YAaAr2R4wYgXXr1gEAnnjiCbz11ltYt24dIiIikJOTgxMnTlgVAbeXI9J+dHCDHiJ4QG/zuAf00EMEHdzs1iYAMJ6+CFAMgK+pGhXqBmgbjTCZWGgbjahQN8CXrUaAYgAYT1+7tksIIYSQjqtQa3H650p8+Z8SHLtSgi//U4LTP1c6fIa+GzduoLa2Fq+++iqOHz8OjUbDHcvOzkZkZCS3rdPpMGvWLLz88ssYP358p9tuPoV7WFgYdu7cCU9PT+zevbtTnxMfH4833ngDs2fPbnNfFAoF3n33XTz//POora3F888/j/fee6/VtxsffPABhg8fDg8PD8hkMkyaNKnN7TlStwr+Y2JiwLKs1Ud6ejp3zvLly1FUVASdTodvv/0WY8eO5a/DrRD3egBar2AI6ius8/pZFoL6Cmi9giHu1fJsRB3CMOj9u9H4naIPlMIKNGrUuFunQaNGDaWwAr8L6YvevxttXQ9AOowWUyOEENIZFWotzlyvxK+VtZC6u6Gvjyek7m74tbIWZ6479gEgKysL7u7uePrppyGVSnH8+HEAgFarxbVr17iRf5ZlsWjRIkyaNAkLFy7sdLttmcLdHp/TViEhITh48CBkMhmys7Ph4+ODzz77rMXg/8iRI3jppZewdu1aXL9+HRcuXMCLL77YqT7YS7cK/vniiLQfHy8xJH1HosroAY/aQggN9QBrhNBQD4/aQlQZPSDpOxI+XrZz8zvFOxDSYb/HwMEjMDJAiLE+9RgZIMTAwSMgHRbvkClGXVWFWovT1yrw9Q+5OP19TtOf1ypoLQVCCCFtwrIsfrqthqpBj9AHvOAlEUEoYOAlESH0AS+oGvT46bbaYQNL2dnZGD58OMRiMWbPno1Dhw4BAH788UcYDAYu+M/MzMSBAwdw9OhRREREICIiAleuXOlwu61N4V5WVma3z2mr27dvY+7cuaipqcHIkSNRXV2NuXPnWiwe29z169fRr18/TJkyBQqFAkOGDMH06dM71Qd7cbmpPjsiKSkJSUlJUKvVkMlkdrkmwzAYNGAALtXroan8D4I1dyCBAXqIkI9gNPYdjocHDHDcXPvegWAGxcErpBowaAGRO+DRm0b87ci8mJpb5X/wEO5A/Nv3t+SuHy7dHY6Hw8NoNWVCCCGtqtE04naNBv7e7jZrBP293XG7RoMaTSN6O2DAMDs7mwvw58yZgzlz5kCn0yE7OxtyuZwb+Z4wYQJMJlObrrlv3z48++yz3Pbx48cRFRVl977bU2FhIZ5++mnExsYiJiYGO3bswKlTp1BYWIg+ffpYnb906VIcOHAAvr6+8PT0xJUrV6BUKnnouTUK/nnkL3XHw+FhuHIzGNnlN9DYWAc3t15QBAxEZIiP4wNDhgEot98haDE1Qggh9qAzmKA3muDuJrR53N1NiDv1OugMbQu82ys7Oxvz5s0D0JR+7ebmhq+++spmsW9bzZw50yIt21bw3JEp3B057fsjjzxita95elFzjY2NmDt3LsaPH49du3ZBJpMhNDS0U+3bE6X98IwR1UIkvQ72gWI0+pWCfaAYIul1MKJavrtGOsG8mJqvsAEN3qEwirwARvjfxdSEDdDdykZNve2Cb3ugWgNCCOn+JCIBxEIBtI22FxrVNhohFgogEdk/pMvPz+fSXICmhbxmzpyJw4cPWxX7toe3tzcGDBjAfXh4eFid05Ep3J017fuZM2daPf75558jLy8Pf//73xEZGYkBjszk6AAa+W8DR63wW6mpxPnb56HWqxHoLYdEKIHOqEOhuhBV2ipM6DMBck+5XdtsjmVZqHQq6Iw6SIQSyCSyLvXD2Z1xi6nJWllMTfXbYmq9rOdI7qwKtRY/3VKhsrIUpkYtBG7ukMuDMLSvjFKNCCGkG/HxdEMfH0/8WlmLULGXxe9plmVRUavF7+Te8PG07+yAQFOxr1gsxtChQ7l9CQkJWLhwITQaDV555RW7t9lccnIyEhMTMWrUKIwZMwZbt261msL9nXfeweeff84F/G35nLq6OuTl5XHb5qnjfX19oVAoOt1vvV6P0tJSfPTRR4iKikJdXR0yMzPx1FNPQSTiP/TmvwfdgCNy/lmWRW5VLtR6NRTeCu4fs6fAEwqRAsW1xcitysWjHo86JCCv1FQityoXpXWlaDQ1wk3ghqBeQQjzDXPoA4eraL6Ymq1Q25GLqVGtASGE9BwMw2BoHynu1OlQeLce/t7ucHcTNk3RXauFzFOMoX2kDokVsrOzMXToUIjF/60lmDJlCoxGI/R6fYfTftrqiSeeQGVlJdatW4eysjJERERYTeF+584d/Prrr+36nB9++AETJ07ktpOTkwEAiYmJFjNIdtTcuXNx+fJlrFmzBuXl5fD19cXkyZMt6hz4xLCUC9Bm5uBfpVJBKpV26lo12hqcKDwBqVgKTzdPq+OaRg3UejWmhU6Dj7tPp9q6V/M3DnKP/75xqGyohFQsdfgbB1fA1t/F9Yy9uK11g29vX6uRmqrqKvRxb8SDk58E42W/6VxZlkXm5asw/vI1V2tg/K3WQKypQJneHcJBU/EI1RoQQlyIPX9/d4RWq0VBQQGUSiXc3Ts2+FKh1uKn22rcrtFAbzRBLBSgj48nhvaR0oAOadfPGI3880Rn1KHR1AiJUGLzuEQoQaOpETqjzq7t8v3GwVWYF1Nr+DkHFWoPyDwlEAsF0BtNUGl08GerEaCIsPtiauZaA39hAxq8lVzKEVdrUFOAilvZqBk0EL172f7ZI4QQ0vX4S90x0VuCGk0jdAYTJCIBfDzd6Hc1aTcK/nkiEUrgJnCDzqiDp8B65F9n1MFN4Nbiw0FHqXQqlNaVQu4htzllmNxDjtK6Uqh0Kru/cXApvy2mJtRUwquiHOUaGWoZMdxZPZRCFQKD+kLqgMXU+K41AADWZIKqqgJ6XQPEEg/IfP3BCGhuAUII6SyGYRwynSdxLRT8t4EjCn5lEhmCegWhUFUIhUhhlRZS2VCJUFkoZBL71BiY8fXGwSX9tpiad0kO+lQWwaivh1DsDk/5CDDBEQ5ZTI3PWgMAuFNShFvXLkF7pxAw6ACRBO5+oeg7+GH4BfdzSJuEEEIIaTsK/tvAUYt8hfmGoaqhCsW1xTZz78N8w+z+Oo+vNw4uy8mLqcm8e8Hbywu362ohsVFrUF9Xiz5eXpB597J723dKipB/6ShMmmoIZcEQij1g1DdAW3oN+aoy4OFZ9ABACCGE8IzexfNI7inHhD4TECoLhVqvRkl9CdR6NUJloQ4rujW/cahsqLSa9938xiGoV5Dd3zi4MhZAjUCAcqEQNQIBHFlhb6418DVVo0LdAG2jESYT2zQrhLoBvmw1AhQD7F5rwJpMuHXtEkyaakj8B8LNwxsCoQhuHt6Q+A+ESVONW9cugW3j6o+EEEIIcQwa+eeZ3FOORz0eddp8+3y9cXBVTp9SladaA1VVBbR3CiGUBVvl9zMCAYSyYGjvFEJVVQEfP/unOxFCCCGkbSj47wIYhnFqca35jcO9QWmoLJTm+bejlqZULVQVoqrBgYu48VBroNc1AAYdhGLrVRoBNKUAqcuaziOEEEIIbyj4d1HOfuPganifUtU7EBg4FY3+RdDpayERewOyfoCDZt0RSzwAkQRGfQMEHt5Wx436BkAkaTqPEEIIIbyh4L8NHDHbT1fg7DcOroTvKVVtphvVFzvszY7M1x/ufqHQll6DSDLQIvWHNZlgVJXAPWgwZL7+dm+bEEIIIW1HBb9tkJSUhNzcXHz//fd8d4V0E3xOqWpONypUFUIqliLYKxhSsRSFqkKcv30elZpKu7fJCAToO/hhCDx7Q1dxA40NtTAZDWhsqIWu4gYEnr7oO/hhmu+fEEII4Rn9JibEAZpPqWqLo6ZUvTfdyNPNE0KBEJ5unlB4K6DWq5FblWs105M9+AX3Q/+HZ0ES+BBU9WUor8yFqr4MksCH0P/hP9A0n4QQQkgXQGk/hDgAX4u48Z1uxPp4Qj0oEDd91GjQa+Ah9oSbfyBYH+s1JQghhBDifDTyT4gDmKdUlYqlKK4thqZRA6PJCE2jBsW1xQ6bUrVLpBvVFiHAty8e7DMMAb59UVhb5LB0I0IIIV3DzZs3ERMTg7CwMAwfPhwHDx7ku0ukBRT8E+IgfCzi5orpRoQQQvgnEomwdetW5Obm4uuvv8YLL7yA+vp6vrtFbKC0H0IcyNlTqrpquhEhhBB+BQUFISgoCAAQGBgIPz8/VFVVwcvLi+eekXvRyH8bpKWlISwsDKNHj+a7K6QbMk+pGuAVAB93H4eupeCK6UauijWZUHOnDBW3C1BzpwysycR3lwghjsaygKYKUJc0/emkt6nR0dFgGAaffvqpxf7t27cjODjY6vysrCwYjUaEhIR0uu20tDSEhobC3d0dY8eOxXfffdfq+efOncOMGTMQHBwMhmFw9OjRdrUXExPT8c52EzTy3wZJSUlISkqCWq2GTGbfEVNC7I2PFZybpxt5CqyLex2VbuSq7pQU4da1S9DeKQQMOkAkgbtfKPoOfphmVSKkp6otA0p+BFQ3AaMOEEoAWQgQHO6QldvNWJbF5cuXERQUhMOHD2PevHncsaysLIwcOdLi/KqqKjz55JN4//33O932gQMHkJycjJ07d2Ls2LHYunUr4uLicP36dfj72143pr6+HuHh4ViyZAnmzJnTpnYyMzPR0NCA2NhYbt+pU6fg6emJ8ePHd/o+uhoa+SekB5J7yvFon0cxLXQapvabimmh0/Bon0cdEvgD/003qmyotMrrN6cbBfUKsnu6kSu6U1KE/EtHoS29BqFnb4j9lBB69oa29BryLx3FnZIivrtICLG32jLgxkng7g3AQwb49Gv68+6Npv21ZQ5r+saNG6itrcWrr76K48ePQ6PRcMeys7MRGRnJbet0OsyaNQsvv/yyXYLmLVu2YOnSpVi8eDHCwsKwc+dOeHp6Yvfu3S1+Tnx8PN544w3Mnj27ze0oFAq8++67eP7551FbW4vnn38e7733XqtvLj744AMMHz4cHh4ekMlkmDRpUrvujU8U/BPSQ7lCupGrYU0m3Lp2CSZNNST+A+Hm4Q2BUAQ3D29I/AfCpKnGrWuXKAWIkJ6EZZtG/LUqwLc/IO4FCIRNf/r2b9pf8qPDUoCysrLg7u6Op59+GlKpFMePHwcAaLVaXLt2jRv5Z1kWixYtwqRJk7Bw4cJOt6vX65GVlWUxGi8QCBAbG4uLFy92+vrNhYSE4ODBg5DJZMjOzoaPjw8+++yzFoP/I0eO4KWXXsLatWtx/fp1XLhwAS+++KJd++RIFPwTQuyCj9mNXI2qqgLaO4UQyoKtVktmBAIIZcHQ3imEqqqCpx4SQuyuobop1cc7ALh3AIVhmvarbjad5wDZ2dkYPnw4xGIxZs+ejUOHDgEAfvzxRxgMBi74z8zMxIEDB3D06FFEREQgIiICV65c6XC7d+7cgdFoREBAgMX+gIAAlJXZ903H7du3MXfuXNTU1GDkyJGorq7G3Llzcfv2bZvnX79+Hf369cOUKVOgUCgwZMgQTJ8+3a59ciTK+SeE2I2zZzdyNXpdA2DQQSj2AMuyqDM1oBFGuEGIXgIPCMUeMKrLms5zENZkgqqqAnpdA8QSD8h8/a0eRAghdmTQNuX4izxsHxd5AMaKpvMcIDs7mwvw58yZgzlz5kCn0yE7OxtyuZwbHZ8wYQJMbXzruG/fPjz77LPc9vHjxxEVFWX/zrdRYWEhnn76acTGxiImJgY7duzAqVOnUFhYiD59+lidv3TpUhw4cAC+vr7w9PTElStXoFQqeeh5x1DwTwixK3O6EbE/scQDEElwV3sHtwV1uGNUwcAaIWKE8BPK0MfUC94iSdN5DkCFxoTwQOTeVNxraGhK9bmXoaHpuMjdIc1nZ2dzRb4xMTFwc3PDV199ZbPYt61mzpyJsWPHctu2Amw/Pz8IhUKUl5db7C8vL0dgoH0LnB955BGrfc3TjZprbGzE3LlzMX78eOzatQsymQyhoaF27Y+jUfBPCCHdhMzXH9reD+DHsn9D38sHPkJviAUi6FkDShrv4E5dHkYFRkHma3sWjM4wFxqbNNUQyoKb3jLoG5oKjVVlwMOzHPoAQG8ciMvy6N00q8/dG4Cvl2XqD8sCteXAAwObzrOz/Px8LhUGaFrIa+bMmTh8+DCuXLmC+Pj4Dl3X29sb3t7erZ4jFosRGRmJjIwMzJo1CwBgMpmQkZGB5cuXd6jdtjhz5kyrxz///HPk5eXh1KlTDuuDo1HwTwgh3QXDoDZAhoYqN8jrNBB6eYIRCeFmMMK3XoNKsRtqA2TWecGddG+hsTnoFnh4QyQZCF3FDdy6dgkPBIY4JCCnNw7EpTFM03Se9RVAVX5Tjr/Io2nEv7YccPdpOu6A9MqsrCyIxWIMHTqU25eQkICFCxdCo9HglVdesXubzSUnJyMxMRGjRo3CmDFjsHXrVtTX12Px4sXcOe+88w4+//xzZGRkAADq6uqQl5fHHS8oKEBOTg58fX2hUCg63Se9Xo/S0lJ89NFHiIqKQl1dHTIzM/HUU09BJOoeYXX36CUhhBCodCrUS4wYNDAK9aXFaFRXwKRpBIRuEPsqMChIgXqJ0e4rKTcvNAbDoNaosaw1aFZo7ONn39fxfL9xIKRL8A4EBk5pNs9/RVOqzwMDHTrPf3Z2NoYOHQqxWMztmzJlCoxGI/R6fYfTftrqiSeeQGVlJdatW4eysjJERETgxIkTFkXAd+7cwa+//spt//DDD5g4cSK3nZycDABITExEenp6p/s0d+5cXL58GWvWrEF5eTl8fX0xefJkixqGro5h752Um1hJS0tDWloajEYjfvnlF6hUKkilUr67RQhxMeX15fi66GsEewVDAAaaOhUaG/VwcxPDs5cMJrAoqS/B1H5TEeAVcP8LtlHF7QLkn/kImt5yFBvvWNUaKIR+8KyuRP+YhfDvY7+iN9Zkwo+nD0Jbes3ijYP5mK7iBtyDBiN84uOUAkRaZV6kk6/f31qtFgUFBVAqlXB370RuPss2zepj0Dbl+Hv0dsiIP+l+2vMzRiP/bUAr/BJCugKLlZTdPOEltczx1TVqHLKSsljigRqhEbn116EVAT6CXv+tNTDcRZX2LsKEMrsXGrdnalN7v3EgpEtiGMDTl+9ekG6OhkoIIaSb4GslZWlvOcp6uaGuoQIBAhncBWIIGAHcBWIECGSoa6hAWS83SHvbdy2He6c2rTVqUGWsRa1RA5ZlIRR7AAadQ6c2JYSQnoZG/gkhpJswr6Rc1VCF4tpiyD3kkAgl0Bl1qGyodNhKyurGWhjlvvCpfwAGdSkEng9AIBLDZNDDpLkLH4kfjHJfqBtr4SP0sVu7fE9tSgghPREF/4QQ0o2YV1LOrcpFaV0pGk2NcBO4IVQWijDfMIespKwz6iD29obvg4+g+tYNi0Jjt94h8O87EHXiRuiMOru2y+fUpoQQ0lNR8E8IId2Ms1dSNtcaSKRSKIc9YlVo3GDUQqdX273WgK+pTQkhpCej4J8QQrohZ66kbK41KFQVQuGtsCg0NtcahMpC7V5rwNfUpoQQ0pNR8E8IIaRVfNUa6Iw6NJoaEezXF/5+IS1ObWrvdCNCCOnJKPgnhBByX3zUGvA1tSkhhPRkFPwTQghpE2fXGlikG4kUFu04Mt2IEEJ6Mgr+CSGEtJkzaw34SjcihJCejIJ/QgghXRYf6UaEENKTUfBPCCGkS3N2uhEhhPRkAr474GyzZ89G79698dhjj/HdFUIIIW1kTjcK8AqAj7sPBf6EdDE3b95ETEwMwsLCMHz4cBw8eJDvLpEWuFzw///+3//D3r17+e4GIQ5z4eA+XDz8qc1jFw9/igsH9zm5R4QQQno6kUiErVu3Ijc3F19//TVeeOEF1NfX890tYoPLBf8xMTHw9vbmuxu8ouDQOfj6OjMCAS58Zt32xcOf4sJn+8AIXO6fPSGkHViTCTV3ylBxuwA1d8rAmkx8d4l0A0FBQYiIiAAABAYGws/PD1VVVfx2itjUpaKAc+fOYcaMGQgODgbDMDh69KjVOWlpaQgNDYW7uzvGjh2L7777zvkd7eYoOHQOvr7O4xLmYfwf51u0bW5z/B/nY1zCPIe0Swjp/u6UFOHH0wfxc8aHyD/zEX7O+BA/nj6IOyVFfHeNoGmK2xptDcrry1GjrQHLsk5pNzo6GgzD4NNPLX+fbd++HcHBwVbnZ2VlwWg0IiQkpFPttiUubElMTEyn2u7JulTBb319PcLDw7FkyRLMmTPH6viBAweQnJyMnTt3YuzYsdi6dSvi4uJw/fp1+Pv7AwAiIiJgMBisPvfrr7+2+QPaGp1OB53uvytHqtXqdt5R12QO/i58to/bpuDQ/vj8Ojdv+9sjB2A0GOh7Swhp1Z2SIuRfOgpjfRW0Ul8Y3bwhbGwEW5KLfFUZ8PAs+AX347ubLqtSU2k161VQryCHz3rFsiwuX76MoKAgHD58GPPm/ff3SFZWFkaOHGlxflVVFZ588km8//77nW77fnHhvTIzM9HQ0IDY2Fhu36lTp+Dp6Ynx48d3uj89RZcK/uPj4xEfH9/i8S1btmDp0qVYvHgxAGDnzp04duwYdu/ejZdffhkAkJOTY7f+pKam4rXXXrPb9boSCg6dg8+v87iEeVybQpGIvreEkBaxJhNuXbuEqvoSlMo8cdd0EwadESJGiAdk3ghSlUB87RIeCAyht8M8qNRU4vzt81Dr1RbrXRSqClHVUIUJfSY47AHgxo0bqK2txaZNm7Bq1SpoNBp4enoCALKzszF79mzuXJ1Oh1mzZuHll1+2S7B9v7jwXgqFAsnJyThy5Ahqa2vx/PPP486dO/jb3/7W6ud98MEH2LZtG27cuAGxWIzIyEh88803ne1+l9Vt/gXr9XpkZWVZPM0JBALExsbi4sWLDmlz9erVUKlU3MfNmzcd0g5fxiXMg1AkouDQwfj6Ol88/CnXptFgaLH+gBBCVFUVKKvMRa67DqXGangy7vATyuDJuKPUWI1cdx3KKnOhqqrgu6suh2VZ5FblQq1XQ+GtgKebJ4QCITzdPKHwVkCtVyO3KtdhKUBZWVlwd3fH008/DalUiuPHjwMAtFotrl27xo38syyLRYsWYdKkSVi4cKFD+nI/ISEhOHjwIGQyGbKzs+Hj44PPPvus1fSjI0eO4KWXXsLatWtx/fp1XLhwAS+++KITe+183Sb4v3PnDoxGIwICAiz2BwQEoKysrM3XiY2NxeOPP45//etf6Nu3b6sPDhKJBFKp1OKjJ6Hg0Dn4+Do3Ty96Yd9RqxoAQghpTqfVoLixHFqBEQHC3nAXiCFgBHAXiBEg7A2twIjixnLotBqH9YEKjW1T6VQorSuF3ENuNcUtwzCQe8hRWlcKlU7lkPazs7MxfPhwiMVizJ49G4cOHQIA/PjjjzAYDFzwn5mZiQMHDuDo0aOIiIhAREQErly54pA+teT27duYO3cuampqMHLkSFRXV2Pu3Lm4fft2i59z/fp19OvXD1OmTIFCocCQIUMwffp0J/ba+bpU2o8znDp1qt2fk5aWhrS0NBiNRgf0iB/35p6btwHQGwA74uPrbKuuwFb9ASGEmGkFBtwV6OHNetkMML1ZMe4K6qEVWNfU2cOdkiLcunYJ2juFgEEHiCRw9wtF38EPu3ydgc6oQ6OpERKhxOZxiVCCRlMjdEadzeOdlZ2dzQX4c+bMwZw5c6DT6ZCdnQ25XM6Nqk+YMAGmNj6w7du3D88++yy3ffz4cURFRXW6r4WFhXj66acRGxuLmJgY7NixA6dOnUJhYSH69Olj83OWLl2KAwcOwNfXF56enrhy5QqUSmWn+9KVdZvg38/PD0KhEOXl5Rb7y8vLERgY6NC2k5KSkJSUBLVaDZlM5tC2nIGCQ+fg6+vMmkw26wrM2zSaRgi5l0TqDcbLByK1GhB7A0yzxADWBJFGDUbqA4nU/lNlU6Fx6yRCCdwEbtAZdfAUeFod1xl1cBO4tfhw0FnZ2dlckW9MTAzc3Nzw1Vdf2Sz2bauZM2di7Nix3HZLgXl7PfLII1b7mqeL36uxsRFz587F+PHjsWvXLshkMoSGhtqlL11Ztwn+zQUYGRkZmDVrFgDAZDIhIyMDy5cv57dz3QwFh87B19d5/OPzWzxGD3WEEFvcRR6QBw1Ave4aBKoSCDwfgEAkhsmgh0lzF42SpuPuIg+7tkuFxvcnk8gQ1CsIhapCKEQKizczLMuisqESobJQyCT2H5zMz8/nUmiApoW8Zs6cicOHD+PKlSvtKsZtztvb2+FrLp05c+a+53z++efIy8vrUFZId9algv+6ujrk5eVx2wUFBcjJyYGvry9XwZ2YmIhRo0ZhzJgx2Lp1K+rr67nZfxylp6X9UHDoHPR1JoR0FzKJDAP6DMFVox6iu2oYaith0jQCQjeIfPrC+IAUA/oMsXuA2bzQWGvUwUfQC2KBCHrWgFJjNardAVTmIrSqAj5+jn3L31UxDIMw3zBUNVShuLbYYrafyoZKSMVShPmGWaVr2UNWVhbEYjGGDh3K7UtISMDChQuh0Wjwyiuv2L3N5u4XF3aWXq9HaWkpPvroI0RFRaGurg6ZmZl46qmnIBJ1qRDZrrrUnf3www+YOHEit52cnAwASExMRHp6Op544glUVlZi3bp1KCsrQ0REBE6cOGFVBGxvPS3thxBCCGmueYCpkqogNQ6AwMTAJGBRL9QjSCJzSIDJFRq7uSFA6Mdd350RI4DpjXLTHRRryzHCgYXG3YHcU44JfSZYzfMfKgt16Dz/2dnZGDp0KMRiMbdvypQpMBqN0Ov1HU77aav7xYWdNXfuXFy+fBlr1qxBeXk5fH19MXnyZIt6hJ6IYZ21PFwPYA7+VSpVj5v5hxBCWnPhYNOq1LbeWl08/GlTmlsrb7tI9+DshaSKSn7BJ6c3oZekN7xsvFWo16lQp6vG/058Gf2CB3W4Hb5/f2u1WhQUFECpVMLd3b3D12FZFiqdCjqjDhKhBDKJzCEj/qT7ac/PWJca+e+qelraDyGOQMGhc/D1dWYEApuF6s0L20n3J/eU41GPR50WYPJZaNwdMQwDH3cfvrtBujnXrJ5pp6SkJOTm5uL777/nuyuEdFnm4PDetQTMwaGrFuvZG19f53EJ86zWi7A1oxXp/swBZoBXAHzcfRw6smwuNG6UuKNRVQKjvgGsyQijvgGNqhKHFRoT4spo5J8QYhe2pjGl4ND++Pw6N2/72yMHYDQY6HtLOoWvQmNCXBkF/4QQu6Hg0Dn4/DqPS5jHtSkUieh7SzqFr0JjQlwZvYdvg7S0NISFhWH06NF8d4WQLm9cwjwIRSIKDh2Mr6/zxcOfcm0aDQar9CN7u3DQOsWpeV8uHNzn0PaJ45lnslH6KGGUCKCRGGCUCKD0UWJCnwkOm8mGEFdFwX8bUM4/IW3n7ODQVfHxdW6eXvTCvqNWNQCOQLUkrkHuKcejfR7FtNBpmNpvKqaFTsOjfR6lwJ8QB6C0H0KI3dybe27eBmhhM3vi4+tsq67AVv2BvVEtieugmWwIcQ4K/gkhdsFXcOhq+Po6syaTzWDbvM2aTHZv8942qJaEEEI6j4J/Qohd8BkcuhK+vs6trR1AhcaEENJ9UPDfBrTIFyH3x3dw6Cpc9etsq8ahJ98vIYQ4ClVKtQEV/BJCCH/4KDQmhJCeioJ/QgghXVZLNQ70AEBI13Lz5k3ExMQgLCwMw4cPx8GDB/nuEmkBpf24INXJIjACBtLJCqtj6oxisCYWsin9eOgZIYRYoloSQroHkUiErVu3IiIiAmVlZYiMjMTvf/97eHl58d01cg8K/l0QI2CgPlkEABYPAOqMYqhPFkFKgT8hpItw1RoHQrqboKAgBAUFAQACAwPh5+eHqqoqCv67IEr7aYOetsKvdLIC0in9oD5ZBHVGMQDLwN/WGwFCCCGE8ItlWRiqq9FYXg5DdTVYlnVKu9HR0WAYBp9+aplmt337dgQHB1udn5WVBaPRiJCQkE61e+7cOcyYMQPBwcFgGAZHjx7t1PXaKi0tDaGhoXB3d8fYsWPx3Xff2a1fMTEx9u1sB1Dw3wY9seC3+QPArVfOU+BPCCGEdGGNFRWoO3sW6hMnoD5+AuoTJ1B39iwaKyoc2i7Lsrh8+TKCgoJw+PBhi2NZWVkYOXKkxb6qqio8+eSTeO+99zrddn19PcLDw5GWltbpazUXExOD9PR0m8cOHDiA5ORkrF+/HtnZ2QgPD0dcXBwqmn2d29uvzMxMnDp1ymLfqVOncOHChQ7fQ2dQ8O/CpJMVgJABjCwgtF0DQAghhBB+NVZUoP7f/4a+oABCbync+vSB0FsKfUEB6v/9b4c+ANy4cQO1tbV49dVXcfz4cWg0Gu5YdnY2IiMjuW2dTodZs2bh5Zdfxvjx4zvddnx8PN544w3Mnj27xXNMJhNSU1OhVCrh4eGB8PBwHDp0qMNtbtmyBUuXLsXixYsRFhaGnTt3wtPTE7t3725Xv5pTKBR499138fzzz6O2thbPP/883nvvvfu+Gfnggw8wfPhweHh4QCaTYdKkSR2+r+Yo+Hdh6oxiLvCHkeVSgAghhBDSNbAsC21uLoxqNdwU/SDw9AQjFELg6Qk3RT8Y1Wpoc3MdlgKUlZUFd3d3PP3005BKpTh+/DgAQKvV4tq1a9zIP8uyWLRoESZNmoSFCxc6pC+2pKamYu/evdi5cyeuXr2KlStXYsGCBTh79my7r6XX65GVlYXY2Fhun0AgQGxsLC5evNjhPoaEhODgwYOQyWTIzs6Gj48PPvvss1aD/yNHjuCll17C2rVrcf36dVy4cAEvvvhih/vQHAX/Lqp5jn/fv0ywqgEghBBCCP+MNTVoLC2FSO4PhmEsjjEMA5HcH42lpTDW1Dik/ezsbAwfPhxisRizZ8/mRtV//PFHGAwGLvjPzMzEgQMHcPToUURERCAiIgJXrlxxSJ/MdDodNm7ciN27dyMuLg79+/fHokWLsGDBArz77rvtvt6dO3dgNBoREBBgsT8gIABlZWUd7uft27cxd+5c1NTUYOTIkaiursbcuXNx+/btFj/n+vXr6NevH6ZMmQKFQoEhQ4Zg+vTpHe5DcxT8uyBbxb22ioAJIYQQwi9Wrwer04ORSGweZyQSsDo9WL3eIe1nZ2dzAf6cOXNw7Ngx6HQ6ZGdnQy6Xc6PXEyZMgMlkQk5ODvcxbNgwm9fct28fevXqxX38+9//7lDf8vLyoNFoMGXKFIvr7d27F7/++it33saNG63aW7ZsmcW+4mLHxT6FhYV4+umnsWPHDnh7e2PHjh14+umnUVhY2OLnLF26FCzLwtfXF7169UJBQYHd+kNTfbog1sTaLO41b7Mm58weQAghhJDWMWIxGIkYrE4HxtPT6jir04GRiMGIxQ5pPzs7G/PmNU2rGxMTAzc3N3z11Vc2i33baubMmRg7diy33adPnw5dp66uDgBw7Ngxq2tImj0sLVu2DH/84x+57fnz5yMhIQFz5szh9gUHB8NkMkEoFKK8vNziWuXl5QgMDOxQHwHgkUcesdrXPLXoXo2NjZg7dy7Gjx+PXbt2QSaTITQ0tMPt34uCfxfU2gJeVPRLCCGEdB1CHx+4BQVBX1AAN0U/i9QflmVhqKyAWKmE0MfH7m3n5+dzqSpA00JeM2fOxOHDh3HlyhXEx8d36Lre3t7w9vbudP/CwsIgkUhQXFyM6OjoFs/z9fWFr68vt+3h4QF/f38MGDDA6tzIyEhkZGRg1qxZAJoKijMyMrB8+fJO9xcAzpw5c99zPv/8c+Tl5VnNEGQvFPy3QVpaGtLS0mA0GvnuCiGEEEJcCMMwcA8Lg/HuXTQWFzXl/kskYHU6GCorIJTJ4B4WZlUPYA9ZWVkQi8UYOnQoty8hIQELFy6ERqPBK6+8Yvc2m6urq0NeXh63XVBQgJycHPj6+kKhUMDb2xspKSlYuXIlTCYTJkyYAJVKhczMTEilUiQmJra7zeTkZCQmJmLUqFEYM2YMtm7divr6eixevLjN/eosvV6P0tJSfPTRR4iKikJdXR0yMzPx1FNPQSTqfOhOwX8bJCUlISkpCWq1GjKZjO/uEEIIIcSFuPn7wysqCtrcXDSWloK9owcjEUOsVMI9LAxu/v4OaTc7OxtDhw6FuFlK0ZQpU2A0GqHX6zuc9tNWP/zwAyZOnMhtJycnAwASExO5efpff/11yOVypKamIj8/Hz4+Phg5ciTWrFnToTafeOIJVFZWYt26dSgrK0NERAROnDhhUQTcln51xty5c3H58mWsWbMG5eXl8PX1xeTJk/Hss892+toAwLDOWh6uBzAH/yqVClKplO/uEEIIIaQN+P79rdVqUVBQAKVSCXd39w5fh2VZGGtqwOr1YMRiCH18HDLiT7qf9vyM0cg/IYQQQkg3wDAMRL17890N0s3RVJ+EEEIIIYS4CAr+CSGEEEIIcREU/BNCCCEEFw7uw8XDn9o8dvHwp7hwcF+PapcQV0XBP49Uraymq84ohupkkZN7ROyJvr+EkO6EEQhw4TPrQPzi4U9x4bN9YASOCRn4apcQV0UFvzxiBAzUvwWAzRfXUmcUQ32yCNJWFuMiXR99fwkh3cm4hKZVXC98to/bNgfg4/84nzveU9olxFVR8M8jc0DYPEBsHhjSarvdG1/fX9XJIjACxub11RnFYE1sq6s8E0JcV/NA/NsjB2A0GJwSgPPVLiGuiIL/NnDkCr/NA0T1N8WAkaXAvwfh4/tLbxwIIZ3x8Jy5XAAuFInw8Jy5PbpdQlwNJdK1QVJSEnJzc/H999875PrSyQpAyABGFhDaHrEl3Zezv7/SyQpIp/RreuD4reaA3igRQtqisaIC5/62CUaDAQJGAKPBgHN/24TGiooe2S4hrohG/rsAdUYxFxjCyEKdUUwBWg/Cx/eX3igRQtqrsaIC53duR/bVy4gMH42Rox9B9veZ+OH7TJg0GkxYtgJu/v49pl1CXBWN/POs+Yhs379MsBqxJd0bn99feqNEehKWZWGorkZjeTkM1dVgWZbvLvUoLMviwt5dTQH4qPGIfPhRMEIhIh9+FJGjxiP76mVc2LvL7l93vtolxJXRyD+PbKVi2CoSJd0T399feqNEeorGigpoc3PRWFoKVqcHIxHDLSgI7mFhNCJsJ8aaGhjUakSGj0Zk5DiLY5GR44DGRhjUahhraiDq3bvbt0uIK6Pgn0esyXYqhnmbNdFIR3fG5/f33gcP83bz9gnpCJZlYaypAavXgxGLIfTxAcMwDmuvsaIC9f/+N4xqNURyfzB+ErA6HfQFBTDevQuvqCh6ALADVq9HRP+H4Nanj83jI0c/gsbbt8Hq9T2iXWJ/N2/exMKFC1FRUQGRSIS1a9fi8ccf57tbxAYK/nnU2nSLFKB1f3x9f/l+40B6LmePwLMsC21uLoxqNdwU/biHDMbTE26KfmgsLoI2NxciudyhDyCugBGLwUjEYHU6MJ6eVsdZnQ6MRAxGLO4R7RL7E4lE2Lp1KyIiIlBWVobIyEj8/ve/h5eXF99dI/egnH9CepjW3jhIp/Rz2BsHWtHYuZydA28egdcXFEDoLYVbnz4QekuhLyhA/b//7ZBZWYw1NWgsLW0a8b8nuGcYBiK5PxpLS2GsqbF7265G6OMDt6AgGCorrH6WWJaFobICbkFBEPr49Ih2if0FBQUhIiICABAYGAg/Pz9UVVXx2yliEwX/hPQwslZm9ZFOVjhsgS/z+gL3PgCY30QwAhqZtZfGigrUnT0L9YkTUB8/AfWJE6g7e9Zh0yLeOwIv8PQEIxRC8NsIvFGthjY31/7FoHr9b28YJDaPMxIJWJ2eUkLsgGEYuIeFQSiVorG4CCaNBqzRCJNGg8biIghlMriHhdn9DQtf7XZXLMtCW9eIumodtHWNTiuEjo6OBsMw+PTTTy32b9++HcHBwVbnZ2VlwWg0IiQkpFPtnjt3DjNmzEBwcDAYhsHRo0c7db22SktLQ2hoKNzd3TF27Fh89913FsdTU1MxevRoeHt7w9/fH7NmzcL169fbdO2YmBgH9Lh9KPgnhNgFrS/gHK40At88JcQWSgmxLzd/f3hFRUGsVMJYq0bj7dsw1qohVirhNWGCw2or+Gq3u6lX6VD0013cyCrHr9kVuJFVjqKf7qJeZfvfh72wLIvLly8jKCgIhw8ftjiWlZWFkSNHWuyrqqrCk08+iffee6/TbdfX1yM8PBxpaWmdvlZzMTExSE9Pt3nswIEDSE5Oxvr165GdnY3w8HDExcWhotn/rWfPnkVSUhIuXbqEkydPorGxEVOnTkV9fb3Na2ZmZuLUqVMW+06dOoULFy7Y7Z7ag3L+CSF2Q+sLOBZfOfDcCLxfKyPwd+w/Am9OCdEXFFjcL/DflBCxUkkpIXbk5u8PkVzu1KJuPtvtLsyBv15jgKdMDKFYCKPeiJoyDTRqPfoNfQBeMtv/Pjvrxo0bqK2txaZNm7Bq1SpoNBp4/lafkZ2djdmzZ3Pn6nQ6zJo1Cy+//DLGjx/f6bbj4+MRHx/f6jkmkwmbN2/Ge++9h7KyMgwaNAhr167FY4891qE2t2zZgqVLl2Lx4sUAgJ07d+LYsWPYvXs3Xn75ZQDAiRMnLD4nPT0d/v7+yMrKwqOPPmp1TYVCgeTkZBw5cgS1tbV4/vnncefOHfztb39rtS8ffPABtm3bhhs3bkAsFiMyMhLffPNNh+6rORr5J4TYFa0v4DiuNgJPKSH8YBgGot694RYQAFHv3k77+vLVblfHsiwqi2uh1xgg9feAm7sIAgEDN3cRpP4e0GsMqCyudVgKUFZWFtzd3fH0009DKpXi+PHjAACtVotr165xI/8sy2LRokWYNGkSFi5c6JC+2JKamoq9e/di586duHr1KlauXIkFCxbg7Nmz7b6WXq9HVlYWYmNjuX0CgQCxsbG4ePFii5+nUqkAAL6+vjaPh4SE4ODBg5DJZMjOzoaPjw8+++yzVtOijhw5gpdeeglr167F9evXceHCBbz44ovtvidbXCr4v3nzJmJiYhAWFobhw4fj4MGDfHeJkB7H1voCxD74yoHnsyiTUkKIq9PVG1BbpYWnTGzzod9TJkZtlRa6eoND2s/Ozsbw4cMhFosxe/ZsHDp0CADw448/wmAwcMF/ZmYmDhw4gKNHjyIiIgIRERG4cuWKQ/pkptPpsHHjRuzevRtxcXHo378/Fi1ahAULFuDdd99t9/Xu3LkDo9GIgIAAi/0BAQEoKyuz+TkmkwkvvPACHnnkEQwdOtTmObdv38bcuXNRU1ODkSNHorq6GnPnzsXt27db7Mv169fRr18/TJkyBQqFAkOGDMH06dPbfU+2uFTaD01DRYhj0foCjsXbdIy/jcAb795FY3FR05sHSdN8+4bKCoePwFNKCHFlhkYTTAYWQrHQ5nGhWAhTbSMMjSaHtJ+dnc0F+HPmzMGcOXOg0+mQnZ0NuVzOjV5PmDABJlPb+rBv3z48++yz3Pbx48cRFRXV7r7l5eVBo9FgypQpFvv1ej1GjBjBbW/cuBEbN27kthsaGnDp0iUsX76c25ebmwuRqP1hcVJSEn766SecP3++xXMKCwvx9NNPIzY2FjExMdixYwdOnTqFwsJC9GlhjYulS5fiwIED8PX1haenJ65cuQKlUtnu/tniUsF/UFAQgoKCAFhOQ0XBPyGdZw70vWMV8BzpjcbycniO9AbLKugBwE74zIE3j8Bz8/zfaZrnX6xUOmWlXXNKCCGuRuQmgEDEwKg3QuBuHbYZ9UYIRAxEbo5J5sjOzsa8efMANBXKurm54auvvrJZ7NtWM2fOxNixY7ntlgLg+6mrqwMAHDt2zOoakmZvSJctW4Y//vGP3Pb8+fORkJCAOXPmcPuCg4NhMpkgFApRXl5uca3y8nIEBgZatb98+XJ8+eWXOHfuHPr27dtiPx955BGrfc1Ti+7V2NiIuXPnYvz48di1axdkMhlCQ0NbPL+9ulTwf+7cOfz1r39FVlYWSktL8fnnn2PWrFkW56SlpeGvf/0rysrKEB4eju3bt2PMmDHtbste01ARQpqwJhZe4x+AQFQA9QnLRaC8xvvTitV2QCPwhLgeiZcI3r7uqCnTQCoRWj30a1R6+AR6QuJl/5AuPz+fS1UBmjIoZs6cicOHD+PKlSv3LcZtibe3N7y9vTvdv7CwMEgkEhQXFyM6OrrF83x9fS3y8T08PODv748BAwZYnRsZGYmMjAwu/jSZTMjIyLB4S8CyLFasWIHPP/8cZ86cadeI/JkzZ+57zueff468vDyrGYLspUsF/+YpnZYsWWLxNGZmnn5p586dGDt2LLZu3Yq4uDhcv34d/r+NOkVERMBgsM57+/rrr7m5aM3TUL3//vuOvSFCXIhnuAfq//0D9AXqpqDUryko1RcUQCi9C8+H2/9Kl1ijEXhCXAvDMJArvKFR66GuaLCY7Uej0kPiJYJc4e2Qh/CsrCyIxWKLXPaEhAQsXLgQGo0Gr7zyit3bbK6urg55eXncdkFBAXJycuDr6wuFQgFvb2+kpKRg5cqVMJlMmDBhAlQqFTIzMyGVSpGYmNjuNpOTk5GYmIhRo0ZhzJgx2Lp1K+rr67nZf4CmVJ9PPvkEX3zxBby9vbl6AJlMBg8Pj07ft16vR2lpKT766CNERUWhrq4OmZmZeOqppzqUmnSvLhX8329Kp7ZMv5STk9NqG+2Zhkqn00HXbHYLtVrdxjshhH8syzpthJavKShdkeq3BdO8J0VbfX9rv7kJjanIYQu5EUL44SWToN/QB1BZXIvaKi1MtY0QiBj4BHpCrvB22DSf2dnZGDp0KMTN6oimTJkCo9EIvV7f4bSftvrhhx8wceJEbjs5ORkAkJiYyM3T//rrr0MulyM1NRX5+fnw8fHByJEjsWbNmg61+cQTT6CyshLr1q1DWVkZIiIicOLECYsi4B07dgCwXrBrz549WLRoUYfabW7u3Lm4fPky1qxZg/Lycvj6+mLy5MkWdRKdwbDOWh6unRiGsUj70ev18PT0xKFDhyxSgRITE1FTU4MvvvjivtdkWRb/+7//iwcffBB//vOf73v+n//8Z7z22mtW+1UqFaRSaVtvhRCna6yo+O/IcLP0G0eNDBuqq6E+cQJCbykENgpRTRoNjLVqSKdNo1HjTmpp4TRaUI2QlqnVashkMt5+f2u1WhQUFECpVMLd3b3D12FZFrp6AwyNJojcBJB4iWhAhQBo389Yt5nqsyPTL92rvdNQrV69GiqVivu4efNmp+6BuCaWZWGorkZjeTkM1dUOX46djxVg+ZqC0hXRSsqEuC6GYeDeyw29ekvg3suNAn/SIV0q7cfR2jMNFdBUKS6RSJCWloa0tDQYjUYH9o70RM4egecr/YavKShdFa2kTAghpKO6zci/n59fu6ZfsqekpCTk5ubi+++/d2g7pGfhYwSerxVg+VwEylXRSsqEEEI6otsE/2KxmJt+ycw8/dK4ceN47Bkh1u4dgRd4eoIRCiH4bQTeqFZDm5tr9xQgvtJvzFNQCqVSNBYXwaTRgDUaYdJo0Fhc5PApKF0RraRMCCGkI7pU2s/9pnRqy/RLjkBpP6S92jMCb88CWD7Tb/iegtKV0ErKhBBCOqpLBf/3m9KpLdMvOUJSUhKSkpK42QIIuR9uBN6vlRH4O/YfgedzBViAFoFyBlvFvc1rAJpvE0IIIffqUsF/TEzMfdMgli9fbrHKGiFdEV8j8HyvAGvuA03n6TisyXZxr3nbUSspm9cXsPVgoc4oBmtiaX0BQgjpBrpU8E9IT8HnCDyl3/RsrQXYjhzxZwSMzTcLzd9EEEII6foo+G8Dyvkn7cX3CDyl3xB7s5Va5Iz1BeiNAyGE2BcF/23QU3P+WZal4NCB+B6Bp/QbYm98rC9AbxwIIcS+KPh3Uc5efMpV0Qg86WmkkxVc4O+M9QX4euNACHGuwsJCKJVKXL58GREREXx3p0frNvP8E/vhY/EpV2YegXcLCICod28K/Em3xsf6AtLJCkin9IP6ZBFuvXKeAn/ici4c3IeLhz+1eezi4U9x4eA+h7S7aNEiMAyDZcuWWR1LSkoCwzBYtGiRQ9q2J/N9bNq0yWL/0aNHO/U7+dy5c5gxYwaCg4PBMAyOHj1qdQ7Lsli3bh2CgoLg4eGB2NhY3Lhxo8Nt2gMF/22QlpaGsLAwjB492iHXZ1kWhupqNJaXw1BdbfeFn+5ti4/Fpwgh3V/zEfe+f5nABeTOegCgFY2Jq2IEAlz4zPoB4OLhT3Hhs31gBI4L50JCQrB//340NDRw+7RaLT755BMoFN3n36G7uzs2b96M6upqu12zvr4e4eHhSEtLa/GcN998E9u2bcPOnTvx7bffwsvLC3FxcdBqtXbrR3tR8N8GSUlJyM3Nxffff2/3azdWVKDu7FmoT5yA+vgJqE+cQN3Zsw4bfW/P4lOEEGLW0voCznoAoBWNiSsblzAP4/843+IBwBz4j//jfIxLmOewtkeOHImQkBAcOXKE23fkyBEoFAqMGDHC4lyTyYTU1FQolUp4eHggPDwchw4d4o5XV1dj/vz5kMvl8PDwwMCBA7Fnzx6La+Tn52PixInw9PREeHg4Ll68aJf7iI2NRWBgIFJTU+1yPQCIj4/HG2+8gdmzZ9s8zrIstm7dildffRV/+MMfMHz4cOzduxclJSU23xI4CwX/POIj/YZbfErSyuJTOvsvPkUI6d5aW19AOqWfw9YXAPh940BIV9H8AWDr/FlOCfzNlixZYhGk7969G4sXL7Y6LzU1FXv37sXOnTtx9epVrFy5EgsWLMDZs2cBAGvXrkVubi6OHz+Oa9euYceOHfDz87O4xiuvvIKUlBTk5ORg0KBBmDdvHgwGQ6fvQSgUYuPGjdi+fTtu3bpl85zi4mL06tWr1Y+NGze2uc2CggKUlZUhNjaW2yeTyTB27Fi7PdR0BBX88uTe9BvzKDzzW/pNY3ERtLm5EMnlds0R52vxKUJI98bX+gK0ojEh/zUuYR6+PXIARoMBQpHIKYE/ACxYsACrV69GUVHTv7nMzEzs378fZ86c4c7R6XTYuHEjTp06hXHjxgEA+vfvj/Pnz+Pdd99FdHQ0iouLMWLECIwaNQoAEBoaatVWSkoKpk+fDgB47bXXMGTIEOTl5eGhhx7q9H3Mnj0bERERWL9+PXbt2mV1PDg4GDk5Oa1ew9fXt83tlZWVAQACAgIs9gcEBHDH+EDBfxs4Yp7/9qTf2HO6Rj4XnyKEkPbia0VjQrqii4c/5QJ/o8GAi4c/dcoDgFwux/Tp05Geng6WZTF9+nSrEfu8vDxoNBpMmTLFYr9er+fSg5577jkkJCQgOzsbU6dOxaxZszB+/HiL84cPH879PSgoCABQUVFhM/hftmwZPv74Y267rq7uvveyefNmTJo0CSkpKVbHRCIRBgwYcN9rdHcU/LeBI+b559Jv/FpJv7lj//QbvhefIoSQ9uDrjQMhXc29Of7mbQBOS/1Zvnw5ANgscDUH3seOHUOfPn0sjkl+SzWOj49HUVER/vWvf+HkyZOYPHkykpKS8NZbb3Hnurm5cX83xyImk8lmnzZs2GAziG/No48+iri4OKxevdpqpqLi4mKEhYW1+vlr1qzBmjVr2tRWYGAgAKC8vJx7kDFv8zmdKQX/POEz/YbvxacIIYQQ0na2invNfzrrAWDatGnQ6/VgGAZxcXFWx8PCwiCRSFBcXIzo6OgWryOXy5GYmIjExERERUVh1apVFsF/e/j7+8O/AzHLpk2bEBERgQcffNBiv73TfpRKJQIDA5GRkcEF+2q1Gt9++y2ee+659nbbbij45wnf6Te0+BQhhBDSPbAmk83iXvM228LIuD0JhUJcu3aN+/u9vL29kZKSgpUrV8JkMmHChAlQqVTIzMyEVCpFYmIi1q1bh8jISAwZMgQ6nQ5ffvklBg8e7PC+32vYsGGYP38+tm3bZrG/vWk/dXV1yMvL47YLCgqQk5MDX19fKBQKMAyDF154AW+88QYGDhwIpVKJtWvXIjg4GLNmzbLX7bQbBf886QrpN+bFpwghhBDSdY1/fH6Lx5xV9AsAUqm01eOvv/465HI5UlNTkZ+fDx8fH4wcOZJLkxGLxVi9ejUKCwvh4eGBqKgo7N+/3xldt7JhwwYcOHCgU9f44YcfMHHiRG47OTkZAJCYmIj09HQAwEsvvYT6+no888wzqKmpwYQJE3DixAm4u7t3qu3OYFhazanNzDn/KpXqvv8A2qqxouK/6Te6pvQbt6AgSr8hhBBC7MQRv7/bQ6vVoqCgAEqlktegj/Rc7fkZo5H/NnDEbD9mlH5DCCGEEEKchRb5agNHrvAL/Df9xi0gAKLevSnwJ4QQQgghDkHBPyGEEEIIIS6Cgn9CCCGEEEJcBAX/hBBCCCGEuAgK/gkhhBBCCHERFPwTQgghhBDiIij4J4QQQgghxEVQ8N8GaWlpCAsLw+jRo/nuCiGEEEIIIR1GwX8bOHqef0IIIYRvqpNFUGcU2zymziiG6mSRk3tEXElhYSEYhkFOTg7fXenxKPgnhBBCCBgBA7WNBwB1RjHUJ4vACGgBSr7w9WC2aNEiMAyDZcuWWR1LSkoCwzBYtGiRQ9q2J/N9bNq0yWL/0aNHO7WwampqKkaPHg1vb2/4+/tj1qxZuH79usU5Wq0WSUlJeOCBB9CrVy8kJCSgvLy8w23aAwX/hBBCCIF0sgLSKf0sHgDMgb90Sj9IJyt47qHr4vPBLCQkBPv370dDQwO3T6vV4pNPPoFC0X1+Jtzd3bF582ZUV1fb7Zpnz55FUlISLl26hJMnT6KxsRFTp05FfX09d87KlSvxz3/+EwcPHsTZs2dRUlKCOXPm2K0PHUHBPyGEEEIAWD4A3HrlvFMCf0o3uj8+H8xGjhyJkJAQHDlyhNt35MgRKBQKjBgxwuJck8mE1NRUKJVKeHh4IDw8HIcOHeKOV1dXY/78+ZDL5fDw8MDAgQOxZ88ei2vk5+dj4sSJ8PT0RHh4OC5evGiX+4iNjUVgYCBSU1Ptcj0AOHHiBBYtWoQhQ4YgPDwc6enpKC4uRlZWFgBApVJh165d2LJlCyZNmoTIyEjs2bMHFy5cwKVLl+zWj/ai4J8QQgghHOlkBSBkACMLCBmHj/hTulHb8PFgZrZkyRKLIH337t1YvHix1XmpqanYu3cvdu7ciatXr2LlypVYsGABzp49CwBYu3YtcnNzcfz4cVy7dg07duyAn5+fxTVeeeUVpKSkICcnB4MGDcK8efNgMBg6fQ9CoRAbN27E9u3bcevWLZvnFBcXo1evXq1+bNy4scU2VCoVAMDX1xcAkJWVhcbGRsTGxnLnPPTQQ1AoFHZ7qOkIEW8tE0IIIaTLUWcUc4E/jCzUGcUODTDN11b/NsIvnaygdKMWSCcroP6m2GkPZmYLFizA6tWrUVTU9D3KzMzE/v37cebMGe4cnU6HjRs34tSpUxg3bhwAoH///jh//jzeffddREdHo7i4GCNGjMCoUaMAAKGhoVZtpaSkYPr06QCA1157DUOGDEFeXh4eeuihTt/H7NmzERERgfXr12PXrl1Wx4ODg+9bcGwO7O9lMpnwwgsv4JFHHsHQoUMBAGVlZRCLxfDx8bE4NyAgAGVlZR26B3ug4J8QQgghAKxTSczbAJz2AGAObinwt+bsBzMzuVyO6dOnIz09HSzLYvr06VYj9nl5edBoNJgyZYrFfr1ez6UHPffcc0hISEB2djamTp2KWbNmYfz48RbnDx8+nPt7UFAQAKCiosJm8L9s2TJ8/PHH3HZdXd1972Xz5s2YNGkSUlJSrI6JRCIMGDDgvtewJSkpCT/99BPOnz/foc93Jgr+CSGEEGJztN3WqLyj8DWq3V3w9WBmtmTJEixfvhxA0/pH9zIH3seOHUOfPn0sjkkkEgBAfHw8ioqK8K9//QsnT57E5MmTkZSUhLfeeos7183Njfu7eSYek8lks08bNmywGcS35tFHH0VcXBxWr15tNVNRcXExwsLCWv38NWvWYM2aNRb7li9fji+//BLnzp1D3759uf2BgYHQ6/WoqamxGP0vLy9HYGBgu/ptTxT8E0IIIQSsyfZou3mbNbEObZ+vUe3ugO8HMwCYNm0a9Ho9GIZBXFyc1fGwsDBIJBIUFxcjOjq6xevI5XIkJiYiMTERUVFRWLVqlUXw3x7+/v7w9/dv9+dt2rQJERERePDBBy32tzfth2VZrFixAp9//jnOnDkDpVJpcW5kZCTc3NyQkZGBhIQEAMD169dRXFzMpUbxgYL/NkhLS0NaWhqMRiPfXSGEEEIcQjalX4vHHB1Y8j2q3dXx/WAGNBXMXrt2jfv7vby9vZGSkoKVK1fCZDJhwoQJUKlUyMzMhFQqRWJiItatW4fIyEgMGTIEOp0OX375JQYPHuzwvt9r2LBhmD9/PrZt22axv71pP0lJSfjkk0/wxRdfwNvbm8vjl8lk8PDwgEwmw1NPPYXk5GT4+vpCKpVixYoVGDduHB5++GG73lN7dDj4b2xsRFlZGTQaDeRyeYsFED1BUlISkpKSoFarIZPJ+O4OIYQQ0mN0hVHtro7PBzOLtqTSVo+//vrrkMvlSE1NRX5+Pnx8fDBy5EguTUYsFmP16tUoLCyEh4cHoqKisH//fmd03cqGDRtw4MCBTl1jx44dAICYmBiL/Xv27OFSit5++20IBAIkJCRAp9MhLi4Of//73zvVbmcxLMu2+XGxtrYWH3/8Mfbv34/vvvsOer0eLMuCYRj07dsXU6dOxTPPPIPRo0c7ss+8MQf/KpXqvv8AurLTp09DIBDYfC139uxZmEwmTJw4kYeeEUIIcTWq36bztBXEqjOKwZrYVoPftuD797dWq0VBQQGUSiXc3d2d3j7p+drzM9bmef63bNmC0NBQ7NmzB7GxsTh69ChycnLwyy+/4OLFi1i/fj0MBgOmTp2KadOm4caNG52+EeIYAoEAp0+f5ubdNTt79iz3YEAIIYQ4g6yVWX2kkxWdDvwJIZbanPbz/fff49y5cxgyZIjN42PGjMGSJUuwc+dO7NmzB//+978xcOBAu3WU2I95xP/06dPctjnwnzhxYquFOoQQQgghpPtqc/D/6aefAgCMRiP++c9/YvLkyfD29rY6TyKRYNmyZfbrYQ/GZ/pN8weAc+fOwWg0UuBPCCGEENLDtTu/QygUYt68eaisrHREf1wK3+k30dHREAqFMBqNEAqFFPgTQgghhPRwHYouR48ejYKCAnv3xeVER0dj4sSJFg8Azky/OXv2LBf4G41Gq4cQQgghhBDSs3Roqs8VK1ZgzZo1OHToEEJCQuzdJ5fCV/rNvQ8Z5u3mfSKEEEIIIT1Lh4L/J554AgAwZMgQzJw5EzExMRgxYgSGDRsGsVhs1w66gujoaC7wd0b6ja23C7aKgAkhhBBCSM/SoeC/oKAAP/74I3JycvDjjz8iNTUVhYWFEIlEePDBB/Gf//zH3v3s0Wyl3zgy+DYXEt/bhnnbZDI5rG1CCCGEEMKfDgX//fr1Q79+/TBz5kxuX21tLXJycijwbyc+0m9am0GIRvwJIYQQ4myFhYVQKpW4fPkyIiIi+O5Oj9bmgt/i4uJWj3t7eyMqKgpJSUkAgNu3b3euZw5QU1ODUaNGISIiAkOHDsX777/Pa39aSr+5twiYEEIIIcTZFi1aBIZhbE7hnpSUBIZhsGjRIud3rJ3M97Fp0yaL/UePHgXDMB2+7p///GcwDGPx8dBDD1mco9VqkZSUhAceeAC9evVCQkICysvLO9ymPbQ5+B89ejSeffZZfP/99y2eo1Kp8P7772Po0KE4fPiwXTpoT97e3jh37hxycnLw7bffYuPGjbh79y5v/Wkt/WbixImUfkMIIYSQVgcEm2cMOEJISAj279+PhoYGbp9Wq8Unn3wChcL2ysxdkbu7OzZv3ozq6mq7XnfIkCEoLS3lPs6fP29xfOXKlfjnP/+JgwcP4uzZsygpKcGcOXPs2of2anPwn5ubCy8vL0yZMgWBgYGYPn06li5dihUrVmDBggUYOXIk/P39sXv3brz55pv405/+5Mh+d4hQKISnpycAQKfTgWVZsCzLW39am9XH/ABAui8+/7MmhBDSc/C5LtDIkSMREhKCI0eOcPuOHDkChUKBESNGWJxrMpmQmpoKpVIJDw8PhIeH49ChQ9zx6upqzJ8/H3K5HB4eHhg4cCD27NljcY38/HxMnDgRnp6eCA8Px8WLF+1yH7GxsQgMDERqaqpdrmcmEokQGBjIffj5+XHHVCoVdu3ahS1btmDSpEmIjIzEnj17cOHCBVy6dMmu/WiPNv+0PPDAA9iyZQtKS0vxzjvvYODAgbhz5w5u3LgBAJg/fz6ysrJw8eJF/P73v+9QZ86dO4cZM2YgODgYDMPg6NGjVuekpaUhNDQU7u7uGDt2LL777rt2tVFTU4Pw8HD07dsXq1atsvgmEWJPfC/iRgghpGfge12gJUuWWATpu3fvxuLFi63OS01Nxd69e7Fz505cvXoVK1euxIIFC7g+r127Frm5uTh+/DiuXbuGHTt2WMVhr7zyClJSUpCTk4NBgwZh3rx5MBgMnb4HoVCIjRs3Yvv27bh165bNc4qLi9GrV69WPzZu3GjxOTdu3EBwcDD69++P+fPnW6TJZ2VlobGxEbGxsdy+hx56CAqFwm4PNR3R7oJfDw8PPPbYY3jsscfs3pn6+nqEh4djyZIlNl+JHDhwAMnJydi5cyfGjh2LrVu3Ii4uDtevX4e/vz8AICIiwuYPyddff43g4GD4+Pjgxx9/RHl5OebMmYPHHnsMAQEBdr8XQmxNn+rM/6wJIYT0HHytCwQACxYswOrVq1FUVAQAyMzMxP79+3HmzBnuHJ1Oh40bN+LUqVMYN24cAKB///44f/483n33XURHR6O4uBgjRozAqFGjAAChoaFWbaWkpGD69OkAgNdeew1DhgxBXl6eVS59R8yePRsRERFYv349du3aZXU8ODgYOTk5rV7D19eX+/vYsWORnp6OBx98EKWlpXjttdcQFRWFn376Cd7e3igrK4NYLIaPj4/FNQICAlBWVtbp++moDs3205zJZEJ6ejqWLFnS6c7Ex8cjPj6+xeNbtmzB0qVLuafNnTt34tixY9i9ezdefvllALjvN80sICAA4eHh+Pe//93ig4xOp4NOp+O21Wp1G++EkCZ8/mdNCCGkZ3H2ukBmcrkc06dPR3p6OliWxfTp061G7PPy8qDRaDBlyhSL/Xq9nksPeu6555CQkIDs7GxMnToVs2bNwvjx4y3OHz58OPf3oKAgAEBFRYXN4H/ZsmX4+OOPue26urr73svmzZsxadIkpKSkWB0TiUQYMGDAfa9h1jxmHT58OMaOHYt+/frhs88+w1NPPdXm6zhbp/MOBAIB3n33XXv0pVV6vR5ZWVkWr04EAgFiY2Pb/OqkvLwctbW1AJrysM6dO4cHH3ywxfNTU1Mhk8m4D1rNmHREdHQ0t4aDM/6z5qvWgGocCCHEsWytC+QsS5YsQXp6Oj788EObA77mwPvYsWPIycnhPnJzc7m8//j4eBQVFWHlypUoKSnB5MmTrYJwNzc37u/mmXhamgBlw4YNFm21xaOPPoq4uDisXr3a6lhH0n6a8/HxwaBBg5CXlwcACAwMhF6vR01NjcV55eXlCAwMbFN/HaHTI/8AMGrUKLzzzjtYvny5PS5n0507d2A0Gq1SdAICAvDzzz+36RpFRUV45plnuELfFStWYNiwYS2ev3r1aiQnJ3PbarWaHgBIuzl7ETdzrQFguW5D85SjntQuIYS4Aj7WBWpu2rRp0Ov1YBgGcXFxVsfDwsIgkUhQXFzcan/kcjkSExORmJiIqKgorFq1Cm+99VaH+uTv78+lfbfHpk2bEBERYTUA3N60n3vV1dXh119/xcKFCwEAkZGRcHNzQ0ZGBhISEgAA169fR3FxMZcaxYd2Bf8ajYabLae5W7du4fjx43jrrbcwfvx4DBs2DMOGDcP//M//2K2j9jBmzJg2PxkCgEQigUQiQVpaGtLS0mA0Gh3XOdIj8fGfNV+1BlTjQAghjtHSukAAnPYAIBQKce3aNe7v9/L29kZKSgpWrlwJk8mECRMmQKVSITMzE1KpFImJiVi3bh0iIyMxZMgQ6HQ6fPnllxg8eLBD+23LsGHDMH/+fGzbts1if3vTflJSUjBjxgz069cPJSUlWL9+PYRCIebNmwcAkMlkeOqpp5CcnAxfX19IpVKsWLEC48aNw8MPP2zXe2qPdgX/MpkMpaWlVnleX3zxBYCmJ56rV6/iypUrOHXqlF2Dfz8/PwiFQquFEZzx6iQpKQlJSUlQq9WQyWQObYv0HHz+Z81XrQHVOBBCiP21ti6Q+bgzSKXSVo+//vrrkMvlSE1NRX5+Pnx8fDBy5EisWbMGACAWi7F69WoUFhbCw8MDUVFR2L9/vzO6bmXDhg04cOBAp65x69YtzJs3D3fv3oVcLseECRNw6dIlyOVy7py3334bAoEACQkJ0Ol0iIuLw9///vfOdr9TGLYdE90LBAKUlZVxr1iioqJw6NAhh8yWwzAMPv/8c8yaNYvbN3bsWIwZMwbbt28H0PTDrlAosHz5cq7g15HMwb9KpbrvPwBCzNN52gp8z549y/1n7kivv/46l3K0du1ah7bVFdolhBBb+P79rdVqUVBQAKVSCXd3d6e3T3q+9vyMdSrnPycnB/X19Z25hIW6ujquSAIACgoKkJOTA19fXygUCiQnJyMxMRGjRo3CmDFjsHXrVtTX19uca9aeKO2HdERrgb0zRsKdXWvAd7uEEEIIuT+7FPzayw8//GARMJmLbRMTE5Geno4nnngClZWVWLduHcrKyhAREYETJ044fJ5+Svsh3Q1fhWF8F6QRQgghpHXtDv4/+eQTPProo63OktNRMTExuF8W0vLlyx06qxAh3R1ftQZdoSCNEEIIIa1rV/AfFRWF9evXo7a2Fm5ubjAYDFi/fj2ioqIwYsQIDB8+HBKJxFF9JYS0AV+FYV2lII0QQgghLWtXwa/ZjRs3kJWVhezsbO6jpqYGIpEIgwcPxo8//uiIvvKmec7/L7/8QgW/hBBCSDdCBb+kp2vPz1iHgn9bCgoK8MMPP+Dy5cutrn7WnfH9nwchhBBC2o/v398U/BNHc9psP80plUoolUo8/vjj9rokIYQQQgghxI4EfHeAEEIIIYQQ4hwU/LdBWloawsLCMHr0aL67QgghhBBCSIdR8N8GSUlJyM3Nxffff893VwghhBBCepzCwkIwDIOcnBy+u9LjUfBPCCGEEEKsLFq0CAzDYNmyZVbHkpKSwDAMFi1a5PyOtZP5PjZt2mSx/+jRo2AYpsPXPXfuHGbMmIHg4GAwDIOjR49ancOyLNatW4egoCB4eHggNjYWN27csDinqqoK8+fPh1QqhY+PD5566inU1dV1uF/3Q8E/IYQQQkgXlp//fygo2G7zWEHBduTn/5/D2g4JCcH+/fvR0NDA7dNqtfjkk0+gUCgc1q69ubu7Y/PmzaiurrbbNevr6xEeHo60tLQWz3nzzTexbds27Ny5E99++y28vLwQFxcHrVbLnTN//nxcvXoVJ0+exJdffolz587hmWeesVs/70XBfxtQzj8hhBBC+MIwAuQXbLV6ACgo2I78gq1gGMeFcyNHjkRISAiOHDnC7Tty5AgUCgVGjBhhca7JZEJqaiqUSiU8PDwQHh6OQ4cOccerq6sxf/58yOVyeHh4YODAgdizZ4/FNfLz8zFx4kR4enoiPDwcFy9etMt9xMbGIjAwEKmpqXa5HgDEx8fjjTfewOzZs20eZ1kWW7duxauvvoo//OEPGD58OPbu3YuSkhLuLcG1a9dw4sQJfPDBBxg7diwmTJiA7du3Y//+/SgpKbFbX5uj4L8NKOefEEIIIXxRKlegv/IFiwcAc+DfX/kClMoVDm1/yZIlFkH67t27sXjxYqvzUlNTsXfvXuzcuRNXr17FypUrsWDBApw9exYAsHbtWuTm5uL48eO4du0aduzYAT8/P4trvPLKK0hJSUFOTg4GDRqEefPmwWAwdPoehEIhNm7ciO3bt+PWrVs2zykuLkavXr1a/WjPWlYFBQUoKytDbGwst08mk2Hs2LHcQ83Fixfh4+ODUaNGcefExsZCIBDg22+/7eDdts5u8/wTQgghhBDHMAf4+QVbUVD4d7Cs3imBPwAsWLAAq1evRlFREQAgMzMT+/fvx5kzZ7hzdDodNm7ciFOnTmHcuHEAgP79++P8+fN49913ER0djeLiYowYMYILdENDQ63aSklJwfTp0wEAr732GoYMGYK8vDw89NBDnb6P2bNnIyIiAuvXr8euXbusjgcHB9+34NjX17fN7ZWVlQEAAgICLPYHBARwx8rKyuDv729xXCQSwdfXlzvH3ij4J4SQbuT06dMQCASIjo62Onb27FmYTCZMnDiRh545hqvdLyGtUSpXcIE/w4idEvgDgFwux/Tp05Geng6WZTF9+nSrEfu8vDxoNBpMmTLFYr9er+fSg5577jkkJCQgOzsbU6dOxaxZszB+/HiL84cPH879PSgoCABQUVFhM/hftmwZPv74Y267LUWymzdvxqRJk5CSkmJ1TCQSYcCAAfe9RndHaT+EENKNCAQCnD59mnuNbnb27FkuUO5JXO1+CWlNQcF2LvBnWX2LRcCOsGTJEqSnp+PDDz/EkiVLrI6bA+9jx44hJyeH+8jNzeXy/uPj41FUVISVK1eipKQEkydPtgrC3dzcuL+bZ+IxmUw2+7RhwwaLttri0UcfRVxcHFavXm11zN5pP4GBgQCA8vJyi/3l5eXcscDAQFRUVFgcNxgMqKqq4s6xNxr5J4SQbsQ8An769Glu2xwIT5w40eYIeXfmavdLSEvuzfE3bwNwyhuAadOmQa/Xg2EYxMXFWR0PCwuDRCJBcXFxq/8u5XI5EhMTkZiYiKioKKxatQpvvfVWh/rk7+9vlTLTFps2bUJERAQefPBBi/32TvtRKpUIDAxERkYGIiIiAABqtRrffvstnnvuOQDAuHHjUFNTg6ysLERGRgIAvvnmG5hMJowdO7btN9UOFPy3QVpaGtLS0mA0GvnuCiGEWATE586dg9Fo7NGBsKvdLyH3slXc27wGoPm2owiFQly7do37+728vb2RkpKClStXwmQyYcKECVCpVMjMzIRUKkViYiLWrVuHyMhIDBkyBDqdDl9++SUGDx7s0H7bMmzYMMyfPx/btm2z2N/etJ+6ujrk5eVx2wUFBcjJyYGvry8UCgUYhsELL7yAN954AwMHDoRSqcTatWsRHByMWbNmAQAGDx6MadOmYenSpdi5cycaGxuxfPlyzJ07F8HBwXa533tR8N8GSUlJSEpKglqthkwm47s7hBCC6OhoLhAWCoU9PhB2tfslpDmWNdks7jVvs6zttBh7k0qlrR5//fXXIZfLkZqaivz8fPj4+GDkyJFYs2YNAEAsFmP16tUoLCyEh4cHoqKisH//fmd03cqGDRtw4MCBTl3jhx9+sKg5Sk5OBgAkJiYiPT0dAPDSSy+hvr4ezzzzDGpqajBhwgScOHEC7u7u3Oft27cPy5cvx+TJkyEQCJCQkGD1YGJPDMuyrMOu3sOYg3+VSnXffwCEEOJI5tQXoVDolJFwvgtvnX2/pGfh+/e3VqtFQUEBlEqlRdBHiL2052eMRv4JIaSbuTfn3bwNwGEBsbnw9t42mvfFUfi4X0II6ako+CeEkG7EVrGrraJYe+Or8Jav+yWEkJ6Kgn9CCOlGzOk19wa85u2WpsSzBz4Kb/m8X0II6Yko+CeEkG6ktfQaZ4yAO7vwlu/7JYSQnoZWR2mDtLQ0hIWFYfTo0Xx3hRBCeHX27Fku8DcajVaLbxFCCOnaaOS/DWiqT0IIocJbQgjpCSj4J4QQcl9UeEsIIT0DBf+EEELuiwpvCSGkZ6DgnxBCyH1R4S0hhPQMVPBLCCGEEEJ4VVhYCIZhkJOTw3dXejwK/gkhhBBCiJVFixaBYRgsW7bM6lhSUhIYhsGiRYuc37F2Mt/Hpk2bLPYfPXoUDMN0+Lrnzp3DjBkzEBwcDIZhcPTo0Rbbbv4xbdo0i3Oqqqowf/58SKVS+Pj44KmnnkJdXV2H+3U/FPzzKD///1BQsN3msYKC7cjP/z8n94gQQgghXc1fC0qxpbDM5rEthWX4a0Gpw9oOCQnB/v370dDQwO3TarX45JNPoFAoHNauvbm7u2Pz5s2orq622zXr6+sRHh6OtLS0Vs+bNm0aSktLuY9PP/3U4vj8+fNx9epVnDx5El9++SXOnTuHZ555xm79vBcF/zxiGAHyC7ZaPQAUFGxHfsFWMAx9ewghhBBXJ2QYvFlQZvUAsKWwDG8WlEHYidHr+xk5ciRCQkJw5MgRbt+RI0egUCgwYsQIi3NNJhNSU1OhVCrh4eGB8PBwHDp0iDteXV2N+fPnQy6Xw8PDAwMHDsSePXssrpGfn4+JEyfC09MT4eHhuHjxol3uIzY2FoGBgUhNTbXL9QAgPj4eb7zxBmbPnt3qeRKJBIGBgdxH7969uWPXrl3DiRMn8MEHH2Ds2LGYMGECtm/fjv3796OkpMRufW2OokseKZUr0F/5gsUDgDnw7698AUrlCp57SAghhBC+JYcG4iVloMUDgDnwf0kZiOTQQIe2v2TJEosgfffu3Vi8eLHVeampqdi7dy927tyJq1evYuXKlViwYAG3GODatWuRm5uL48eP49q1a9ixYwf8/PwsrvHKK68gJSUFOTk5GDRoEObNmweDwdDpexAKhdi4cSO2b9+OW7du2TynuLgYvXr1avVj48aN7W77zJkz8Pf3x4MPPojnnnsOd+/e5Y5dvHgRPj4+GDVqFLcvNjYWAoEA3377bftvtA1oth+emQP8/IKtKCj8O1hW7/DAPz///8AwApttFBRsB8ua0L///3NY+4QQQghpH3OA/2ZBGbYWlkPPsk4J/AFgwYIFWL16NYqKigAAmZmZ2L9/P86cOcOdo9PpsHHjRpw6dQrjxo0DAPTv3x/nz5/Hu+++i+joaBQXF2PEiBFcoBsaGmrVVkpKCqZPnw4AeO211zBkyBDk5eXhoYce6vR9zJ49GxEREVi/fj127dpldTw4OPi+Bce+vr7tanPatGmYM2cOlEolfv31V6xZswbx8fG4ePEihEIhysrK4O/vb/E5IpEIvr6+KCuznerVWRT8t0FaWhrS0tJgNBodcn2lcgUX+DOM2OEj/uZ0I3PbZs3fOpDOo4csQggh9pQcGsgF/mKGcUrgDwByuRzTp09Heno6WJbF9OnTrUbs8/LyoNFoMGXKFIv9er2eSw967rnnkJCQgOzsbEydOhWzZs3C+PHjLc4fPnw49/egoCAAQEVFhc3gf9myZfj444+57bYUyW7evBmTJk1CSkqK1TGRSIQBAwbc9xrtMXfuXO7vw4YNw/Dhw/G73/0OZ86cweTJk+3aVltR2k8bJCUlITc3F99//71Drt8UCDYF/iyrb7EI2F4o3cg5qKaDEEKIPW0pLOMCfz3LtlgE7AhLlixBeno6PvzwQyxZssTquDnwPnbsGHJycriP3NxcLu8/Pj4eRUVFWLlyJUpKSjB58mSrINzNzY37u3kmnpYWEdywYYNFW23x6KOPIi4uDqtXr7Y65qi0n+b69+8PPz8/5OXlAQACAwNRUVFhcY7BYEBVVRUCAx3zcEcj/zy7N+g2bwNwaBDOR7qRq2n+NTZv00MWIYSQjrg3x9+8DcApbwCmTZsGvV4PhmEQFxdndTwsLAwSiQTFxcWtLvwnl8uRmJiIxMREREVFYdWqVXjrrbc61Cd/f3+rlJm22LRpEyIiIvDggw9a7HdE2s+9bt26hbt373JvNcaNG4eamhpkZWUhMjISAPDNN9/AZDJh7NixnWqrJRT888hWIGgrYHQUZ6cbuSJ6yCKEENJZtop7m9cANN92FKFQiGvXrnF/v5e3tzdSUlKwcuVKmEwmTJgwASqVCpmZmZBKpUhMTMS6desQGRmJIUOGQKfT4csvv8TgwYMd2m9bhg0bhvnz52Pbtm0W+9ub9lNXV8eN4ANAQUEBcnJy4OvrC4VCgbq6Orz22mtISEhAYGAgfv31V7z00ksYMGAA9wA1ePBgTJs2DUuXLsXOnTvR2NiI5cuXY+7cuQgODrbPDd+Dgn8esazJZiBo3mZZ26+57MVWuhEFpfZHD1mEEEI6w9hCca9528iyTumHVCpt9fjrr78OuVyO1NRU5Ofnw8fHByNHjsSaNWsAAGKxGKtXr0ZhYSE8PDwQFRWF/fv3O6PrVjZs2IADBw506ho//PADJk6cyG0nJycDABITE5Geng6hUIj//Oc/+PDDD1FTU4Pg4GBMnToVr7/+OiQSCfd5+/btw/LlyzF58mQIBAIkJCRYPZjYE8OyTvqJ6QHUajVkMhlUKtV9/wF0dS2lG9GotP39N8dfTLM5EUK6rNOnT0MgENhM2Th79ixMJpNFoNOd8P37W6vVoqCgAEqlEu7u7k5vn/R87fkZo4pDF9RSutG9RcCk85p/rSdNvOaUrzEVGhNCOkIgEOD06dPcnOxmZ8+e5R4MHMFWm/e2TQixH0r7cUF8pxu5Cr5qOqjQmBDSEeYRf3OwHR0dzQXfEydObLWIszPMDx3N+wDAom1CiP1Q8O+CWkv5oMDQfvh8yKJCY0JIRzR/ADh37hyMRqNDA/972zRvO+OhgxBXRcE/IQ7C90MWFRoTQjoiOjqaC/yFQqFTgm8+HjoIcVWU/EtID+XsxeMIIT3D2bNnucDfaDS2mI9vb9HR0VybznroIMQV0cg/IT0QX4vHEUK6t3vTbZoX3Do6GLf10EEPAITYn0sG/xqNBoMHD8bjjz/e4VXlCOmq+F48jhDSPdnKs7eVj++Mtp350EGIq3HJ4P8vf/kLHn74Yb67QYhD0GxOhJCOMM/jf2+wbd42mRzzfwefDx2EuCKXC/5v3LiBn3/+GTNmzMBPP/3Ea18uHNwHRiDAuIR5VscuHv4UrMmE8Y/P56FnpDvju9CYENI9tTalpiODb74eOghxVV2q4PfcuXOYMWMGgoODwTAMjh49anVOWloaQkND4e7ujrFjx+K7775rVxspKSlITU21U487hxEIcOGzfbh4+FOL/RcPf4oLnzU9GBBCCCE9WWuz+kRHR9M8/y6isLAQDMMgJyeH7670eF0quqyvr0d4eDjS0tJsHj9w4ACSk5Oxfv16ZGdnIzw8HHFxcaioqODOiYiIwNChQ60+SkpK8MUXX2DQoEEYNGhQm/qj0+mgVqstPuxpXMI8jP/jfIsHAHPgP/6P822+ESCEEEIIcYZFixaBYRgsW7bM6lhSUhIYhsGiRYuc37F2Mt/Hpk2bLPYfPXoUDMN0+LqpqakYPXo0vL294e/vj1mzZuH69esW52i1WiQlJeGBBx5Ar169kJCQgPLycotziouLMX36dHh6esLf3x+rVq2CwWDocL/up0ul/cTHxyM+Pr7F41u2bMHSpUuxePFiAMDOnTtx7Ngx7N69Gy+//DIAtPrEeOnSJezfvx8HDx5EXV0dGhsbIZVKsW7dOpvnp6am4rXXXuv4DbWBOcC/8Nk+fHvkAIwGAwX+pFvKz/8/MIzAZmpR07SjplZTkgghhNj29slfIBQw+NPkgVbHtmXcgNHEYuWUtg1stldISAj279+Pt99+Gx4eHgCaAtpPPvkECoXCIW06gru7OzZv3oxnn30WvXv3tss1z549i6SkJIwePRoGgwFr1qzB1KlTkZubCy8vLwDAypUrcezYMRw8eBAymQzLly/HnDlzkJmZCQAwGo2YPn06AgMDceHCBZSWluLJJ5+Em5sbNm7caJd+3qtLjfy3Rq/XIysrC7Gxsdw+gUCA2NhYXLx4sU3XSE1Nxc2bN1FYWIi33noLS5cubTHwB4DVq1dDpVJxHzdv3uz0fdgyLmEehCIRjAYDhCIRBf6kW2IYQdOKwvesJ2CefYhhus1/N4QQ0qUIBQy2nPwF2zJuWOzflnEDW357MHCUkSNHIiQkBEeOHOH2HTlyBAqFAiNGjLA412QyITU1FUqlEh4eHggPD8ehQ4e449XV1Zg/fz7kcjk8PDwwcOBA7Nmzx+Ia+fn5mDhxIjw9PREeHt7mGO9+YmNjERgYaNfU7xMnTmDRokUYMmQIwsPDkZ6ejuLiYmRlZQEAVCoVdu3ahS1btmDSpEmIjIzEnj17cOHCBVy6dAkA8PXXXyM3Nxcff/wxIiIiEB8fj9dffx1paWnQ6/V262tz3ea38Z07d2A0GhEQEGCxPyAgAGVlZQ5pUyKRQCqVWnw4wsXDn3KBv9FgsKoBIKQ7UCpXoL/yBYsHAFvTjhJCCGmfP00eiOQpgyweAMyBf/KUQTbfCNjTkiVLLIL03bt3c1kYzaWmpmLv3r3YuXMnrl69ipUrV2LBggXcQnFr165Fbm4ujh8/jmvXrmHHjh3w8/OzuMYrr7yClJQU5OTkYNCgQZg3b55dUmCEQiE2btyI7du349atWzbPKS4uRq9evVr9aG00XqVSAQB8fX0BAFlZWWhsbLQYuH7ooYegUCi4h5qLFy9i2LBhFvFtXFwc1Go1rl692un7tqVLpf04U3ty1NLS0pCWlgaj0Wj3ftyb42/eBkBvAEi303w9gYLCv4Nl9RT4E0KIHZgD/C0nf8E73+RBbzQ5JfAHgAULFmD16tUoKioCAGRmZmL//v04c+YMd45Op8PGjRtx6tQpjBs3DgDQv39/nD9/Hu+++y6io6NRXFyMESNGYNSoUQCA0NBQq7ZSUlIwffp0AMBrr72GIUOGIC8vDw899FCn72P27NmIiIjA+vXrsWvXLqvjwcHB9y04Ngf29zKZTHjhhRfwyCOPYOjQoQCAsrIyiMVi+Pj4WJzbfOC6rKzM5sC2+ZgjdJvg38/PD0Kh0KpIory8HIGBgQ5tOykpCUlJSVCr1ZDJZHa7rq3i3uY1AM23CekulMoVXODPMGIK/AkhxE7+NHkgF/iLhQKnBP4AIJfLMX36dKSnp4NlWUyfPt1qxD4vLw8ajQZTpkyx2K/X67n0oOeeew4JCQnIzs7G1KlTMWvWLIwfP97i/OHDh3N/DwoKAgBUVFTYDP6XLVuGjz/+mNuuq6u7771s3rwZkyZNQkpKitUxkUiEAQMG3PcatiQlJeGnn37C+fPnO/T5ztRt0n7EYjEiIyORkZHB7TOZTMjIyOCeMLsb1mSyWdxrngWIpbmNSTfUVNzbFPizrN6qBoAQQkjHbMu4wQX+eqPJqgbAkZYsWYL09HR8+OGHWLJkidVxc+B97Ngx5OTkcB+5ublc3n98fDyKioqwcuVKlJSUYPLkyVZBuJubG/d380w8La31sGHDBou22uLRRx9FXFwcVq9ebXWso2k/y5cvx5dffonTp0+jb9++3P7AwEDo9XrU1NRYnN984DowMNDmwLb5mCN0qZH/uro65OXlcdsFBQXIycmBr68vFAoFkpOTkZiYiFGjRmHMmDHYunUr6uvrbead2ZOj0n5aW8DLkSP+fy0ohZBhkBxq/UO1pbAMRpbFKmWQw9onPde9Of7mbYAWGCOEkM64N8ffvA3AKW8Apk2bBr1eD4ZhEBcXZ3U8LCwMEokExcXFrS4KJ5fLkZiYiMTERERFRWHVqlV46623OtQnf39/+Pv7t/vzNm3ahIiICDz44IMW+9ub9sOyLFasWIHPP/8cZ86cgVKptDg3MjISbm5uyMjIQEJCAgDg+vXrKC4u5gaux40bh7/85S+oqKjg7uXkyZOQSqUICwtr9721RZcK/n/44QeLxTySk5MBAImJiUhPT8cTTzyByspKrFu3DmVlZYiIiMCJEyescqXszVFpP3wRMgzeLGjKI2v+ALClsAxvFpThJaVj06hIz2SruLd5DUDzbUIIIW1nq7i3eQ1A821HEQqFuHbtGvf3e3l7eyMlJQUrV66EyWTChAkToFKpkJmZCalUisTERKxbtw6RkZEYMmQIdDodvvzySwwePNih/bZl2LBhmD9/PrZt22axv71pP0lJSfjkk0/wxRdfwNvbm8vRl8lk8PDwgEwmw1NPPYXk5GT4+vpCKpVixYoVGDduHB5++GEAwNSpUxEWFoaFCxfizTffRFlZGV599VUkJSVBIpHY76ab36dDrtpBMTExYFm21XOWL1+O5cuXO6lHPZM54G/+ANA88Lf1RoCQ+2FZk83iXvM2y1Iamz3QegqEuB6jibVZ3GveNppaj53s5X6zHr7++uuQy+VITU1Ffn4+fHx8MHLkSKxZswZAUwr36tWrUVhYCA8PD0RFRWH//v3O6LqVDRs24MCBA526xo4dOwA0xa/N7dmzh5tY5u2334ZAIEBCQgJ0Oh3i4uLw97//nTtXKBTiyy+/xHPPPYdx48bBy8sLiYmJ2LBhQ6f61hqGvV+0TTjmkX+VSuWwaT+dyRzwixkGepalwJ+QbqCl6VNpWlVCWsb372+tVouCggIolUq4u7s7vX3S87XnZ6zbFPzyKS0tDWFhYRg9ejTfXbGr5NBALvAXt1ADQAjpWmg9BUIIIZ3RpdJ+uqqelvNvtqWwjAv89SyLLYVl9ABASDdA6ykQQgjpKBr5d1HNc/yLY8LxkjIQbxaUYUuhYxaUIITYl1K5gptOldZTIIQQ0lYU/LsgW8W9yaGB9ABASDdC6ykQQgjpCEr7aQNHzfPPF2MLxb3mbSPVgBPSpdF6CoR0TzTHCnGU9vxs0Ww/7cD3bAGEEEKz/RDSfnz//jYajfjll1/g7++PBx54wOntk57v7t27qKiowKBBg2yuw9AcjfwTQkg3QuspENL9CIVC+Pj4oKKiAgDg6ekJhmF47hXpCViWhUajQUVFBXx8fO4b+AM08t8ufI8cEEIIIT0Vy7LQ1RtgaDRB5CaAxEtktwC5K/z+ZlkWZWVlqKmp4aV90rP5+PggMDCwTf9maOS/DXpazj8hhLQXXysL04rGrqFepUNlcS1qq7QwGVgIRAy8fd0hV3jDSybhu3t2wTAMgoKC4O/vj8bGRr67Q3oQNze3No34m1Hw3wY9dZ5/QghpK4YR2Cwqbl5r0JPaJc5Tr9Kh6Ke70GsM8JSJIRQLYdQbUVOmgUatR7+hD/SYBwCgKQWoPYEaIfZGwT8hhJD7ar6wmHnbGUXGfLXryhyZfmOrrcriWug1Bkj9Pbh2BO4iSCVCqCsaUFlcC8+hYsqRJ8ROKPgnpIf5a0EphAxjc7XmLYVlMLIsVimDeOgZ6e74WlmYVjR2Hmen3+jqDait0sJTZh3cMwwDT5kYtVVa6OoNcO/lZvf2CXFFtMgXIT2MkGFsLtZmXtxNSKNnpBP4WlmYVjR2PHP6TU2ZBhIPEXo94A6Jhwg1ZRoU/XQX9Sqd3ds0NJpgMrAQim2nwQjFQpgMLAyNNIsVIfZCwT8hPYyt1ZptrepMSEfwtbIwrWjsWPem37i5iyAQMHBzF0Hq7wG9xoDK4lq7L1IlchNAIGJg1NueUMOoN0IgYiByo3CFEHuhtJ82cNRsP5SeQRzF/DP1ZkEZthaWQ9/Cqs6EtAdfKwvTisaOx1f6jcRLBG9fd9SUaSCVCC3aZlkWGpUePoGekHhRuEKIvdCjdBskJSUhNzcX33//vV2vy1d6xtsnf8G2jBs2j23LuIG3T/7ikHZdzV8LSq2+t2ZbCsvw14JSh7afHBoIMcNAz7IQt/CQSUhb2SqyVSpXoL/yhaZcfAeNxPPVrqvhK/2GYRjIFd4Qe4qgrmhAo9YAk4lFo9YAdUUDJF4iyBXeVOxLiB1R8M8jvtIzhAIGW2w8AGzLuIEtJ3+BUED/ydoD37n3WwrLuMBfz7ItPogQ0hatrSzcX/mCw1YW5qtdV8Nn+o2XTIJ+Qx+AT6AndA0G1N3VQtdggE+gJxRDetY0n4R0BfQejWd8pGf8afJAAMCW30b4/zR5IBf4J08ZxB0nndP8e2vedlbu/b3tmLeb94uQ9mhtIS1Hpt7w1a6r4Tv9xksmgedQsdOmGCXElTGsvat3ejBHLg+uOPMjN0pbHBNu12u3xBzwi4UC6I0mCvwdxBx4m0fgnR3432+/vVANCyHdW0uLbWlUeki8RN16FN6Rv78J6W4o7acL4Cs940+TB3KBv1gooMDfQZyde29s4QHDnGZmdNDzPt9pTqRnY1kW2rpG1FXroK1rtPusM4TSbwhxFZT2wzM+0zO2ZdzgAn+90YRtGTfoAcABbD3cOfJ729rouiPb5TPNifRszl54ypVR+g0hPR8F/23gqKk+bQVGtgIoR7g3x9+8DYAeAOzI1XLvaYpRYm8tpaLUlGmgUevRbyiNSNsbwzC0mi4hPRgF/22QlJSEpKQkLmfQXlpLzzAfdwRbxb22ioBJ5/D5cMen5NBALvCnKUZ7HpZlnTYqfO/CU+Z2BO4iSCVCqCsaUFlcC8+h1nPTE0IIsY2Cfx7xlZ5hNLE2i3vN20YT5dLaA18Pd3xzdpoTcR5np9/wtfAUIYT0ZBT8u6CVUwa1eIxG/O2Hr4c7PrlampMr4SP9pk0LT9U22n3hKUII6cko+CeE2IWrpjnxxRXSb5ovPCVwt/515ciFpwghpKei4J9Hb/+2mq6t0fZtGTdgNLGtjtIT0pW4apoTH1wl/YbvhacIIaQnov8xeSQUMDYLbJsX5BLSXbhimhMfXCn9hmEYyBXe0Kj1UFc02Fx4Sq7wpmJfQghpBwr+eWRrhh1bM/EQQgjgmuk35oWnuDcdtY0QiBj4BHrSPP+EENIBFPzzrPkDwDvf5EFvNFHgTwixyVXTb2jhKUIIsR+qkuoC/jR5ILfKrlgooMCfEGJTm9JvDKzD0m/EniKoKxrQqDXAZGLRqDVAXdHglPQb88JTvXpL4N7LjQJ/QgjpIAr+u4BtGTe4wF9vNGFbxg2+u0QI6YKap9/Y4oz0G59AT+gaDKi7q4WuwQCfQE8ohtAquz1Bfv7/oaBgu81jBQXbkZ//f07uESHEESjtpw3S0tKQlpYGo9H2L9zOuDfH37wN0Jz73R3N5kTsjdJviCMxjAD5BVsBAErlCm5/QcF25BdsRX/lC/x0jBBiVxT8t0FSUhKSkpKgVqshk8nsdl1bxb22ioBJ90SzORF7YxgGn4i0qJXo8EQFrGa/OSDRwVskwBonpN+Qnscc8Dd/AGge+Dd/ICCEdF8U/PPIaGJtFveat40mmhe9O6PZnIgjuHuIsM1YDzepEI83CLjZb45IDdijqcdLHt58d5F0Y80fAAoK/w6W1VPgT0gPw7AsrbzTVuaRf5VKBalUynd3SDdhDvjNNR2ODvz5Tjdy5sqzrsq8mnJyHzmel/vh75V3sOV2pc1F1gjpiG9ODwbL6sEwYkyaeI3v7nQa/f4m5L9o5J8QB/vT5IHcNK7OmM2Jr3Sjt0/+AqPeiMcUcquVZw8VV0IoFlKNg52YA/w3C8rwTskd6FtYXZmQjigo2M4F/iyrR0HBdoeO/Ofn/x8YRmCzjaa+mNC///9zWPuEuBqa7YcQB3P2bE5/mjwQyVMGYcvJX7i2nJFuZNQb8c6/8/HuxQJIPETo9YA7JB4ivHuxAO/8O7/FGWpIxySHBkLMMNCzLMQM4/DA/68FpdhSWGbz2JbCMvy1oNSh7RPnaJ7jP2niNfRXvtCUAtTCLED2YC40vrcNc18YhkIVQuyJRv4JcSC+ZnP60+SBYFkWW07+gu3f3ECjkcXK2IEOa5NlWTymkONu/zp8ml8Bdy8xnhzWBx/fKMen+RWY198fjynkYFmWUoDsZEthGRf461kWWwrLHPoAIGQYvFnQFPw3b8ecgvSSkt46dHe2inttFQHbGxUaE+JcFPwT4iB8zuZUr9LhDwG+2M4waDSyEDEM/hDgi3qVziHzsZtXnl0cEQJ3LzH2XLmFj6/eRqOJxeJhfTFvYIBDVp51Vc0D7uTQQG4bgMMeAJqnGpm37+0H6d5Y1mQz2DZvs6x9F4+z1QYVGhPieBT8E+IgfM3mVK/Soeinu/jo6m0YWBZuAgaNJhbvXizAQnUf9Btq/wWZmq88++SwPlzg7yZg8OSwPjCZWJhqG+2+8qwrshVw2wrMHaF5O1sLy6nWoIdpLa/eGUG4UrmCC/wZRkyBPyEOQsE/IQ5iLm61NfuNI9NvKotr8dHV2/g0vwKLh/XFk8P6YO+V29hz5RYA4FmpGJ5DxXZNv2m+8uzHN8q5wL/RxGLvlduYNzDAYSvPuhpjCwG3edvo4AnckkMDucDfWbUGwhba2VJYBiPLYpUyyKF9IM7h7EJjQlwVBf+EOFC9SofK4lqr2W/kCm+Hpd+8/12RReAPgPtzz5VbEAgFWKuU2TX95v9v7/6Do6zuPY5/Nhuy4VcCAZIQIARv0YJAguTHMJQCJkpRsWh1mF47RJnRO52lUjNiYe6M1pkKtkxjSskU+pNp6yjWKYytP4YYMNQWy8/FIgMEb4BoSQJK8xMSsnvuH5olYTcYZHef3X3er5n8sc+e3efsc2D2+5z9fs/p2Xl28566oDcdl9q79D+zJ4Vt51k7uVagG4kZeGoNEA5X5/j3PJYi86sDYCd8EwNh0pN+09XR3Wcn1v80dKijpSts6Tder08PTxvnD/h7LJs+TsYYXeoIffqNw+HQq2fO+Yt7vz05Qz6f0bcnZ+hSe5de+r8mjRo3TE9OHx3S8yKyqDVAOFhVaAzYle2C/5ycHKWkpCghIUEjR47Url27rO4S4lBP+k1XR7dS0gf7U2wSkhOV4nKqpemizp1pDUv6zUO3jJVrcPD/2v99c6Y6L3aHJf3GmeTUirk3XVnn//OdZ/9n9iSNGjdMziRnyM+JyKHWAOFiZaExYEe22+E3JydHR44c0bBhw677tewQiIG61HZZtQca5RqcqEHJgYH45Uvd6rzYrcmzMkKafmOM0ekjn+g/DR19bjp6nmtpuqgRmUM0cdqosC25yQ6/8Skacu+z3znsTzk6Mz83rOdCfOH7G7jCdjP/QCT0Xv0mGGeSMyyr3zgcDo3JHq6Oli61NF3sk27U0dwl19BEjckeHtZg3OFwsJxnHLJbrQEAxKuoWnpj9+7dWrx4sbKysuRwOLR9+/aANpWVlcrJyVFycrKKioq0d+/e6zqHw+HQvHnzVFBQoBdffDFEPQf66r36TTDeLm/YVr8ZmurSxGmjNCJziDovdqvtk0vqvNitEZlDlH1r6OsMgHDrnXJ0Zn6unpqUqZ/UNfS74zAAoH9RNfPf3t6u3NxcLV++XPfff3/A81u3blVZWZk2bdqkoqIiVVRUaOHChTp+/LjS09MlSXl5eeru7g547Y4dO5SVlaV3331X48aN09mzZ1VSUqLp06drxowZQfvT2dmpzs5O/+OWlpYQfVLEu57Vb/7T0KEUlzMg/aajuUsjMoeEbfWboakuDZmWRPoNYp6VtQYAEI+iNuff4XBo27ZtWrJkif9YUVGRCgoKtHHjRkmSz+fThAkT9L3vfU+rV6++7nOsWrVKt956qx5++OGgz//whz/Us88+G3CcnEEMRH+r/fSk3zALD3yxaKg1QOwj5x+4IqrSfq6lq6tLBw4cUElJif9YQkKCSkpKtGfPngG9R3t7u1pbWyVJbW1t2rlzp2699dZ+269Zs0bNzc3+v/r6+hv7EFHGGKNLbZfVdqFTl9ouK0rvA2MW6TfAjVs1aWy/M/tlOZkE/gBwnaIq7edazp8/L6/Xq4yMjD7HMzIydOzYsQG9R2Njo+677z5Jktfr1aOPPqqCgoJ+27tcLrlc8RmgRXrzKbsi/QYAAESTmAn+Q+Gmm27S4cOHr/t1lZWVqqyslNcbvHgz1lix+ZSdsfoNAACIFjGT9jN69Gg5nU41Njb2Od7Y2KjMzPAWe7ndbh09elT79u0L63ki4erNpwYlJyohwaFByYlKSR+sro5unTvTSgoQAABAHIqZ4D8pKUmzZs1SdXW1/5jP51N1dbVmz55tYc9uXCRz7zvbu9X66SUNSQ3cWdbhcGhIapJaP72kzvbAFZMAAAAQ26Iq7aetrU0nT570P66rq5PH41FaWpqys7NVVlam0tJS5efnq7CwUBUVFWpvb9cjjzwS1n6FM+0n0rn3Vm0+BSA0Xqg6IWeCQ48XTw54bkN1rbw+oyfuuNmCngEAYkFUBf/79+/XggUL/I/LysokSaWlpdqyZYuWLl2qc+fO6emnn1ZDQ4Py8vL01ltvBRQBh5rb7Zbb7fYvFRYqVuTe9958KiE5cPjDufkUgBvnTHCovOqEJPW5AdhQXavyqhMqI/AHAFxD1K7zH41CuU6wMUanj3zy2SZQ6YMDNoFqabqoEZlDNHHaqJCuDGPVeQGETu9A//HiyQGPAfTFOv/AFVE18x+twpH2cz2596FcKcbhcGhM9nB1tHSppeli0M2nxmQPJ/AHolhPgF9edUIbd55Ul9dH4A8AGBBm/q9DKGcO2i506sODTRo2KlkJCYGBts9n1PbJJf3XbekaNjL0uf+s8w/Evpv/9011eX1KciboxHOLrO4OELWY+QeuYObfIlbn3rP5FBDbNlTX+gP/Lq9PG6prwzrzT6ExAMQHqjot4hqaqOFpyepo7gpY2tMYo47mLg1PS5ZraPjuz3o2nxo20qXkYYMI/IEY0TvH/8Rzi1R2x80qrzqhDdW1YTtnT6Hx1efo6YszyC+YiC3r686q/FRD0OfKTzVofd3ZCPcIQDgw8z8A4cj5J/cewJcRrLi3dw1A78ehFOwckSg05heHyHE6HPpJ3WfBf1nOlc0zy0816Cd1DXpqUng31AQQGQT/AxCupT6Hpro0cdqoK7n3rZeVkOjQiMwh5N4DCMrrM0GD7Z7HXl/4yrisKDRmadPI6Qn4e98A9A78e98QAIhdFPxeh3AVDBljyL0HEDMiXWjM0qaR1RPwJzkc6jImLgJ/Cn6BK5j5jwI9ufcAEO0iXWgssbRppJXlZKriVKO6jFGSwxHzgT+Avij4BQAMiBWFxj0eL57sv+FIciYQ+IdR+akGf+DfZUy/RcAAYhPB/wBUVlZq6tSpKigosLorAGCJ/gqNI3UDEOwXB4Re7xz/M/Nz9dSkTP2kroEbACCOkPYzAOEq+AWAWGFloXF/Of+9z48bF6y4N1gRMIDYRvAPAPhC11pOM5wBuFVLm9qRt5/i3p7H3jCtD7K+7qyc/dQWlJ9qkNcYrZo0NiznBuyI4B8AELWs/MXBbq4VYIdzxp/9BYDIIvgHAEQtq35xQOSwvwAQWQT/AADAUr1vAHqWGSXwB8KD1X4GgNV+AAAIr7KcTP/youwvAIQPwf8AuN1uHT16VPv27bO6KwAAxCX2FwAig+AfAABYiv0FgMgh5x8AAFiG/QWAyCL4BwAAlrFqfwHArgj+AQCAZazaXwCwK3L+AQAAAJsg+B8AlvoEAABAPHAYQzLdQLW0tCg1NVXNzc1KSUmxujsAAGAA+P4GrmDmHwAAALAJgn8AAADAJgj+AQAAAJsg+AcAAHqh6oQ2VNcGfW5Dda1eqDoR4R4BCAeCfwAAIGeCQ+VBbgA2VNeqvOqEnAkOi3oGIJTY5AsAAOjx4smSpPLPZ/gfL57sD/zL7rjZ/zyA2EbwDwAAJPW9Adi486S6vD4CfyDOkPYDAAD8Hi+erCRngrq8PiU5Ewj8gThD8D8A7PALALCLDdW1/sC/y+vrtwgYQGxih9/rwA6BAIB4dnWOfyRy/l/4vJg42PtvqK6V12f0xB0339A5+P4GriDnHwAABA30gxUBh1rPKkNXv3/v/gAIHYJ/AAAgr88EneHveez1hSdRgFWGgMgi7ec68LMhAADh0RPw99QahDLw5/sbuIKCXwAAYDlWGQIig+AfAABYjlWGgMgg5x8AAFiqv1WGpPAUGQN2RvAPAAAsY9UqQ4BdEfwDAADLWLXKEGBXrPZzHVgtAACA2MP3N3AFBb8AAACATRD8AwAAADZhu+C/rq5OCxYs0NSpUzV9+nS1t7db3SUAAAAgImxX8Pvwww/rRz/6kebOnatPP/1ULpfL6i4BAAAAEWGr4P+DDz7QoEGDNHfuXElSWlqaxT0CAAAAIieq0n52796txYsXKysrSw6HQ9u3bw9oU1lZqZycHCUnJ6uoqEh79+4d8PvX1tZq2LBhWrx4sW677TatXbs2hL0HAAAAoltUzfy3t7crNzdXy5cv1/333x/w/NatW1VWVqZNmzapqKhIFRUVWrhwoY4fP6709HRJUl5enrq7uwNeu2PHDnV3d+tvf/ubPB6P0tPT9Y1vfEMFBQW64447gvans7NTnZ2d/sctLS0h+qQAAABA5EVV8L9o0SItWrSo3+fLy8v16KOP6pFHHpEkbdq0Sa+//rp++9vfavXq1ZIkj8fT7+vHjRun/Px8TZgwQZJ01113yePx9Bv8r1u3Ts8+++yX/DQAAABAdImqtJ9r6erq0oEDB1RSUuI/lpCQoJKSEu3Zs2dA71FQUKCmpiZduHBBPp9Pu3fv1pQpU/ptv2bNGjU3N/v/6uvrb/hzAAAAAFaJqpn/azl//ry8Xq8yMjL6HM/IyNCxY8cG9B6JiYlau3atvv71r8sYozvvvFP33HNPv+1dLherAQEAACBuxEzwHypflFoUTGVlpSorK/21BOT+AwAQO3q+t40xFvcEsF7MBP+jR4+W0+lUY2Njn+ONjY3KzMwM67ndbrfcbrc++ugjTZgwwV8zAAAAYkdra6tSU1Ot7gZgqZgJ/pOSkjRr1ixVV1dryZIlkiSfz6fq6mqtWLEiIn3IyspSfX29hg8fLofDEdL3bmlp0YQJE1RfX6+UlJSQvjcQSgUFBdq3b5/V3cDnGI/+xfO1icXPZmWfjTFqbW1VVlaWJecHoklUBf9tbW06efKk/3FdXZ08Ho/S0tKUnZ2tsrIylZaWKj8/X4WFhaqoqFB7e7t/9Z9wS0hI0Pjx48N6jpSUFIJ/RDWn08m/0SjCePQvnq9NLH42q/vMjD/wmagK/vfv368FCxb4H5eVlUmSSktLtWXLFi1dulTnzp3T008/rYaGBuXl5emtt94KKAIGED5ut9vqLqAXxqN/8XxtYvGzxWKfgXjkMFS/RIWWlhalpqaqubk55mZzAAAAEBtiZp3/eOdyufTMM8+wtCgAAADChpl/AAAAwCaY+QcAAABsguAfAAAAsAmCfwAAAMAmCP4BRJX77rtPI0eO1AMPPGB1VyDG41q4NtGDsQAGjuAfQFRZuXKlfv/731vdDXyO8egf1yZ6MBbAwBH8xyBmOBDP5s+fr+HDh1vdDXyO8egf1yZ6MBbAwBH8xyBmOHC1devWqaCgQMOHD1d6erqWLFmi48ePh/Qcu3fv1uLFi5WVlSWHw6Ht27cHbVdZWamcnBwlJyerqKhIe/fuDWk/YsEvfvELzZgxQykpKUpJSdHs2bP15ptvhvQc8TAezz//vBwOh77//e+H9H3j4dpEyscff6zvfOc7GjVqlAYPHqzp06dr//79IXt/xgKIPgT/MYgZDlytpqZGbrdb7733nqqqqnT58mXdeeedam9vD9r+73//uy5fvhxw/OjRo2psbAz6mvb2duXm5qqysrLffmzdulVlZWV65plndPDgQeXm5mrhwoVqamryt8nLy9O0adMC/v79739f56eOXuPHj9fzzz+vAwcOaP/+/br99tv1zW9+Ux988EHQ9nYcj3379mnz5s2aMWPGNdvZ8dpEyoULFzRnzhwNGjRIb775po4ePaqf/vSnGjlyZND2jAUQJwxCqqamxtxzzz1m7NixRpLZtm1bQJuNGzeaiRMnGpfLZQoLC80///nP6z7Prl27zLe+9a0Q9BjxqKmpyUgyNTU1Ac95vV6Tm5trHnjgAdPd3e0/fuzYMZORkWF+/OMff+H79/dvu7Cw0Ljd7j7nysrKMuvWrbuu/sfjv++RI0eaX//61wHH7Tgera2tZvLkyaaqqsrMmzfPrFy5Mmg7O16bSPrBD35gvva1rw2oLWMBxA9m/kPsi2Y5mOFAJDQ3N0uS0tLSAp5LSEjQG2+8oUOHDmnZsmXy+Xz68MMPdfvtt2vJkiV66qmnvtQ5u7q6dODAAZWUlPQ5V0lJifbs2fPlPkgc8Hq9evnll9Xe3q7Zs2cHPG/H8XC73br77rv79C0YO16bSHrttdeUn5+vBx98UOnp6Zo5c6Z+9atfBW3LWABxxOq7j3imILMczHAg3Lxer7n77rvNnDlzrtnu9OnTJjs72yxdutRkZ2ebZcuWGZ/PN6BzBPu3/fHHHxtJ5h//+Eef46tWrTKFhYUD7n9xcbEZPXq0GTx4sBk3blzA+8WK999/3wwdOtQ4nU6TmppqXn/99Wu2t8t4vPTSS2batGnm4sWLxhhzzZn/Hna5NpHmcrmMy+Uya9asMQcPHjSbN282ycnJZsuWLf2+hrEAYl+iZXcdNtQzw7FmzRr/MWY4EGput1tHjhzRu+++e8122dnZ+sMf/qB58+bppptu0m9+8xs5HI4I9bJ/b7/9ttVdCIlbbrlFHo9Hzc3NevXVV1VaWqqamhpNnTo1aHs7jEd9fb1WrlypqqoqJScnD/h1drg2VvD5fMrPz9fatWslSTNnztSRI0e0adMmlZaWBn0NYwHEPtJ+Iuj8+fPyer3KyMjoczwjI0MNDQ0Dfp+SkhI9+OCDeuONNzR+/HhuHOC3YsUK/fWvf9WuXbs0fvz4a7ZtbGzUY489psWLF6ujo0NPPPHEDZ179OjRcjqdAYV/jY2NyszMvKH3jkVJSUn6yle+olmzZmndunXKzc3Vz372s37b22E8Dhw4oKamJt12221KTExUYmKiampqtGHDBiUmJsrr9QZ9nR2ujRXGjh0bcDM6ZcoUnTlzpt/XMBZA7CP4j0Fvv/22zp07p46ODn300UdB84hhL8YYrVixQtu2bdPOnTs1adKka7Y/f/68iouLNWXKFP35z39WdXW1tm7dqieffPJL9yEpKUmzZs1SdXW1/5jP51N1dTX/RvXZtejs7Az6nF3Go7i4WP/617/k8Xj8f/n5+XrooYfk8XjkdDoDXmOXa2OFOXPmBCwJfOLECU2cODFoe8YCiBNW5x3FM12V39jZ2WmcTmdAzuOyZcvMvffeG9nOIa5897vfNampqeadd94xZ8+e9f91dHQEtPV6vSY/P9/cddddprOz03/c4/GYtLQ0U15eHvQcra2t5tChQ+bQoUNGkikvLzeHDh0yp0+f9rd5+eWXjcvlMlu2bDFHjx41jz32mBkxYoRpaGgI/YeOYqtXrzY1NTWmrq7OvP/++2b16tXG4XCYHTt2BLS1+3h80Wo/dr424bZ3716TmJhonnvuOVNbW2tefPFFM2TIEPPHP/4xoC1jAcQPgv8wujr4N+azgt8VK1b4H3u9XjNu3LjrLvgFepMU9O93v/td0PY7duzwF1z2dvDgQVNfXx/0Nbt27Qp6jtLS0j7tfv7zn5vs7GyTlJRkCgsLzXvvvXejHy/mLF++3EycONEkJSWZMWPGmOLi4qCBfw87j8cXFfza+dpEwl/+8hczbdo043K5zFe/+lXzy1/+st+2jAUQHxzGGBP+3xfso62tTSdPnpT0WfFUeXm5FixYoLS0NGVnZ2vr1q0qLS3V5s2bVVhYqIqKCr3yyis6duxYQC0AAAAAEEoE/yH2zjvvaMGCBQHHS0tLtWXLFknSxo0btX79ejU0NCgvL08bNmxQUVFRhHsKAAAAuyH4BwAAAGyC1X4AAAAAmyD4BwAAAGyC4B8AAACwCYJ/AAAAwCYI/gEAAACbIPgHAAAAbILgHwAAALAJgn8AAADAJgj+AQAAAJsg+AcAAABsguAfAAAAsAmCfwAIoru72+ouAAAQcgT/AGzv1KlTcjgceuWVVzR37ly5XC699tprVncLAICQS7S6AwBgtcOHD0uS1q9fr7Vr12rSpEkaM2aMxb0CACD0CP4B2J7H49HQoUP1pz/9STk5OVZ3BwCAsCHtB4DtHT58WPfeey+BPwAg7hH8A7A9j8ej+fPnW90NAADCjuAfgK21tLTo1KlTmjlzptVdAQAg7Aj+Adja4cOH5XQ6NX36dKu7AgBA2BH8A7C1w4cP65ZbblFycrLVXQEAIOwcxhhjdScAAAAAhB8z/wAAAIBNEPwDAAAANkHwDwAAANgEwT8AAABgEwT/AAAAgE0Q/AMAAAA2QfAPAAAA2ATBPwAAAGATBP8AAACATRD8AwAAADZB8A8AAADYxP8Drg3bXFG3NOYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "## Compare the mesh computation with the direct summation\n", "r = np.linalg.norm(particles[:,:3], axis=1)\n", "\n", "plt.figure()\n", "plt.title('Radial force')\n", "plt.xscale('log')\n", "plt.yscale('log')\n", "plt.xlabel('$r$')\n", "plt.ylabel('$F_r(r)$')\n", "\n", "# many of the particles have the same distance from the origin, so we skip some of them\n", "SKIP_N = 20\n", "\n", "for f, e in zip(n_squared_forces, epsilon_range):\n", " plt.plot(r[::SKIP_N], np.linalg.norm(f, axis=1)[::SKIP_N], 'o', label=f\"$N^2$ - {e:.1g} * $\\\\epsilon$\", alpha=0.3)\n", "for f, s in zip(mesh_forces, mesh_size_range):\n", " plt.plot(r[::SKIP_N], np.linalg.norm(f, axis=1)[::SKIP_N], 'x', label=f\"Mesh - N={s}\")\n", "\n", "# plt.ylim([5e-4, 1e2])\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')\n", "plt.show()\n", "\n", "\n", "# TODO: compare computation time\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Discussion\n", "- Using the baseline of $N^2 + 1 \\varepsilon$ softening we can see that already a 20 x 20 x 20 grid provides good accuracy but the mapping breaks down at small distances (dip)\n", "- Larger grids are more stable, especially at small distances => 50 x 50 x 50 already seems to be a good choice\n", "- very large grids show overdiscretization => noisy data even for the non-noisy particle distributions\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Time integration" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "import scipy.integrate as spi" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "09:38:49 - task2 (mesh) - Considering 202 particles\n", "09:38:49 - task2 (mesh) - Total mass: 2.996027805362462\n", "09:38:49 - utils.integrate - Reshaped 7 columns into particles.shape=(1414,)\n", "09:38:49 - task2 (mesh) - [0. 0.16294982 0.3 0.55231726 0.09929811 0.18281353\n", " 0.33657024]\n", "09:38:49 - task2 (mesh) - [0. 0. 0. 0. 0. 0. 1.] -> [0. 0. 0. 0. 0. 0. 1.]\n", "09:38:49 - task2 (mesh) - [ 0.16294982 0. 0. -0. 2.94302832 0.\n", " 0.00993049] -> [ 0.16294982 0. 0. -0. 2.94302832 0.\n", " 0.00993049]\n", "09:38:49 - task2 (mesh) - Consistency check passed\n" ] } ], "source": [ "# load the particles in the format [x, y, z, vx, vy, vz, mass]\n", "p0 = points[:, [2, 3, 4, 5, 6, 7, 1]]\n", "\n", "logger.info(f\"Considering {p0.shape[0]} particles\")\n", "logger.info(f\"Total mass: {np.sum(p0[:,6])}\")\n", "\n", "if logger.level <= logging.DEBUG:\n", " # assert that the ODE reshaping is consistent\n", " p0_ref = p0.copy()\n", " y0, _ = utils.ode_setup(p0, None)\n", " logger.debug(y0[0:7])\n", " p0_reconstructed = utils.to_particles(y0)\n", " logger.debug(f\"{p0_ref[0]} -> {p0_reconstructed[0]}\")\n", " logger.debug(f\"{p0_ref[1]} -> {p0_reconstructed[1]}\")\n", "\n", " assert np.allclose(p0_ref, p0_reconstructed)\n", " logger.debug(\"Consistency check passed\")\n" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "def integrate(method: str, force_function: callable, p0: np.ndarray, t_range: np.ndarray) -> np.ndarray:\n", " \"\"\"\n", " Integrate the gravitational movement of the particles, using the specified method\n", " - method: the integration method to use (\"scipy\" or \"rk4\")\n", " - force_function: the function that computes the forces acting on the particles\n", " - p0: the initial conditions of the particles (n, 7) array, unflattened\n", " - t_range: the time range to integrate over\n", " Returns: the integrated positions and velocities of the particles in a 'flattened' array (time_steps, nx7)\n", " \"\"\"\n", " y0, y_prime = utils.ode_setup(p0, force_function)\n", " \n", " if method == \"scipy\":\n", " sol = spi.odeint(y_prime, y0, t_range, rtol=1e-2)\n", " elif method == \"rk4\":\n", " sol = np.zeros((t_range.shape[0], y0.shape[0]))\n", " sol[0] = y0\n", " dt = t_range[1] - t_range[0]\n", " for i in range(1, t_range.shape[0]):\n", " t = t_range[i]\n", " sol[i,...] = utils.runge_kutta_4(sol[i-1], t, y_prime, dt)\n", "\n", "\n", " logger.info(f\"Integration done, shape: {sol.shape}\")\n", " return sol\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "09:38:49 - utils.particles - Half mass radius: 0.16294982222188462 for 50th particle of 202\n", "09:38:49 - utils.particles - Number of particles within half mass radius: 43 of 202\n", "09:38:49 - utils.particles - Found mean interparticle distance: 0.07497686469036202\n", "09:38:49 - task2 (mesh) - Mean velocity: 0.014831820818626048, timestep: 0.005055135549925524\n" ] } ], "source": [ "# Determine the integration timesteps\n", "# let's first compute the crossing time\n", "v = np.linalg.norm(particles[:, 3:6], axis=1)\n", "v_mean = np.mean(v)\n", "# a timestep should result in a small displacement, wrt. to the mean interparticle distance\n", "r_inter = utils.mean_interparticle_distance(particles)\n", "\n", "dt = r_inter / v_mean * 1e-3\n", "logger.info(f\"Mean velocity: {v_mean}, timestep: {dt}\")\n", "\n", "if np.isnan(dt):\n", " raise ValueError(\"Invalid timestep\")" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "09:38:49 - task2 (mesh) - Integration range: 0.0 -> 0.045496219949329716, n_steps: 10\n", "09:38:49 - utils.particles - Half mass radius: 0.16294982222188462 for 50th particle of 202\n", "09:38:49 - utils.particles - Number of particles within half mass radius: 43 of 202\n", "09:38:49 - utils.particles - Found mean interparticle distance: 0.07497686469036202\n", "09:38:49 - utils.integrate - Reshaped 7 columns into particles.shape=(1414,)\n", "09:38:49 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:49 - utils.forces_basic - Particle 0 done\n", "09:38:49 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:49 - utils.forces_basic - Particle 0 done\n", "09:38:49 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:49 - utils.forces_basic - Particle 0 done\n", "09:38:49 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:49 - utils.forces_basic - Particle 0 done\n", "09:38:49 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:49 - utils.forces_basic - Particle 0 done\n", "09:38:49 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:49 - utils.forces_basic - Particle 0 done\n", "09:38:49 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:49 - utils.forces_basic - Particle 0 done\n", "09:38:49 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:49 - utils.forces_basic - Particle 0 done\n", "09:38:49 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:49 - utils.forces_basic - Particle 0 done\n", "09:38:49 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:49 - utils.forces_basic - Particle 0 done\n", "09:38:49 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:49 - utils.forces_basic - Particle 0 done\n", "09:38:49 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:49 - utils.forces_basic - Particle 0 done\n", "09:38:49 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:49 - utils.forces_basic - Particle 0 done\n", "09:38:49 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:49 - utils.forces_basic - Particle 0 done\n", "09:38:49 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:49 - utils.forces_basic - Particle 0 done\n", "09:38:49 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:49 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - utils.forces_basic - Computing forces for 202 particles using n^2 algorithm (using softening=0.075)\n", "09:38:50 - utils.forces_basic - Particle 0 done\n", "09:38:50 - task2 (mesh) - Integration done, shape: (10, 1414)\n" ] } ], "source": [ "## Integration setup - use the n_squared forces for a few timesteps only, to see if the orbits are stable\n", "t_orbit = 2 * np.pi * r_inter / v_mean\n", "n_steps = int(t_orbit / dt * 5)\n", "n_steps = 10\n", "t_range = np.arange(0, n_steps*dt, dt)\n", "logger.info(f\"Integration range: {t_range[0]} -> {t_range[-1]}, n_steps: {n_steps}\")\n", "\n", "# The force function can be interchanged\n", "epsilon = utils.mean_interparticle_distance(particles)\n", "# epsilon = 0.01\n", "\n", "force_function = lambda x: utils.n_body_forces(x, G, epsilon)\n", "# force_function = lambda x: 0\n", "# force_function = lambda x: utils.n_body_forces_basic(x, G, epsilon)\n", "# force_function = lambda x: utils.analytical_forces(x)\n", "# force_function = lambda x: utils.mesh_forces_v2(x, G, 50, utils.particle_to_cells_nn)\n", "\n", "\n", "sol = integrate(\"rk4\", force_function, p0, t_range)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABbQAAAMoCAYAAAAX1mbVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd8ZHW5/z9TM8mk974pu9lkN1uzLVkWLkVAwYaKgkq5XisoIj9FFAVEqRbkiiJyL169gqI/L96fYkFEWbaX9F43vU7J9Ha+vz/i9+yZfmbmTGaSfN+vFy/dyeTMmck5zzzfz/d5Po+MEELAYDAYDAaDwWAwGAwGg8FgMBgMRpIjT/QJMBgMBoPBYDAYDAaDwWAwGAwGgyEGJmgzGAwGg8FgMBgMBoPBYDAYDAZjTcAEbQaDwWAwGAwGg8FgMBgMBoPBYKwJmKDNYDAYDAaDwWAwGAwGg8FgMBiMNQETtBkMBoPBYDAYDAaDwWAwGAwGg7EmYII2g8FgMBgMBoPBYDAYDAaDwWAw1gRM0GYwGAwGg8FgMBgMBoPBYDAYDMaagAnaDAaDwWAwGAwGg8FgMBgMBoPBWBMwQZvBYDAYDAaDwWAwGAwGg8FgMBhrAiZob2Befvll5Obmwmw2J/pU4kJPTw+USiW6uroSfSoMBmOVMZvNKCwsxC9+8YtEn0rc+NCHPoQbb7wx0afBYGwYWFxhMBjJxhNPPIH6+npwHJfoU4kLbD3HYCQHGyEHOnToEL70pS8l+jQYEcAE7VXg+PHjePDBB2EwGCQ97v/+7/9i79690Gg0qKysxAMPPAC32y3qdz0eDx544AF89rOfRXp6uujXnJ6exoMPPoi2trYoz1oapqamcOONNyI7OxuZmZl497vfjZGREa/nbNu2Dddddx2+/vWvJ+gsGQxxJGOM4DgOTzzxBKqrq6HRaLBz50689NJLAZ/b29uLa6+9Funp6cjNzcVHP/pRLCwseD1nbGwMMpks4H+//OUvvZ57+vRpfOYzn0FTUxNUKhVkMlnE7/373/8+MjIy8KEPfSii3/vhD3+In/70pxG/npR861vfwrve9S4UFRVBJpPhwQcfDPi8e++9F//3//5ftLe3r+4JMjYsazlWbeS40tfXhy996UvYvXs3MjIyUFJSguuuuw5nz571ey6LK4xkYKPEmmB50WOPPSbqnJaXl/H444/j3nvvhVwuflnf09ODBx98EGNjY6J/R2p+8pOf4LLLLkNRURFSUlJQXV2N22+/3e+c2HqOkSys1bjEcRx++tOf4l3vehcqKiqg1WrR2NiIb37zm7Db7aLPc63mQL784he/gEwmC6iB3XvvvXjmmWcwOzubgDNjRAVhxJ0nn3ySACCjo6OSHfPVV18lMpmMXH755eS5554jn/3sZ4lcLief+tSnRP3+//zP/xCZTEYmJycjet0zZ84QAOSFF16I4qylwWQykS1btpDCwkLy+OOPk+9+97ukoqKClJeXk8XFRa/nvvrqqwQAGRoaStDZMhjhScYY8eUvf5kAIB//+MfJc889R6677joCgLz00ktez5uYmCD5+fmktraWfP/73yff+ta3SE5ODtm1axdxOBz880ZHRwkActNNN5Gf//znXv+NjY15HfOBBx4gKpWKNDU1kbq6OhLpV5XT6SQFBQXkkUceiej3CCFk+/bt5LLLLov496QEACkuLibXXHMNAUAeeOCBoM89cOAA+ehHP7p6J8fY0KzlWLWR48o999xDsrOzycc+9jHy4x//mDzxxBOktraWKBQK8tprr/k9n8UVRqLZKLEGAHnb297mlxd1dXWJOqfvfe97JDMzk9hsNlHPp/z6178mAMgbb7wR0e9Jyac//Wly6623km9/+9vkP/7jP8j9999PioqKSH5+PpmamvJ6LlvPMZKBtRqXTCYTAUAOHTpEvvnNb5LnnnuO3H777UQul5N/+Zd/IRzHhX2dtZwDCTGZTKS0tJRotVqi1Wr9fu7xeEhxcTH52te+loCzY0QDE7RXgXgEv23btpFdu3YRl8vFP/bVr36VyGQy0tvbG/b33/Wud5FLLrkk4tdNBkH78ccfJwDI6dOn+cd6e3uJQqEg9913n9dznU4nycnJYUGJkdQkW4yYnJwkKpWK3HHHHfxjHMeRI0eOkPLycuJ2u/nHP/3pT5PU1FRy4cIF/rHXXnuNACA//vGP+ceooP3kk0+GPffZ2VlitVoJIYTccccdEQtPv/3tb6Ne+CRD0kWvg4WFhbCC9re//W2i1WqJyWRanZNjbGjWcqzayHHl7NmzfjFicXGRFBQUkMOHD/s9n8UVRqLZKLEGgNcxI2Xnzp3kIx/5SMS/lwyCdiDOnj1LAJBHH33U63G2nmMkA2s1LjkcDnLs2DG/33/ooYcIgIAb276s5RxIyL333ku2bt1KPvzhDwcUtAkh5M477ySbNm0SJfQzEg8TtOPMAw88QAD4/RdLIOzu7iYAyDPPPOP1+NTUFAFAHn744ZC/b7PZiFqtJg8++KDfz/7yl7+Qw4cPk6ysLKLVakldXR0vEr/xxhsB34tQ3D558iS55pprSGZmJklNTSWXXnopeeutt7xeg34mvb295AMf+ADJyMggubm55HOf+5yoCoP9+/eT/fv3+z1+9dVXk9raWr/H3/ve95KdO3eGPS6DkQiSMUY888wzBADp7u72evzFF18kAMjRo0f5xwoLC8kHPvABv2PU1dWRK6+8kv+3UNA2m81e1duhiEZ4uuWWW0hVVZXf4zMzM+S2224jZWVlRK1Wk+LiYvKud72L/6w3bdrk93cQJmB6vZ7cddddpLy8nKjValJbW0see+wx4vF4Ar7P7373u6SyspJoNBpy6aWXks7OzojehxhBu729nQAgv/3tbyM6NoMRKWs9VgnZyHFFyA033EByc3P9HmdxhZFINlKsoYK21WqNuMp6ZGSEACA//elP/X720ksvkb1795L09HSSkZFBGhsbyVNPPUUIIeSFF14I+PkKxe1XX32VXHLJJSQtLY2kp6eTd7zjHX5V47feeivRarVkeHiYXH311SQtLY2UlJSQhx56KGohaHFxkQAg9957r9/P2HqOkUjWU1yidHR0EADk6aefDnuu6yEHGhgYIGq1mvzhD3/g41cgfve73xEA5Pz586KPzUgcSjDiyg033ICBgQG89NJL+N73vof8/HwAQEFBAQDAaDTC5XKFPY5Go+F9flpbWwEA+/bt83pOaWkpysvL+Z8H49y5c3A6ndi7d6/X493d3bj++uuxc+dOfOMb30BKSgqGhoZw7NgxAEBDQwO+8Y1v4Otf/zo+8YlP4MiRIwCAlpYWAMDf/vY3vP3tb0dTUxMeeOAByOVyvPDCC7jiiitw9OhRHDhwwOv1brzxRlRVVeHRRx/FyZMn8fTTT0Ov1+NnP/tZ0HPnOA4dHR3413/9V7+fHThwAH/5y19gMpmQkZHBP97U1ITf/e53WF5eRmZmZsjPhsFYbZIxRrS2tkKr1aKhocHrcXoPt7a24pJLLsHU1BTm5+f9Xoc+99VXX/V7/KGHHsIXv/hFyGQyNDU14Vvf+hauvvrqsO8vEo4fP+4X3wDgfe97H7q7u/HZz34WVVVVmJ+fx2uvvYbx8XFUVVXhqaee4ucKfPWrXwUAFBUVAQCsVisuu+wyTE1N4ZOf/CQqKytx/Phx3HfffZiZmcFTTz3l9Vo/+9nPYDKZcMcdd8But+P73/8+rrjiCnR2dvLHlIJt27YhNTUVx44dw3vf+17Jjstg+LKWY5UUrMe4Mjs7y/8dhbC4wkgkGy3W/PSnP8UPf/hDEELQ0NCA+++/HzfffHPY3zt+/DgA+MWl1157DTfddBOuvPJKPP744wBWZp0cO3YMd911Fy699FJ87nOfw9NPP42vfOUr/Hui//vzn/8ct956K6655ho8/vjjsFqt+NGPfoRLLrkEra2tqKqq4l/L4/Hg2muvxaFDh/DEE0/gT3/6E+//+41vfEPU+19aWoLH48H4+Dj/O1deeaXf89h6jpFI1mNcoj7RgfIAX9ZDDvT5z38el19+Od7xjnfg5ZdfDvq8pqYmAMCxY8ewZ8+esMdlJJhEK+obgVDtKZdddlnA3T7f/2699Va/442Pj/sdb//+/eTQoUMhz+f5558nAPx2tL73ve8RAGRhYSHo7wazHOE4jmzZsoVcc801XrvyVquVVFdXk7e97W38Y3SH813vepfXMT7zmc8QAKS9vT3o69OKxW984xt+P6O7lH19fV6P013KU6dOBT0ug5FIki1GXHfddaSmpsbvcYvFQgCQL3/5y4SQi/HgZz/7md9zv/jFLxIAxG63E0IIuXDhArn66qvJj370I/K///u/5KmnniKVlZVELpeT3//+90HPJdJKSpfLRWQyGbnnnnu8Htfr9fzufiiCtcU9/PDDRKvVkoGBAa/Hv/zlLxOFQsF/1rSKIDU11WtGwalTpwgAcvfdd4t+L2IqtAlZqYZ/+9vfLvq4DEa0rNVY5ctGjiuUN998k8hksqAt/CyuMBLJRok1LS0t5KmnniK/+93vyI9+9CPS2NhIAJAf/vCHIc+HEELuv/9+AsDPGuiuu+4imZmZXjYovgSzHDGZTCQ7O5t8/OMf93p8dnaWZGVleT1+6623EgDks5/9LP8Yx3HkuuuuI2q1OuR6UkhKSgr/N8vLywtaLcrWc4xEs17iEuWqq64imZmZRK/Xh3zeesiBfv/73xOlUslXs4eq0CaEELVaTT796U+HPS4j8bAK7QTzne98B3q9PuzzSktL+f9vs9kAACkpKX7P02g0WF5eDnmspaUlAEBOTo7X49nZ2QCA3/3ud7j99tsjmpbd1taGwcFB3H///fzxKVdeeSV+/vOfg+M4r2PecccdXs/77Gc/ix/+8Id49dVXsXPnzoCvE+69C59Doe9zcXFR9PthMJKFRMQIm80m6h4Tez+mpKSgsrISf/7zn72e89GPfhTbtm3DPffcg+uuuy7kOYlFp9OBEOIX31JTU6FWq/H3v/8dH/vYx/x+Ho5f//rXOHLkCHJycrxiyVVXXYXHHnsMb775Jj784Q/zj7/nPe9BWVkZ/+8DBw7g4MGDePXVV/Hd7343yncXGN9zYjASQTLHqlhZb3Flfn4eN998M6qrq/GlL30p4HNYXGEkK+sp1tAuWMq//uu/oqmpCV/5yldw2223ITU1NejvLi0tQalU8tWelOzsbFgsFrz22mu49tprIzqf1157DQaDATfddJPX/a9QKHDw4EG88cYbfr9z55138v9fJpPhzjvvxB/+8Af89a9/xYc+9KGwr/nHP/4Rdrsdvb29+O///m9YLJaAz2PrOUYys9bi0iOPPIK//vWv+OEPf8hrQMFY6zmQ0+nE3XffjU996lPYtm2bqHNjOdDagQnaCYa2NEQCTW4cDoffz+x2e8jkRwghxOvfH/zgB/H888/j3/7t3/DlL38ZV155JW644Qa8//3vDytuDw4OAgBuvfXWoM8xGo1egW7Lli1eP6+trYVcLsfY2FjQY4R778LnUOj7lMlkId4Bg5GcJCJGpKamirrHorkfheTm5uL222/HY489hsnJSZSXl4c8r0jwjW8pKSl4/PHHcc8996CoqAiHDh3C9ddfj1tuuQXFxcVhjzc4OIiOjg6+tdCX+fl5r3/7xjcAqKurC9niFi2EEBbfGAknmWOVVKyHuGKxWHD99dfDZDLhrbfe8hPDKCyuMJKV9Rxr1Go17rzzTnzqU5/CuXPnorIx+cxnPoOXX34Zb3/721FWVoarr74aN954oyhxm67nrrjiioA/97X6kMvlqKmp8Xqsrq4OAEKu54RcfvnlAIC3v/3tePe7343Gxkakp6d7CeUAW88xkpu1FJd+9atf4f7778fHPvYxfPrTnxZ9vms1B/re976HxcVFPPTQQ2HPicJyoLUDE7QTjE6ng9PpDPu81NRUZGVlAQBKSkoAADMzM6ioqPB63szMjJ9XtS95eXkAAL1e7yUgpaam4s0338Qbb7yBP/zhD/jTn/6EX/3qV7jiiivwl7/8BQqFIugxOY4DADz55JPYvXt3wOcEWzRRxASN3NxcpKSkYGZmxu9n9DHhzicAfrdUjD8Ug5FsJCJGlJSU4I033vD7Mve9x4Sv48vMzAx/v4aCnp9Op5NE0M7NzYVMJgtYJfH5z38e73znO/HKK6/gz3/+M772ta/h0Ucfxd/+9rewHmkcx+Ftb3tb0GpGuoBLBHq9PmCSx2CsJskcq2JlvcQVp9OJG264AR0dHfjzn/+MxsbGoM9lcYWRrKznWAN450WhyMvLg9vt9psdVFhYiLa2Nvz5z3/GH//4R/zxj3/ECy+8gFtuuQX/9V//FfKYdD3385//PKAgpVTGVzqora3Fnj178Itf/MJP0GbrOUYys1bi0muvvYZbbrkF1113HZ599tmw5wus7RzIaDTim9/8Jj7zmc9geXmZr3o3m80ghGBsbAxpaWkoLCz0+j2DwcBizRqBCdqrQCih9oYbbsA//vGPsMe49dZb8dOf/hQAeMH47NmzXoFuenoak5OT+MQnPhHyWPX19QCA0dFR7Nixw+tncrkcV155Ja688kp897vfxSOPPIKvfvWreOONN3DVVVcFfS+1tbUAVnbur7rqqrDvB1jZlauurub/PTQ0BI7jvIaN+CKXy7Fjxw6cPXvW72enTp1CTU2NV1JH36dcLk+o4MRghCLZYsTu3bvx/PPPo7e316s169SpU17HLysrQ0FBQcD78fTp00E3t4SMjIwAQNDd+UhRKpWora3F6OhowJ/X1tbinnvuwT333IPBwUHs3r0b3/nOd/Df//3fAIL/LWpra2E2myOKb74MDAyEjG/R4Ha7MTExgXe9612SHpfBCMRajVWxsh7iCsdxuOWWW/D666/j5ZdfxmWXXRb0uSyuMBLNRo01gPi8SLie87VqVKvVeOc734l3vvOd4DgOn/nMZ/DjH/8YX/va17B58+aw67nCwkJRcYnjOIyMjHitsQYGBgAg6nzHZrMFrDpl6zlGolnrcenUqVN473vfi3379uHll18WvUG1lnMgvV4Ps9mMJ554Ak888YTfz6urq/Hud78br7zyCv/Y1NQUnE6n37BNRnLCBO1VQKvVAljZ6fElGr+l7du3o76+Hs899xw++clP8pXTP/rRjyCTyfD+978/5LGampqgVqtx9uxZr8WKTqdDbm6u13NpIKSJRbD30tTUhNraWnz729/GzTff7FeNvbCw4JeYPfPMM7j66qv5f//7v/87gJWWs1C8//3vx5e//GWcPXuWnwrc39+Pv/3tb/g//+f/+D3/3Llz2L59O78bymAkG4mMEUajETMzMygpKeHvkXe/+924++678cMf/hA/+MEPAKy0Xj377LMoKytDS0sL//vve9/78F//9V+YmJjgqwtef/11DAwM4O677+afFygGTE1N4T//8z+xc+dOvkpBCpqbm/H3v//d6zGr1Qq5XM77ygEriVRGRobXwkmr1Qb8O9x444148MEH8ec//xnXXHON188MBgPS09O9EsNXXnkFU1NTvNfb6dOncerUKXz+85+P/Q0K6Onpgd1u9/qbMBjxYi3HqlhZ63Hls5/9LH71q1/hxz/+MW644YaQz2VxhZFoNkKsCZQXmUwmPPXUU8jPzw9rYdDc3AxgRQwTCtpLS0t8Ny6wUgxEfx5uPXfNNdcgMzMTjzzyCC6//HKoVKqw5/yDH/wATz/9NICVz+QHP/gBVCoVrrzyyqDnTivLfT13T58+jc7OTtx8881+v8PWc4xEs5bjUm9vL6677jpUVVXh97//fcQ2SWs1ByosLMT//M//+D3+9NNP48SJE3jppZf81qDnzp0DAJYDrRVWcwLlRuX06dMEAHnHO95Bfvazn5GXXnqJmM3mmI75//7f/yMymYxcccUV5LnnniOf+9zniFwu95tKHYzrr7+eNDc3ez121113kT179pD777+f/OQnPyHf+ta3SFlZGSkvLycGg4EQQojT6STZ2dlk69at5PnnnycvvfQSGRkZIYQQ8sYbbxCNRkMqKyvJAw88QJ577jnywAMPkEsvvZRcf/31/Os88MADBADZsWMHeec730meeeYZ8pGPfIQAIDfffHPYc19eXia1tbWksLCQPPHEE+R73/seqaioIKWlpWR+ft7ruU6nk+Tm5pL7779f1OfCYCSCRMaIF154gQAgL7zwgtfjX/ziFwkA8olPfIL85Cc/Iddddx0BQH7xi194PW98fJzk5eWR2tpa8vTTT5NHHnmE5OTkkB07dhC73c4/77bbbiNHjhwhDz74IHnuuefIV77yFZKXl0fUajV54403vI45NjZGHn74YfLwww+TgwcPEgD8v3/2s5+Ffe+/+c1vCADS39/PP9ba2kpyc3PJpz71KfL000+TH/7wh+Rtb3sbAUB+85vf8M/7zGc+Q2QyGXn44YfJSy+9RF5//XVCyMrE8L179xKlUkn+7d/+jfzoRz8i3/72t/kp2QsLC4SQi5O4d+zYQaqqqsjjjz9OvvGNb5Dc3FySl5dHpqenw57/z372M/Lwww+T++67jwAgl19+Of/+x8bGvJ777W9/m6SlpZHl5eWwx2UwYmUtx6qNHFe+973vEQCkubmZ/PznP/f7z/dvyOIKI9FshFjzwAMPkF27dpH777+fPPfcc+Shhx4imzZtIjKZjPz3f/+3qPfU2NhIbrrpJq/H3vOe95BLL72UPPjgg+T5558nX/va10h2djbZvXs38Xg8hBBCZmZmiEKhIIcOHSI//elPyUsvvUTm5uYIIYT84he/IHK5nDQ2NpJvfvOb5Mc//jH56le/Snbv3k3uuOMO/nVuvfVWotFoyJYtW8gtt9xCnnnmGXL99dcTAOQrX/lKyPPW6/VEq9WSf/3XfyXf+c53yLPPPkvuuOMOkpaWRnJzc8nAwIDX89l6jpEMrNW4tLy8TCoqKohcLiePPfaYXw5w/PjxsOe5lnOgQNDXCMSdd95JKisrCcdxER+XsfowQXuVePjhh0lZWRmRy+UEABkdHY35mP/zP/9Ddu/eTVJSUkh5eTm5//77idPpFPW7v/3tb4lMJiPj4+P8Y6+//jp597vfTUpLS4larSalpaXkpptu8ksqfve735Ft27YRpVLpF1hbW1vJDTfcQPLy8khKSgrZtGkTufHGG/nARchFQbunp4e8//3vJxkZGSQnJ4fceeedxGaziTr/iYkJ8v73v59kZmaS9PR0cv3115PBwUG/5/3xj38kAAL+jMFIJhIVI4IlSB6PhzzyyCNk06ZNRK1Wk+3btwddYHV1dZGrr76apKWlkezsbPLhD3+YzM7Oej3nxRdfJJdeeikpKCggSqWS5Ofnk/e+973k3Llzfsd74403CICA/1122WVh37fD4SD5+fnk4Ycf5h9bXFwkd9xxB6mvrydarZZkZWWRgwcPkpdfftnrd2dnZ8l1111HMjIy/F7PZDKR++67j2zevJmo1WqSn59PWlpayLe//W3+c6VJ15NPPkm+853vkIqKCpKSkkKOHDlC2tvbw547IYRcdtllQd+/r/h/8OBB8pGPfETUcRkMKVirsWojx5Vbb7016HsP9DdkcYWRDKz3WPOXv/yFvO1tbyPFxcVEpVKR7OxscvXVV3utmcLx3e9+l6SnpxOr1co/9pvf/IZcffXVpLCwkKjValJZWUk++clPkpmZGa/f/clPfkJqamqIQqHwyy/eeOMNcs0115CsrCyi0WhIbW0tue2228jZs2f551BBaHh4mM8Bi4qKyAMPPMAL58FwOBzkrrvuIjt37iSZmZlEpVKRTZs2kY997GMB/85sPcdIFtZiXKI5RLD/br311rDnuJZzoEAEE7Q9Hg8pKSlhm2drCBkhPuNKGRsCj8eDbdu24cYbb8TDDz+8qq/94IMP4qGHHsLCwkLczfbf8573QCaTBWw1YTAY65eHH34YL7zwAgYHB0MOtJWasbExVFdX48knnwxogSQlbW1t2Lt3L86fPy+pfyeDwQgMiysMBiOZMBqNqKmpwRNPPIGPfexjq/rat912G37zm9/AbDbH/bXYeo7BSDwbIQd65ZVXcPPNN2N4eFhSO0xG/JAn+gQYiUGhUOAb3/gGnnnmmVVJRBJBb28vfv/736+6YM9gMBLP3XffDbPZjF/+8peJPpW48dhjj+H9738/E50YjFWCxRUGg5FMZGVl4Utf+hKefPJJcByX6NOJC2w9x2AkBxshB3r88cdx5513MjF7DcGGQm5gPvjBD+KDH/xgok8jbjQ0NMDtdif6NBgMRgJIT0/H/Px8ok8jrqznhJLBSEZYXGEwGMnGvffei3vvvTfRpxE32HqOwUgONkIOdOLEiUSfAiNCWIU2g8FgMBgMBoPBYDAYDAaDwWAw1gTMQ5vBYDAYDAaDwWAwGAwGg8FgMBhrAlahzWAwGAwGg8FgMBgMBoPBYDAYjDUBE7QZDAaDwWAwGAwGg8FgMBgMBoOxJmCCNoPBYDAYDAaDwWAwGAwGg8FgMNYETNBmMBgMBoPBYDAYDAaDwWAwGAzGmoAJ2gwGg8FgMBgMBoPBYDAYDAaDwVgTMEGbwWAwGAwGg8FgMBgMBoPBYDAYawImaDMYDAaDwWAwGAwGg8FgMBgMBmNNwARtBoPBYDAYDAaDwWAwGAwGg8FgrAmYoM1gMBgMBoPBYDAYDAaDwWAwGIw1ARO0GQwGg8FgMBgMBoPBYDAYDAaDsSZggjaDwWAwGAwGg8FgMBgMBoPBYDDWBEzQZjAYDAaDwWAwGAwGg8FgMBgMxpqACdoMBoPBYDAYDAaDwWAwGAwGg8FYEzBBm8FgMBgMBoPBYDAYDAaDwWAwGGsCJmgzGAwGg8FgMBgMBoPBYDAYDAZjTcAEbQaDwWAwGAwGg8FgMBgMBoPBYKwJmKDNYDAYDAaDwWAwGAwGg8FgMBiMNQETtBkMBoPBYDAYDAaDwWAwGAwGg7EmYII2g8FgMBgMBoPBYDAYDAaDwWAw1gRM0GYwGAwGg8FgMBgMBoPBYDAYDMaaQJnoE2DEDiEEHo8HHMdBqVRCJpNBJpMl+rQYDMYGgeM4uN1uyOVyKBQKFn8YDMaqQXMgj8cDpVIJuVzOYhCDwVg1CCFwu90ghPAxiMFgMFYLtg5jbGSYoL3G4TgOOp2OT55oIFMqlVAqlXxQY4GNwWBIDSEEdrsdJpMJCoUCcrmcj0EqlQoKhYIlVgwGI24QQqDX6+FyuXghyTcHYgI3g8GIFx6PBzMzM+ju7kZjYyO0Wq1X/KExiMFgMKSGEAKLxQKdTocLFy6guroaGRkZfjGI5UCM9QwTtNcotCLJ7Xbj5MmTaGpqQmpqKmQyGdxuN1wuFy9k+4pLLLFiMBixQgiBy+XC0tISent7sX//fsjlcnAcB5fLBafTCZlMBrlczhIrBoMhOR6PBy6XC6Ojo1Aqldi0aRNkMhk4joPdbgcAPgdiAjeDwZASWpXtdrvR0dEBj8fDr7toDgQgYA7E1mEMBiNW6HrLaDSir68PHo8HhBAQQuBwOELGIJYDMdYTTNBeg1AhyePxAAAflKh4RBMlGtR8BW6WWDEYjFigQhLHcZDJZCCEeG2gASvxB1hJuJxOJxwOBxO4GQxGzAiFJBp7gIs5EAAoFAo+B+I4Dg6HA3a7nc+RmMDNYDCihQpJHMcBgFf88F2H0ee6XC7+ucL4Q60iGQwGQwzCuEIIgVwu98qF6NqK5kBU4Bauw2ihI7NpY6wHmKC9xhAKSTQAUUHJF/ozX4GbVQ4wGIxo8BWS6MItWPwBwARuBoMhGdQnkm7oh4tBwlhCcyDqtx1sccds2hgMRiB8hSQaK4KtxYSb/L6/T7vYhAK30CqSwWAwfAlU1CgsLBLGIGEu4ytwC7vYaA7ENvkZaxUmaK8RAglJwqqkQIs5X8IJ3KyCm8FgBCOQkBSJ8BNI4GatcQwGQwzBhCThz8MRLAei9m3CLhM2h4TBYAgJJiTR/y8GMQI3m0PCYDACQWOFx+MJqAOFixNM4GasV5igvQYIJiRRZDIZ75sUCYEWd6w1jsFgCAknJFHPWto1IpZQiVWg1jiWWDEYG5NQQhL9N626jiYGhbNpC+TBzWAwNg7BhCQK/Te1IBGLWIGbbfIzGBsX4ca7sEOfQtdhwbrVgiFW4GZzSBjJDhO0k5hwQhJ9jsfjQXt7OxQKBbKzs5GTk4OcnBykpaVFFHAiqRxgrXEMxvonnJAEgE+y3nzzTWi1Wj7+ZGdnQ6VSiX4tVjnAYDB8CSckAYDD4cD8/Dymp6eRlZXFx6CMjIy4Cdxs0DaDsf4JJyTR59Cio87OTuTl5fE5UGpqakSvx+aQMBgMIb7rsEAxiP7c7Xajv78fBQUFyMnJQVZWFpRK8VJfsHUYm0PCSHZkJNKyXsaqILQYAQILSW63Gz09PZienkZtbS0yMzNhNBqh1+thNBqhVCr5hV1OTg40Gk1MAYcGNRrgWGscg7F+ESMkGY1GnD9/Hk6nE/v27YPNZoNer4fBYIDFYkF6erqXwB1JYuWLUOAWDmJilQMMxvpDrJA0OjqKwcFBZGRkoK6uDsvLy9Dr9dDr9SCEeG3yp6enx5wDCfMggM0hYTDWK2I29B0OBzo6OqDT6SCXy1FdXQ2XywWDwYDl5WWkpKR4rcNSUlJiOh8AAddhTOBmMNYfgeam+bKwsID29nZ4PB5oNBrk5+fD7XZDr9fD4XAgMzOTjz+ZmZlehYuR4rsGAxAwBrF1GGO1YYJ2EiIUkoTVQkKWl5fR1taG1NRUWCwWbNu2DZmZmfxzPR6P18KOJlbCxZ1Go4n6HH0Tq7m5OXg8HpSXl7PEisFYw4gVksbGxjA4OIiKigpMTk7iyJEjXgs+h8MBg8HAxyC73Y6MjAw+/mRlZUmSWNHkamJiApmZmcjLy2OJFYOxhhErJHV2dsJisSA3NxeEEGzZssWrutFsNvPxx2AwQCaTeeVAWq1WUoF7eHgYFRUVSE9PZwI3g7GGoVXR4YQkWpFtNBrhcrmwfft25ObmAlgpOqJFRnq9HiaTCWlpaV6b/Gq1Oupz9M2BXC4XJicnsXnzZrYOYzDWMKHmplE4jsPAwAAmJiZQU1ODkZERaDQa1NbWIj8/HwD4IiP6n9vt9hO4Y8lPfHMgi8UCs9nMa0Fs0DZjtWCWI0mEWCFpfHwcAwMDqKmpQU1NDY4ePernmaRQKPiABawI3AaDAQaDAVNTU+jr64NGo/GqHIgksfId8EY9bwkhrDWOwVijiGltczqd6OzshMlkwv79+6FUKjE5Oel3rJSUFBQVFaGoqAgAYLfb+aSqt7cXTqcTWVlZvMCUlZUVkwe30WiEWq3mvXRZaxyDsfYQIyQtLS2ho6MDOTk5aGlpwYULF2CxWLyeI5PJkJGRgYyMDFRWVoLjOF7gXlpawvDwsFeelJOTg9TU1Iht2oRFB/Pz8ygpKWFzSBiMNYpYIWlwcBDj4+NoaGhAWVkZjh075vc8pVKJvLw85OXlAQBfua3X6zE6Osp3sdEcKFabNqfTyXfsBppDQuMPy4EYjOQl3Nw0ALBarWhvbwfHcWhubgYADA8P88MhKampqUhNTUVpaSkIIV4C9+TkJDwej18XWyw2bTabDXNzcyguLg45h4QJ3AypYYJ2kiBWSOrq6sLy8jL27dvHi9W+ASwQCoXCK7Fyu918YnXhwgV0d3fH5H8rfB36fgDm/cZgrBXECEk6nQ7t7e3Izs7G4cOHoVKpYDabRQ0h0Wg0KCkpQUlJiVdiZTAYMD09DbfbHbP/LY0vwMXKASpwB1vcscSKwUg89F6lM0OCCUlDQ0O4cOEC6uvrUV5ezt+/4WKQXC5HZmYmMjMzsWnTJnAcx3exzc3NYWBgAGq1ms9/qMAdKTSu0PfkO4dEKHCzOSQMRvIQiZDk8XjQ3NyM9PR0ABeLfELFIZVKhYKCAhQUFABYWdPRddjw8DCsVqtfF1uk/rcA+LUVm0PCYKwdxMxNA4CZmRl0d3ejtLQUW7duhUKhgMVi4X8nWAySyWRIS0tDWloaysrK+IpqKnBfuHABhBCvHChSmzZhjkPfE5tDwlgNmKCdBIgRkvR6Pdrb25GZmYmWlhavamoxizlflEol8vPz+bYUl8vFi0sjIyNR+d/6TtwFvAVu+p/D4YDT6QQAL3GJCdwMxuojRkgihGBoaAhjY2PYunUrKioq+OdEc78GSqysViufWI2Pj0fsf+sbA4MNeKNdMKxygMFIDsQISTabDe3t7XC73Th06BAyMjL4n0Vzv8rlcmRnZyM7OxvV1dXweDwwGo0wGAyYmZlBf39/xP63gWKQ2EHbbA4Jg5EYxApJs7Oz6OrqQklJCerr673ubTGCti9qtRqFhYUoLCwEsNLpSnOg/v5+3v9W2MUWyqYtWA4EhB60zeaQMBiJRczcNI/Hg97eXszOzmLHjh189yt9vvB/xSCTyZCeno709HRUVFT42bSNjo7yeRLNgdLS0iRZh1GBG2BzSBjSwATtBCJWSBoZGcHIyAi2bNmCTZs2+T1HisRDpVL5JVa0cmBwcDBm/1uxiRWrHGAwVg8xnSF2ux3t7e1wOp04ePAgMjMzvX4ezYaaLzKZDFqtFlqtFuXl5V6JlcFgwOjoaMz+t+ESK1Y5wGCsLmKFpPn5eXR2dqKoqAgNDQ1+uYcUMUihUCA3Nzeg/+3ExAR6enpi9r8VK3CzLjYGY3UQKyT19/djenoajY2NKC4u9juO2E6RUKSkpKC4uJg/vrCLrbe3Fy6XKyb/22DrMI7jmMDNYCQIMXPTzGYz2traoFQqcfjwYb/uMWHsiTYGBbJpM5lM0Ov1WFhYwNDQEJRKpV8XmxTrMJoDAUzgZkQHE7QThFghqbOzEzabDQcOHEBWVlbAY0mxmPNFjP+tMLESTrwVAxO4GYzEEamQVFhYiKampoBdGjT+SHlfBkqswvnfRhoDmcDNYCQOMUISx3Ho7+/H1NQUtm/fjpKSkpDHk5JQ/rdjY2Mwm81+Nm2RIhS4mU0bg7G6iBWS2tvbIZfL0dLSgrS0tIDHiqZCOxyR+t9GmpuEErgdDgebQ8JgxBGxc9OmpqbQ29uLTZs2YfPmzQHvc+HvSRWD5HI5srKykJWVhaqqKnAcx2/y+9q0CWe2RUKgdVgomza2DmMEgwnaCcDj8WBqaoqv8AmUGAinZ+/Zsyek3Uc8BG1fAvnf0sXd9PQ0XC4XVCoVxsbGova/Za1xDEb8ob5pCwsLKC4uDiok0enZ27dvR2lpadDjCRdy8boXw/nfDg4O8okQgKj8b1lrHIOxOnAch/n5eXg8HuTm5ga8hywWC9rb2wEAzc3N0Gq1QY+3GjmAGP9bABgfH0dRUVFM/rcAE7gZjHhBhaTR0VHk5uYG7faamppCT08PKisrsWXLFlHf9fFai4n1v+U4DuPj4zH531JCzSFh6zAGI3oIITCZTJicnER1dXXAe8jtdqOrqws6nQ579uzhLWJDEU89SC6XewnX1KZNr9djamoKfX19/Fyiubk5ZGdnh7Vp8yVUFxsbtM0IBRO0VxFhRVJ3dzf27Nnjd7MHmp4t5kaNt6AtRJhY0cqB/v5+WCwWmEwmTExMgOM4r8ndGRkZUSdWwVrjWOUAgxEZNDEwmUzo7+8PKFRbrVa0tbWBEIKWlpaQQpKQeAravgTyvz137hxUKlXU/re+hGuNY5UDDEZkCCuS5ubm4PF4Ai7Spqen0d3djfLycmzdujXsPbUam/q+BPK/PX78OG9P4HA4YrZpA8TNIWECN4MhDmF37NjYGNLS0vjBjhS3242enh4sLi5i9+7d/CZWKIJ1ucWLQP63CwsL6O7u5v1vZTKZVw4Uzv820GsEyoHYHBIGI3roJrXNZsPo6Chqa2v9nmM0GtHe3o7U1FQcPnw47PolHhXa4Qhk0zY6Oor5+XlcuHAB3d3d0Gq1Xl0kKpUqotcQa9MWKAYxNhZM0F4l6A1IKwgDLdCCTc8ORyIWc76vr1KpkJ6ejq1bt/L+t7R6SUr/W8Bb4KaVA6w1jsEIjjAJoK1tgWyChNOz6+vrRYmzyXB/UVuQwsJClJSUxM3/NlhrHKscYDBCE8hmjdqNUNxuN3p7ezE/P49du3bxYnE4Ep0DASs2bXK5HDU1NdBqtV5dbNSmLSsrS3L/WypwB6qeVCqVLAdiMP4JFZKE7f2+cWN5eRltbW3QaDRoaWmBRqMRdex4WI5Egky2ModELpdj165dQf1vheswqfxvfW3aaB6kVquZwM1g/BPfuWn0e9z3ORcuXMDg4CBqa2tRXV0t6t6hz0nkfaZUKpGeng6z2Yw9e/Z42bSNjo6iq6sL6enpXuuwSLrYAPECNyEEGo2GCdwbCCZox5lAQhL9chcKSqGmZ4cjGRZzQoT+txUVFWH9b7OzsyWtHHjrrbewZ88epKam8h7cQnGJBTbGRiKQkOSbSNHp2XNzc37Ts8OR6IVcIIL53xoMhqD+t1JVDoyMjMBms6Gurs5L4GaJFWOjEkhIoosOislkQltbG9RqNQ4fPixaSALi4+MfK9T/VmjT5ut/SwXu3NxcpKenSyZwv/7662hqakJaWhqbQ8LY8PgKSYFiECEE4+PjGBgYQHV1NWpra6NakyQyDxK+djD/W4PBENT/NpKYCwRfh42NjcFqtaK+vp7Pk9gcEsZGJtA6zLewyOl0orOzEyaTCfv27YvIk1ooaCdLDApk00ZzoMHBQdjtdmRkZHh180eifQHB55C8+eabXjkQ62Jb/zBBO46EGvxIEykx07PDkew3phj/Wzo5V1g5EAnCygCXy8UHLNYax9jICIceCeOPMOkxmUxob2+HUqlES0tLVPcekHhBO9Tri/G/9bUHiKVygP7/YK1xwsUdiz+M9UowIQm4GIMIIZiYmEB/fz+qqqpQW1sb1XCzZCBYDArlf2swGDA+Pg5CiFf1ZLT+t/QzValUfJ7J5pAwNiqh1mH0fnE6nejq6sLy8jKampr4FvpISJY8KBhC/1tq0+brf6vRaLxiULQ2bTTO0I02NoeEsZER5kBCzYF+PxNCoNfr0d7ejuzsbLS0tETVQUpJ1hikVqtRVFTEF0zZ7XY+B6I2bZmZmV5dbNHYtNHPla6z2BySjQETtONEMCGJIpPJYLVa0d/fH3Z6djgSvSMXKYH8b6nALZX/Ld39DNcaxyoHGOuRUEISAH6zZ2JiAn19fSGnZ4cj2RdygQjkf0srB2L1vxUmrWJa41hixViPhBKS6L/dbjfa2tpgMBiwd+9evqMi2tdbKwTyv6VdbLH639LPQZj/BJtDwgRuxnqG5kDCzhAhMpkMJpMJvb29yMjIiEpIEh5rLRHI/5Zu8geyaYvE/5bjOC9xO9gcEoAJ3Iz1i3BuGuDvs0///9DQEMbGxlBXV4fKysqoYslaELR90Wg0KCkpQUlJCQB4dbFNT0/D7XYjKysL2dnZyM3NRUZGRkSDeWnMD1TBzeaQrD+YoC0xwoEZwZIoGuSokCR2enYwkuHGiyWACu1HAAT1vxVWDgRLOmn7TqDEVYz3GxO4GWudcEIScPE+GRwcFD09OxjJEH9iJSUlBcXFxXyHTCz+t3Qx50uwxIpVDjDWG+GEJGClOmdxcRG5ubk4fPhw1EISsPY29X0R2rRVVlbG5H9LP4dgORDgL3A7HA42h4SxbvAVkoKtwxwOB4aHh7F161Zs2rQppus8WTb2o30PSqUS+fn5fC4Yi/9tMPunQOsw301+oU0bW4cx1ipi5qbRroWZmRkcPHgQmZmZUb9esliOxAK1aSstLQUhBFarla/gnpycBMdxXuuwjIyMiHMgAF7dI8EGbQutalkOtDZggraEiBGS6PRsh8OB6upq1NXVxfy6azmABSKQ/y0VuIWTcwP53wYLZL6EE7gBVjnAWHuIEZKMRiNaW1sBAM3NzRFbjPiSLAs5KYnE/5YmVsJYIib+AGACN2NdIVZIGh0dxfj4ONLS0tDU1BTzNb3ecqBA/rdCm7ZQ/reR5kAU30HbwWIQW9wxkhkxQpLD4UBHRwecTidqampQVVUV8+sKLX/WA6H8b4eGhvxs2oT+t2LnGYTqYmODthlrkWBz03xZWFhAR0cHAODAgQMR+9eHO4dEIsX9KZOtDLnVarUoLy/3smmjWhAAr01+rVbrFYMjyYF8BW5hFxubQ7I2YIK2RIgRkoTTszMyMpCeni7Z6yc6gAHxq9RUqVRelQOh/G8zMjKiOpdwrXGscoCRzIgVksbGxjA4OIjq6moMDw/HVBUZ6BwSTTxiUCD/W1o5oNfr/fxvHQ5H1P53wgVhsMoBJnAzkhFfIclXMAVWhKTOzk5YLBZUVVXBZDJJtvhJhvgDxCcGBbJp8/W/pTZttMpLqhyIzSFhrAXECkmLi4vo6OhAXl4esrOzJRWS1jO+/reBbNqo/63NZovqcxVr08bmkDCSEbHdsQMDA5iYmEB9fT26u7sl0RHW+z0QyKaNdrEtLS1hZGSEz5OirXRnAvfahgnaMSJWSKLTs2tqalBTU4MzZ85ItgDbaDdSKP/b4eFhAEBraytyc3Mj9r+lhGqNY5UDjGRCjJAknJ69f/9+pKenY3h4GBzHRXxv+LIeK7RDEahyQOh/q9PpIJPJ4HA4+MolWjkQyWsES6wcDodX9SRrjWMkErFC0tLSEjo6OpCTk4OWlhbMzc3BaDRKcg7JJGivBoH8b6nAPTk5CQA4e/asV/VkNJtsYm3afCu4GYzVRKyQNDg4iPHxcTQ0NKCsrAznz5/n86ZYSYY8aDVfO5BNmzAH4jgOZrNZlE1bMJjAzVgrhJubBgBWqxXt7e3gOA7Nzc1IS0tDd3e3JPdtsliOrNZry2QyZGZmIjMzE5s2bfKyaVtcXAQAnDp1yq+LTap1GJtDknwwQTsGxApJdHr2vn37eJ9omUwmaSK1kRZzvggTK4fDgWPHjqGsrAwGg8HP/zY7OxtZWVlxSayEAreweonBiAdihSSdTsdPzz58+DBUKhW/8JMykUo0iYqBMpm3/21vby+AFdsS6n8rnBMQyv821GuwygFGsiFWSBoeHsbY2Bjq6+tRXl7OX6vrbVM/UTFIaNNWUVGBY8eOoaamBgaDAaOjo7BYLLz/La30FjvgjRKJwM3mkDBWCzFCks1mQ3t7O9xuN5qbm/nuWKlj0EZeiwn9b3t7eyGXy5Gens5vson1vw2FcB0mtGljg7YZiULM3DQAmJ2dRVdXF0pLS7F161Y+jwewrjbVEoXQpq2kpATHjh1DQ0MDjEYjZmZm0N/fj5SUFC+Lkki7SIKtw4SDttkcksTBBO0oEApJ1Css0MWq1+vR3t6OzMxMv+nZUidSGzGABYJ+DiUlJfxggUj8b8XCKgcYiUSMkEQIwfDwMEZHR7F161ZUVFR47eID0idSjBU0Gg2qqqpE+d9mZ2dH7GMuVuCmcSolJYUlVgxJESskdXR0wOVy4dChQ7wlGMA29eMF/UwLCgr4Ljbqf2swGPxs2nz9b8USTuCmOJ1O/vhM4GZIRaRCUklJCerr672ucynjBj0Wi0MrqNVqlJWV8TZtofxvs7OzkZ6eHvEmPxB+DonRaOTFK7YOY0iJmHWYx+NBb28v5ubmsGPHDt6yB5B+E2yjb6pR6PvPzc3lZ7F5PB4YDAYYDAbepk2j0XgVGkXbxQZ4r8PoHBK73Q6DwYC0tDRkZmYygTvOMEE7QnwDWCAxmxCCkZERjIyMYMuWLQGnZ8djMbcR2kzC4bvBIJNF5n+bk5MTcWJFXyeQwD00NAS3243a2lpWOcCQBDFCkt1uR3t7O5xOZ8Dp2VLv5LMk6iK+A5Ei8b+l/6WkpET0msESq/n5eUxMTGD37t2sNY4hCWKFpPn5eXR2dqKoqAgNDQ1+gqmUm/r0vBj+ORAQmf8ttQeQQuC2WCw4c+YMLrnkEgBs0DZDGsQKSf39/ZienkZjYyNvjSFELpdLug5Lhu/SZDgH3xxIJgvuf6vT6bz8b2kMSktLk0Tg7urqwq5du7yGhLJ1GCNWxMxNM5vNaGtrg1KpREtLS8DCFam1oGQg0ecRKAdSKBR8FxuwYtNGZ7FduHAB3d3d0Gq1Xpv8UnSxTUxMoKioCCkpKfwmG12HCa1qE/2ZrQeYoB0BYoQkOj3bZrPhwIEDyMrKCngsqRdzy8vL8Hg8yM/Pj0qQXS+Em64tk4X2vx0dHYVMJgs4OTcSaNDiOM7r/wsrB1hixYgEsUISnZ5dUFCApqYmKJX+YT4eO/kTExPIzMxEbm5uxILseiJcDArlfzsxMYGenh6kpaVJ4n9LCOGTJrrJ5nA4YLfbWWscI2LEWoz09/djamoK27ZtQ2lpacBjSV2Z5Ha7MTo6GvXcjPVCuPgDhPa/nZ6ehtvt9hO4o+liA8B3qYWzaWNzSBhiECsktbe3Qy6Xo6WlBWlpaQGPJaWYBFwcWJ+fnx+xILueoOueYMhkwf1vqU2bUqn062KLRuDmOI7vUAs2aJvNIWGIRezctKmpKfT29mLTpk3YvHlz0O9PqbUgq9UKAHC5XBELsusFMTmQUqlEfn4+8vPzAax8XrSLbWRkxMumjcagQGvpUNDvF2oDKXYOCRO4o4MJ2iIQKyQJp2fv2bMn5MUvVSJFd5mcTic8Hg/Gx8chk8mQk5PDD0WMNBFYy4RLpHyRybz9b+kgE51Oh6WlJQwPD8fkf8txHL9IC9caxwRuRjAinZ69bds2lJWVhTymVNVJRqORt9VYXl5Gb2+v1053Tk5OxInAWibSGCT0vwVWEitaOSD0vxW254pNVIXfV8Jz8m2NCzZkkiVWDIrH44HT6QQhJGgOZLFY0N7eDgBobm6GVqsNejyp4g8hBHNzc7Db7bBYLJidnYXL5eJtxXJzc6Pya42WRN8vYhZzvgj9b4PZtPl2sYkRuGn8AULbtLFB24xwEELgdDrhdrv5zdhA18bU1BR6enpQWVmJLVu2hLxOpRKTHA4HFhcX4Xa7+a4EpVLJr8E22iZ/pDFI6H9bVVUFj8fD27RR/1uhTZtY/1ua5/jmQGwOCSMaOI6DxWLxij++14bb7UZ3dzeWlpawZ88eXjANhlRa0MLCAr/ZZzQacfToUd5WLDc3d0Nt8ke6BgMAlUqFwsJC3qbN4XDw67DBwUHY7XYvmzaxn6dvDuRbwc3mkEjHxlEZooQKSR0dHcjOzuYHGgkJND073M0kRSJlNpvR2toKj8eD0tJS1NTUQCaTwWQyQafT8X6twnb23NzciKv9xJIMX/rRLOaEyOVyvnIAQEj/W7rAC+V/KwxmlECtccEqB5jAzaBC0uuvv45LLrkk4PUmnJ7d0tISUkiixFohSdup+vv7IZfLsXXrVmRkZMDtdvNiyPDwMGw2GzIyMvjFXTRDWcWSDPdHrDFIpVKhoKAABQUFAC5WfdHP09f/NisrK+iGAcdxAZOuYIkV3bhllQMMCk24p6enMTIygubm5oDXwPT0NLq7u1FeXo6tW7eGvcelqNB2uVzo7OyEwWBASkoKGhsbIZPJeFsxnU6H8fFxAPDKgdbzJn+s8Ucm87dp8/W/JYR45UDBugID5T/C12FzSBhioNdFe3s7tFotamtrAwpJPT09WFhYwO7du/nvz1BIEYPo0G2FQoHU1FQUFhZi06ZNWF5ehk6n4ys109LS+BwoXpv8yWK7FGsMEhYRAQho0ybG/1ZoM+ILE7gZYhF+N7355ps4cOCAn40jsFLc097ejtTUVBw+fFjUJlasWhAhBENDQxgbG4NCoeC7GSoqKvgcqLe3d9U2+ZMhBsUaf4CVLjahTZvdbudzoN7eXjidTq8utmDr2nA5kBiBm9m0iYMJ2iEQtrbRFhPfmyTY9OxwxLorRxePmzZtgsPh4BcGwp1u6tdKxZDx8XH09PTE3EaRzEgRyISE8r+dnp7mJ+cG87+l9jShCJVYORyOoNWTLLFa3whb22hCFShZmJmZQXd3t9f0bDHEEoNoFYJOp0NTUxNaW1v5a9F3p5smAjqdjm9nz87O5hd3680iSeoYpFar/SoHAvnfUnFJWDkQKpkSEknlgK9FCWP9QnMfj8fDx4tAQlJvby/m5+exa9cu/joNR6wV2kajEW1tbUhPT0djYyN6enoA+NuKCbuu5ufnMTg4CLVa7SUuSVU9uV4Wc0JkssD+t8IukmD+t2LjD30dMQI32+TfOAivAWqfFej6Xl5eRltbGzQaDQ4fPiyqeheILQcihGB0dBTDw8PYunUrX0gE+AuytOtKp9N5bfILqyfX03ep1DEokE1bMP9bGodUKlVIQdsXsQI3m0OysQjUHev7PU8IwYULFzA4OIja2lpUV1eLviZi2VRzOBxob2+Hw+HAoUOHcObMGf54Qlsx2nWl0+l4LQiAl26xniySpI4/AKDRaFBSUoKSkhL+86QxiK5r6YZBTk4OMjIy+Bw3khwo0DqM5kAAm0MSivWjZEqIr5BEq0R8E59Q07PDEe2unHBiLq1C6O7uDvp8XyN8Ou1er9djYGCAF0Po4i4ar8RkIh6BTEik/re0PTISWOUAQygkAeBb3IQxKNT0bDFEG4NMJhPa2tqQkpKClpYWpKSkhEzKfBMBWu2n0+l4McS3ejIakkFMAuIfg0L53/b09Hj539rt9qjOhbXGbWx8hSRaJeKbA9FYoFarIxKSgOgXcsLOELp4NBgMQZ8v7Lqi7exGoxE6nY7/ztZqtXwOtNY3+eMdf2Syi/631KYtmP8t/RyjOSdm07ax8RWS6N+b/ps+Z3x8HAMDA6iurg5YuR0K3+OJxel0orOzE2azmZ+V1Nvby5+TL75dV8Jqv+7ubn6Tn+ZAa32TP94xKJT/7ejoKLq6upCenu7VaRvtkFvAex3GcRy/DmNzSNY3geam+a7DaCwwmUzYt28fv4kllmg39mlnSG5uLvbu3cvbc9HrVIiw64rODqMbcPQ7W6VSeVnVrmWLpNXIgejnSW3aaFcg1YI4jkN2djZcLhdsNhuysrKiyoFCCdysgtubtZu1x4lAQpJvEBMzPTsc0VQGWK1WtLW1QSaTeU3MjWRh6DvtnoohOp0Ok5OT/E1IA1s0AxETSbwDmS9i/G/NZjNsNlvMk3MBVjmw3gkkJNG/oTAGmUwmtLe3h5yeHY5oYhD1p6yqqsLmzZv5cxMbg3yr/agY4muRJKyejJdFUrygm6CrRSj/28XFRd57NFL/WyHhBG6AVQ6sFwIJSb45kFBUrqqqQm1tbVTXVKTxx+12o6urC3q9Hk1NTfzGciQ5kO+mNBVDhF6JdEMoNzd3zW3yr3b88fW/5TiO3+Sfn5+H1WrF8ePHI/a/FSLMfwAmcK93AglJgHcO5HQ60dXVBaPR6BULIiGaGGQ0GtHa2orMzEy0tLTw+Tw9RzFxyHeT32q18tWTY2NjfMdDNHOQkuF6X+0YFMz/dmFhAQDw1ltv8RXxtONWKoE70BwStg5b2wjt93znpgljEBWVs7Ky0NLSEtVaJdKNfd/OkIqKCq91mJjjCTelhZv8wsI82vGQm5sb8SZ/oq/31daBfLsCCSEwm818V87AwAAGBwe9utii0dYCrcPYHJKLMEH7n4QSkoCLQUzs9OxwRJpIzc3NobOzE2VlZX7+lLG0rPiKIWazmV/cjYyMeE2azs3NDboQWe0AEoxEn4dvJcbZs2eRkZEBQkjE/rfBEFM5IJPJcNddd+GOO+7AwYMHpX2TjLgQTEiiyOVyuN1uTExMoK+vL+z07HBEUqEdqDNEiLAyINIKKaFFEu140Ol0fCsptUiiiVWohchGj0HCyoGysjIMDAzA5XIhMzPTy//Wd8Cb1JUDADA0NIQnn3wSL7/8clL8XRjhCSYkARdzIJfLha6uLhgMBuzdu5ffzI2USDtEAnWGUGLJgXzFEOGGUGdn55rb5E90DiTsuElNTcX09DSqq6uD+t9mZ2dHXA0WSuAWziF59tlnkZ+fj49//OMSvkNGvAglJAEXcyC9Xo/29nZkZGTg8OHDUW96RxKDhNXgmzdvRlVVlde5RSJoCxGKIaE2+YXVk8m+yZ/oGET9b7VaLZaWlnDw4EE+pvf19fn532ZmZkYtcAeaQyIUuD/4wQ/i+eefR0VFRTzeKkNiAlmM+MYgj8eDoaEhjI6Ooq6uDpWVlVFf75FoQYE6Q3yPFQ3CTf7a2lqvTf6hoaFVnYMkBYmOPzKZDBkZGcjIyMDw8DD27dsHj8cDvV6PpaUlDA8Pe9lSZWdnR2X5IuxiAwLbtB09ehR//etf8fTTT0v9NpMOJmjD22IE8BeSgJUgtry8jPHxcVHTs8MhttWN4zgMDAxgcnIyaDV4LIs53+PQm5C2ktJdOzppWqPReFVPRlptHG9WuzJADDk5OSH9b6OZnCskmMD9j3/8A7fddpvUb4cRB0IJSRSZTIahoSGYzWZR07PDITaRslgsaGtr4zfxAlWDSxWDfDseqEWSTqfj7xffwSbJdr8nOpkSQgiBRqNBRUUF738r3LQcHR2FTCaL2Usv0OJubm4OZ8+ejcfbYkhMOCEJuJizHD9+HFqtNiYhCYgsZgTrDPF9D1Lgu8lvsVj46kmhRZKwetL3fSWSQD7niYK2+ovxvxVuskXTxQaAr8qmOVB7ezvq6+slf18M6QknJNHHjEYjZmZmsGXLFmzatCmma11sDArWGRIPQs1B8t3kT1aLpGTJgeh3mW9FvNDyJZT/bSQEyoFcLhf+8pe/xDQrgrF6COemhaqsHxgYAMdxOHjwYMDhkJEgdlPNYDCgra3NrzMkELHmQoHmINEcaC3MQUoWHYgKzAqFAlqtFpmZmdi0aRM4jsPy8jL0ej3m5uYwODjoVTwaKK8UQyCBe2xsDF1dXVK+raQlub4FE4BQSBJ+GQlxu91YXFyE1WrFnj17RE3PDocYMYkOnPR4PGhuboZWqw16rHj4xworbYCLCxHqfdvV1cWLsXa7PSk8l5IlkaL4DgQI5X9LJ+cKE6to2p3p+7dYLKKHlDISgxghCVhpc3U4HFCpVKKnZ4dDTCJF5wQE6gxZDQJZJNHEilok0XvF4/EkhY92MsUgj8fjJToG2rQM5H8rFJciaXcWvo7FYkn6alaGOCGJEILp6Wl4PB5UVlb6VSdGgxjvyHCdIZR45UBCiyR6vywvL0On03lt8lOBOxlIpvgTyLs2kP+t0KaN+t/GIthRcYnGIEZyQ61jQuVADocD09PTcDgcAasTo0FMDDKZTGhtbUVqaqpfZ4iQaCu0wxHJHCS1Ws1yIAGBBrLJZDK/Tctg/rc0D8rIyIgqB7JarQCAjIwMyd4TQ3qERY1UDA30915YWIDFYkF2djaampok2UgKpwWF6wzxPRb9HSnRaDQoLS312uQPNgeJdkclkmSKP4D/UFpqKZWdnc1vWlKBm+aVtCsnlsHlNAfaKDrQhhW0xQpJdHo2IQSFhYWSiNlAeDFpYWEBHR0dKCoqQkNDQ9iq3dVIYnwXIsJqY71eD4/HA6vV6lU9udpBJZmqk4DACZWQUP63k5OT8Hg8fOCjw2LEioobKZCtRcQKSXR6tlqtRm1trWQbR6FEII7j0N/fj6mpKVFzAuIlKPmSmpqKsrIylJWVeVUbLy0twWKxoL+/H4uLi3zlQKRerVKQTDEoXPwJ5X9L253VanVU/rcs/iQ/YoUk2uYKQBIxGwhvU0Q7QxQKRdg5Aat1vwkXIoB3tfHo6CgAoL29HXl5ebwYG2nHVawky2IOCB9/AH+bNqFgRz3NMzIyeHEpks+UxaDkhq7DqNVjsBi0uLiIjo4OaDQapKWlSSJmA+HzFjGdIcJjAfFfi4WagzQxMQG3280Pi4vWqzVWkiUHEjMMMpT/LfU0l8lkUfnfWiwWAGAxKIkJNjfN9zkDAwOYmJjg7fyk6ooIpQUJO0PEDJykG7nxjEHCTX5fi6TZ2VkYjUbI5XL09fUlbA5SsuRAwQRtX4T2IwB4602hp3laWhqf/0TymW6kHGhDCtpihSS6K1ZTUwMA/IJOCoLtyhFCMDQ0hLGxMWzbtg1lZWWijpUIhNXGtNIhIyMDer0e4+PjAODVlhJNK3ukJEsgo1ALCTH4+t8Kd0LpZyrW/9bj8cBut2+YQLbWECMk+U7P7uvrkzRRCRaDxHaG+B5rtSuDfKuNT58+jYKCAhBCeK/W1NRUL//t1bBISqYYJGZBJ8S3K0c4LEbofyuMQcE2WFh1ZPIiVkhaWlpCR0cHcnJysH//fhw9elSy61vYmu17vEg7QxIRfwDvTX5CCN544w2UlpbCbDbzXq1ZWVl8DrQaFknJFn8ifb++gp3QHiBS/1ur1cpyoCRFrJA0ODiI8fFxNDQ0gOM4zM/PS3YOwSq0hZ0hYu3dEnXPCYtiDAYDH691Oh2Gh4dFz0GSkmSJQdHEH2FeSW3aaBfb0tISRkZG+DyJ5kHB1rZWqxUajSbpLGEY4eemUaxWK9rb28FxHJqbm9HX1yephUywdZjYzhDfY602vhZJFy5cwMLCAhQKRVRzkKQgmTbUgPCCti++1psul4tfhwlt2oRdbMHWthspB9pwUVaskNTV1YXl5WXeL21sbEzSIBZoV87hcKCjowN2ux2HDh0S3aZEF3OJNsFXqVQoLy/nd7nprh1tZVepVF7ek/GwKEn05+BLNAkVxXcnNBL/W7r5slEC2VpBrJBEp2dnZ2fj8OHDUKlUotpjIyFQDIq0M4SSKEHJ9xy0Wi0KCwtRU1PDD4+iA24tFovfYJN4JFbJFINiiT8AQvrfjo+Pe1UO+PrfMkE7ORErJA0PD2NsbAz19fUoLy/nZ4zEek1RAlU0CjtDduzYwYuaYo6VLPddQUEB/30trJ6kG9JCcSkem/zJ8jkA0lwrYv1vafGEcNOAxaDkQ6yQRDfW3W43mpubkZ6ejqmpKcnFJN+8RdgZcvjwYdEC8GpVaIc7B7lcjsrKyoTOQUqWGCRF/JHJZMjMzAzofzs/P8/btAXyvzWbzatSyMWIDDFz04CLG+ulpaXYunUrFArFqqzDJicn0dvbi+rqatTW1oq+fpIhBsnlcqSkpGDLli0AEjMHKZniTzAr40hQqVRe7ghOp5Nfhw0PD8NqtfL2v7SDkG6imc3mDZMDJd41fZWgAczhcIQUs/V6PY4fPw4AaGlp4RfyUgcx3105nU6H48ePQ6VSobm5OSLPrWQQk3yhSUBVVRX27NmDI0eOoKGhASkpKZiYmMCxY8dw6tQpDAwMYGFhgf9iiZVkCWQUqRb/wMXKgcrKSuzatQtHjhzBrl27kJGRgYWFBZw5cwbHjh3DP/7xD36irZhA9swzz6CqqgoajQYHDx7E6dOnQz7/17/+Nerr66HRaLBjxw68+uqrXj+/7bbb+ASB/nfttdd6PUen0+HDH/4wMjMzkZ2djY997GOSdkAkI7QzxOVyAQjeGTI0NIRz586htrYWu3fv5hccCoUibjGIEILBwUG0tbWhvr4ejY2NEYm9yXTPUZRKJQoKClBXV4eDBw/i8OHDKC8vh8PhQG9vL44ePYrW1laMjY1heXlZshiaTDFIyvgDXKxI3bJlCw4cOIAjR47wCffo6CiOHj2K06dP42c/+xlOnTolerHMYlD8oZtpTqfTa2aI77Vqt9tx5swZzM7O4tChQ6ioqPBKyqWKQb7Hs9lsOHXqFPR6PVpaWkSL2YB3DpToXIh+nrTjqqysDDt27MCRI0ewZ88eZGVlYXFxkf++7unpwczMDBwOhySvv57jD/W/LS0txfbt23H48GHs378fBQUFMJvN6OjowNGjR9HW1obHHnsMi4uLSEtLC3tcFn9WB7oOczqdIcXsubk5HDt2DBkZGbyYDcR/HTY7O4sTJ04gLy8PBw4ciKiaORnEJOF5ABc7rmpqatDU1IQjR45gy5YtXt/XZ86cwdDQEHQ6Hb/JGSvJEoOkjj/ARdup6upq7N27F0eOHMH27duRmpqKmZkZnDx5EsePH8cf/vAHvPTSS6ILt1gMWh1oUWOodZjH40F3dze6urqwY8cObNu2jV8PxSMG0Zjh8XjQ2dmJ/v5+7NmzJ6zNUaBjAYmPQUJox1VDQwNaWlpw6NAhFBUVwWKx8N/XHR0dmJiYgNlsluTc13P8AVY+08LCQmzduhWHDh3C4cOHUVFRAZfLhYGBARw9ehRnz57Fs88+i76+PlH2JOsh/myICm2xFiMjIyMYGRkJOD07XkGMEILR0VEMDw9j69at/OIxmmMlknCvL6z0q62thcvl4qtshoeHYbPZ/KonowkEyRLIKPEKaEBw/9tTp07h97//PQBgy5YtuPzyy/Hggw+iurra7xi/+tWv8IUvfAHPPvssDh48iKeeegrXXHMN+vv7+QnHQo4fP46bbroJjz76KK6//nq8+OKLeM973oPz58+jsbGRf961116LF154gf+3b1L34Q9/GDMzM3jttdfgcrlw++234xOf+ARefPFFqT6epEFsRZLdbuc7NAJNz45XZYDD4UB7ezscDkdEnSFCkiEG0fMIRkpKilelHx0ERKsnAXhVT0YzDBFIngnbQHzjDxDc//YPf/gD/va3v8FsNuPAgQN45zvfia997WsBj8FiUPwRW5E0Pz+Pzs5OFBUV+Q09klrQFi6+ou0MERLKjzsZ8K30o4OAdDodpqam0Nvbi7S0NK/qyWha1ZMt/sSz3Z525Qj9by0WC6anp3H06FHMzc3hAx/4AK644grcdddduOKKK/yOweLP6kBzIOFmmi8ejwf9/f2Ynp4OOLsjXjlQtJ0hQpJRTPIl2BwknU6H3t5euFwuv+rJaHOgZIjD8c5/gOD+t6+++ip+//vfY2ZmBvX19bj88svx2GOP8fMXhLAYFH/Ezk0zm81oa2uDUqnE4cOH/WZ3xCMGcRwHi8WC1tZW/nWjtQZKlrVYMALNQdLpdFhaWvKySIplDtJGij+At/0vsFIcYjAY8B//8R84ffo0jh8/jlOnTuHmm2/GJz7xCb/fXy/xR0aS+cqXAGF7f7BFHLX6sNls2LVrV8CBI9PT05iYmMDBgwclOa/JyUlMTU1BqVTCbDZj9+7dUQ86GRkZwfLyMurr6xO2kOnv74dCocDmzZuj+n3aRqrT6aDX6+F2u738t4N5RfsyPT3N+94lGuqpefjw4bjYq4SitbUV73nPe/Dyyy/jjTfewOc+97mASfrBgwexf/9+/OAHPwCwEoArKirw2c9+Fl/+8pf9nv/BD34QFouFF8wB4NChQ9i9ezeeffZZACs7cwaDAa+88krAc+vt7cW2bdtw5swZ7Nu3DwDwpz/9Ce94xzswOTmJ0tLSWN9+0iBWSKKCTkFBAbZt2xZQBGhra+N9yqTg3LlzSEtLw+zsLHJzc7F9+/aoxYcTJ06gsrISeXl5CYtBZ86cQVVVVVSDezmO4xMrnU4Ho9EItVrtJS6JvYePHTuGxsZGyQZXxcLp06dRU1MjygNUau655x4QQnDZZZdhYWEBd999d8DnsRgUX8QISVTQmZycxPbt24O+/z//+c+45JJLJGlh5DgOf/nLX1BZWYmpqamQrxsOm82Gf/zjH7jsssuCLlTjTazf9y6XCwaDgc+B6CY/XdyJ3eSfnp7G/Pw8du/eHcW7kJaenh6kpqZK9p0VCYQQlJaW4vnnn8fExAQOHTqEI0eO+D2PxZ/4EomQ1N7eDrlcjl27dgWsrF9YWEB/fz8uueQSSc5tZmaG90QmhGD37t2iKvoDMTY2homJCaSnp2P79u2SnF+kGI1GdHV14fDhwxH/LrVIovFHr9cDQEBLw3AkSw40MTEBvV6PnTt3JuT1f/vb3+Kpp57Cww8/jDfffBOPPPJIwBybxaD44lvUGGgdRmfv9Pb2YtOmTdi8eXPA79uuri6o1WrU1dVJcm5tbW2Qy+WYn59HeXk56urqol5DnThxAhqNBhzHYceOHZKcX6SMj4/DaDRG9fpCiySdTgeTyRTVHKRk0YFiicdSccMNN6ClpQXl5eVQqVS47bbb/J6zXuLPuq3QFisk0enZeXl52LNnT1BBRy6XS9aOBawIuEajEXl5eWhpaYnJxyzZd+TE4OuTSIch6nQ6jI6Oeg0ro9WTgUi26iQg8oEAUmA2m5Geno4rr7wSV111VcDnOJ1OnDt3Dvfddx//mFwux1VXXYUTJ04E/J0TJ07gC1/4gtdj11xzjV/Q+vvf/47CwkLk5OTgiiuuwDe/+U1+wMGJEyeQnZ3NBzEAuOqqqyCXy3Hq1Cm8973vjeYtJx1USAp1HQinZ4cbAitlZQBdvCwuLqKhoSGqzpBAx1yryOVyvnqyqqqKH4ao0+n4KdNarZYXuIUeZb4kS3UAsHoVAoGwWCyorq7GRz7ykaDPYTEofogVkiwWC9rb2wGs2KyFEquljEFOpxPASg4mtBWIhmS432KNf77dDkKv6O7ubn6Tn+ZAwTb5k2UgEpDY+MNxHKxWKw4cOIAPfehDAZ/D4k98EdMdCwBTU1Po6elBRUVFSEFH6upIk8kEs9mM8vJy1NfXxzxTI9E5UCyvTy2S0tLSYp6DlCw5UCLjD7CyDsvKysL111+P66+/PuBzWAyKL2LmprndbnR3d2NpaSnsEFgprR+pH7vdbseuXbui6gwRsha6REIh1Hl85yAJvaLDzUFKFh0o0fEHWBkKWVVVhdtvvz3gz9dT/FmXgrZYIUk4PbusrCzkF7BUiRQhBOPj4xgZGYFarcbevXsl+eJPhgAmVQIjk3kPQ+Q4jk+s5ubmMDAwgJSUFK/EinoEJdtiDkiMoG2xWMJWtS8uLsLj8fh9iRYVFaGvry/g78zOzgZ8/uzsLP/va6+9FjfccAOqq6sxPDyMr3zlK3j729+OEydOQKFQYHZ21q+NRalUIjc31+s4axWhxUioJMp3enY4QUeqGOR0OtHZ2QmbzcYPD4qV9bCpJsR3GKLQImlwcBB2ux2ZmZl8DMrMzOTv82RZzAErHUqJFLTDXdMsBsUHsULS9PQ0uru7UV5ejq1bt4a9VqRazNGhtwCwe/fumIcXr/WFXCB8N/mtVitfPTk2NsZ7udIciFokJVP8SeSCzmq1ghAS0kKLxZ/4IVZI6unpwcLCAnbv3h22u0qqHIjjOAwNDWFsbAxqtVqSiur1FoOEFknCTX69Xu+1yS+s4Kab/MkSgxItKIkZSstiUHwQ+vUHmxcCrFTRtre3IzU1VVR3lVTFjTabDW1tbXC5XKioqIhZzAYuFm6ulxhE5yDR7wWHw8HnQKEsklj8uUi4ddh6ij/rStCmQtL09DRmZmawc+fOgBd1oOnZ4ZAikXK73ejq6oJer0dNTQ3m5+cluemS4caNJ0Kv6Orqang8Hr4198KFC+ju7kZ6ejpycnIkGy4pBYkUtK1Wa8Im2wqroXbs2IGdO3eitrYWf//733HllVcm5JxWCyok0WsyWOXzzMwMuru7vaZnh0OKGGQwGNDW1obMzEwUFBSIGhYhhmRIouL5+iqVCoWFhfwXsM1m4wXuzs5OcBzHV09K2ckTK4kWlGIVKqNlI8cgKiT9/e9/x/79+wP+DdxuN3p7ezE/P49du3YF9MkLRKwxSDirZOvWrejr65Pk+lxvYpIvQq/ocJv8HMclzeeQ6PgDICExaCPHH9oZMjs7i76+PlxyySUBc6Dl5WW0tbVBo9GI9oyVIgeis0qcTicaGhowNjYW0/Eo6z0GRTIHKVliUKIFJZYDJQbhOkwmk6G+vj6gxciFCxcwODiImpoa1NTUiNJS5HI5P1AyWuiskuLiYqSnp8fcGUJJlhgUL01K7BwkYKWYJ9HCdqLjD3U72Cg50LoRtIUVSR6PBxaLJeCFPDs7i66uLpSUlETUYhZrZZLJZEJraytSU1PR0tICo9GIubm5qI8nJBnEpNVEoVAgLy+Pb12gg8hoa5zb7cb58+e9du0SEVSoZ2kiAqrZbA4raOfn50OhUPhdh3Nzc37DeCjFxcURPR8A7+E7NDSEK6+8EsXFxZifn/d6jtvthk6nC3mcZEfoVet2u+FyuQJOz+7t7cXc3FzEw4diWczRzpCBgQFs3rwZVVVV6OrqknzA20YhNTUVqampKC0t5ZMGWjnAcRxaW1v5xR+tnkwEHMdJlixHipjqJBaDpIMKSXRmiMfjCXh/m0wmtLW1Qa1WRzx8KJYYRDtD6KDQrKwsDAwMSJK7JMtCDlidWBhsk1+v12N2dhZOpxOnT5/mKydDWSTFk0THH6VSGbLijsUfaRGuw2glYyAhieYi1dXVqK2tFX3PxCpoLy0tob29Hfn5+di7dy+MRqNkMSNZYtBq5WK+m/zCOUgejwfnz5+Pag6SlCQy/gBsHZYIhDmQQqEIGINoLmIymbBv3z5eBBVDLDFI6AxAZ4b09PRIGoPocOz1ju9AaOEcpJmZGdhsNhw/fjyqOUhSkcgOWUo4QXs9xZ/Em8xIAK1IcrvdkMlkUCqVfgHH4/Ggp6cHXV1daGxsxPbt2yP6oosliE1NTeHkyZMoKSnBvn37kJKSAplMJqmYtBECWDDUajWKiorQ0NDAD6YrKiqCxWJBR0cHjh49io6ODkxMTMBsNq/aZ5Vo/9pwiZRarUZTUxNef/11/jGO4/D666+jubk54O80Nzd7PR8AXnvttaDPB1YGoC4tLaGkpIQ/hsFgwLlz5/jn/O1vfwPHcZINXV1NaGubw+Hgv8BoIiXEbDbjxIkTMJvNaGlpibjFLNoY5Ha70d7ejpGREezbtw/V1dWSt6Zt5BhELZIqKyuxa9cuAEBdXR20Wi1mZmZw8uRJnDhxAn19fZifn+e9g1eDRMegcJUBLAZJAxWSaOUQjUHCeEGFpJMnT6K4uBj79++PeIJ8tDHIYDDg+PHjkMlkaGlp4YeFSWUhQBesG21jjUI3+Tdv3ozy8nIUFBTwNgEDAwM4evQozp07h9HRURgMBkl9iEORyPhDxaRQ1wSLP9Lh8XjgcDi81mG+OZDL5UJbWxtGRkbQ1NSEzZs3R3TPRtvuTwjB8PAwzp8/jy1btmDHjh1QKpWSenInQ+xJZA5GLZKofUtjYyPy8vKg1+tx/vx5vPXWW+jq6sLU1BRsNtuqnFOiKyTZOmz1oDmQ0+nkK3MDrcN0Oh2OHTvG5yKRiNlA9DmL3W7HmTNnsLCwgObmZn7onZRaED3eRoTOQaqqqkJJSQkKCwvR0NAAlUqFiYkJHDt2DKdOncLg4CAWFxdXpZs/0fEHCB+D1lP8WdMV2sGGHvkGMeH07JaWlqimWEcTxITVmL6DBuhUbSlIBjEp0a9PIYRApVKhrKwMZWVlIITAbDZDr9djaWkJw8PDUCqVXv7bkS7qxZLsYhIAfOELX8Ctt96Kffv24cCBA3jqqadgsVj4AQK33HILysrK8OijjwIA7rrrLlx22WX4zne+g+uuuw6//OUvcfbsWTz33HMAVu61hx56CO973/tQXFyM4eFhfOlLX8LmzZtxzTXXAAAaGhpw7bXX4uMf/zieffZZuFwu3HnnnfjQhz605iZrB/OqFcYgsdOzwxHNYs63M0S4Q73eYhA9j2QgKysLxcXFqK6uhtvt5qsnR0dH+XtTOGAyHlVEtFIjETEoklY3FoNig1Yk+XrVCmMQbb/V6/XYu3cv390UKZHmQYE6Q4T3qNRxIxliUKKhlWmBLJJ0Oh0mJyd5iyQag8IJv9GSDIJ2OFj8iQ26oU8FAmEOJIwVer0e7e3tyMjIwOHDh6OyO6M5SySt5E6nEx0dHbBYLHxnCEXqTX2AxSCKVqtFfn5+SIskYfWkVPZ3QhItKFkslpCD3iksBsVGsLlpvuuw4eFhjI6Ooq6uDpWVlVF950WjBQk7Q5qamry6paTy5AaSIwYlQ/yj655o5yBJRaLjD12HhZojAqyf+LNmBe1QQ4+EQYxOz66srMSWLVuivrgiDWIWiwVtbW1QKBQB23qlrtB2u92YnZ1NaHt7MuCb6MpkMmRkZCAjIwOVlZXgOI4fbDI1NYW+vj6kpqZ6DTZRqVSSnEui223FLOY++MEPYmFhAV//+tcxOzuL3bt3409/+hNfPTw+Pu51z7S0tODFF1/E/fffj6985SvYsmULXnnlFTQ2NgJYufc6OjrwX//1XzAYDCgtLcXVV1+Nhx9+2EtM/cUvfoE777wTV155JeRyOd73vvfh6aeflvhTiC/BhCRgJV7QrhGx07PDEWkMmpycRG9vb9C2XqljkMlkgkqlQm5ubkLbPBMJTeaE94xSqUR+fj7/t3c6nbw9SV9fH5xOJ7KysvjFnVQWSYn08AfEb6qxGBQdwYQkCs2DDAYD2tvbodVq/Ta1IiWSGCScGRKsrVeqGETfN82BEtHengwLOQABN7F8LZLoJr9Op/Pa5KeLO6k2+RPtoc1yoPgSTEgCLsYfjuMwOjqKkZERbNmyBZs2bYr63qR5hVhBm84MycrKQktLi19uL3UO5PF4YLfb4XQ64yLQrgUC5UC+FklutxtGozHgHKTc3FzJNvkTLSixGBRf6Ny0UOswek92dHTAbrfj4MGDyMzMjPo1I8mBhDND6uvrUV5eHtd1GLCyeS0s8tyIBPp+iGQOUm5uriSb/In+G9jtdng8nrDrsPUSf9akoB1KSAIuBrGOjg7R07PDQYOYmESK+nSXl5ejrq4u4AUtZXXk8vIylpeX4Xa70d/fj9TUVH5nKlHeiYkiXEWiXC7nF241NTVwu918UBsdHUVXVxc/2CQnJwdZWVlRJ1aJrtAWOxTyzjvvxJ133hnwZ3//+9/9HvvABz6AD3zgAwGfn5qaij//+c9hXzM3NxcvvviiqPNLNsIJScBKQLfb7Th+/Ljo6dnhEBszqL3S/Px8SBFdqsoA6l3mcDiwtLQEh8PBC7TCydMbAfr3CdfmXlxcjOLiYhBCvKonx8fHQQjxEpfS0tKi+vySQdBmMSg++ApJgWY1yGQyzM7OYm5uLmB1dDSIXcwJO0NCVWNKlQfRAYBTU1MYHR31qs7Jzc1dde/ERBIuRw21yT8zM4P+/n5oNBqv6sloN/kT6SFJ44+Ya57Fn8gIJyQBF8Xns2fPwm63+1VHRwO9lsJdV8KBb6Fin1TxhxDC5z5utxtvvfUW34WVm5sb0zpirSEmB1IqlUHnIPX39/M5ZKxzkBItKEUykI3FoMgIVdRIEa7DqG9+rHqI2ByIdoZYrdaQIrpUXSIul4vXgQghOHr0KN+FFcs6Yi0iRqcLNQeJ5pDCTv5oCkUTHX8iGYy9HuLPmlI6xQhJwMrOC92Vi3ToUTDoRRnqRuE4Dv39/Ziamgo78E2KXTlCCIaGhjA5OYm0tDTs378fHMfxiYGwrSI3Nxd5eXlxFZeSIVhGOtVWqVSioKCA3/BwOBz859fb2wuXy+WXWIk9fqIFbTGtbozIECMkEUJgNBqxuLiIuro63rM6VsQI0BaLBa2trVAqlWFjnxQxyG63o7W1FS6XC5WVldi0aRMcDgd0Oh1ffSNMDKSs/vMlGSokxSzmhMhkMqSlpSEtLc3LIkmn02FxcZGvnqRJVSTinDDRX23EtroxIkOMkASsLKZsNhtsNhv279+P7OxsSV5fzGIuXGdIpMcLx+zsLDo7OwEAu3fvhlqtxvLyMm+v0dvbC61W67XJv57FpUhzIOEmPwDeIkmn03lt8tP4E4k4l2jLEbFiEkM8YoQkYMViBFipjJNCSKKvBSBkzHC73ejs7ITBYAg78E2KHIgWEMzNzUGtVkOr1WL79u28OELXEUJxKV4WP8lApDkQcHEOEl0z22w2/vOjFknCLlqxn1+iBSUWg+IDzYHoxlaga4HjOMzNzcFkMmHHjh2SrYfF5CzCzpDm5uaQG8JSbKrRAgIAyMvLg91uR0NDA3Q6HW+1Srtn6Voinh0kiY5tkVot0jlIdBYSx3F8Dinc5Bd2kIj5/JIh/tA15kZgzQjaYoWk8fFx9Pf3AwCampokW7gIE6lAF6jNZkNbWxsIIaJ8umMNYsLdv82bN/PTQn0FWpoY6HQ6TExMAICXuLTe7Ek4jospmKakpHhVT1qtVq/qSQBe1ZOpqakhNziSvd2fIY5IhCS6mMrKykJNTY1k5xAukRLTGeJ7vFhiEPWFKywsREpKClQqlZdASydP08Rgenrar4MkJydnXYlL0SzmhAirJzdt2gSPx8N/ftSHPS0tzat6MphQQGNhIpJL2urGBG3pECskLS0toaOjA3K5HFVVVZKJ2fQ1g8UgKuwsLCyItleKpTqJ4zgMDg5iYmICO3fu5Bd0QoG2traW905cWlpCX18fv0lNY1Ai7EniSaw5kK9FEt3kF4pzYjf5E50Die0QYYhDrJA0NDSECxcuAADq6+sl6xKlrxcsBi0vL6OtrQ1paWmifLpjzYGsViva2togk8lQV1eHkZEREEL8urCsViu/DhsZGeE3qel/UopLiY5lseZAwEqFnxRzkBLZIQKsXB8sB5KOYHPTfLFarWhvb4fT6YRWq5W0uCtUDiTsDBFrrxTrpv7MzAy6urpQVVUFs9nMPy4UaD0ej5/FD+1Ep5vU68meJNJNfV/kcjmys7P53DnaOUiJtJ0FLupAif5OWC2SXtAWCkn0Ig0mJHV1dcFoNGLPnj04d+6cpBdTqMqAhYUFdHR0oLi4GPX19aJeM5aF3PLyMlpbW5GRkYHm5mYsLi4GPZYwMRAO5pidncXAwADvH01vzGgTz2SojgQi35kLhUwmg1arhVar5cU5Wj25sLCAwcFBqNVqL3FJWD2ZyGRKrHcbIzxihSSdTof29nZkZWVh8+bNmJ2dlfQ8giU+HMehr68P09PTYTtDhERbnUQIwdjYGIaGhlBfX4+Kigp+My/QOdPEoKamhheXdDodBgYG1p09iXDDVQoUCoVX9aTL5eITq+HhYdhsNr/qSeF3VaKSKdrqxmKQNIgVkoaHhzE2Nob6+nosLi5Kfh7BYpDZbEZbWxtUKhVaWlpEd2FEG4OcTifa2trgcDhw6NAhPmkPFIOE3om+m9RjY2OS25MkOn5JPQjWd5NfWD1JN/mFAyaFrc1M0F4fiBWSbDYb2tvb4Xa70dzcjOPHj0vqDyuTyQLGIOHgbTGdIcLjRTpkkrK4uIj29nYUFxejoaEBCwsLQV+DriPogEQqLk1MTKCnp0cye5JkWIdJIWgLiWQOEq2epBWxia6QtFgsG6Y6Mt6IXYfRwp7S0lLk5+fzBY5SESwHcrlcvAYVrjNESLRakNARYNeuXSgsLER7eztvjStEoVB4DUikc3x0Oh26u7vhdru9Ch1jsSdJlhgk5X0f7RykZIk/ic5JV4ukFrR9A1gwMdt3ejYVZaVMpAIJ2sJKhO3bt0c0mTPahRwdcllTU4Oamhr+MxETRAIN5qALu6GhIS97Ejr1da3dCLHuzIVCLpcjMzMTmZmZqKqq8tr1pImpVqvlvxjcbjdrt13jiBGSAk3PnpubkzT+ACtJie8xI+0MERJNdRId9GYwGLysDMTec76DOWjlkl6vl8SeJNHxSurFnC8qlcrPIol+fjQxpYmVWq1O2Oex0Vrd4oVYIclut/MVSYcOHUJGRgb0er3kMSjQYo5WCEUzeDuaGGQ0GtHa2oqsrCw/K4Nwxwq0Se3bAbHW7UnimQP5duAQQvgiiYWFBQwNDUGlUvGbcISQhA7GZjlQ7IgVkubm5tDV1YWioiI0NDRAoVDwgyGlxDcGeTwedHd3Y3FxEXv37uV9mcUeC4jsnhEOetu2bRtf/Ul/P1wM8u0gEfpHrwd7Eqk39X0JNQdpZGSEtzrLzc2F0+mMyzmIgdmuSUe4uWn0OX19fZiZmUFjYyOKi4uh1+vjHn8A786QlpaWiDouotGCHA4H2tra4HK50NzczG/cir3nfDtIqH90IuxJ4kE8cyBA/Bwkp9OJ9PT0uJ9PMDbapn7SCtpihSSaWPi2d8hkMkkDGRWOaeChU3MdDgeam5sjTpzpQk7shU6rMGdmZvyGXEa7w7ce7UlWM3D47nrS6lO9Xo/BwUHYbDYolUqMjIzwGwSrJXCzVrfYiERICjQ9ezUWcvPz8+js7IyoM0RIpHHDbDajtbUVKSkpfklbtDHI157EZDJhaWkpoD3JWhhwG29B25eUlBSUlJSgpKTEq7WZJlccx6Gzs9NrsMlqnNtGa3WLB2KFJBoHioqK0NTUxN8j8Y5Bws4QWiEUKZHGjYmJCfT19QUc9BZNDArVQUIrb4Ti0lq4plczB5LJZAE3+an3LQC0traKskiSmo22mIsHYoWk/v5+TE9PY/v27SgpKeF/JoVHvi/CY0bbGUIRK0JTXC4XOjs7YTKZ/Aa9Cau9I0HoHx3OnsS3CzQZWe0cKNQcJIfDgZ6eHkxPT0c1BylWWAyKDbFz02gcUCqVXoU98cqB6DEJIZicnERfX59XkWGkx4skZuj1erS1tSE3N9cr3wMij2f0d9abPUmstmuREGgOkslkgl6vx8TEBEwmExYXF6OagxQrZrN5zW2IxkLSqQNihSSHw4GOjg7YbLaA07PjGciod2xeXl7Uw06EgSfcxWa329HW1gaO49Dc3OxX9SbVxerrW0Yrl6g9iUaj8UqsklFcStROGOBffTo0NASDwQCbzYbOzk5wHIfs7Gx+YRfPxTFLpKJHrJBErYYKCgr84oCYAY6RQhdy1Dt2fHw84s6QQMcTw9zcHDo7O1FRURGwCjMWCyXh+dAOEiou0eFka8WeJJQtVrzxbW2mnsHp6emYm5vDwMAAUlJSvGYAxKvygsafZPv7rBXECEm05XRycjJgHIhnDkQ9KqPpDPE9npgY5PF40Nvbi/n5+aBVmFJca772JMJN/nD2JMnQagskNgcSbvJXVlbi6NGjqKqqgtFo9LJIojlkPBfHFovFq/CDIR6xQpLFYkFbWxvkcnnAOBDPTbVYOkOExwLE2XPRwWtpaWlobm4O+t0ZSxxYTXuSeLHagrYvQoskvV6PmpoaeDyeqOYgxQorLIoesXPTaGdVoDgQzw01t9uNnp6eqDpDhIhdO9EZcQMDA0H9uaMRtH1ZTXuSeJHIHEi4yW8ymZCeno6srKyo5iDFykbrUksqRVKskLS4uIiOjg7k5eVhz549AS+GQO35sSKTyTA+Po7p6WnU19ejvLw86ptG2OoWCp1Oh7a2NhQUFGDbtm0BkxcpxKRAxwxkTyL0bhXakyQygAhJlvMAVq5BrVaLhoYGvq2HVg6Mjo562SvQ6kkpoK+1kQKZVIgVkgYGBjAxMeHVciokHvGHiklnzpzhW81i+RuLiRuEEAwODuLChQvYsWMHiouLgx5LanztNXwHtMpkMq/EKhlIpvhDCIFKpUJ1dTWqq6vh8Xh4/+3x8XF+cUyTKikr4Jl3ZHQIhSTqAxhMSGpvbwcAtLS0BNy8VCgUcDgckp6fXC6HxWLBiRMnUFJSgvr6+pgESTHttjabDa2trZDJZGhubg76PSl1HuRrrxHOniRZvm+TJQbRv2tRURH/vWG32/kYPj09Dbfb7eW/LeUmv8ViQXV1tSTH2kiIEZKAi/aHFRUVQYdQx0PQlslkGB0dhV6vj7ozRHgsIPw6TDh4bfPmzQE/j3isw8TYk2RlZSEvLy9p1mFS+9fGAiEEWq0WmZmZUc1BigWXywWHw8EKiyJE7Nw0t9uN7u5uLC0tBR1CTeOPlPcFXYedPHky6s4Q3+OFy4GordLS0lJE/txSEM6exHfALZAc1o+JPgdg5buUDrD1nYOk0+nCzkGKlY22DksaQVuskEQrExsaGlBWVhb0opW6QtLpdILjOMzPzwesCI8Uet7BKgOE03K3bt2KioqKkDdovKuDAtmT0MRqYmICHo8HqampfHKQKHuSZEqmhAMBhG09tPJieXkZer0eMzMz6O/vR0pKipe9QizVk6xCOzLECkm0MpF2SwQTMeKxkDOZTHA4HMjLy/NrNYuGcGKS0+lEe3s77Ha7KPE83jFI2NYlHHBL7x9gZZFNCEmYPUmyJFKA/0AkhUKBvLw8vpLE6XTyidXg4KDXDIWcnJyYLJI2WqubFNCqn3Ab+tPT0+jp6UFZWRm2bt0a9G8kdXUSx3EwGAwwGo3YsWNH1J0hQsK12/oOXgt1Pcb7WgtlT9Lf389vHkxMTKCgoCBh9iTJkgN5PB4/MUKj0XhZJNFNfr1e77XJL6yejBY2GDsyIhGSenp6sLCw4Gd/6IvUMchqtcLhcPCbW7Eu1oXrsEAEGrwW7ljxzINC2ZOMjo7yovrMzMyqtrYLSeYcSOwcJJoDxZJHms1mAGAV2hEgdm6a0WhEe3s7UlNTcfjw4aDXOdVWpByQvrS0BI7jUFBQEHVniJBw6zCr1YrW1lYoFAo0NzeHFM/jHYNC2ZPQIhm1Wg2VSgWdTofs7OyE5CLJEoOoZbIQ30ItuskfaA5SrDZ3G62wMeGCtlghyXd6drg/kpSCksFgQFtbGwBg27ZtMYvZQOgKbTp4Ta/Xew1eC0Y8KgPCkZqaitTUVJSWloIQgo6ODng8Hr61PVH2JMkSyIDQE7aFi2NaAU+rJ8fGxvihjsLEKpIvZDaMRDxihSTh9OytW7eG/HtIGX/orIDh4WHI5XLs2LFDkms8lJgkHLzW3Nwc9v5d7RgUaMDtyZMn+Ypyu92eEHuSZIo/gZIpIWq12ssiSbhJOTk5yVsk0RgUiUC90RKpWIhESKK2Gzt37gxbmShlDKJDJ61WK/Lz8yURs4HgcYMQgtHRUQwPD6OhoQHl5eVRHyte+NqTmM1mnDlzBiaTCRMTEyHtSeJJssSgUPkPEHiTn25SCi2ShNWTkWzys8HY4hErJC0vL6O9vR0pKSk4fPhw2MpEKWPQ/Pw8Ojo6oFAosGXLFkkqz0IJQMEGr4U6VjQe2tESyJ5kcnISY2NjmJycRG9vL9+BtZoDbpMl/gDhY1C4OUh0k59+hpFs8lssFgBgm2oiETs3jRb6ifGspte7x+OJ+drnOA69vb2YmZkBANTV1UlynYfKWxYWFtDe3h62eMH3WKsVgwLZk/T398NkMqGnp8erA2s1B9wmSwwKF38A/01+4RwkanMnXIdFYpG00dZhCRW0OY6D3W4HsHIjhhOSaIurmMAkRSIlDJ6bN2/G5OSkZLtNwSoDLBYLWltboVar0dLSImoRRINYIj2DVCoVMjMzvcRZYUuF0J4kIyMjbrt2qzkMIBwejwcqlUrUc5VKJfLz8/m2Kepbpdfr+eFUWVlZXoNNgn2GLpeLn67LCA7dTLNarVCr1UEXccLp2Tt27EBRUVHYY1OxWMwXWiicTic6OjpgtVqxa9cutLe3S3Z9B6sMoIuh2tpaVFdXi3q9RGyqCVEqlVAqlSgvL0deXp6X9y31TRSKS7G0CIYiWRIpQFwyJcR3k9JsNvMCN20tFFZPhvoMN1qrW7TQz9ntdkOj0QSNQSaTCW1tbVCr1aKEJEA6MYnODKHfTyaTKeZjUgLFILfbjc7OThiNxoi64RIZg2QyGV9NvH37dsjl8pD2JPEUl5IlB4o0/vhuUlKLJOFwqkgEOqvVynIgEXAch6WlJajVaqSkpAQVkqh/a3V1NWpra0VdY1LEIGFnbmNjIy5cuBDT8YTQeOsbgwwGA1pbW5GTkyO6G241KrRDIZfLodVqoVarsX//frhcLj4H6uvr87IniecMn2TJgaLJv33nINFNfr1eH/EcJKvVitTU1KTzOE82CCFwOp2Yn59HXl5eUB3I6XTyA1nF2m4IPfJjwWq1oq2tDTKZDPv378eJEyckq/oOVFhECMHw8DBGR0cjmpOU6BikVquRnp4OhUKBhoYG3p5Er9f7DbiN5wyfZOlSizT+BNqkDLTJL3YOEu2U3SgkTNCmFQFvvPEGDhw44DUtmiKcnt3Y2BjUvzUQsba6uVwudHV1wWAw8MFzZmZGsva5QIGHViCUl5cH9aQLdix6nGRIJnzFWV97EgBe3rdS2pMkw/unxCJm+vpW+X6GhBCvoCYczEBb3dhiLjSEEMzPz6O7uxuXXnppwOtGOD378OHDoq9VYatbtNeAXq9He3s7XyVNB+VKdY37JlIcx6Gnpwdzc3MRDzlZ7cqAUOcBeA+4DWRPkpqa6iUuSdVBkixiEhBbm6VMJkNGRgYyMjJQWVnp5R9MP0PahUPjkHDzbqNVBkSL2+3G8PAwCCHYtm2b388JIZiYmEB/fz+qqqpQW1srOp7EarsmXFRRi7fx8XFJLQR8Y5DZbEZrays0Gg1aWloiWvAky30HiLMnoR0keXl5kopLyZIDxbqZG8giiYpLws8w2CY/s10LDxWT2tvbsXXr1oBdH8K1UFNTU0TzKmIVtGlniHBmCLU4lAphDBLG22CD14KRDPecEJVKFdKeRKFQeK3DpOogSab4AyCmGOS7yR/JHCRmuyYOjuNgtVpx/vx5XH311QE/L51Oh46ODmRmZkaUF9BCyVjiBdVlSktLUV9fz19XUgnavhtqLpcLHR0dsFgsOHToUESd1sl0rfnak1DLutUYcJtMMSiW+BNsk1/sHCSr1SqJo8RaIWFbGDTQBBueZjabcfLkSRiNRrS0tEQkZgOxJVLLy8s4ceIE3G43Dh8+zO8ESukHRysDqAg0MDCA9vZ2NDY2RjxoKVnEpGDQhKCxsRFHjhzB7t27kZGRgbm5OZw8eRInTpxAf38/FhYW+Knq0ZIsgQyQ9guPegfv2LEDR44cwd69e5GVlYXFxUWcOXMGx44dQ09PD0ZGRng/YTGLuWeeeQZVVVXQaDQ4ePAgTp8+HfL5v/71r1FfXw+NRoMdO3bg1Vdf5X/mcrlw7733YseOHdBqtSgtLcUtt9yC6elpr2NUVVXx1z/977HHHovik4kNuVwOlUrFe30KIYRgcnISJ06cQGFhIQ4cOBDRxouw1S1SCCEYGxvD2bNnUVVVhd27d0OlUokeJCsWYSJls9lw6tQpmEwmtLS0RDyxO9EV2qGgSUF1dTWamppw5MgR1NbW8vYkR48exfnz5zE2Nobl5eWY3keyxR+pqhSoQFdTU8N/hlu2bIFMtjKg6+jRozhz5gyGhobQ3d0NvV4vStDeyPEHWLlvlEplwDjhcrnQ3t6O4eFh7N27N2K/xlgG0zqdTpw7dw7T09M4ePAgPwBbak9cYQyanZ3FiRMnUFRUhH379kVVvZPIGBTqtWnlX319PZqbm3Hw4EEUFhZieXkZ58+fx1tvvYWuri5MT0/zXYuxnEcyxCApfUuBi/7B9fX1aGlpwaFDh1BUVASLxYKOjg4cPXoUHR0dmJiYQGdnJ8xmsygxYCPHIHpPK5XKgPe1Xq/HsWPHwHEcDh8+HPHw5VjixeLiIo4fP460tDQvm8l4xCBCCDweDzo7OzE0NISmpib+bxTpcZIxD6KVfxUVFdi1axeOHDmC7du3Q6PRYHJyEseOHcOpU6cwODiIpaWlmDdCkyX+ALEJ2kKoQCf8DOl9PjMzw69l+/r6MDg4iImJCdEbahs9BlERzve+ppvq586dQ3V1Nfbs2RNxXhCtFsRxHPr6+tDe3o7t27dj27ZtkMvlklV9U4QbaiaTCSdOnAAANDc3R2wbmugK7VBQC7bNmzdj//79uOSSS1BZWQmn04ne3l4cPXoUbW1tGB8fh9lsjuk9JEthkdQ5EN3k37x5Mw4cOIBLLrmEnwUwMDCAo0eP4ty5cxgdHUVXVxdMJtOGWocl1HJEJpNBoVD4iZhipmeHI5ogRgjh20MDtdVJnUjJ5XI4HA709PTAarWK8gYPRCw3rofjsGiywmx3Qq1UoDBTixRV/C4LmUzmNZRDanuSZEmmAGkFJSHC6slNmzbB4/Hw1ZN/+9vfcM8990Amk+Huu+/GVVddhauvvjpg+/+vfvUrfOELX8Czzz6LgwcP4qmnnsI111yD/v7+gJU6x48fx0033YRHH30U119/PV588UW85z3vwfnz59HY2Mjvsn/ta1/Drl27oNfrcdddd+Fd73oXzp4963Wsb3zjG/j4xz/O/ztRft8qlcov/oiZnh0O2jYXaQyi1VBGo9GvrU6YSElxXdFEiloKFBYWoqGhIaov4GgFbYfLjUWTFRwhyE7TICM1/j6zgQbcBrMn8a26CcdGiD+AfxeOw+Hgqye//vWv4/XXX0dxcTEeeeQRXH311di3b5/fMVj8AS8m+cYgg8GA9vZ2aLVa0dZjvkS7kPPtDBFW3scjB6ILx8nJSezcuVOUpVMgoolBJpsDFocLaqUCOVrNqty7dIM6LS0N5eXlXt0P09PT6O/vR1pamlflXyQxOVliUDzjD+DdhSO0SJqYmMB73vMeOBwOPPnkk5iYmMDb3/72gNcVi0GB12FCD/tIK5WFRLsOE3aG+PrnxyMGWa1WdHZ2Qi6Xo6WlJSZLMrExiBCCZZsDHo4gMzUFSoW0dpahEA5fra2t5TtIlpaWvOxJohlMlkxiEiCdoO1LqDlIL730Er7zne9ArVbj3nvvxZVXXokrrrgioAXlRo9BQkHb4/Hw/99ut6OjowN2ux0HDx4M2MUvhmgqtIWdIS0tLV4bE8HsYqOFbupPT0+ju7s7IkunQIjdVHN7ONhdbqgUcsk1HzHn7tuFLuwgidWeZKPkQKHmIH3iE59AT08P6urqkJ2djWuvvRYNDQ1+x1hP8SfhQyGF1UmRTM8OR6SJlMfjQXd3NxYXF4O220udSAFAW1sbsrOz0dLSEnXbeyxi0rnRaUwsGcERAgIgPz0NTdWlyMuI3P80mgDiK4zY7XY+qEVjT5IsgQyIfzCj0NZBmpzW1NTgox/9KADgvvvuw65du1BdXe33e9/97nfx8Y9/HLfffjsA4Nlnn8Uf/vAH/Od//ie+/OUv+z3/+9//Pq699lp88YtfBAA8/PDDeO211/CDH/wAzz77LLKysvDaa695/c4PfvADHDhwAOPj46isrOQfz8jIiLjrIh7QKkb6txI7PVsMkSZSy8vLaGtrQ1paWsC2OnotCZO+WHE6nTh//rzowWtSMqM3oX18FnqLHYQQaFPUqCvJQ31p/qrew1LakySLdxuwevEHAFJSUvjk9Ne//jVuv/12LC8v49y5czh79ix++9vf+v0Oiz8rCHMg2p0xNDSEzZs3R1wlKCTS+COcGRJMxJI6B+I4DjMzM1AqlaIGr4UikjzI7eHQMzWPkXkDrE4X1Eo5SrIysHtTMbSa+Pg6BiOUPcnAwICXPYmYAbfJkgOtZvzxtUgaGxtDZWUlNm3ahOeeew4qlQof/vCH/X6PxaAVhDHI4XCgo6MDNpstIg/7QES6DqP2JzabLaiIJXUMIoSgs7OTtxSI9pqNJP4YrXZ0TsxhzmgBRwiy0lLQUFqAirzEtIf7Dri1Wq18DKKDycQOuE2m+AOsng2DcC379a9/HcXFxXjmmWeg0+nw+c9/Hq2trQEFbRaDLhYAud1upKSkYGFhAZ2dncjPz8fevXtjWu9E2qm2uLiIjo4OFBQUYNu2bX6byfHoVHO5XOjt7Y1Z9xJzrRNCML5kxODsEkw2J1QKOSrzs7C1JD+uxYyhCOQdbTQao7YnSaYYtJrrQaFF0tGjR3H11VejvLwcr732GsbGxvD973/f73fWU/xJigptWmHa1tYGjUYjeuhRKCIJONQnV6VShdydlzKITU5OwuPxoKysDA0NDTHffNEI2v0zixid16M4Ox0pKiU8HIcZvRltF2ZxWUOVZBUDkaDRaFBaWsp7lvka4lPfVlq55PtFt1EFJSF0Z/Pf//3fg15XtKX8vvvu4x+Ty+W46qqr+JYnX06cOIEvfOELXo9dc801eOWVV4Kei9FohEwmQ3Z2ttfjjz32GB5++GFUVlbi5ptvxt133y2ZSBsJ9EvR7XZjenpa9PRssccWEy+ovUlfX1/I15ay1Y1691Jvylh9tiLdVLPYnTg3OgOby4nSnHTIZTIYbQ50TMwhIzUF5bmRV2NI0Wbn61nmdrv5hZ1w6j31vvUVl5IlkQISF3/kcjnfivbQQw8FfA6LPxeh1ZF0AKzFYsH+/fv9zjma44qNFcLOkFCvLWUOZDAYMDs7i5SUFBw6dCjmzz+SGDQ8t4SuiXlkazXIS8+A3eXG2IIeANC8pQJyefT3cKz3v1Bc8ng4LJvMMJuM0Ov1uHDhgpdva6DhrMmSAyUq/gArlUtOpxP33XcfqqqqAj6HxaAVhOswKubk5uZiz549MZ+PXC6H0+kU9Vy9Xi+qwEeqGEQIwcjICFwuF2pqalBXVxfT8cRajjhcbpwZnsL8shX5malQyuXQW2w4MzKFFKUShVmJ9X2nHSROjxxQpaOwtApKuLC8bBQ14DaZ4o9CoUhYPqZWq1FVVYXnn38+6HNYDLr4falUKuFyudDf34/x8XFs27YNZWVlMR9f7KZauM4QIVLFILvdjt7eXng8Hhw+fDjmQepiLEcmdcs4PTwFuQzITE2Bw+VBx/gc7C4P9teUJkSLEuLxcJhZXMa8zgKOpKC4Ygu2Z2lgWl4RuHt7e+FyuZCdnc3HIF+v+mRZhyUyB1IoFFAoFHj3u9+NW2+9NeBz1lv8SXiFtkKh4Aezxdpq4XtcMUFsZmYGXV1dqKysDOtRKUUQ4zgOvb29mJ2dhUqlQmlp7AEkmgptl9uDiaVlZKal8LtyCrkcRdlazBst0JltXomVw+WGh+OgUakCLvbi4dlE7UkUKg1S0nNRCgI554TBoPeyJ8nJyeHFpWQJZEDigpmYYSSLi4vweDx+bbhFRUXo6+sL+Duzs7MBnz87Oxvw+Xa7Hffeey9uuukmr0qbz33uc9i7dy9yc3Nx/Phx3HfffZiZmcF3v/tdsW9RMmjwbG9vh8ViET09WwxiYhDtSgnVGUKhPlOxxiA6eE2pVEKtVksyNCLSGDS3bIHRZkNlXhZ/nWanaWC1uzC5ZPQStD0cB5vTDbVSAbVy9SbGezgO83or5nVOAOmorC1GllYJo2CwCeDdQZJs8SdRIm246dos/qxA220dDgeOHTuGnJwctLS0BKzkihSxOdDy8jJaW1t5e5NQrZ1S5EDCwWtZWVnQarWSXKdi7zu3h8PYggFajQqZ/7Q4SlWrUJSdjmmDCXqLzatDzepw8s9ZrXvb7eEwPLGIsWk9HC4PstI12FJZhcbGRphMJiwtLfH2JL4dJMkSgxK5mLNYLABCt7CyGHQRug4bHh7mB8BKtQ4LFy+EXSli7E2kiEF08JrZbIZGo4l4ZkggxPrXzhktWFi2oCw3A4p/3h9FWemYWFrG+KLBa93ldHvgcLmRqlaJKjCSYh3mcnvQOTiLsRkdHE4PFHIZCnPTsae+zK+DJJA9STJZjiRSWBczlJbFoBXo2oba/kRrvxoIMZ1qws4QMYMYpYhBdAMvMzMTVqs1ZjEbCL+pxnEEw3M6AARFWSvvMVWtglqlwMSSAZuLcpGbnso/1+p0QSGXIVUdez4qBo+HQ2v/NEYml4B/hpDhySXUlOViT31ZwAG3gexJWA60gsViCXkfrbf4k1BB2+l0wmQywePxRDw9OxwKhQIulyvoz6lv4/T0NHbt2hXQK8aXWIOY3W5Ha2srCCFoaWnBqVOnJNnli0bQ9nAEHo7zE4iUcjk8HOD+53k5XG70TM5jdN4At4dDjlaD+rICVOTHvzXOw3HoHZnH4MQiLDYnVAoFCvPSsbe+EnV1dV72JFNTU/xnqdPpoNVqJfmCiOn8PZ6EBDOr1RpT67YUuFwu3HjjjSCE4Ec/+pHXz4S7ezt37oRarcYnP/lJPProo5JNWheLwWAAAP6ejGYQWTDCCUpiO0OExBqDZmdn0dnZicrKShQVFeHcuXNRH0tIpDHI5fZABplf0qFSymF1rnh5EkIwOm9A//QiTDYH1AoFqoty0FBeEFTYliqJ8XAc2vqnMXBhERxH/nnsedRtKsCeraW8byv1vp2dncXAwABUKhUIIVhYWAjYQbKaeDweSa/nSEh0DFor8YfjOMzOzsJms2Hbtm2oqKiQ7BoOF3/EdoYIiTX+eDwe3lZu79690Ol0cDgcUR/PF7qYC/U+XB4PbC4PUtXe96ZGpYTLzcHhXvnM9BYbusfnMaM3gQAozk7H9orCqOzYIoEQgo6BGfSOzkGbloIUlQJzOhOWjFYc2lGJ0oKVDhIqLtEZJNSeRC6XY2FhASkpKWHtSeJJIhdzVqsVACQTRaJhrcQgm82GhYUFcBwnqZAEhI9BYjtDfI8ZSwwymUxobW3lh02ePn1a0nVYuDzI9s91qcLn3khVK7FsW4mFbg+HvqkFDM3q4HC5odWosbU0H7VFuTF1j4hheGIJfWPzyM9OQ2GuGi63BzOLJsj6p3HJnio/exLhDJKxsTEAK5/FzMxMWHuSeJJoMSnRORCwdmLQzMwMnE4nsrKysHv3bskH6YWKQVRYzsnJEd2VEkseRAjB+Pg4BgYGUFdXh9zcXJw8eTKqY/kSblPN5fFg2eZAeor3uiBNrcKSyQqrw4nc9FTM6E3omVzAkskKhVyG8txMNFYWxd2ObXbJhJHJJeRla6H5Z37mcLoxOqVDSX4GyouyRdmTyOVyzM7OQqlUhrUniRccxyW0W4UQElbQjjerHX8SKmgvLS1BJpOhvLxcUjEbWAliwabFW61WtLW1AQBaWlpEC5+xBLFAg9eE021jgQaxSBYuKSoFctNTMalbRrogSBltDqRrVMhKTQHHEZwZmkL/zCKy0zRIVSsxZzRjyWTFkYYqlOVFN6RBLBem9egYnIE2VY3ywiw4XR5MzhnAeThctq82oD1Je3s7DAYDpqenkZKSgry8PN5fWoqqt0hIZIV2uCCWn58PhUKBubk5r8fn5uaCehoVFxeLej4NYhcuXMDf/va3sMM8Dh48CLfbjbGxMWzdujXkc6VmdHQUCoUCdXV1kot/oeIFHQAipjNESLSLOY7j+MnrdPCayWSSrLMiUtEkXaOGXC6Dy+2B6p/iNCEEFqcbm4tW4vGFBQOO949DLpchI1UNh9ONc8PTsDtdOFhXIcl5B2N20YSBC4vIzUxFqmYlbtgcLgyOL6A4L51PrHztScbGxjAzMxNwwG1mZuaqikuJrpAMFYNY/FnBZrPBaDRCqVR6ectJAc0vAl0HkXSG+B4z2hyI5l0ymYzfwNPr9ZLGIDHHUisVyExVQ2+xQStY2JntTqSqldCmqGB1OHG8bxzzRjNy/ylgD8/pYLDYcXljdcDhtVK9D4PJjrEZPfKytdCmrpxfeloKpheWMTSxiJL8iyK1SqXyGnBLB/LYbDa0traGtSeJJ4na0AdW4o9arQ6Z87EYtALNldPT0yVf/IaqjjQajWhra0N6enpExQTRDHmj0LyrqqoKmzdv5itDpVyHhSP1n9ekh+O8RG2b08V3pnVcmEXb2CwyUtXQatQw25040b8ysHpLSezV5MFweziMzeiRnqZG2j9jj0qpQHFeOuaWTFgyWFGYe/EaCTTg9sKFC5iamhJlTxJPEi1oixGTWAwCf82kpaWhrKxM8usj2JpJ2BlSV1eHyspK0fdwtHmQ2+1Gd3c3dDod3w1ssVgkHTAZKpYpFXKkqlUw2x1eOYzT7YFCvjIccnHZguN947A4XcjVpsLNceieXIDZ7sSl26r49Vo8WDSsdFZpBMUGKf/8//N6C8qLsv1+x3fArdPpxJkzZ+DxeETZk8SLeA+lFcNGW4cl1OiqtLRUVGV0NAQLOPPz8zh+/Diys7Nx6NChiKp4owlidFr4+fPnsWXLFjQ2NvIBWwr7AHqcSBMymUyGLcV5SFOrML5khN5iw4zBBLPdic1FedBq1FgyW3FhwYDi7HTkpKdCq1GjNDcTTg+HgZmluNiMUAghGJ5agkqpQHZGKmQyGVLUSpTkZ2JOZ8aCzuz3fjIzM6FUKrFlyxYcOXIEdXV1kMlkGBkZwVtvvYWzZ89iZGQERqNR8uGegaAebquNmFY3tVqNpqYmvP766/xjHMfh9ddfR3Nzc8DfaW5u9no+ALz22mtez6dBbHBwEH/9619FCSVtbW2Qy+VxiwWh2Lt3L9RqddQLpFAEqgzgOA7d3d3o7e3Frl27sHXr1oi+8KKJQU6nE2fPnsX8/DwOHTrEtwtJFX/osSKJB0VZ6SjPzcSU3gSd2Qaj1Y7xpWXkaVOxKT8LHo5D//QiZLKVykhtihq5GWnIz0rD6LwBeovN75hSxqN5nRkcR3gxGwBSU1QgBJjziT0UpVKJ9PR0pKWl4dChQzh06BCKi4thsVjQ3t6Oo0ePorOzE1NTU7DZ/M9fahIVf4DwiRSLPytotVrs3r07Lt+l9G/ve4+bzWacPHkSNpsNLS0tEbXbR7uQW1xcxIkTJ5CVlYWDBw/ywmoiYpBCLkdtUS44QjBnNMPqdEFvsWHJbMOm/CxkpWkwubSMOaMFFfnZyEhNQUZqCirys7BgsmB80SjJ+QbDYnPA7nDzYjYlU5sCg8kOpyv4d1VaWhoUCgWqq6tx5MgR7Ny5E1qtFjMzMzhx4gROnjyJgYEBLC4uwu12x/V9JFJQEmO7xmLQCrW1tSgpKYlLThwoB6IViqdPn0Z5eTmfg4klmhhErR57enqwa9cubNmyxasQSKr3LqZCuyhLi8IsLSZ1JlgdLjhcbswazUhVq7ApPxsmmwPDszrkpGuQl5GGtBQVCrO0SFEp0Te1ANc/O0g8HAe3x/+8YxFr3B4OTpcHapVP565SDo4j/GsHQy6X84PJ9u3bhyNHjqC6uhoejwf9/f1488030draigsXLkhaUBGIRAvaYgqLWAxauWYOHTqE1NTUuHwnBYpBLpeLvw73798f1ubIl2hikMViwcmTJ2G329HS0sJbW9LCAyk31YIdSyGXo6YwBzaXGwarHRwhsDldmDWYUZyVjtz0VIzOG2CyO1GRlwWtRo2sNA3K8zIxqVvGjGFl7eNye2C2OQPGH+F5RHP+BP7n7vFwsNqdcDjDXx9qtRoKhQKbNm1CS0sL9u/fj7y8POj1epw7dw7Hjh1DT08PZmdnJe0O9GUtCNrrLf4k3ENbqVSKHhoSCb5BjFYojo+Po7GxESUlJREfM9LKALfbja6uLhgMhoDtdFJWaNOELSMjA3l5eaKE+qKsdLTUVWJ0Xo9FswWFqemoKshGRe6KnYjJ5oTT4/HzT8rQqKE32+D2cNCb7ZhaMmJwSo/iPA4lZW5JJuV6OAKb3cXvzlFUSgU4QuBwBQ5stN1YOHEaQEB7EmHlUjzsSRKVUFmtVlGVNl/4whdw6623Yt++fThw4ACeeuopWCwWftrtLbfcgrKyMjz66KMAgLvuuguXXXYZvvOd7+C6667DL3/5S5w9exbPPfccgJUg9v73vx/nz5/H73//e3g8Ht5XKTc3F2q1GidOnMCpU6dw+eWXIyMjAydOnMDdd9+Nj3zkI5J5V0eCXC6HUqlcFUFbWKHY3Nwc1TUXaSJlNBrR2tqKrKwsv2nhUsUfisViwcDAAPLz88PabSgVcuyrLkN2WiomlozwcBzqivOwuTgXmWkaWB0uLFsdfpWQ6Ro1lkxWmG1OeDwcRmb1MFrsyE7XYNke3GIqGoLlZNSCJBBCu4PU1FSUlZXx9iTU+1bsgNtYSVT8oR534XwIWfy56KHt8Xgk9/2jgrbH4+GvLVqhuGnTJmzevDni6yPSHIgOXhsZGQk45EnKGEQIwfT0NMxmM/Lz80PabVTmZYEQYGhuCWa7E2qlAns2FWNL8UribbQ6oFDIvNr75TIZUpRKGMx2GCx2DE4vYmpxGRq1CjXFOajIlaa6Va1SQqHw7l4BAKvNCQLAaLIhL0frZ1kg/BxkMpmoAbdC71up7UkSvaEmpt2fxSDvoZBS41sdSSsUl5aWIuoMERJpDuRwONDW1sYPwPa9LqTulKUDxoN1RKSolNhfU4auiXnMLpvBEYKsVA0aygpQkKnFrN4Eq9OFsnTvirb0VDVMVgeWTFZMLS5jdE4PjhBU5GehoaIA2f/0vo0FtVKBrHQN5nUmpKddzL1m5pexqLNgYHQBNpsLFSXZfmszivB7LJw9iVwu9/K+ldLqItGCttVq5defoWAxKL4xyDdnibYzJNQxwzE/P4+Ojg6UlZX5FTEJRWgpBjJarVYQQrC0tBSwI6KqIBt2pxvD8zpM6UxQKeXYlJ+NXZuKoZDLsWCyeHWuAYBKoQAhwLLVjo5RGwamFmF3eZCZpkZDRSE2l+RKkjsUZGvRL5PDanchTbNi3zg6qcPw+CKMyzbML5hRW5GHbZuLQlaK089SjD1Jeno6H3+ktCdJtKAt1nJkPcWfhAradDEXj2o1YXC02+1ob2/nE5po2+rkcrnoHUQ6eC0lJcUraM6bLeidX8CM2YxZnR4KvQEFBQVBg4HL44HZ4USKUom0IMb8CwsLAFY+z8XFRQwNDfF2G3l5ecjOzg4qluRnpCE/iCdkikoBucx/YWV3uZGt1WBwaglnhqZgtTuxtLSMMZ0dVmhwaWMV0lJis/dQyGXITk/F5LwRWekXk0Kb3QmH3Y1lsx3LZjsy070TxmBfCoHsSXQ6Hebn5zE4OIiUlBQvcUkKe5JEJVRiF3Mf/OAHsbCwgK9//euYnZ3F7t278ac//Ymv4B0fH/c6/5aWFrz44ou4//778ZWvfAVbtmzBK6+8gsbGRgDA1NQU/vd//xcAsHv3bq/XeuONN/Av//IvSElJwS9/+Us8+OCDcDgcqK6uxt133+03NXc1iedijh6XJjSlpaWor6+P+rqIZDE3MTGBvr4+bN68GVVVVfx9sWCxwmi3A+6VQa+xJlL0C8tisSAjI8PLboPGoPT0dL/X0KiVaKwoRH1pPgghXjFGrVQgRa2E3enyskSyu9xQKRRYWraie3weJqsDKSolhmaWYFgworLKLElCXpCjRe8oYHe6+fY3ndGKmTkjFJDB4+JQVZ6L4nxv0TbYZ0k7SDIzM3lxiXrfBrInycjIiDl2JEOFZChY/FmBftcIhWcpoAm9x+OBx+NBX18fZmdnRc8MCUQk8cflcqGzsxMmkwkHDx4M2HIoVXWkyWSCxWJBWloaLBYLJicnIZPJgoolMpkMVQXZKM/NhMPlhspn4GyqWglPgOojp9sDD/Hg9bZhzBstyEhVQ2e2YXzBgG1leZIIY3lZaSjMTcfs4jKK8jKgUipwYUqHgdEFZGWk4s8WJwpz07F3ezkKAojowXwblUqllz2JUFwaH1+xMxB+XrHakyTa8khMazGLQRfXYfGujhSuiQ4fPhy1eBlJDKL+uLm5uWhqagoYX6WwHCGEYGpqiv/3zMwM+vv7kZaWhry8PN5ug15LmWkaNNdVwGR3wsNxyNCk8EMfU9RKpCgVsLlcXsKS3emGXCbH2cEpTCwakZmmgVwmQ/voLGYNZly1qzam9wAAcrkMWyrzoVu2YnphGRlpKRif1mNkXIes9JR/iktL2FSag8N7q3hbEt/PIlgO5GtPQmeQxMOeJJGWRwBbh0WKQqGIawwSDqOura1FdXV11OsesTGIEIKhoSGMjY1h+/btKC0tDXgs+txYcDqdmJyc5AtE6cDW7OxsPgalpaVBIZdje0UhqgqzYbavzCbL0Wr4zyIrNQVLy1avY3v++V6HZ3SY05mRnqqGNkUJg9mGN7vGQAhBXVl+zO+jMC8ddZX5GBhfhM5oxYLOhIlpI4rytCgtzITD4cHZrgk4XR7s3xHcdjLYYNpA9iR0k5/ak2RlZfGfVyz2JDT/SdQME7qxEU7vXE/xJ+EV2vEKYnQHbXFxER0dHcjPz8e+ffti+oIUG8Tm5ubQ2dmJiooKL3/c6WUT/jgwCJ3NjnS1GpNWO/52YRzqjAzsLfWvGO+bX8T5yRnobTaoFQpsyc/FgcpyXtgWBksA2FJXB8U/zzFQJQ4Vl8TepEVZ6SjKTseM3oSi7HSolQosWx1wuNwoykrH+ZFpKOQyVBfnQu2xQaFUYWRWh+JsLXbX+gfuSJDJZKityMOczoyZxWVkpWtgNNnROzQHlUKOE04POvtnUFddgL0N5VAoLn4phEtihOJSVVUVPB4PLy6Njo6iu7sbGRkZXt630SRGyeyhTbnzzjtx5513BvzZ3//+d7/HPvCBD+ADH/hAwOdXVVWF/TLbu3evZAMwpCLeMaivrw8TExNRd4b4HjNcDKLeYfPz815VUE63B0cvXEDfwhKsThdkhMBsNOGA1Yr8AIm3zmrD0OIS9DY7clI1qMnLRb7We/OLDrp1Op3IyclBXV0d5HK5l1hy4cIFyOVyPkmgu7QUupATolTIsbkoF6cGJ6FWOlY8tF0ezBpMqMjLwticHjaHC1VFF8XrE9PT6Lgwj61VZUGrF8VSkp+JzRV5GJpYgkwGmK0OjI3roFYpYbW70Dkwg6HxRTTv3oTayotVOGKHgPh2kNhsNj5mT0xMAIBXB0lqauTVV4kWlMTEIBZ/LlZSu91uyQVtuVzu510dzbVEUSgUogYv+g5eo/f7rMmMnvkFzJjMyExJQZbHibQg8YwjBPNmCxxuN7JTNcgKIrDSQbdqtRoVFRV8Ik47IqhYkp6ezsegrKysle4chRxKhb8oU5aXicxpDWb0JhRkrsTGRZMV6Ro17A43FowWVP/TRx8ATDYHBqaXkOvxxLyAUSjk2FtfhvN9K9ZHRpMN41N6ZKRpsKUyDzLIMDlnhNXhwtWHt/pZk4jdoBR2kHAcx2/yUzEuNTXVS1yK9NrkOC5hQ3HFikkAi0FA/Db1aQ4Ua2eI7zHD5UC+g9eE/rjzZgsMdjs0SiVKMzMkHXQLrMTdpqYmuFwu6PV6LC0t8WJJTk6Ol7iUGcCLPztNg/K8LPTPLKIoS4ZUtRJmuxNGiwPFWVpMLCyjIj+LLwDI1mowNq/HyJwOpenKmIWx0oJMHGqsxNDkImYXzVhYMqOyJBtbKvMhk8vgdnswOrmEwrx07Kr3X+eJjT9yuRzZ2dnIzs7mB9zSHKi/vx8Oh8PL+zZQUUQoEl2hTQs8xMBiEOLaKet2u9HR0QGdToempqaYZ7aJiRlOpxMdHR2wWq04dOhQ0GuBXtOxdDTRfEsulyMzMxN6vR7Nzc38OmxpaQnDw8NQq9XIzc3lZ4tps/xz9E0F2biwYMCSyYpsrQYebsWaTZuigt5kQ066BlnalVxMq1FjVm9G78Q8yvMy4XD9f/b+O0iyxDrvBX/XpfdZ3le1d9M9tqfHAQPDgSMFCZIIiqQkcncVop74liETwVXIbMSLDT1JL0Ik5cin1T5RBiRBEnSgQMxgMAYz0zPTvrqru6vL2/TeXH/v/pGV2VVtq7pr2BTRHwKBQFXmrduZ9557znfO+T4b3bQfWMtYEkWO7uujJxkiXahRLDXYO5xkbCiOKIgEfa3acGGlwIHx7tsGGtvYbgzyeDz09vbS29vbmW5v161tf63NddhOmrCPOv7sxBj7z0v8eeSE9icVxNqkyoULFzh06BCDg4O7UGjc25DNdV1mZmZYWlri2LFjW0TSXdfl3FqKsqqxJxFHEASaAT+uJHFuLcW+ZILwpptlJlfg9RtzCC7EAz50y+aj5TUahskXD+3DsW0uXbpEtV7HPzTK62cvsHjmEv2RMMcGehnaRJZsvkkXFxeRJGkLuXS3aWRZEjm5b4izc+tkynVM2ybk9XBirB+vLFFTdcZ64p1/nyKJhGQP85kS430JKg0NnyLTFQ0+kDP3YE+U54+NcGMpR7GqsrhaQJZEDk70EvIrVOsaF6bWCPg8HNnb1zmPnX7P7c+jTfxpmtZJrC5fvnybPInf77/v33iUDreNRmNbq26PsXXl/5PAysoKsiw/1GbIZtwvkWrHvM3Ga21cSKU5t5aiNxhkIByiruvMLxp8f26Brx09vIUEXi1X+e70LPlGE48sYlgOl9YzvHZgLyPxliRRqVTi3PnzOIEQTW+Q5VKNeLnKUDx6G1ly65pXWxrpXg2j/QNdqIbFXKbIcq6CV5EZ644z3hPnrcl5uiJbCYuIT6FYU7mxmseyW4ZLg12RTvK1E0iSyNOHhujripDOV7l4dZ1kLMjBiR7kjXPNFGpcur7OYG8Mn7f1KH3Qafe27uStGyQPI0/yKCVHHrW79v9MaE9xfBIxSBAELly4wODg4ENthrTRfv+9iq9UKsWVK1e2GK8BrFaqfGd6hpKmEfJ6yNTr1GpV9igyz9xyjLKq8fbcAkulCoZlE/Z6ONrfw/Ojw537r93Qn5qdY2TPXnLpdCeR3iy3MTExgWEYnRxoamoK27a3kEu3kvzxoJ/n9w1xcSFFulTHBeJBH0+M9nJmeo1IwLvlPg/7vaQLVepVjR9MLuIAg10RxvriWya/t4toyMcrT45TqDT5+PIKhmZxYOzmVP1Qb4yVVInVdJkD41un7R8kBn0S8iSPekPkcfzZPj6pCW1BENB1nWvXrnHixInOdsDD4H45kG3bHVmTtvEatBr6by8ucj2bp2mayJLIcCRCt2nRd0sBblg2V7M5prN5TNtmPBHnaF8PUf/WXELTNM6fP48LPPvss7z//vudht+tchuNRoNisUgul2NmZqbzTL91i1YQBJ6aGMDFZbVQJV9tEPB6ODbai205rOQqW7bZRLElhXRhJsVlx2ItnaPhmePwaA99ie0RqreivztCX1eYa/MZyqUGo4M3JQVkWSIc8rG4VuSJA/23xYEHzYF2W57kURNKO2mq/bDjk5QcsW2bVCpFJBLhhRde2BVZm/txQdVqlQsXLhAKhTh16lSHY0nValzJZFmv1oj6vBzq7mYiHgNun2zON5qkqzUEQWAwGiHmv3Mdk8lkmJycZGxsDI/H05F3ALbIbbQH99rktqqqnWf65i3awUSEZ/YMMrWSZa1YRRJFeqMhBuMhTl9bIRLf+lwN+T3cWClQqmhYtkOjVmE4EWBir/1AuY8kivR3RQj6PFybyRIJehGFm/dxKOBlLVOhoRoPTWhvxr3kSVZXVztDEW0u6H4bJI86/tTrdSRJ+lM1An/UeOSE9icRxAzDYG5uriMxcj93ze3iXuuxhmFw6dIlNE27I3nVNC1S9SrJYOCmGYkoEvV4KGsa2UajQ2i7rsvlVAbHcRjdCHZBD/hkmblCkbl0lvRsi+QQ+od4b2GVimnRY7tczeRZLlf5wqG9jG4QTz6/H4IRJNHDYN8gIcGhXqmwtLTE1NRURxqgTS5tDgTxoJ/PHB2nUFMxLZtIoGWQNL2aB4Q7JjNza0VKFZWGZuCRZYa7I7x0bOyBiKXhvhgDPREW10qUig36u8N4NjS6o2E/umFzYz7HwfEeJEncFR0qn89Hf38//f39uK5LvV7fkohuR57kUeonNZvNx4nUDvBJTGjn83kymUxnQnG3dLnuVczl83kuXbpEX18fhw4d2nLtGbbNtWyOiNdLxNeKM35FIelRWK1USdfrDG7ESdtxOL24QlnV2NsV76zkLpbKnF5cYSAaJrW2xtS1a5QDEdZUi2K5TLOpkr08zVPD/bwwPozYvg8FAVvxEu7pY3R8HMeyKBQKnYaR67pbyKX2A1iWRJ7eM8C+/gQ1zcArSyRCAYp1FYHbzUNs12EtX+f1s7OtGOC6RII+Xjgywv6hnTd4JElkpC9GIuJndiFPVyzQIdMAumJB1nNVipUmAz2tz2434s+tGyQPKk/yqBIqVVW3ter2GC18Ek01x3G4ceMGlmWxd+9e9u7duyvHvReh7TgO09PTrK2t3SZr4rou59bXKWs3G/oAc5rKdLVKVdeJbOQ/luPw5sw8M/kCA5EwPlmmrGm8v7hCyOPhxGA/lmVx/uJFPl5JYYZj3FhOUcjlWLcFfjSeIHJL8SfJMn19ffT19XWe6Zv17NvTyG1ySZIkhpJReqIhirUmLpAI+fEqMpfm06jGVr1+y3JYz9eplRoIoQySIDC1mGX/UJJPHR9/IF8RSRLpSYRQRIFYeCvhLooCCKDewTdgN2LQbsiTPMqCrtlsfiK+KH8e8UmRSc1mk6mpKRzH4eWXX36ozZDNuFcO1Gw2uXDhQmeIYPN1eW59nXOr6/SGQgxEwuiWxXypzEq9xlj/zeEjy3F4c3aeS+tpfLKCLAq8M7/EQrHEjx450NkUyebz/OH7H1FEJJrsory4Rs2wiN1BW1oQBEKhEKFQiJGRkS3P9HbDqD2N3N6ifengKKWGimbYBH0K0YCPy4tp7jT8tpQuY1o2PSEPluMwtZhlJVvh88/sZSD5YPWvIAgokrTlHnYcl2pNo1hqYoe9d4w1uzHIcz95kuvXrxMIBO4pT/KoCaXHTf2d4ZOQn11fX2d1dZVgMMizzz67a/IP94pBa2trXL16lYmJCSYmJjp/c7lc4Y+nb1BWNUJeL9lGk9lCiZdHW9IZ7eO5rstHy2ucXVmjprfkQ6I+Ly+Oj3B84GacMm2bH1yc5OrCEhMTEwS6e7Gr5c7vbyXIbx3c2zy9fesW7VhXguGuKOWGhiSKJEJ+yg0VjyKjGtYWSdmlVJHVbIVYwEcs5KNedbmyUqL3+iovHh194M/Y65HxeiRU3cTvU6g3dFKZCpl8HcdxWJnooTseRL4Dab4bOdCt8iSmaXZyoLacy+Ym/60bJH8W4k8gEHik5/CnjUeuob3bZFJbMy0YDKIoyq6R2XD3ILbZeO3UqVN3nJ6TRAFJELE2vV8A7I2HvyxsJZ8KTbVDPLUR8CjMZup8cOYMzx/YR9fQML91/jIxvx/dq5AM+ukOB1goVri4mmYkFkE1Lb5/fZ7ZfAnTshEFgYFYmM8dnGDv3r3out4hl9qr7u2kqt0Fl0SRnuhWgrQrGiDoVSg3NGIbRLXtOCxkS5imTW80yEhPy3zgxloBF/jScwceaFJbEkVEQcB16ZDZbfh9MqpuYlr2rhHamyEIAuFwmHA4zOjo6LblSR4lob2TVbfH2N0tEdd1mZubY2Fh4aZm2S4aY93JjMR1XRYWFpibm+PQoUMMDQ3d9j7DstFsC/+m+0cAZEHAtG3UTSarJVUjXavRG74pTSQIAn3hEKlqjQ8vXkIvFUmM7eHKSpquUIAILhWxZdp4biXFUCzCWCJGplrn/bkV1spVHBd6wgFOjg0xsalh1JYG2Kw72Y5B0WiUSMBHJHCzMI2HfPTGgqzkK4x0xzYajS6pso4jwJHRIOFAq9jKlht8cGWJ7miQePjBCuq2FvFmM0hNN6nWNVTV3JI47nb8gdvlSTYb3N5LnuRRaUg2Gg1ge6tuj9HCbuZBmqZx8eJFbNsmEAgQjUZ35biwldDejPsZrzVNk1S1Ttemhj5AwucjVSiRrTc6hHaqWmOpVGY4GsW3Ea+SgQC6ZTOZyjIeCTF58SJzDZ2KP0yX30/M50MrFZkulIjMLfGVI/sRBIG5XJHLa1ny9SbRgI+j/d0c6OvqPNPbDaPNq+6GYWwhl3pjWwuVPf0J3ptaQjVM/J6WcdHMeoFaUyMZ9DDaE0MUBHTTYnolz0hPjIMjDz6ZmogGWE5XALAsm0y+Ri5fo1hRGeyKcGC8B7/vZoH5ScSgB5En+Z9B8ugxWtjtOqwtu9jb20uj0dg1MhvuXoflcjkuXbp0R+M1w7KZyuaI+nydusorywxHI1zO58k0VSY2XrtSrjCVyjIQiXTkHbsdh7lCkavpHKfGhlleWeG3PjhDSfbSm4zhuHBpPUOxWOOZRBjXdbFdl4V8ieViBdd1GYpH2dMdR5Gk257p7S3aQqFw2xZt96Yt2sFkhHDAS6ZUpzsaRBBgvVClWGtycKibREAib6uM98VZyJS4NJsiGQ7gUaQHigndiRABn4dKTcOjSNyYy1IqN6nWNQZ7o7z74RynnhnfYhD5ScSf7ciT3Dpt+ijjT3si//Fg0faxm021tuxiJpNhcHAQ0zR3nRe4NQY5jsP169dJpVK3baO0NvTXqWo6e7tuGuHmGg3Orafp29D4Blgolnl/YZmgR2FPsrVdkq03eGduiZ5QkP5ImKam85+/9w7X80WSXd1UciWmKw32hnx0bxzHsh2WSlXqmkHQqzCSiKJsqkXvtkW7vLx82xatKPhJhgMMdUWYXS/QFwvh88hUGhpLmQq98RD9yRbnEA16EYBLs+tEAl564yG6YzvXovZ6ZPaMJDl3ZRVdt1haKVCuati2QzTs49zllpb2i8/croX+ScQgRVHuKE9SKpU6MXtzHfZngdD+YcuBHvmEtqIouxLEXNdlcXGRmZkZ9u/fTzwe5+zZs7twhjdxpzWT9irC/UwGfLLMnkScj1fXCXu9eCQJF0jVG+wbGKB/EwGpSBIhj4diUyXuv/nvW89kKOSyfOnkMxw4sJ+ZbIG6bjAai5Kh3ZETSAR8ZOsNVNPi7NI6U6kcA7EwAY+CadusFKu8dWORv/TkITTHZV2HrOMl3DdKr19BNrUtupObyaX2DZoMBzg21su52XWqDZVCTQPBwrYFBrsiHcftgFdhMBlhOVNmfr3IUE+0Y7K2E4QCHnw+mYZqEPR7qNY1cvk6mXyV3u4ITdXE51XuagawW7i1y6nreodc2ixP0iaUH4UhwONEavvYzemk9paGqqqcPHmSbDa76xMHtxZzlmVx+fJlKpUKzz333F3JK78ik/D7SddqHeJIEEVUxyGuSMS2sZZkmTap1DplO8lnTp3ivaV1HNcl5PVQajbAbU0SFBsqK6UKXcEAfzI1S6bWoDccRBQEUpU6r1+b5S94DtIXCbFWqpGq1BDwMrhnP08EfXfUnWzHIL/fjySKPL13kLpmsJgtIQoituNiWg6DPS0yG1rfbU8syI2VHB9OLbN/qIuB7gj+HRrWBv0eBnoj3FjI4vcprKXKrKUqFMtNAn6Fs5eWCZzcQzwa+MTjD9zd4PZWeRLLsnbFcG+n+GFcdXtY7FZTrb2l0dPTw+HDh/noo4929RrYrPfYRrlc5sKFC/c0XpNEEUnc2tAHaP2LXZRNiX/TNLEcp0NmtxH0KOTKZd774DTDQ4MYokrMdkgENnINRSHk8bJQKJOrNyk2VF6/Oofp2IS9XlZLFVaKZRqGyTOjAxiWzUqxgm7ZJIJ+9u/f3/r7m8il+fl5FEXZItG2f7CLfLXJ7Hphw1QXDNOiOxIkYNc656tIEg3V4PWPb7CerTDQHWViIIFH2VmDc2wowdxKkeX1EoVCnUy+hmE5BH0K03NZXNflMy/ux+e96a3yScag7cqT6LqO3+//xM/nTngsObIztOPPw35X7c2Q1dVVjh49SiwWY21tbVeL+1tzoM1DBHczXjNsG8Oy8Mlbn/1eScJyXTTr5qZDrt7EcpwOmQ2t+BXyelkolog2a0wtLmOGo+xLJAhtGDfG/V6WV5ZZamjYjsM7M0tcXM3gbBBM51fSHOnv5vOH9uCRJWqaTqmp4VdkukKtSeT2NHJ7aGZxcfE2cunk/iHOzq6xnGs1uXTdJBHyM9wdodFoICBg2Q7NpsH3zsyykirTlwzzxN5+xvp3Zpgdi/g5ur+P81OrXJrKUqlq+P0eRgbi9HdHuXIjRSDg4bkTNycx/zTu983yJLBVVrM9berxeJBlGU3THkku8niwaPvYzeHG9paGKIq88MILnW3Z3cStXNDmIYJTp07dth3UNE3WazWSt3gQJQMBFoolgrbTIbTnC0VMxyYZvFnL9YZDzOQKLBbLRCSRb73zHjPlGif27yW0sY1WaDS5mMrxVMSLbtn8/qXrrJRr2I6DKAoMx6P8yKE9JIKtfKmiagBEfN7bppFv5TXaW7QjkQiGESFbUdErrZovHvIz0XdTk9yyHbKlJoV6jWK5STIaZKwvzisnxm/z+7gfjuztwzRsvn96hnSuRiIeIBkNMjIQwzBtbsxl2TfWTW/31vtsN2KQbTs0GjqKLOEPbD3ve8mTtLkzn8+HbdsUCoWHNrh9EPww8kCPnNDejSBmmiZXrlzpkDqxWIxGo7HrK3SbEynHcbh69SqZTGaL8dq98PTgAEVVY7FUxnFdMppGfzTKy2MjW7SGREHgaH8Pr0/PkW80iXo9LKyssFap8syB/Ty5v7U+rMgSoiBiue3A2gqIhuXgkUUs22E6UyAe9HWSM0WSGIyFWSvXuLae49xiirVSFUUWsWyXsM/D5w5P8MwzE50Vi0KhsEV3sk0unZjopysSZClbZtZq0puIslQ0OoRSG7WGxvXFLLWqRlcsyP6RLp45OLQjYqkrHmR8MMHUbAbXclheK1Fr6IiigCxKfOf7V/nsy/v/1Isnr9d7V3kSgA8//PC+8iS7jceJ1M4gyzK6rj/UMdqbIfF4nCeffBJZlikUCp9IDGonPvV6nQsXLuDz+XjhhRe2GC3eCkkUOdHfx5/U6iyXK8R8PlTLpGpZvJpMbjF7jPt99EXCLJcqjCWiLb3/RpMLM7MMxaJ87qUX8Hk8WK7TkRXZLAEiCAK26zKXK5Ku1hlPxjubGSOJKHO5ItdSeaZTBc4vpdBMC3AJeDw8NzHIqT1Dt+lO5vN5Zmdn8Xq9ncLu8ycmWC82qGs6Yb+XUjpFeJPJkuu6LKfLzCwXKJaaXF/MEg/7efn4OHuG7h+vN+P4gQGqdY3L11OsrpWQZZFEPMBQX5TltSLvnHb58ueO/KnHn3vJk9i2zcWLF2/Tvv2kpwbakkc/TKtuD4uHzYM2G0Rv3tLYbSmBttFk2yNiZWWF6elp9u3bx+jo6D0b+vuSCT5cWe009B3XJdNoEvMoWxr6Ua8XnyxT140OWeS6LkupDEKzzvFXXiCUSPLOxxe3+I4IAvhliaJlUdV1zi6t4+AymogBkAj6ydYaXFhJkfD7eH92hfVyDcd18Skyhwe6efXg+B11J4vFIvPz8x2JtpF4gv6DAxiuiEeWSRWqXJxZx6rVOuc7t1pgfqVAOODBsRwuzaY4MNLNZ5/Zu2Wi8X7oToR46ekxvvf+DKvpCuGQl4FIgKH+GB5ZYn65yPhwgUP7WuvIfxpNtc24mzzJ/Pw8q6urrK+vb8mBdnNa9254LLu2M7SL7YcxJruV1AkGg5im2TnuJ0Fom6bJ5OQkjUbjnsZrfkUmGQiwVq1t2Xyt6DoBWSa8KS+XRZE7qHqg6wapQp7RrhijBw4yN7/SiU/t8wpKEgXdZD5f4uJqhq5QgODGa1TT5Mp6jpFElGpT59JKhrqm45FlxrtjfPrgGFG/b4tW9N22aPeEIjjxKJFIBMuBdycXafNrrusyu5JnfrWA36sgyxIL60XSxRo/8tz+HZPaR/f14Touy8tFRgbiJGIBEtHARmPOZWYhx/HDg52YtlvxR9ctUqkyluXQlQwRi99dQuhWeZJarcbMzAyqqnL69OktGyTxePxPhVx6HIN2ht1o6qfTaa5cubJlS+OTkFPaHIOKxSIXL16kq6uLI0eO3PHakja28M1bGvqW06qh5E3Ha5ominj7MURRIFsocnp2mqqoMNDX1yGzAZLBACvZPLkmrJeb6GaR0e44XlnGsG0W82XemVnk1PgQH86tsVxoNcSGEhFO7RmiP3Yzdt7Ka7S3aIvFPN5ahX7Zgz8WpjuZ5GNJQrcsQrTi3FquTqrQJBoJMtYfRxQEri1mkUSBHzm5f0efsyJLPHNsmKs30kSCPrrjQfw+GU23UWQJ3bAolhu7TmjPzWWZvLRKqdRElkUm9nTz1FOjBAJ3rrE3NwSg9VxaXFwknU5vS57kk0Cb0H4UQ5WPCo+c0H7YyYBKpdKRGNlM6rQ7aLtJMLSDmKqqXLx4EYAXXnhh2wl62OvlKwf2s1ypUNY0lnHY19PNSOz2qcrDvd00DJNzSyt8ODePR5Z45egRPntgb0fHdTAapj8aYq1UxXFdXLeVNFU0jRcnhkFo6SxtnjQA8MgSpm1zdnGd9XKNie6bhNNaqcYPbiwjCgJz6SL5ukpXyM+RA0dJ+CSKxSLZbLZjapJMJjnYmyDqJAmHI9TtKoVKs0MsFSoNJmdSaIZFOOjFcV0+vLJMpa7xxVMHthjR3QuCIHDy+CiKIvFHb0yh6SaDfVH6usIkY0GW10ucvbSCX/jTnwbafI7tVeZkMsm5c+c4cOBAR57kypUrW7Rv72aG97Boayc9xvbwMAlPezNkdnaW/fv3MzIy0rn+PqlEyrZt0uk0ly9fZnR0lH379m3rmt+/sep2KZWmoKr4FYUjoSAnB/q3vE4SRU6NDlPVdGbzJXS1STqXZ6ynm7/y/LP4NmLscCzK5bUMhmW32CTYIKdhIBomV20iINwmM+RXFKbTeeqqQTTgZTDeSkZKDZXTsyuEvR6qTZ31UpWg18P+/iQnTrS64O1JwNnZ2c4kYF8ySSLupz/qJaebOK6LKAgUKk1uLOcQBNgzmCAS9JEp1Hnr/BzxiJ9EZPv3SCzi5zMn97G+XsbsDtPbFSYW9uP3KRimxXq2SipTfSTTiJuxeZV5bW2NJ598sjO9dC95kt1EvV5/XMjtAA+roa3rOpOTk6iqehup80nFINM0uXz5Mvl8nqeffppEInHf9z092E9RbTJfLOO6Lg4uMZ+XIVnY0tDvDYfY25VkMpUmYfnxSCIzyys0VY2ffPE5hgYHMe3W1HVV0zuEEQjUTJOALwCuS7Gpdqa320gE/SwVyvzx5AwNw2QoHkaRWtOS5xbXCXoUon4fS7kyoiAw3hNnX19rI2vfvn1omtYhl4rF5Q75FFG8iIKLZjoIApSqKoupErIisW+4m954EN20uL6UZaQvxtGJPnaCob4Ye4cTFIt1hgdi+LwKAq04o8gi65kKh/b1dZqduxGD1KbBwmKeYrGB3+9hdDRJV9f9p57bq8ypVIqhoSH8fv995Ul2G41Gg97e3l0/7p9HtOMPtDa+HoTsa2+G9Pb2cujQoc4x2v9r2/aufc/tOqxWq3HhwgWCweAW47U7od3QT9XqLJXLrYa+aVEzDMYjIaKb3jscixDxecnU6vSEWoRArlJheW2VV8eGOXnyJDP5EtDSlN6c31iui08SWS1VsB1nU2xq5T2SKPCDG8tUmzphv4fBeATNtLiymsW0bZ4eGWAxV8KwbPrjYfb3deHzejsbWe1/dzsGpeZW8foDCKbK/LpOd9iLatikKhVkSWRiIEEi7Cce8nF9Kcs75+fpevUoocD2jfEEoaXhn4gFGB2MY9kOpVIT07RxAVmR0HWrQ2jvRg60tlrivfdmyedrOI5LMOjh8JFBnn12DEm6d83U3iCJRCLEYjFGR0c7TckbN25skSfZrsHtg+CHceX/YfAwucpm/46jR4/S13fz+Xo/E9kHQbsOa6sCHDhwgOHh4Xs39LuSnF5ZJezx4JVlbMdhrVKlLxwiqTU7z+6BSITLqSy243T4EdO2qVQqFGplnn32aQrpIuuV6m1/RwAalkVWNdjbF8C7EXM9kkRfNMRstshKrkpN0+mJtHL066kchXqTzx+eIFdtUlV14kEfe/uSRPzeLUMz4+PjHbmfQqFAYX0Jo1xmuWLTSESJRkJkSk1cXPqSEUJ+L03NwDAs3jk3hyyKPHlggPgOai9BEIiEfDiOi6aa3JjJUK/rrX+sIKDpWwdB2qa8D8qtLC7meeut69iWSzTqxzRtzp9bol7V+PxrR+4bf6C1QRIKhQgGgzz55JMPbXD7IPhhrMP+TBDa7QtwJw+VzdNBt4rvw02tx91OpAzD4IMPPrgtcdsuPLLE3mSr+PMU8gTucm6SKLIv5Cev1Ti0f5xD+/fTGwnfNFqjNW39mX0TvH59lo+XTZRiGa+icLSvh6cG+1EkkWQwwHqlSth3M7EqNTX8skypodIVCmxJyPqiQS4tpVnPV/HIEn6Pwkq+zI10gS8c38fB0VFGR0e3rJneuHEDTdOo1+t0+0OsZw1SxRrRgJeZ5TzVps7+kW564yEQBHwememlHEfGexkfuH8h3IbXIzPSF6e/K0wy3kfAr3Tcb5PxIKlshf7Y7k8nmaZNpaLi9cqEw9tbXWtPumxHnmQzufSw596ean08ob09tIu5B5mObJM61WqVZ599llgstuX3n0QiJQgCuVyOxcVFnnjiiR0X7fu7kuxNJlBNE0WSeKeQ22J02MZQLMJXjx7k7QsXWSg0+OpTT/D0noktK3P7upPs7+liOpPH0FWqDQ2jUudofw/jiRiqbuLidgjmNlTTxBZkbMclumnCIB70s1aq8tsfTqFIIn6PgmHZXFnN8srBUU7uHSIWT3R0J1VV7RR2i4uL9IQkqkWdq/NrdMUjzK+VqKs6+4a6iYb8CGw4ci/neff8PJ97bt+OCjtFFvF7FcYHE0QjfnTdolJRUTwStu3Q1AwUHt4QqQ3DsLh2LcWN6TS6bjE6muTIkQESyfsXSe1nqt/vJxaL3VeepD25tBvPyh/GVbeHxYNOaN9pM+TW4+42oS0IApcvX0ZRFF544YVtr3OHvV6+cvAAy+UKFU3DJ8sEbYuVubnbjv/q3jGCHoUr6ynmFteIeD38lU+/xPGhlpyAIkmcGOrj9etzpKo1oj4fVcNEMyw+NTJEbziEIokYtk2Am2SVYdnopkVTNdnXk+hoSoZ9Xqqqzu+fvU7M72sVkq7L5HKG46N9fPbIBLbr4PF4tuhOVqtVCoUC9UIBRS/TMGwuTS9RV51W7BnuIhkJYJo2mXydhZUi3yxfovmywZE9fTtawVUUGY8iIQkiKysl8oU6AuAIMDHcyjF2i9CuVFTeeH2KtbUywsZxL0V8vPzKfvbt294zx3EcZFm+rzxJu8mfTCZ3jVx6TCbtDJLU0ljeaazYvBly+PBhBgcHt/y+7T+xmzGoXYd9+OGHjI+Ps2fPnm1dMwe6uxAEgQupNIVGk4BH4bmhQbzl4hYfjO5QkFcmRvnB/BKz+SLNRoNKqchz46N85YWTyLLMSDxKVyjASrnCcCyKKAo0DAPDdhmKeDc21m6H47gsFyr0R0N0hVq5VEjyMCiG+XBmlSuLWWRpwzNofp09fTm+fGI/Li1Syue5eT+1taSLxSK2sMb7V1eYyho0NJuqCvuGu+lPhmk0dWaW82SLdRZXizQbOs8cGebpQ0Pb9jSKhn2EAl5S6QprqQq1mgaui6pb9PdGdtVHpNHQeeedG5RKDfr7o0iSSLWicv7cIvFYgAMHt9cMbNf+iqJs2SBpNpudGNSWJ9lch+2GPIlhGJim+bgO2yYepg5TVZVLly5t2QzZjE8iB4KWZr9t2zzzzDOdydx74dmhAYqqynyxhO264Lr0hIK8OjHGjWK+Uyse6ElyPZtjrlAi5vdh2w6L6+skRPjKZz9FTzLJhOkykytg2nYnh6nrBoosEZTAclvxYjM8skS+1kRC5NhQT6cmC/k8XFrOsJQ9j1eWN/zKXPpjab50Yh8+RUYQBKKBFrm9We7HdV0OV6q8c2GGa0sZ5lbS1JsGybCXnrCHYrnB9GKOelNHMyzePTfPwmqB1144wFBvbNuf9b7xbr7z/asUcjVs28Xv91Bv6JimzfSNNEf29+G5ZevtQWPQtaspTMNmaOgmN+XzKSwuF0inKgwObW/Dpb2VdD+D22vXrhEMBu9pcPsgaDabP3Q50J8JQhtakwH3WpnfDMuymJqaolAo3FXuY/MK3W7AdV0ymQyapnH06NE7Gq/tFHcyFmj/reXlZW7cuMHxQ4cYHh6+6zH6o2H+8onDOOvLHNo3RnckzEA03OnsPTXSR26qzlKhQtjnQTMtNMvmqeE+rq/nbzuebTtkyw2GEhHGe7o6P1/KlfnWR1cZiIZpGiaj3TFOjPdx4MABXNfl4sWLSJKE37FJSg1WcyXyKJRrKiO9USb64iAIZIt1VtNl0vkahmbxqacneObw0G1mj3f/zFoGm15FRlVNisUGtu2AIODxtr7z3SKUXNfl6tQ6Fy6sUK2qKIrIxEQPJ5+fIBS6NxF2J0O2e8mTzM7O4vF4dkWe5DGhtDM8SMLT3gwJhUJ3lfvY7URK13Xy+Vbic6fEbbsQBYHgxvneLQaZpsn81Sl6XJsvfOlH7vi3fIrMFw7vZaIrzoW5BQqmwacP7eFATxeKJDHeFacnHGSpUKY3EkISBLL1BmGfl4jHy3q5dtsxC1UVHJcX9492iq1ctcEfn7/BpYU0hmXTHQny1EQ/+we6tuhOvv/++zzfFWZ6Jc/K+iqNqkVX0MtgojWxObtSYD1bpVRTMXSTbL7Op5/dw/7R7Rm2KYpELBpgZa1Esdggla5gmK3v1+uVUWQJ19ydCW3bdnj77WmuXlnH65ORZYkzZxdZWirypS8fI5G493d/J1Pae8mTzM3NoaoqkUiEeDzeIZceJJb+MK66PSx2GivutRmyGbvdVMvlcpimSSKR4Pjx4zu+PjzSzYY+QKFQuOP5+RWFo7EwjbkZnjq4l6eOHsF7y/PwicE+XODiaoqyqiIIAk/3dfPi+DB+j4c9XQnOr6TwyzJeRca0bVKVGolggGpDQ5G3Fg0N1SBTrnOwr4vgxgBAQzd4++oC06s5QCDs83B8vI8TY/3I0k2jsj179nDgQIXvvn0aRwkyvZTDJ5gEBZ1yucxKpkGh3ES3bGRJ4s2PZ1lcL/KjrxzZYuh4Lwz2RTk3KXBhcoV6TUfxSJimRbNpstxbRNNNFLn1fTxsDnThwjKrqyWGhhLIG8dMpyt8eHqOocH4bZqSd8KdZCbuJk+y2xskjwntnWOnhFJ7M0TTtLvKfbQlinYrD3Ich6WlJSzL4umnn95ivLYd3GzoW3gkEUWSuFqrbCFkAY7199IfCfHB5BSpWomvvfQ8T0yMd0igoNfD5/ZP8L0b8ywUS7i4+GSZsZCP4YCPwVgYeTVDQzc6U9qaaWHYNj5Fvm1r1rId1ks1DvV3sae3FR8Ny+bcfIqFVAmfIiNLIoeGujm1f7gTnzYblT1z4ihnr9zg8vQS81kVUa+wtNRkLW+g6g4er0zYG8B1XX5wfoGg38Phie01p6IRP/vGu/idP7yIrpvEY0FM0yIgClimw/nJFV59qSUn8LCE9spKkUK+zvBIvBM/orEAjabB9HR624T23WRu2uTSTgxud4p6vQ48NsbeCR6kXsrlckxOTt5zwHC367BGo0EqlQLgxRdf3PZ0bdjr5ccOtRr6pY0N2bFYjJDXw+wmKcmw18tXDh/g4nqaa+sZMukUR6IhvvrSKZIbMfZwXzdz+SJz+SJ+RcZyWoNDh7qT9Fgq1zMihaZKcNPAULGhggtBr7JlwMh1XfKVBooo8fKBkY2a0GVqJcOvfKdAVyiAAIx2x3jx0Ch9sZvXtCAIxGNRvvrqM7za0MiV6vzmdz7EtixKxTyzK1V0C/x+D9GQl+HeKGuZKm+cvsFf/7Fntr2hf2Cih3fen2GhrhMMelF1k1DIy1B/lGyuxvJqib0TrWdBO598kBhkWTaFQp1QaGtTy+dTsC2HalVj8C7vvRV3iz/3M7g1DGNX5EkeT2g/AmyepN4O2rqxXq/3nsFkp8e9F9rGa6VSCY/HsytkNmzVw23DcRympqbI5XLb7vwFPB76/V4O93bh9Xq3XPz7epJIosjkWoZcrUkyFOBofw9HBrpRdYtLK+kNU4DWe5Y2dJVGkltlUOpNg9l0Ab3fIhbycXZ2jbl0kb/w3AH645HOJM7IyAjHjtkUiiVW1jO8fmaOSq1MOmWjWSLLmTquKyBKLSLt7bNzVBs6X3jhwLY+s+5EiGQ8xPRshkq5iaZbuK6LqpmMDccZ6XowN+87YeZGhu9///pG4erH0C0uXlym2dT50pefuOfqyf00AzfLk4yOjm7R6nxYeZIfxs7cw2An05GbN0PuZwS7m4lUuVzuNI26u7t37UF1pxh06yrvvRJ6v6JwfLCPXgnmZZcjfd2d6zTi8/Lakb28P7tMqlLHdh26QgGeHx+ioZksF8pbJgyahkFN1dnbm9gyOVRv6txYy2OYNoOJCHPpIsv5Cp86PMae3jixkL811SSKHNo3zvPPnEDXdb730VU+mFwinVqnXDdJl0wCPg+hgIeRvjgNzeD7H8/SkwgRC9+fOBEEgSP7+7g4ucr6eolQyIssizSaBo7jcu16iv3j3l2JP+vrZW5MZ+jpCXfIo0QiyPJSgatT67z08r57vv9OhPat2CxPAi0N1Da51DbyajfXEonEtmWMHjfUdoadSo5s3gy5lxEs7F4M2my85vF4GBkZ2ZXG8Z3iz+aG/rFDB+/a0BcFgSeH+jnS10NN15m9do1ENNJZsz01MURdN1jItyaiREFgJBHlxFAf3708S03TCW/S010v1wl4PQQ3eXtUGzqLmTJN1eTAQBeFusr/OHeDlWyFJ8b6SIb9HQNsn9dLd9jDq6++xHKmzO+8eREEh7V0gcW1yoZniEhv3Eck4OXKbIY9Q0mePnz3gYXNGOyL0pMIMXl5Db+/tbKsKDITY1FK5Sbzi3n272kVdQ8Tg3TdYnEhTywW6JDZAN3dYdbXSqRSFSb23J9I3I5uclueZHBwcItWZzqdfqgNkscxaOfYSawoFotcunTprpshtx53N5pqbY1u0zQRRXHHZHYbrYb+zXv8Tk190zRZvHaNuKXzmc995o759Fgyzk88dYzlUgXTtkkGA0x+WEUARuIRTgz1cnE1Q7bW6LznicFeCrUmpYZGZJPfR6pcx3VceiI3/05d1ckUa+SEOs/tHcKwbN69usjMWp5n9gwRD/kY640jb9QhAZ+HgyM9KFaDrl4fa7kK2Bb1Zh0Bp7VNFrFYT1lUGxb/w3IY7I4S3ebW6VBfjGjIi+FTsB0Hv1ehvzeKIkvML+Q5+dQYgYDnoQltXbdAuD138XrlltTANrGd+HOrwa1pmp06bLPB7U7lSRqN1nf+WPpx+9hJQ+1+myGbsZtN/Ww2y+TkJKFQCL/fv2OpiFsb+m3cGoNifh9PxCOYC7O8dHgfRw4f3nItB70efvToAa5n8iwUS63jdieIujaL8/PsifjJOS5LhTIhn4eGbiIARwZ6OtrZbdQ1g7pmcKAv2bm2VcMkX2lS1wx6IkF8iszkYprrqzmeGusnEQmwtz9JcpN0SDToIxr0cWJvD+dncgjeCIJs4JEcVNVAb6iczlWxXZHFpRyKIPDVzz+xrS1ZRZFIRAPsGe1C100adQMFAcd0sSybSk3tvPZhttREUcCxXTKZKrIkEgy16jnLslseLf7tDxlu1zfi1on33ZIn+WHMgR45ob2TVZP19XWmpqYYHR1l79699yUMd6OY22y89sQTTzA5OflQx9sMYWO1ow1N0/j43DnypsHhI4cJRiJbXq9ZFtdyOdL1Oj5Z5kBXFwMbD1jLcbmay1O1bAKKwoGuBNGN1amRRJSwz4MgCCQC/k537rnxQXLVBgv5ErIkYdkOiiQxEI9sCQY1taVn61NkBhJhgj4PYZ+H87PrzK8VGO+J47GbnDzgYYRWAtvT3UVPdxeeUJLvfHANR3RYyxSoVlUEUSAa9BH2iuiWwMXrazx5YIDe5P3XsxRF4tjBfj78eJ5G0yAY9OC6Al3JIJbpsLJu7Aqh5Louk5fXAOjta30PPp+CxyuzuFgglaowdI/Vk52a4OyWPMnjVbedY7tkUnszpFgsbks3djfiz2YCfe/evZimiWEYD3XMzbg1kcpkMkxOTjI2NsbevXtvu8Ysx6FuGK2px01FrCAIGLZNZYMkasuYDETDfO2pw+RqLV21ZNCPIkk0DZPpdILZTJGAV8F1W9OQyVCAyKapAt20WClUkUSJ3miIRMhPwKNwfnaNmeU8e3rjdMWCnDo4suU8vV4vp04cIF93yJUaaJUijmtSUzW8osvaSgrbEVENl6HuCF965fC21m+H+2OEAx5CIS/iBok+OpQgEQ2wtFKkKx6j6z7T09tBPl/HMu0tk5CiKBAMeVleLgAPT2jfCp/P19Hq3CxP0vZMaBtyts1P7rZB8ng6cufYblNtO5shtx73YWNQ23itXq9z8uRJJicnd61AvDUHepCGvkeWSMoBVm/Z8gr7vPzY8QOslqpUVZ2gV2E4HkWRRFYKFc4urtPQTXyKTLmp4ZHElgTIRsyzHYflXEtyozsSIBb04ZUlLqVL/N5KgfMz68RDPo5P9POpY+Nb/vZwT4xnD49ycSZF3VARZC+CJOHDZWE+g6bbmDZ8o9LAI8LRA0P3zVsEQSAc9DI6GMfnk2k0DQJ+D/09UdK5Kql0lX0TXZ3XPihualBuPYYgtGQUHPdOYgq3Y6c50K1anXfbINnc5L/bv/Ox7NrO0K6X7heDXNdlYWGBubm5++rGtrEbMagtrZRMJhkfH+eDDz54qONtxq0T5PV6nfPnzxMMBnn++efvuSkZ9Ho41HeTWJ/aIM9EQeDTB8YZScZYKVawHZeRRJQ93XGup/J85/Is6UqdqN+LZloU6yoRv5fIJmnI1UIV03LojYWIBFpTiQvrKjeWcsyvl4gEvIz3xvnKcwc6TTVoGal9+qk9vH1+jqm5NKYjkoiGiDgOtYpG0ahiWCb5QpVf05v82GePsGds4L4boY7rEgn5EAWRdKpMvWGyolnEEwGCIR+m1foMH4bQtm2HZl2nmKvh2g49vRECwRaBU6trjI933ecIm873AYxI7yVPsry83JpI3YY8SZtMemyMvT1s5mvud/3ous6lS5fQdf2eRrBt7FYd1ibQjx49iqZpVCqV+79xm9jc2N/c0D948O4N/aDXw9MjAzw9MtD5WTabBWA45OPpfRPcyFfIN5qMJKIcG+gh7vfx22evslKs0BcNISCQKtVRJJHu8M26JVOut3zP/B6CXg8iUKvrrOQrZAp1EiE/0aCXFw+NcWSsp7MxArB/MI4ArFVcbAdCAR/xYJBSqYniFXBsm2pd5b2Pr1Mq5Pjypw+STCbv+TwHiIR9XLi4jKG1nlHNOuRzdRSP2BmKan9+sPMcqFHXeet7V1mZz7OyWmR9qUDfQIyR8SSFYoOB/ti25UbgweLPbsqT/DDWYX8mCO37BRzbtrl27RqZTIYTJ05suzP/sKtubeO1kZER9u/fT71ef6jj2Y7DYrVM1dBJ+lqdrXZhWC6X+YPTHzBlGTh+P6enJukLhvjSnn0c6uqmquv8xuXLTBcKrYLCdYn5fHzlwAH2JRK8W6qgXb6KKEq4QE8wwFcPH2jpFi0skW+oyKLIwe4kn9033irWyhVGe2P0x8PYtkPY52FPT4IfXF9iLl1ktDuGJIpUmho11WCiN07Qq2DZDteXcpSqGj6lRYTPr1fINSyi8S7G+29OWB4e76Ha0LhwY52GIRAIBokEPLimxaWr6xiGhenAf7F0/tqPPk1/b9d9g4AAdMWDDA3EME0bv08hGQ9SrjRIZTM4rsvDKhAZhk251LxNWsTnUzAtm1pVu+f7H9bV/X7yJIqidHQnN5NLj1fddobtNr42b4a88MIL2+qSPuxkgG3bXL16lVwu15FWmpub21UJgXYi5bouN2Zm+ODGNHJfLw3HopnLcCjZjUeScF2Xc6kU7y0ttQwlZZlnBwd5ZXQUgHdX1nh3ZZ1wQycZ8PPCyBBP9fcxXywzlc5R03WGYhGekHuIB/w4rssz4wP0RUOslWoIwP6+JLlKg4/n1kiGWsR3QzMoNzRiQR/RgBfbcbi2lKVa15FEAY8ikypU+Y23LtLrMRka0zoTq4lIgC+eOsCF6XVWUyX8fh8DyTDlUpN8uYnrOtSbOn/4+nlKuQyffn4fXV1d91xzVzUTn1dm33g3tYqGYdp4RBGPR6JcaaKq5q401GRZxHHd2+KIZTn4tiFRYNt2R7/0QXCrPIlt25RKJUqlEgsLC0xNTREOh++4QfLDuOr2sJBlGVVV7/r7nWyGbMbD5kDtbY1AIMCpU6fweDy7OvG0+ViapnHhwgV0x+bYM88Qu6VQbZom13I5KrpO1OvlYFcXQU9rInChVOZMroCsVHnKH2BvVxJZFKnpBnXTwOuVGYxHOuaTnz44Tizg58paFs202NuT4MRQH2fn11ENE79HQTdtqk0dn0cmFvDhuC7TK3lqTQMESIT9GIbFH7x/lbnVAk/u6cWwnI37Dl48PsZgT5Q/+WAay7IZ6omytlbGliW6QjKlaoNaXeMbv/8BL53oZe94/30nkRVFQlUNSvkGqmYCkFmv4At4UBTxoaaToKXxu7JUoFJssLpaYmysm57+CB6PTLHYIBz20dsbuf+BePgc6NYNElVVO+TS/eRJfhinkx4W92vsb25s3W8zZDMe1nR7aWmJmZmZjrSSrusP5Lt0N7RNbuFmQ/9uZtu242A6Dl5p6yaoadsUVZWGbePf+LksiuzrTjCejCFvaKkCHBnswXZczi2uU2pqeGSJF/cPM58uUWpqxIN+XNel0tARxFYzDWB2rUCloeNRZJKRABLw9sV5zk+v8/LRUY7v6Se0ETZ6EyH+4qeOMtQd4bsf3KArFmBxsYjP5yWZCJMr1vCIImvpOq+/e5ljq/NEIhGSyeRdJ5G74iGadYOV1RIBv4LHI9NsGmRzNQ4d6u/USq7rPpAGrGFYfO+7U0xPrVMtNVlbLhEMeRid6EZSJCJhPwcP9d//QBt42PgDDy5P0s6BHsuubR/bMZBtb4YkEgmeeuqpbW3sPCyhbRgGk5OTNJvNDoG+tLS0q3VYe7DIcRyuXr1KNpvddkP/1uO04+KerjhHhwe2mEsCvHZ0D+9OL7FWquECvbEQPklCNW82M+uqjmnb9PhD+D0yM6t5SnWVkN9DNOjFr8hMzqSZnElzeLSHJyb6ePnYGAGfB0GAfYMxPvvCOB5RJFOokc818HpkvIpEKlvFtSREj4fpxTpjM2miq6sAHU7jTpPIAZ9CpawSDHqIhFsmkeWKiqZamJvO/UFzoB+8Pc21qXUGh+OEIl5WV4oszGVp1HWeOTXBiy/tRVG2H9faPmoPg/vJk+i6TiwWu6M8SaPRuKMc859nPHJCG+49ndRsNrl48SKCIPDCCy/sSFPvQVfdHMdhZmaGlZWVLcZrD1PI5dUmv31jitlSAcNx8MsyvTZ8uquP1dVV3puc5BIWQsDPYCiMC6zXa3zz+hR/68TTXEpnuJrLMRGPd8T+V6tVvjMzw0w8ybKmc6Kvj5DPhwMslSv81wuTuHbrBk8G/Ri2zYfLa1xJ55BcqGqtwiygKDw52IvXI3NpLYPPpxDye1nMlREQKDdUgl6Fka4oCAKFaoNCrUnQp+DzKPg8MoZhMzmfo1g9zVP7B3j52Bjj/QkkUeTFJ8bYP9yF1jQwLBvJEZhfLhAMBYmKAqVqk+X1Kr/xBx/wzMFYJ6DdTUPRtluJimvalPMNio6L2jDweiUcx+WObiw7hCSJSKJAudggEvF1goRhWEiiSCB478m43Uim2tiOPEk4HEZRFC5fvgzcf9Xt3/27f8e/+lf/inQ6zfHjx/k3/+bf8Nxzz9319b/927/NP/kn/4TFxUX27dvHv/gX/4IvfelLnd+7rss/+2f/jP/4H/8j5XKZF198kf/wH/4D+/bdnCQtFov8/M//PH/0R3+EKIp87Wtf45d/+ZcfOfl+vw2RtbU1rl69uq3NkM14mETq1rjXngR5mBhU0TUuZtMs1yqEFA/HultxzbIszp0/z5trK6x7FJxiHop5pJUlnu7r568ePMJkJsM3p6YQBYGYz0fTNPmjGzeo6Do48ObSCo7j0KvIpOt1fnfqOlPpHHP5Ek3DxCNJXFhPc3ZlnZFItGW2ZJqt2DPUx4mBPlKVGuGgl8FEmJV8FReXhmYiSyLDyQheRSZfaVCqteKRILaSwGyxQaZYY8axqFqXeeFYnVeOjyOJIj3xEK89vx8cl7NXV5FcqNcNuhIhLMtFlGSSUT9za036Z1eZnZ3F5/N1YlA8Ht+SlAT8HlwHrkytb3wPrbjgWZLo74/h8z6c5JHruszeyDB5bpmV+Rzry0X27uuhpz9Ks2lgGhb79t9f93I3kqnNkCTpjvIkpVJpywZJNptlcXFxW2TS4xjUwv2mI3e6GbIZkiQ98EZHeyPu1m2NhyHJXdelsUEehTyeTgFWLpf5wdkzzLkORa/C9y6cZTQa5TOj4+yJJ0jVavzmlSsslstA6zMbiUb58SNHmExleGdhiXQhjyhKTFbrPD3YT8Lr5/TSKhVNRxQF+sIhXhkbptjUuJ7JI4siRwa6OdbXg2HZLfJbNZhO5XFdF9O2MR2H3miQeNBPpaFRrqsEfQqm3TJ9XMtUKNc13q00WVwvIBo1nn2+QTISRBJF9gwm+cqLh/iWblGtaqiaSSzip1LVMFSbQNhPUxOoaq2Nq/YkcjQa7cSgzUVK0O8hm65uyKC1nvGlUpNqVWvFpocgtF3X5QdvTXPuzAJq08DQTC6dXyIa89M/kiQU9HDy5N4dGWPv5oSi3+/H7/ff1+B2amqKWq22rQntxzHoJu6Vr9y6GbITf5cHzVk2x73N5E77mtqtZ1ybTJqdnWVqdhb/8CC5gA9PtcJoJIogCJi2zenVVT5eW6Om6/SFQrw4MsLR7m4upDK8vbBAvqGSzRQY8CocbDZZTuc4u5qiquv0h0M8PzJEV8DPjVwR1TQ5PtZHfzhE0KugSBJngmt8PLdGqa4hSQKqYRD0KPTFQjRUg1JdJeBV0EyLWl0jW6yj6Sa6bvHBlUXOXFvlxFic4Y1+k0eROHl0lEy+ztkrq9QaOpGwl9XVEppmEPJ5EQSYWdL5wqtPE/Q6W4wSN5NLrUZmS1vXxcV2XSzbwXFbTTbbdDB0G79ffOBGw5XJVaYurdLTG6G3L0oqVWZlpcTyfJ4XP72f51/YQ1/f9poosPvx51Z5kjsZ3EajUQzD4MyZM9uSG3kcf26iTU7fidB+kM2QNtpDOw9yPVSrVS5cuEA4HObUqVOduLfb3iSCIGAYBh9//DGO49zRbLum60wXCuiWxUA4zGgshigIpGt1JtMZypqG17JQDBNclxv5IllNRxIE9iQTjMQilFUNR4BPHRpDREAUBPqiIRZzZb47OctcpohPkamorZxprDuG4zjkK018G7FH02zWM3lEUUA3bdL5GjPLeU5fXuYvvHQIj22jSCI+r8Krz+zlD9+eolDJIssimbSGbTkkYwEUWaJQanB9QeX//hOnEDEpFAqdSeRQKNSJQdFoFNdpbYjUqxrFbB3FI5FIhAhHfOSyN/2YHiQHKhYaLMzl6O4OEwp5CYW8dHWFyWWruC688so+YvGdNch3O/7A9uVJlpeXyWazjG4MnN0Lf55i0J8JQvtukwGZTIbLly8zODjIgQMHdnxxPAihZBgGFy9exDAMnn/++S0f8OZpxs03i25bnM2uMZnPYLkORxI9PNczSMjT6jA5rsvvzVzjSj7LSDiKX5apmQaT6XXMpsqz2RziQB9mLs3B2M2O3Hg0xnSxwMVMmkvpDDGfb4tz7UA4zHQ+T77WJCxJeDd+JwoCQ5EI780vEff5ODHQMtEIAo7tcnphlT3JOAd6kghAulrnv398mbjfT8TnxXVdPKJIzOdDRGB/NEky5Kfc0Aj7vDQ1A8t2cIFkyM/0Uo5iXUeRJDTT5PJcitmVPF//zHEOj7fIl+54iJdOjPPmRzdYTtXweCRkSaRQbCCLIpFQiIYhMTiyH0U0OhqKfr+/k1S11yuS8SD5bLVVxAVaHcGlxQIOLvv2eFG2aTB5N6wuF3n/3RsszeVIpyuk18scONyPx6uQyVQZHUsyOBi75zF2m1DajLvJk7z77rv84i/+IgBf/epXee211/jpn/5pYrGt5/pbv/Vb/L2/9/f41V/9VU6ePMkv/dIv8dprrzE9PU1PT89tf++DDz7gJ37iJ/jn//yf85WvfIVvfOMbfPWrX+X8+fMcPXoUgH/5L/8lv/Irv8Kv//qvMz4+zj/5J/+E1157jatXr3YezD/5kz9JKpXijTfewDRNfuZnfoa/9bf+Ft/4xjc+kc9pu5BludMd3xxjHnQzpI0HJbTz+TyXLl2iv7+fgwcPbjmneyVSum1R0XVCHg8BeWvBmW02+PWpiyxUSsiiiO26fLC+wrhq4F69SkEUyPi9dPkDxDa+r4Zpcja1zp5Ygo9WVlsatBtTWRGvF58s88HyMjgCXX4fpmUS8XqJ+nzMFUp8Z3qOg8kE+7paBJzjurw3v8w5O8Xh3m66AgFqms43z03xe+evEfF5gZa+ZTLkR3Bd+mIhesIBqg0d07JRdQvLdrBx6Q+HWFwv0dAMokEvtZpJodzkm29Osp6r8aVTB4hvaGM/dWiQ5XSZjy8sAgKlskql3EQWRYr2xqrrkTG+9OqznSLlxo0bnQ54Owb5/QEMzaTR0InG/Pi8CqZpUSw0iccChILKQxHaV6+s88Z3LmOZDj09EVZXS5w/u0RPX4T+4TjHnhji4MH7Tyl9EsnUZtwqT1Kv1ykUCvz7f//v+Y3f+A1CoRB/+2//bX70R3+UL3/5y7e9/3EM2oq7xYparcbFixd3tBmynePeC47jMD09zdraGsePH7/t+3jQYm61VuWN5TlmSgUADsS7eKG7D9u2ef+jj7gkCaw7FkkUFElkMpthtVbl//bEk3x3do75UomJeBxFkjBtm4VSif9y8RKlukrY62U0FEIUReSAnzdmF5BcgYFwiIlkDNtxWCiW+aV314n5fMT9rS2Ra5k8v+deJ+zxYDsOYa+X3mQI07ARRYHecIh0qY5qWhimjWnZ2I5LLOAjlathmDaJsJ+GZlKpaqxn6/zv/+Vt/uKnjvLsoSEUWWKkP8bJoyP8/veu0NRMmg0DtWHg88q4tkuxqnL28jqfOnWQ/fv3o6oqhUKhU6RIktQp7GpVlWDAi66b5HN1JFnE45WRRJFmw3goQ6TUWpmL55eIRHwMDsUZGkmQy9ZYWy0RDXt57YvHGB7ZXjPlQQmE7eJuBrdra2v843/8j1lbW+MXfuEX+NrXvsZf+2t/jb179952jMcxaCvu1NjfvP6+d+9exsbGdnxtPUgMajQaXLhwAUVRbot7D0Noq5bJjVIBzbIYCIUZCkVwXZdCocDF1Do3vBKltWVYbfmDPNM3wF86cIjvzMzw/YUFfLJMQFG4USiwVKnwbP8AZ1bWsV2XZMBPQRCYrqv8H+99jChI+GQJvyJzPZvnwloahda5C4KAAEQ8HoJKS+M25FUY6Ymi6RZNw+Tlw2MsZ8s0dBOJ1naW7lqEfV5KVRXXdYmH/eRLDQqlJk3VZHGtwJ4eP91DBfYOJZElkc8/v59aXSeTrVIsNjB0k0Q0gN+jUG/oVKsq7364wN/4qyc7k8jVapVCocDKygpXr14lHA5jO15swySoyJTyDVzHJRoPsG+8GxeBcqWJ3x/FcZwHij/TV1N4fUpHZm14JMnAYJylxTx79nQzOLizadVPsgaDuxvc/u7v/i7/2//2v2GaJl//+tf5kR/5EX7qp37qtmf34/hzE23zWEEQbosVhmFw+fLlHW+GtNG+Bnb6PGoPMk1MTDAxMbHlmt5No9v2uU1du0bB66Ho9/HexbPsiSc4NTjMQCjM1VyO3716lWyjgQv4ZZmn+vs50tXNt65eJ99o1TJNTUPWVPyOgFm/grshE+ZXFOJeH03dpKbreCSJ/kiIwXCY1JU6XkViT3+chmpSqDd5bt8gq7kqTc3AK4vYjoOqWwT9Cqra0rEPB7xUMxUyeg1BgGuVDPlCnZ6wzBeeaxGpowNxvvb5Y5TLTdZSFRRJJBkNoKsm1WIT23FZmM9zfnKFz758gGg02plELhaLFAoFpqamsG2bK5drFLMVFFnG75VxbBejaWB65Y5MHOyc0HZdl9RqiVK+jm8Tr+P1yvT0RCgU6hj6zr9rx3EeyFB2u7iXPMmv/uqv8tZbb3H27FnK5TJf+9rXeOmll247xp+3GCS4tzry/CnDtm3ef/99hoeHGRhoaQE5jsONGzdYXV3l6NGj9PVtz9X4VnzwwQfs2bOnM2F9P7SN12KxGEePHr3tYtR1nbfeeovPf/7znSBp2Db/bfoSZ7JrKKKIKAiolsWRRDc/e+gpQh4vK7UKv3L+IxI+P6ENzUvbtrmyMI/juvzzH/lRXl9d4lImzXhs60N7vlziqb5+FgtlLMehZ9Pkm+u6XMvlcWywSyX2jw7jUVoakI7j8J1rs+xLJtjffXPtYLFQ5sJKmqeH+hiJtx4M11N5plN5RpMxjg/2UW6onFlYw7ZdJrri2K6DYdg4po2IiGXalMoqE/1xIl4vN1byyNg0DRvRlVBEiXpTpz8Z5ounDvC5Z/fhUSQM0+aP373Kt79/FcdxaNYNsF2CgVb33zBt/sqXT/Cjn2vdGO0OeKFQoFAoYJomsViMSlXgD749jWbYSJKIKAmYho1pWhw9GOD/+fNf2+GVchP5XI3f+Y0zlEsN4okguWyV1dUSsiKx92A/E3u6eeWV/cTi9+6+r6ysUC6XOXbs2AOfy4Pgww8/5Md//Mf5xV/8Rd544w2+8Y1v3EbEnjx5kmeffZZ/+2//LdC634aHh/n5n//5DiG+GT/+4z9Oo9Hg29/+dudnzz//PCdOnOBXf/VXcV2XgYEB/v7f//v8g3/wD4DWRE9vby//+T//Z77+9a9z7do1Dh8+zJkzZ3jmmWcA+JM/+RO+9KUvsbq62rn3HwUajQbf+973+OxnP9vpwDebTS5cuIAoipw4cWJHmyFtqKrKO++8w2uvvbath6vruszPzzM/P39Xo5OVlRUymUznM4TWGuzbawu8l1qmYmgEZYXneod4bWQvHqkVw35r+gpvryyyL5borJ8tFHKUCkV+ZuIg9XiM7y7MsT+xdUVpvlxibyxBqlonqChENiXlrutydi2F6AocikXJ5fMMDQ4iCALzhRJXUjk+t3ec4MZnqlsW784uAfDpPWMtMnkj1oiCwIt7hhEFgXPzKapNjcFYpCVpZDlYho3rgmu7FIoNhrqjJAN+ZlbyRIM+ClWVWrlOOODHsBx8ssQT+/r5K595gtH+VkzNFuv8yn/9Aal0BbWhI0sSiagfEMgX64wNJ/n5n3mF3q5w59+3mVwqlUqomsvpj/I0mw6NhtlKFgMeIhE/wYCXU88mGB7uYmxsbHsXySaYhsU3/stpSoU6fQMxADTNYmW5gCiK/PhPnmRib8+2tL7L5TJXr17lhRde2PF5PCz+zt/5OzSbTUZGRnBdl1/6pV+67TWPY9BNOI7D0tISKysrnDx5svPzdkF1Nz377WB5eZlcLsfTTz+9rdfrus7FixexLIsnn3zyjlNmZ8+epaenh5GRrbr1RU1lttKSRJuIJOgJ3MxVCmqTX508y0qtSre/dcxss0HQMHlB8NK9dy+/uzTHSCTWadq7rstMqcCJnj7m8iUiXi/hTfGnputczebwiwrH+3rJ5nItjdNYjHfmlhGAT0/cnFCZz5e4tJbhqcE+RuIxHMfl7OIa6UqdJwZ76YsEuZEqsF6q0RMKEvF5EAQRXbewLRvXhmKpSVfEz0AswsxynkjQS7HapFE3CPkUms0mkuQlGQnwzKEhfvpLT6FsyJy8/v403/7+VeoVFUWRUEQRXTVpagahkI8f+dRB/tKXjm/5nh3HoVKpdGLQm99fYG62Dq6Abbt4fQpDwwk8PoVjRwf51MsTfPTRR7z66qvb+r63fK8fzfP9168yeotObTZdJZ4M8lM/8+K2j2XbNu+88w4vvfTSfXXedxuu69LT08M/+kf/iCtXrvCzP/uzfOELX7jtdY9j0E1YlsX58+cJh8NMTEx0fnblyhVKpRLHjx/f0WbIZpw9e5be3t67asHeirbx2t0GmRzH4fXXX+fVV1/dUYNvtlzkt65fYa1Rw3EdgoqH47Eu+vIldMflY49IzTAYiUQRBYGqoZNpNvji+F4+XFlDFgSSm+LhYrlModEkpvjY29XKmxYWFqjoOkuGy+GebvYkWrmHYdm8dWMBRZL41J5RJFFkKV/m0kqannCQg71d5GoNlrJlwl4PyVAAWRQ36hob23YolzX8Hpl9vQlurOQJ+jyUqyrVqkZXNIAAFEsNBNuhOxnhx3/kBC89OY4sidSbOv/xN08zdT2FR5LQmiaaaqKbFgGfQjQW4H/52Zc5tO/2WtswjA2phwV+8zcvY5suwZAXSRSxbQhF/AyPJfnpn3yeeCzA1NQUwWBw2zmQ47isrxT5zf/yIZZltyRGNpnRLi8WePXzh3j6ufF7HOV2fPTRR+zdu/eRrN1/4xvf4Jd/+Zf5+te/zunTp/n2t799G7n+OP5sha7rvPnmmzz77LNENvzDKpUKFy5cIBKJcOzYsR1thrSx03jhOA7Xrl3rTKy2txI3I5VKsbi4yKlTp3Z0Liu1Ch+n18g06vQEQjzTO4Bcq3P58mVmFIkZx0IUBDySRM0wGAiF+SsHD/M7U1cpqioj0SiSKFLVddarNWQEZEFiLB5DEAQajQYfzC3SNCxemhgjHgq1eKJ0jvl8maN93YzEo1RUjbOL6wiuwKHeLgzbZrVQxSO2tLQ9oohju6i6iW071Go6tulwbLSH+dUSoiSgqialUoOeWBjBhUy+il+R0XWTgWSAn/qx5zl5bARBEDg/tcp//dYZisU6juGiaxau4+L1SAgIDA3F+af/8Iv47yCn6LoulUqV//Dv3+bqVBqPV8DrlfH6PKhNG1ES+bm/8xmOHW3Vy6qq8uGHH24rB2o2dN767hTXL68zN5NBkkUGRxKM7etBliXyuRoej8xP/I1T+P07y2OuXbuGz+djfHxncWu38MUvfpHDhw8jCALj4+N3jCl/3mLQnwnHgs2TAZqm8fHHH1MoFDh16tQDk9mwsy7aysoKZ86cYXR0lOPHj3fI7EyzznvpJd5LL5E3WhqXm6eTrhaznM+tMxSKMB6JMxqOMRGJM1XMcTa3DkDDNNBtC//G5LCu66ysrOCXZSSPAopMbyCEvmGI0IbrupiOTX8wzMGuLoqqusWQp6iqRH1eDnQlqds2rrPpd5pG2Ovl1hpY3zDuaBu6WbZDvtbEq8g4G9PnC7kygiu0XF69CppqspyrkK03UU2Lhmni9clYtktTb623GJZNs2FimQ4+j4RXlsgX6vzBW1P8/ttXcBwXjyLx5VcOc2xfPz5JxidL9HeH8XsURAQEFy5fW6dSbX3O7Q74wYMHeeGFF3j22WdJJBIsLKTRGnVcQ0OtNrA0g4G+CCODcZrqw60BXZ9ap1ioMzySIBz2MbGnh+ee30M8HuTI4X5+9MeO35fMhlZB9ygMQTRNIxaL8Q//4T/kjTfeuI3MNgyDc+fO8bnPfa7zM1EU+dznPsfp06fveMzTp09veT3Aa6+91nn9wsIC6XR6y2ui0SgnT57svOb06dPEYrEtROznPvc5RFHko48+erh/9EOinSS1Y0U6neaDDz4gkUhw8uTJByKzYetkwP1gmiYXLlxgdXWVkydP3tW1+07TkW+tLfC7c1ep6BpRjw/NtvmjxWl+f+E60Gq6TRVyJH3+DpldLpdxylU0AfTQ3a9nURAQRQGfLKNuSAW0oVkWAY+CT5bRbRs2xSbdspFFAUW4eQ9optUxnm0jV20g0Io1pu20piF1E1EU8HtlbMthKVtmtVxFNU2quo7oEWlqBlVVx3FbMahR1xAFgZBfacmK1HTOXVnll3/jPeZW8gD0JEJ86eWDBL0KPkUh6FUo5hqkVstYmkW52ODqdLpzbu0O+PDwMMePH+fll19mYGCEbLpBPl2hUWmgVpvodY1IUEYUwHbcB77vKxWVUrFJdFN88flkxie68HpkFI+0LTIbPvkJ7XvBMAyeeOIJ/vW//td3JLMfx6CtuNUY27Ztrly5wvXr1zlx4sQdtVy3i51MU5dKJT744AN8Ph/PP//8XVem7yTl9n5qmX95/gf8f6+e4z9dPc+/uvAery/PdvKZ85kUK7UKe2NxEj4/UcVDSNVZrddYNFQ0WcJ12bKBJggCIY+X5WoVy9kaNwAUScJynJsTOZt+Zzo20i2fWbmpIQlCJ4cqNVXquolPUXBcF9WwKDda3hguLh5RYj5dZCFboqGbVDUNR3KpaSbZah3TtqirOo2GgVeWCXgVDM1BaxoUi3Vef2+aX/3mB1TqrWM+d2yE/mQY3bDQ6ga5TI1SqYmh2Wh1gw/PLNDUtsrDiKJIPB5n7969nDjxFK4dQNccPF4Rrw9MQ2dxPkMmVSIa9T7Qur9tO8xOp7l6aY1itka9qt2Wh+70mA9iSrtbsG0bXdf5m3/zb/LNb37zjmT24xh0OzbLHtVqNU6fPo1pmrzwwgsPTGbD9usw13WZmZnh0qVLHD58mEOHDt3x+mlfi7fGoPVGlT+Yv86vXTnDt+ausly7adpWNw1+8/pl1ho1xiJR9seSSJbNH16bZN61KCsyBU3rEEaCIBD1+vBJMu+vrlDRNBK35IExn49cs4n/FpLNcVsEtke6ee4lVcOlZexs2ja245Cu1PHKMg4uPkWiVFMxbQfNsgkoMovpEtdTecpNjUpTR3dt6obBXKaIqpuU6ypN1cDnkVEkiVKxFUskATKZKr/+rY/5798+j2XbhAJeXnpmAgEo5OtUKk3MDf8PryRSytf5+NziHb8Xj8dDX18fkhjF7/EhSxKu4yIIDrZrsL5WwDKaOLa6LVO/zVBVgz/85ll+8//6gNRKkdmrKSbPLFLf8ChqNHQUj0TvDqRGOt/DI8yBNE2jv7+ff/pP/ynf+c53biOzH8ef23GrMeTS0hIff/wxo6OjPPnkkw9EZgN3nfy+EzRN46OPPqJSqXDq1Kk7ktntY95tFrRhGjTM22XeruSz/LuLH/PdhVmuF/N8d3GW//3dN/ju5EU0r4cbukrc52c8FmcwHGF/IkmqXuNb16+RaTQ6sQlaG7KO6zJbKtIfvilJ1jovMJybps4uUNMMXMAVWjGo3NRwHRBE8HsVDMNC1Uyqmo4iiixly0wuZ8jVGpTqGjXdQHdsLi1nKNQb5MoNVM3Aq8gocmvT3rEdFEHE0W1W1+r82n//gN/97iSmZXP80ADHDw5g6jZq08A1bUTTwdVsjIZBZr3MtenUHT9PQRBoNlzKOQ0FCbViU8rq5NN1NF3HMjVWV+dZXl6mXq9ve0PEdV3e+u4Ul84sEQx7GRlLYtsOCzNZZq6myWaqNJsGTzw5vGMyGx5t/IEWp/Dyyy/za7/2a3ckp/88xqA/E5Ij7SDWXrXv7e3l0KFDD70utB0N7basQDab7RivQetif2N1lj9ZnaVitB6uUcVLr1Hn07bdCa4L1RKW62xZ8fdsyH9cL+X59OA43f4gEY+XkqbhtWyy2SzxeJyMphJxIe7zc7y3l49Sq8yVS/QFQ7i4pOt1eoMhjvW0TETmSyVmCgUCioKx4aT92fFx9iYSTM3OMl+uEAsGOqT1KxMjTGfzrFar9IdCqJZJrtlAkoVOMVhQVVTbwnIcIj4vFVWj2tQIej00TYNsuU6hppIM+6mrBrpu0dAMLNum0tBwbBfBAr/oIgsiiYifakWjWlNRJJGSYfMH35/Cr8h8+ZXDLV234yNcurKC6zhk07XWBILjEPB5SKcqLK4UOX5kK6EnCALBYBC/P4DanKNRc/F4BFzbpVFpsm4ZBCI++nu91Gq1LbqTO0E+V8fj2aqD6/PKhINebGv7q3SPKpi1zZDudp75fB7btm/bWujt7eX69et3fE86nb7j69PpdOf37Z/d6zW3rrDIskwikei85lGhve5mGAYLCwusra091GZIG5tNTu4Vy+5kvNZGUVc5m1tjsVYiongZchWkTYmZapn8YH0Jv6wwEGxNFocUD4oocjazxquD40Q9N7XYXNclm82iaRoDg4Pk11bAdRmLxZFFkbphdLZIdNvCsG2O9fRSjxj8jxs38MoyMZ8P1TRZrlQ40tON4AhcXlvHsxFrK5qGg8NgNEKu0WQw2jovWRSxHIeQR0HeuDcM28ZxXWRRRBFFMpUGiiwiOFCua9QaOtGgj7pqoGoWhmGhmRb1hsmSVQHbIe7345EkFAlKJY2GauBXZETbZXExz3/4zdP8Lz/xAuNDSY4fHORP3rpGJlWharTIMFEUW7pxpSYXL6/w6os3tb5u/T4zKRXXEvD5fYTDPkzDpFpVuXxxhfF9UQT81Go1DMPY9mSibTvMXEtx5eIK60sFmrUAIxNdyBuTnaZpI8siXs/2H9ePMplqNpv31NB+HINuRzsHajQaXLx4EUmSduwZcq/j3gubZQXaxmv3M0PbnFctVkt8a+4qtuuwJ9oivnJqgz9amGYgGOZospeVehWPKCEJIoahk0qlW1r18TjFWpOALOPi4rgu4qa/rZkm410xyqJGrtFgeNO6ca7RYDASxjQcmqbZWjvd0L72yK1NsVvJFdeFgGdjY8S0cB0HUWw17gq1JqblEPZ5qWsGzYaJT5HBhYZq4NouqmGiuRaZYh3Hdgh7FLyyTCTgoVxWMS2XkE9CsKDZ1PnBR/OoDYP/9a+/Qizi56Wnx5meTlOvqggISC54FQkcl0K+zvJyiUMH7vzcmZ/LUS2r+D0Kat0mGPHh8UC51KTZUCkVFpicbOl/F4tFYrHYfWOAYVh85/cucm1ylUbDoJCpUSur7DnYy8BIAtO0UVWT/Qd39ix8lIR22xj7Xhraj2PQ7WhLP+7GZshmbKcOu5Px2t3Qztc2H/NaKcd/vnaBvNrEI0nots3p9Ao/feA4T3T1MV3Ms16vMR6NI4kClXIFtVSmOxpjGZtx20IAJGHr9eqVJDTLam1T2Da+TVu7pm3jl2U0+6ZMiyAIILS0aYVNLTbHcVvmbIKAJIotLVqzFV8c16VY16hpBsmQn5qmM5su4QIhr0KtaaAIArppYtgClYqGYVp4JZmgJOP3yNRqKppuoggCRtPBsl2qhsr/+N4UpmbxN772LE8fHebQRC8fnV3E4wo4pg2CQE2zQYC5uRzNpkEgcHveYhoWP3hrGqNhYOk2as1EkkVCcT+RiEJ30s/169cxTbPzfTcaDQKBwD2vn4/enWHq4grdvRFi8QA3rqfIpqtomsnI3h5sx+GJE8MMDO1MbqT1mT/aHOheerCP48+dIcsyuq5z6dIlSqXSAxkj3gnbaaoVi0UuXrxId3c3hw8fvmfNdqfjrdWr/MnyDFeLOQQBDid6+OLIPvqDYUzH5o/nb1AzdPbHkziOQzqTZl1TWR1I4mitQcE9m3SzRUEg4fezWC3jcaUtxo7Q4plsx90SZwQ2JDeEm/NFtuNg2g6SeFOOo1BX8SotDqim6uSqTcJ+D03DZClfxrBs4kEvtYaBR5CwbBvDcmlYLrphIbrgE2U8gkClqqIbJl5Jolk3cCwXwXUpFxr8zh9eoJiv87Nff57XPnWIs2cXydWq4LiIgKlb4LpodYMzZxZ56vjWrb82zp9ZIJep4vcpBIMeNM3CNCy6omG6esP0dHdRKpWYn59HluVOnRuPx+/aCCkVGsxeT5PoDhGO+AmGvCgemZWlItn1MgMjcV54eR/HTmxvs+hWPGpCu9Fo/NDFoEdOaLe7ctlsltnZ2buu2j8I7lfMqarKhQsXbjNeA5gu5/mj5WkUQWJfpEVyZ9U658wq0+U8x/uGWn9DEO9oQui4dEibpD/As32D/N7UJVxNZ7C7h5okYOFyPJLAI0n0BkP8tcPH+O7CHKvVKghwMNnNaxN76N5Y3f2ZJ5/k/Po6C+UyIY+HY729HO3pQRQEjsfDLCkKGb3BQDDE4a4ulutV8q7KjWKRSwWhZaYoiLg+eGN5HlkQEV2Bmq7j2C7T5SJiCaqGhqi11l5M025NHrou9aYOskIs6CVTqCOJEpZh49gujgA+QUJTDWob05KyK2KpNkbD5Pdfv0xXLMipE2M8eWSQ7oo1i4YAAQAASURBVHiIhbkcju0iiQJBr4LfJ1MsNFhcLtxGaLextJQnvV7B61PwemX8PqW1jldqoHhcent9nD9/vqM72f7vvcglx3G5fnmNKxeXmZpco1JRCQW9RDZMl9wNA5RIZHtmSK1jPlpC+zF2BkmSmJycRBAETp06tSufYfv7v1cMSqVSXLly5Y7FY7pZ49eunWGpVkYRJSzHRrIdTuCnvehW0lWqhk7Ce8v0kMfHQq1MXmvS7Q9yJNnNm4tzNAtFZFFkaGiIrNokJCsMBULsTyZ5rn+Qj9bXyDQbrWTDcTja3cOTvX1IQmvN7VI6TbbRwCNJHOru5i8fPgyArmlcWFhkOl8g4vPy8tgoDg5vzi2wWC8TlhWqhgk+gYzR4Gx6HRGB1UaNqqEheUPcKBbJqnUEtzVF6Toutu0QEGSaqoEiSCRDftRCDWiZv5qmQ9FsIiHgxcXUW401R3doWCaO7TA/n+P//I3T/L9+7nNEQj5eeGqM2ekMAq2GmGA74NpYuGQyVRpNnWDg9tVEtWnw8YfzKKJAvaajN00CIS+K14Nl2Dx9Yi8ej0G5XOa9994jFAp1tLej0egd44FtO7z+R5Nc/HgR27LRVYPZqxXqFZXDJ4Zxaa38j+/toecRGiLtBI9j0M7RNm88ffr0A3uG3O2494o/tm0zNTVFoVC4Y/FoOQ5vpxZ4L71E1dDpD4QY1eFJ++b3e7mQoWLo7I8lOvGrNxBiplzgYj7F0WQvMa8P03Go1+vkcrmOc3uxmMMviByIJ+kOBFmqlBmKRJAEkXyziSgIPDcwiG27/M7Vq8wViwQ9HhqGgVeS+EuHDzObL3J+LYXaaAKguC5PDfbT1ExmCyW6g35sx6VpW0iKgGZbqKZJ2dCp2gYBScYRXHLNJoZrYxsOgiuA6RIPeqnWVWyzpeevaRamZeOTJZqGRbWu4zoutYaGa9hIgK3ZWLaLazpYtsVHZxf5T14vP/dTL/L0E8P83rcv0ig2ER0XAdBtE9ty8AcU5hfzdyS0bdvhne9dI7NSQZJFLN2i1KjhD3vp7o7Q1xfls5/9FJlMmvn5ea5evYpt21v0/+80cX/l/DJXLizT3RthcMRDMORhaSHP9ctrNJoGPr+HfQd6OfrE0I6uu/aU1KPKgYBHbnL2PxMEQUAQBLLZLOvr6zz55JN3nU7cKe4Xg9rGa6FQaIvx2mYYts1irYTjuoyEY1sIbdtx+MOF65Q0lf2xZMdodqFa4g8XrnMw3o1qWa0JaQGymSyqpjEwMEDNtmg2m8R8Ch7XpmEaBJVWreC6LmVd59TgEKW6ymypxGg0ikeSaBgGRVXlxeERVspVMvU6XYEAuu1Qt2x6QwEaholp2yiShCKLuEDQ40GRJOwND6KGrjOaiKKaBvYG6W3ZLrZpEg/5qTZ1GqrBYHyjcacbRPxeaqaDqZmUbIOyC5Ij4JVEBBMcywHLxRFcVNXije9fxadI/ORffIYTR4f4+KN5TK1FSlmOiyuArIikVssUy407EtpnP14gu17GdV16+yMYpkW9auBBoKs3ysGDEzzz7BjNZpMrV67QbDY5c+YMHo9ni8H2ZhlPtaEzdWmFcMRPINjKt/YfHCAVKZFJVwgGPTz/0l4OHR3c9mbaZjzOgf7nRNsQ8EE8Q+6GezXVXNdlcXGR2dlZDh48yNDQ0H2beLc21Ipak/9z6ixLtTLd/iCuC++uLbJSq/C/Hn+eumGw3qjRFwhjmAaZTAavx8vhoWHymkrM2dg6wUXaRFBbjkPU68MxnS3DRu3t/b5wiHSjzki0ZV7rAgggCwLyxj0ji2LLN8mhI9kmiyKmbSNLEpIgYDkOXkXBcaGpmYR9XnBdVM0iEFKQBKUlr+T3geVi6hZNW6dhgei2ztnjiri2i2M6iA64CGi6zhvfv4Zru/w/fvoF9o52kV4s4Zo22A4gtPIZ22RhLodhWHhuGdzJ52qcfmsau2FQrmoEwz7CMT9u0EulqLL/YD/Hj+9HllvPmVQqxczMDAsLC0xNTRGJRDoeJOFwmGZd59LHi5w7PcfsVIqhiS78fg+yItE3ECMS81PI1vjCl48xOPLgckWPMv64rntfQvvPIx45oa3rOoVCAcuy7tuZ3ynu1ZVrT4P39fXdcbXtUjFN0zLZv2kiqDcQZh6XS8V0h9A+EO/i+2vzFDWVhK9FKtUNHdd1eSLZ6lKYpklvscrTngDFZBcG0O/z80q0i37rJhu+J57gb8fi5JqthLw7ENwyrdQVCPCZiQnOZdeZzGd4L71I3migmzbvNkq4HgVFVphpFDlfTJHwBBiORYn5fFzMZlAEkRcH+mgYNmeW12naBl0+P2GPl5Kqkq3X8QsyDdPEdcBrS9iWA66L1FBbKyWKiFppYmzIDdiugGHbGKaL4do0GiYK4HEkTMtsTXADhVyd3/zD8xya6CUW8TPSF2fxRhbFEXAtF9MwMZsmokeiUGzc8TtzXZfT782RXi3h2i6VmkbDK6N4ZUAgHg0yMhThpZdepFKpUCwWWV5e7piatI0Uw+Hwlu/79DvTvPP6tZaIvyRQr6hc+GiBIyeGicYDZLM1orEA+3YwpfSoglm9Xr9nItXV1dWaNM1ktvw8k8ncdSK5r6/vnq9v/28mk6G/v3/La06cONF5TTab3XIMy7IoFosPPQn9sMjlcpimSTQa5cknn9w1I5l2QX+nGHQ/4zWA11dnWayV2BdJ3tS9Lub5sF7gr2oNunxBwooXnyTTsAwCmwrBhmXil2TCSiuBeTIc5wf1BlkREuEYc9UyQUXhZDRJVPGgiBJfO3iYfYkkV/NZLNflQCLJk739neP+1SNHeGlkhHyziUcU6QoGiPla5mpDyTBn1h0qNOn2+5mtF1mtVtEki6plsFKvEpAUBuJh1ipVJos5ZASCgoIluKzWqhTVJppht2RJBIGqI2A7LgVDxbJdQrJLrtbAMC2CsoKwkRO5jotu2ugueAQBjwuOZWMbNjjgiBbXr6f43T++yM/8+PMM9ccQbBezaSIJAoIIqtXaeKlXNIrF5m2Etuu6vPXGVRZuZBGgNbGlWagODIzGcR2XifF+TCtHV1cX3d3dHffpK1eu4DgO8Xh8k7lk61mxOJfj0plFonE/wZCPnoEYczcyZNYruIJAojvM4FCCz3z+8I6KukcleQT3nwx4HIO2oj0hbVkWJ06c2NVzuVcO1PYJkGWZU6dObWnot/F7i1f5k+UbeCWZgKxwo1xgstFAlGX20dpkaJgmonC7CY9HlKgYrdXb4129fPf6FNOFAvv7Bwn4/azWq0S9PkYNgbjPx189eIQ/uDHNUqWC67pEvT6+sGcfx3v6EICAonBmbY10vc7eRILnBgc51NXFU/39TMTj/P7FCzRMnWf7etjb083riwss1SrMNIoIbmvaUvSLnM6sYVgOHldEd20qukE5ZSA4Lg3dRETAK0itZpmlYZoWHkEiX2/SNEw8ooRrOrg2KK6AYdhoroPg0oo9ro2tO2C7uIKL5bj84P0Z9o918flXDtITC7KkZXFstzNGpXhlbMNmdbV4x+9qanKVG1Pr4LqEwh7iiQCq2iLCg16FoaE4Xq+nM5H04osv0mg0KBQK5HI5ZmZmWhPxmwy21YbJpbNLyLLYMWIbGIoTCvuYn83S1xvlxc8cYM++XrzenZUKj5pM8vl893yOP45BW1Gv11lfX8dxHF588cU7xoIHxb1i0L2M19q4WsryzbnLrDVrLX10f5AhS+PZDUIp1ayzWqvSHwx33i8IAv3BMOuNGiv1Cn3BEDIwt7xCQJYZGhpEEiWWy3X2BEMMK36eiEc5k1onpCh4JImiptEVCPCpkTEkBL45NcVypYLtungliacHBvjaoUN8tLrO+4vLLJbKVC2LIb+XLzxxhLfWUlzIpZFpDT35Qwopo85352dxHJeSqWO6Dka1hOSKVEyNtN6SOrJtl0rVwDQsEFoeBHXNQBRA10xc20GmRarZloNtu2hCi0gSDAfJEVqDVpaNbth8+48nmRhOcuxgP15ETN1qTXcKAqIkguug1XSK+QZDA1ubmvlslT/4jTOoFRVDt8g2DKLJEPFEgGKhTm9/jD17ezpbtO0409/fT7lcplAoMDc3h6qqRKNRJHzMXyszfy3L/I0MiZ4IwZAXr0/B51cYm+hGEkVeefUgB48+uJ7qo8yB6vX64xxoh1hbW6Ner9Pd3c1TTz310Jshm3G3plrbJ6BcLvPss88Si8Xu+H7DtpkqZVhtVPFLMiOSfwuh/XFmjeVamf2xrg5nE/f6mK0UOZtd51CsG0GAeqNOo1zuNPRV00IQBAb8fpYsk9VqlZFIi5zWLIuKrvOVvfspNzVOr6wQ8nhasUlV6QkGeX7fEO8vrTCTL+CVZWqqSo/Pg+yBpXKVqLFxn0vg9Uis12s0bYOSpZHTVSI+LyuNKnlLJaM3ENzWkE+tYeDYDqZgUzUFdM3BxkHVDUzLQhIEFEHGdCywWk3FuqMjuCDZLqJDy3PNFTA1m+9/7xq9yTBHDvTz/venwbARAAEXHAdXFCnl6tRqGsnkzfvGthz+4BsfsbaQx+dV0AyTWqlJs6bhj/kRJYknnhjqbLNKkkQkEkGWZU6ePImmaR1zyZWVFQzd5vIHeXIpFZ/Pg6EbzE2tUys32X9sCEkW0Zom0ViAePLhyOBHGX/g/lsifx5j0CMntFVV7Yyb7yaZDXfuyrmuy8LCAnNzcxw6dIihoTtPntRMHVm4/WIUBZG6qXf+/75Yks8MTvDW2gJZtUXEeiSJU/3DnOjqp16vc/78eYLBIH/7c1/AFUVUyySoeEitrd02Yi8KAr3B1kVoOw7XyjlSzTohxcOhWDffmr3GO2uLndXcd9eXKKsaQdsmaQhg2KxZBmnTIBn3EvF4qGk6HlFCFKFuWVRVnaBHISgohBQPTcekPxymrGpYpkPQ40EzLGy7RWY7JriuAy6U6zo4rdWWsqYimYAJkk1rUtt1MUUQTXej6GtNYLsurCwX+ZO3rvH1v/AUEb8HW21JjQii0NL6FgUkQaB0F0L7/JlFzp5urfCGIz5cx8UxbOJdYTx+heHhWMskckN3Mh6Ps2fPHnRd75BLk5OTLXfwDXJJlvx8/N4cXp9Coqv1uQdCXm5cTTNzLcXwnm66usO88pmDdPdEtnPZAa2C7k/bDAnuTyZ5PB6efvpp3nzzTb761a8CrXN98803+bt/9+/e8T2nTp3izTff5Bd+4Rc6P3vjjTc6hhjj4+P09fXx5ptvdoJWtVrlo48+4ud+7uc6xyiXy5w7d65jUPb9738fx3G2GKE9CpRKJXw+HyMjI7vuin6nGNQ2XjNN867T4LptcaWYIekNbFk16/EFuVIpMVsptghtj5enewZ4fXkWRZSIerzUTYP1RpXneocYCIRYXl5maXqanzvxHHmPzHKtQkjxcKy7l9LMXOf8PJLEM/0DPNN/9yKiK+DnbHaN91JLNEyTLn8Ax4HZTBbDtfE0m7xdKdFwHI5EkxyMJ1ip1ShqKoIEA5EQFVVHt2xEUaBb8SNuNMV0w25tdggtwzNcsK3WpDYO1DUTYeOjtA0DyQbBAsURWhNJlosJ2NjIBoi2i4iAs+Et8L23r/Op5/eSiAYRTRcMG9t1sQFREvH4FZo1rRX3bsHiXI73355GAhwgEm0R0rWKhqNbdPVF6emNsLKSQRCEju5kX18frutSr9cpFApkMhlu3LiBz+tDdP3MXy+jaybBUKuI9HplDh4ZYN4jkegK8+W//BSj413/0xFKj2PQ9mHbNsYG8btdA+vt4m6TSblcjkuXLt1zGjyrNng/vUTM66fL15ruTfoCXGk0+KCU4quOgyyKDIYiuG5rmqi9lea4LpplMR6OYZompbl5nlL8LPSFSZsamBpdvgBfHNtL5fJVXNflUFc3Y7EYc6USluMwHImQ9N+cKj7c3c3h7u6N6csy6UaNy4UsUY+XH6SXWDKqNHWdpRuTaNcdEh4/fcEga40m2WaT4XCU49EkH66sozs2IZ+HiAHFpoZumQh2SybAcd2WFJLjopoOggOaY2NoNrhgWQ6aDYILguW2yCPLwXXAdMF2bCTDRXZdbKvV0NcMjd/+1nlOPTXekjwx7NaEtiggiCKuaWNZDs2aftv3kF4r85v/v/cppCtYlkOmphKKBgglAjRqOs2GwZNPjnQmU9vTtqFQiFAoxOjoKJZldciljz+4xJUzKapFi3ymicfrIRL1E4r4W9rBsQCJRJDDxwY5fPTBtiUfZfxpN/XvRYg8jkFb0f7MRFHcVTIb7kwmOY7D9evXSaVSnDhx4javlzYyap3/a/o8Ba3JYCCCKEBarTOvlXi2UuDZjYEjQbjjoizCxn+itkO41mQRh2A0TNU0KWhVoh4vz3f3I5SrfP3wUQZDEc6l11Eti1ODQ7w8PMpIpPU3/s6zzzJbLFI3DLoCAcZiMSRR5PN7J+gK+3l7aQG1nscvwW9fOU/JddERaNg2tuMyGIog6AIrlSoC0B0MUGiolEwdxRE2/AAAq7X1ajg24kacKTQ0cEB0wLANREC0HWRAsFv1Fo6L44LoApaDbTidLRBNU/lv/+0j/j//7x9DsBzQrI6/kiuKWJKAJInUa9qWz0/TDH7jP71HermIN6Dg8cg0ahr5VIVAzI8kiTxxfIhE4mYO245BkiR1hoigVesvL67zrV//mPRaGX9AwbItVuazaJrB4RMjKB6ZWkUlEPTS1fPgfIDruo88B7oXn/E4/mxFWyYrGo3S1dW1q2Q23DkGNRoNLly4gMfj4dSpU3edBq+bOv/x2jkuF9PYbmuzIiIqHNUF2raDS7UyiiRvGUCUNiajl2tlXh0YI2TYXC9kOTowTDgYxHFd1hs1JqJxxiU/wXCEDyplbhQLCEJr+/9Eby+fHhlDFkX6QyHOrK+jmSYnh4Z4ZXSUsViMwz3dXEilSdXqCIZGUBbI2gbnahVWtdZ5KYqCIklM14qoRROvIOEqkDOaFAwV13axHRfJBcEWUB0X0QYcKDcNsEFwoGqZ4LZij+iCiIvkCggbU9nYLi5gmi6y5SDYgONi6ja/+80z/PWffh5Bt3F1C9fdiNmSiCC56E2DZtOg7eHqOC7f+d1zfPTWNFbTwNZM/BEfgZAPtaHjkURG93TfJoe2WWbO5/MxMDDAwMAAmmrw7ncnSa8uEokrOK5GKKZQKeqkV4tE4gF8QS+Nus7Lnz3Y2Rp5UPxZlxz58xiDHjmhHY/HW6tftdquH/vWIGZZFpcvX6ZSqfDcc88R3TR9fSvGw3FOp5e3FGmW4+DiMhK4SWyKgsBXxg9wKNHNTKWA47iMR+IciHdRzOeZnJxkZGRki7FT2/joXsYCddPgP107y2QhjeHYCAgEZIWqajAUihLxtG62uXKB6UaNMclLIpHE5/OxllpDsUxWKiWCmkHBccBxQBRpWiYN3UAQwBZcsnoDC5f/P3v/HW3XeZ33wr/3XXXX0ytw0CsBkCABFlAUKYrqsiRbsizZctxiO7mxHDvxjb87cpN81x6+1xmJu28UJ7YsV1mObUWyiqlGkRR7QSV6x+lnn93bqu/7/bH22cAhCBAAQVNfxDmGBoVz9ll7nb3WmWvOZz7zeRxp0DLCRDrEgJCEgWRoULJTNAUJmCOipLCKY03cAbetSCEjkhcojS/BDDSmBmINQhNHikefOMEPvPdWigt1CBLdumRNRmB3TOCIL/9MFhdqfOlvXiRo+pgdfbqevjSthk+z6mG7JuvWDSDE5feR4ziMjY0xNjaG1pp6vc7CfIH9L5zgzIkFzp+rsmrNIJ7n4TgO/QM5tu4wqFVafN+HbmfDlpHL1mBeLd6oZPZq+rUA//pf/2t+/Md/nN27d3PXXXfxO7/zOzSbTX7yJ38SgB/7sR9jxYoV/Pqv/zoAv/ALv8ADDzzAb/7mb/L+97+fz33uc7zwwgv89//+34GEDfOLv/iL/Nqv/RobN25k7dq1/Pt//+8ZHx/vJsqtW7fynve8h5/5mZ/hD/7gDwjDkE9+8pN8/OMff0OdtQE2b97c1ZO62fHyHFSpVNi3bx/9/f3s2rVr2QrmtUTSuC3/+3jfmk14ccS+wiyFdpOUabF7eAUfWXcLR44cYWFhgV27dr2isdNe49wVc1CsFHsXZ9i/OIsfx2zpG+Jspcx3ps+TtWzSpsXJSokz5RKDymDctBkfH6cyM03TazHfqmO3fSYDH0cnet+z9TqtMKTHdWmGAcVWG9swcF2L+ahOyrEQ2qTW8tBotBDEMcgoYWPLOPmfijRaJ5+HQmPGYEQJ8E3nPzJMVm8FyT3aLLV5+JtHuP/udYQNH/wIaSQMJQH4rRDXtXh5KT15bpE//dSjTJ4uYBoSzw8JGj65oSyxUhTmGzz0nu0MDma5cOFyQyQhBLlcjlwux5o1azh3ap6v/u3zTJ9fpFho0G5HKO0xNNqH67pYlkUm4zA23nPd2rVLoZS66cOZawmt9asyA+DNHHRpWJbFzp07+eY3v0kcx9edE64WL88/WmtOnz7N2bNn2bZt21V/75lmjVrgsz6/PG/0Wjal0KPktxlOZbh9cJSnewY4Xlmk300hOozCVbletmX7ePrpp8lkMvzUQ++irRRna2UEsLanj6xl87VDR7qge8q02D60fFtFaU0rCnENkyCO+fNj+3lhYYZ2GGJISandBj+mP9IMZ3OcCn2q7RYDEmh71JtNTAGldoMpYSSkgWyGhh8iFYz1ZCk22gQ6ZijrslBrEmmFIUVSupA0c5qk7tFRshVCDCEgpMZUIAON6NQuWmm0rxBRQjzQAhZnKnz9kaMszlTAC1EKhBQgQJgSaZuJVt0lUa+1+dNPfZv5yRKGIcn3pKlVWzQrLTRgmpKtt4yxuZMnrmSIZJpmwsgRLt/421PUi5DOpnBTPoW5Kvue8diwfYR8bw6tJJZlMLai9xrusFeONxpMupKh6aXxZg66GGNjYwRBwOTk5E0/9pKc0lJ4nsf+/fuJ45g9e/Zc9VrtXZxhvt1gY36gCxatyvbyXLHIC8UZ7ly1jrF0lolsDyeqRTbk+7uDnZlmndW5HihX2XfyJD+xczeniHl+bhovitgxOMyDE2vpDSLOliqkTIt3rVvPO9auI9YKSy5/fjqmybbhYZphwPPz03xz+gy2kcg2PjV5gdlyCWLFgXaAlgbb8n2YseKlcpkATa3VwMAkb9sgwdcxWdvCkg7FmkfOdRBKU2sFGBLiGGIJRtSpZzRoBURJ7lG6k3/MpCczwg4IRZIzjSBOAKUO+Wn+Qol/ePgQYdVDhHHiEAdoUyOQCQh+yTC/Wff48089yr4nThEHMfVWQK4vxdBInnq1TcoyGV09wG23L9e9XfIlefnX2o2IC8freA3N9tvWE8UhqUyFyTMlZieLaBGR78uAltxz/2YGhm6cIblU076RGtqvxjZ8M/9cDCEEt956K/v27Xtd+rCXb4nMz89z6NAhJiYm2Lhx41Xvk29OnWbv4jSrsr2kzMRA+my1yOPtGh/z2/Q5KXodl0hdft6xVmQNkwP797ND2qjxlcz4bYzQJ9aKkXSWD23YQuv8JFt7eti9aTNHFwu0o4jxbI4tA4NdvOihdet4cO3arudQKwxphAHD2QyhEXOwOMV8uYQXK0KtGUhlSCvFuXodQ2vWullsQJkGjmliGAnRsBEEgCYnTOrNZKAu1SUa3CRSTZqkDkqGZ8n3Y0OgRNJ/Sb9T/2gSRchQgx8hNCCgtdjia18+hG5FCUM7acySRKYkOoq7b6q15ptf2MdX/+o5vFobJ5XoZjfLLdL5FG7KImiFbLt1Bf0vY1K/3DelUW3z5DeOcGTvBc6fLhDHMStWDpLJu/T2tpi2SsxeqHL25DQr1w+w445V3Lb7+iTWXineyBpoycPgew0LesMBbVjurn2zj7uUxBqNBvv27cN1Xe69995XZc/uHlrBM/OTnK4V6XVSoKEctBkzXXb0LGcTSCHY2DvAxt6LhpJLTeOOHTuu+GBbKrxCFbO/OMuJ6iKmlGzrG+FgYY5nF6ZYmcmTsWxCFfPCwgwNP2Bzb6JtF0Yh9WoNiaCOwjQNDEOSc13KoU/KSTHUP0yzVMJrNYhjxZlySANFSyxpyglioUGJBL0WglArhOh8rwNYA2gLYjMpoGhrTL/DBkATCzBChQw7r0UjAoWOQOiO466A4lyNQ4enOXFwCvy46/wtbYPACzFtk76e5QXu5NlF/uIPv8PZ43OYpkEYRpQbPqmeFMIUtFoB23auYNPmYS5caFz1ugohqCz6fOvzp5ibKdOotakWPObNCrmBFlprXMchDCCVsVm9bvC6wWx4YyVHXg1M+tjHPkahUOA//If/wNzcHDt37uThhx/usgMvXLiw7NzvvfdePvvZz/Lv/t2/49/+23/Lxo0b+cIXvsD27du7r/nlX/5lms0mP/uzP0ulUuG+++7j4YcfXsb2+cu//Es++clP8tBDDyGl5CMf+Qi/93u/d5M/gRuL1ysHLRVSWmsmJyc5fvw4GzduZPXq1VdlITiGyY7+ER6ZOUufk+oO1Qp+iwwGm3ouanulTYtPbLqVh1auY9Fr0WM7DJkOBw4cQCnFnj17rmgut5SDXh5Kaz578gDfnD5D1DGgfXTmLBXPY0t+iJF0co8V63X8MMBzUh2AOTFFSps2sWkyOjzG/OwcntcmCkMWK2XqUQSxwNOKSGoUGhEJIifGE8kgTbsJcG3oxPREkThyKwt0pKEFpt89WXSsEIHGiC82M/iJkzYkLCQMwb69F4jLbaJGsh6nI4ilAkNg2CaOaSzTkJybLvOZ3/0WsxdKGELQ05/Gboc0am28ho+dthkf7+VtD25J3kdfDmhfGpVSky/+5fOUCjWGRwfIZLOcPDLDzNkapikRZgWtoFlXDI8nzMobATjfaEDpzRx0fXGpgezNBLQvbeTCMOTgwYM0m81rkndLmRaWNPDjiNQlpteB1hhCkO6cZ9Z2+Kfb7uAbk6c5uDiHAt62Yi23pXo4uf/AsoG+Bdw2dHk99Eoscq01T89P8vXJU8y3G+QtB0eanCyVGM/mWJHJMddoMF2rkJMma/NDxFoR+5qMaVMXsLZ/ACsIsJWmFQUUKhX8KMbWCi9OaqBQKRpGQOgqPB0RuhrR0ZclABkLpEyYklqBDjSi1fl351xFpDACnWyQaBBKQ6CQoUoAcSnQUcyj3zxC6UwR4cUISZLUTIHQGmJFb8/FPD11bpE/+3+/zfFD08nnHkYIpegfyNKoeziWwcB4D3fvWd/NOVfKP74XsjBd4eAL51iYqbJq/QhSCnr78kg5x+JCjdnzNUrFJkEQsWHLIEo2qNVS5HK5q+a0V4rvBsmjVzvnN3PQ8rgWA9nXetwl47XBwUG2bdv2qkPXiu8hEcuYjwCOkBS8ZJPTkJIPrdvCnxzdx/HKIpY0CFXMoJtmm7I4d+ZMd6C/CXjn6nWEsSJlmgghmJ+fX1YDSSGQ4uJ5taOQk9UiAKOpLH98ZB+HFpNNrFDFXKhWsEPNjnw/Td9nMQhQAio6ZjiVwWq2yEhBPYpQQYBUyUZYNYzoM12kYRBJRdtKtmKDTLJZpuOkL1sa5OsQVAzSB9nJP0BiACeSjTTRuXwiVshAIYKlhJRsgXz9C/sJKu3ENwQBhgDd8YGyFQMDCQBSLtT5zG99gyP7LhCFMZmeFI26T63YJI4Uhm3Sbvps3TbGylXLB54vz0EXTi/w6JcPMXOuyMxkiVgpBobyZHtSTKwaIZfNcvLoLCoSpNIGQyscrEyZw4cPd7Vvr1dL+Y00pYVr09B+M/8sjyVW/+uFBSmVmMCfPHmS8+fPXxWbWYpYKZ5emCRnud0aSArBikyO/eUSR8oLvGV0NbcPjfHE7AWmmzXG0kldNduskxIGemoeegf48AMP8lAUsn9hjkK7yWAqzW1DowynMxy4MIVSiuF0huFVV75vpBCJ4faZ4+wrzKK0ph1EFGo1UmFMbzbHwWIBLWDcsTEUpD0fhKCgYwIVkwZqngdaMOpm8CKBp2JMW6JDiIRKpBoRST3TyT/ECUgt22B2FjlEB7xGdWqepfOMFNKPkH7U+bpAGxHnD89C00++JgApwUzyj6EhnXaIo5j/+cdP8rW/e5F2KzGZRGlsxyLSila9jUOKibUDvP3d2y77jC7NP4Ef8fnPPMnJwzPkelJIQ1Aptjl1aIpNt02Q68myZVsWx5pny84V3P6WcZqtGi+8+DypVGqZRNv1EoTe6B4Mrm6MDf/r5aDvCkB7yV37ZoeUkiAImJub49ChQ6xevXoZU/pq0WO7/OzWO3lk5gz7i7MAvGdkI5kLC2SNV3ZNhYss8Fqtxt13300+f2WZCiklfhzxX48+y/OFKcLOhO+rk8dp+AHDTrZrUGJJg0EnzWK7RSlokxMGhYUCfak003FIdMlkfSid4UytTCQU54Ia07JF042JiGmjMBREnVZMSyBOGER6iQIgQbgddpISiAhMTyADErMkNMpJGJPCAxlprKbC8JOGTpAwlKSvMKJO4SRBG5K4FfC3f/Y0xakKItYII2Gpx57GcEwMKVgxljDntdacPjrHn//Xb7MwW8M0BKmMTdZIUas0kUqRy2exTIP3fd9tuO7lOp4vj0bN4wt/8SyL8zWGRvMMDOeo1zwWphoMDE3QO5imUW8yt1hmYm2Gg4f2douq3t7eawYb3khTyGuR7vnkJz95xbWSRx999LKvffSjH+WjH/3oFY8nhOBXf/VX+dVf/dUrvqa/v5/Pfvazr3pu/9ghhHjdctBSgXbo0CEWFxevyJR+pXjXyo2cq1c4XUuMHCOlcIVkl91Dv7t86LOkGTmWyVGpVHjmhWcYGBh41aZRCIFSisPleb41c5pz9TLDqQxrsn08Mn2GXtul10keRLPNOmdrZZpxgCZhmzcbDVKWTSQEoU4Klz7XpeR5pC0L0zDoy6WZiRrEQlMwIloixFdJohCAjhMQXBgd2SLZKYw6E3wRdoxSlhxPDIhTCVvACDQi1FgtlRRdS3VSECO9GKIlQEmBZVCZrvL0ycVk5VZ23teUSWEVKTIZm8GO9ND+Z87wd3/6NOdPL2AYEt+PKEcxfSM9SBLt7b7+DG9922YMI/lbvxKgVF5ssDBT4fihaRbnqqxcO4iUglTGod0OmDxTZHHWY2i8lygMWb0+i5lu8Z3vfIeenp5uDroWoAbe+GLqWsxI3sxBF0NKiRCCKIpumhESXGzkrsV47eWxPt/P2nwfxyuLrMn2JmZoYUA18rkzM0DWunieA26aj2/cwYfXbUVpzfT5C5w5cYrt27cv09J7pbh0U63gNWlHIaOpLE/PT/KZY3tRWtNjO8y3GxwrLzLkZMjbg8RRTKVSwUCgLZOWjnE74JcQCVBtSIFrWbTCANOycB2HxUaNmmgRodBCgBJoM9lCUwBmsgGCAdICCck3YoGWGmVDBJjNhD1p+ArT64DZnZUz2QowWnHSuEnAkCBh9tDMxXV/IUAqtOo0dIZk3boh4kix98mT/PUfPEaxkAzo8wMZqpU2jXI7WbazDJpNn3u3jrFp68Wm/OX5R2vNvidP8/g/vES11GRxoUYUKQZH8mRyLo5rsXHrKGhNKu2w7fbVrN80xOhEmnqjyv79+xFCLDPYvpb7843OP9dqyPZmDroYr+dQP4oizp07x8mTJ9m8eTMTExPX9BwbctMkS54KQ1x8xgYoRpyLNdCm3kH+5W17eHFhmoV2k17Txpor0h/B7S8b6FvSWMa+XqqBXimeW5jicycPMt9uoknM4VtByPb+URzDZLpcIghCpGVh5rPEBR8tBCnToBJ4DNhphADLtAgB15D4UYyvQnwjYoYGRKBS4Om4QwhICAUIkh5JdoiLlkDqTv4RYDY6JVKkMdud2lWS5JJGgNFKBmCdi4CW0DjXTiRHBElOUp2DC3Ati9GRPHsfP8Hn//gJLpwpJASnIKYdazJ9Kbx2hNcKSBmSdZtHed+Hdl7m7XHplsjifI2/+/STlBfr9A3ksF2TwmyV0y9Ns/mOVbgpm97+LCNjvdzzts2880O3IaWgXq9TLBaZmZnh+PHjpNPpZeDSq+WW7wZA+80a6Prj9ezDfN/nhRdewPM89uzZc03XJ+4QDq2X3UdGRxffj5N8ubFngI+sv4UvnzvO6Wrig5FBsNnT3LFxTRd3GrQs3rF63WXvc7Vt/cV2k+cL01R8j6xl88TUBc7VKgy4abwo4uDiLLYW3DO2ilYYJQNAEm+BrOFiSIltGLTCCMO0yLgOrWYDP4opRC0aMiSywKOFdknAaZ3kHp0IXXf/nmOdkI0EF0FtGSnMQKFl8rmoWCFaIWYzgFgnOtkksiT4LYg7+UHKJAdpAw2kHYtWtcWf/j9f5uCzZwj8CMM2kYbseLmF5IdztJo+/X1pPvCDu0mlLiemKqVYuFDj7088wfmTC5w5NsfqLaNk82lA0Gr4tBsBC9Nlsj0pquUWqYzDPfdvYe2mBMiNoohyuUyxWOTYsWOEYXiZwfarPb/eyBqo1UoM0r/XctAbDmgvTeVeL0C7UqkwPz/Prbfeet36lEOpDB9bv4OPrE2mQKaUPDH7xBWLn1arxd69e7uaTK/EAo+UYrJZQQiw0bzkVXjWrzOSynXB64V2gxPtRXrs5azKATeFFIK5WoW2Fyeu0a5LPmgTtwMu1Gu4gcOMV8NMQ1E3mKqVEQgcy+qswwpCFLZhIDT4OkJaoI04Abc7oJHu6CcJBUSgTZC+wGokgv9CgXJA+xrD15h+h64kgVhhVQNEmAj/IwTalAhTQyvmTGESrXSiHRkrhGEgHYmOFI5lsGHDMHEU8/DfvcgTXz/K9GQJ05QEQYzfCukb7SGTc4mCGNsw2HbrSiZW9VMsFl8xyWitmTqzSHGhxuTZIgszFVasGeiCUBu2jnHs4DRnj88z5iUu6Tt2ruMDP3QHmoBSqcTJkyfxPI/e3t4uuHQ1ncY3iqHUarVeFUB4My6P1ysHARw/fhzHcbj33nuvS59yJJ3l57fv4YXFxHAkZzlszvQws//wFX9myWRpw4YNrFmz5prcug/VF/ny9H7qoU/Ocpj36jw2exYVw6pcb/e1adPGEpKZVp2sFxOGIevHxinMzyRsR20Amj43hTDKNLXPk8XzLIYtPCMi1tDWIAySNVgE2ki2PGKl0KYGm64gZtxRSiKGOATDF5jNTqMnk/xjBGB6CZitSb4u/Bir1O7kO42WAqRA+yHajwnRXTAb42IhKQ2THTsmKMxW+db/3Me3v3SQMExMmXIDGWTDp9XwKRfqSMtAa80d64bYfffa7mf08nXbOFJ88wv7ePGJU7TqHtVKC9+LGBzJk846CGBi9QBREOOmbHbeuYZVawfZvH0cx7Fot9td/f/z588jpewWVf39/VfcNHqjiiml1DVJjrwZy+P1GqotDbOeffZZ1q5dy/r1668JSIKk3vnEhtv40+N7OdeooLTGNgy25we5NzX4ij8jNRw+9BLVavVVB/pLIYRg0Wvy6XMHOFRKJNb6nRSllofQsKaTg1KmxclKkUrYptJq0ixXyDoOGRUR6JgIhSFMhtNpTpRL9LsWrmGRcU0uBBViqSjFLWJLJdrWRgJQJ3v7Am0kuqvYgJPo78YKVNRZ6ffAbHUwawOUnQDaZmeQr2XyM9ILk/qnUydqBIgwWfPvNHNJTjLAlIkkiVK4rkVv1uFT/98vcnTvBep1D8sxCVoBNaXID+ZoNjziMMJyTTZtHuNDH921bIPs5YD28YNTfOVzz6E19A1labV85i6UOP3SNLfsXoNpGVi2SS6f4i3v2Mq7vn/nJVdmAqVUF1yanp7m6NGjZLPZbg7q6el5xTzzRgPab+af64vXc6gvhKBWq1Gv19m9ezd9fX3X/LN3DK3g2zNnOV0rM5rKIgXMt5vkDZvbe5ZLE42ms7x/zWaq1Sp79yZElO3bt78qs+5SMGmqWeVktYgpJT2Ww6ePvkgrClmZyYOAp2cv4MeKdhziN5rUajVcywYpqPhtHCmxhCCMNYaEHtfGNU3KfhvDFERGRCluExsajA4LO+4wpeOOV1Hicd8djgklECHg05V1VEayMUtwUWpEGWAqAX6E2UhMbjtQEoQhwvOT/CMFGEYCZhtGpw7S9Odt/sfvfYu9T5yk1fCJY4WbdcAxCfwIUfXID2dpNQJGx3r44Ed34bqXD0abNY9nvnaMhfPPMTddprjQYNPtqzBNg5HxXho1j3q1RXGuyviaQUqFBqm0zS07V3Z7snw+Tz6fZ+3atYkHQwdcOnLkCFEULTPYfiXJmjca0H6zBrqxWAKeb3YopTh9+jQDAwPs2bPnmolptmGwpWeIJ+bOM+heBDFrUYAtJKszCflOCJFspQ2OcqpSZGZmFr1Q5O47brumfvxKQ7XDpQX+2+HnmGs3EAiqgUfV87hzaIKcYVEslTAUSNtkMfDIyUQy0RQSX8UMuSaLbd2p3SSxhoWwQd0K0KameYmeiIqTvkjR0VezOrlDg/YTBjWxgM5QH58kP4UKESm0aSTDNCkwvRARq46qkYA4gloTusM0A0wjSVqdl1i+x6//zGeoLDYSbxHTJA4ipCGRjkUUxjTKTSzXZufda7ntzjWv+Fk+981jPPH5EzhOika1TXmxgYpiNt62it6BDEOjPcxeKDI7WcZwLNyUzV33b2T1hovPE9M0GRoaYqjj2dJqtbrmkqdPn8a27S4O1NfXd9n9VC01OXVgAa9gs+GWCSY6prn/WNFsNrEs66aSY/7/Id5wQBteH2aA7/tMT0/j+z733nvvNTM2XinMSx6KUspXTDyLi4scOHCA8fHxK5os7S9N8z/OHWCmVQNgyHBZbFeQmXQXzIbE+M2QgtlWjdXZ3osHENArTRqNFjKbxY8DaAa8a80GarOzHBYtzoUl2iKiP5XGFSkmm/VEC1IpstImbVjMeU1cQyIMCHSMFjrZWVMk/40VwiWZ3CsBvoHWEmWBsgVmM8Y5X8OoehixRLoZhOkkyUtprEIb6ceIJbVfKRC+StiSCrQUCTNbKoSZ2KzpEIRtsHbNIKXpCn/7X77NsYNTSCkQGtI5FydS1Mot6qUGhp3obY+M5XnX+3d0pRNe/rm3mz5f+LOnOXFwCt8LadR92q2AodE8qY7of74nxer1g0SR4m3v2Ub/YJaNW0ZxOsXa4GDSvC8ltVKpxLlz57qmJ0vg0qWstzeSoX0t+pFvxvIwTfOm56BCoUCj0aCvr4/du3ff0P3Q67i8Y8X67r89z2OGy4ELpRTHjx9nZmaG22+/vXvPvjy01pxtlDhVX8SWJoYKeKR0gZaIWJ/rv1iw+XMshA38OMIxksdE3nZwDZNys4GXthkfGaEVR/SlXGQMpXqTdmkBn5BM1iDUMdNBDY3GdUx0LHCEQTUKcA0DR1vUwzakNULEnfwhLuYiOuShUKB1UozJUGC2NeZ8C/dCDbMSYBgO9OQhZYEGu9hChqorByD9EB1GyI7otjASZoA2jKRgk4ACx5RExRr/+Rc/R6XYJAgjLMfCa/hUdZ3ekXzCvjQETtpmYu0AH//xPWQuMQ9Zui5xFBNHihe+c5LvPPwSmazL2Kp+tIDJUwXOHJnhll2rkZ0GzrIMdt27ju/7wV3LrlcqlWLFihWsWLECpRTVapVSqcSFCxc4cuQIuVyum4Py+Xz3HnsjNfy11m82czcQN7sOUkpx8uRJgFfVy75STGR7+Dc738rRcoFa6DOcymBXmlRKpctee+lA/1pk3brnKeAPT73I8UZidJuxLGaadc7Wy2zJX5R3s6VJ3nJYaDWYLiywqm+QbC7H/PwM860GfhzTQCMsk4xj4omArywco6VChE1njTYBng1LIlWnv7I0CoW2dBdEQidgk9AiqY+EJEYjI4H0QbRD3FMVnMl6IrOWz6JHehM2ZtVDKNWth0S7DZ5PsqkmwTQQhgFmV24SoRSpls8f/8oXKS82ElZqpEilLeyOXmSr2sbJOIRhxMSqAT740d2k08sbFqUU0yfL/OnjD7MwVaZUSJhYG29NGLHDY73Uyi2qpSbF+RqDYz0U52tkcg5bb7tcN1JKSU9PDz09Paxbt44gCLo10OHDh4njeBm4tMSEfaMB7TdroOuP12Oo32w2OXPmDHEcc//99193g93vpPiZrbv5/NkjnKmVUGg29Aywwexj3Lm8p7vegT4kYFKsFJ87fYCvT5+kESZ6334cE0Qxdwys6B4nY9o0oyZnCvOMCZvVI6NUiguUAw+tEyCp3zCZjEPSpkUjDPDNkKpqJ54gOtGs1jFInQz0ky01jbZUghotCdYqgVAd0LsjDSlDgRknP+PMVrFOlzAqPsJ1YKwX0ZPDaIYJmN3JP7pSA8/r1D4G2pCd/GMmNVIcIxoRhQNNZp8/Taw0dspBGQK/6eOkXUTKJPBD6uUWbtbhoQ/cyradE93PUGuN3w5p1T0e+5uj1BcDMrk081NlWk2f80dmWLt9BT19GcYm+rlwcp75qTJKQzbv8sB7djCx9pVrVsuyGB4eZnh4GK01zWaTUqlEoVDg5MmTuK67bIvWMAymzhQ48cIC1PazauMw67aMdWutf4y4ni2RN+NimKbZlUu4WTE1NUW5XKa/v5+dO3deN7D4zokNnKgucqK6SN528eOIUMVsMdNMpJcP7HOGhTlToKfa5I49917TQB8uDtWmmlWemj/PgtdgwE7z1NwUi16T9fl+pBAcLy8yrxqcqS0yEiTbZynXJUZRDT1W5rPYQtBSMXksRjMZCq0mBb+F48pkOzburKJ1tkGIkv+vjE7TtQRjdKREiJMaDUMgo6SrElIkUm7HCsiZKjLS6L4scuUQwrUQke6C2brRgFIt0cqWAkyTRBvSRMcxtD2II2YXy0mJZJmoWCQ5zDJRSpM2JJEpsG2Lnfeu54f/6X0YZgKGa6058MRJXnz0GHPni0ydLeBkTTZsHaYwW6XZCGhW28yeW2TtthVMrBskDmOyPSne+r4drN4wxMTaKxuRCiHIZDJkMhkmJiaI47hrsH369Gna7fayLdqzhwv8w189x9T5WQ6nF/hO5jA77lnHB3/sXkzrH8fXqNFoXBOL/H+1+K4AtC3LuqmF1JLxmuu6uK57Ux8sLzcX0Fpz7tw5Tp06xS233MKKFa/sCn+uUeIPTjxDLWgz7GbRwNl6mUJcZ1y/rMgTgj4nhY7hdLVEr+PSCkMWq2XucXt57+47ONNqEKiYoXSKgIA/mzlMBFhS0IwV9bhNU0scwyBr2hT8JgExecPBMBVtswlSIzUoJTrC/SrZArE6zCItUIqk0ZMGxAb4EbnHJ7HmGwidmAcgDNT4EHq8D7PmY/gRWmt0FCXGj2HYoU4mTElhmQnFqVNgCEcmQHgY0TizwB/92ukES48VpmkS1n3qStPbAaFt18TJuQwN5/npn3uQbM7tXoslYLtRbSOl4LGvvsTBZ87SP5JjcLSHwlyNM0dnOXN4hq271yBl8vogiNmxaxX3v2PrFa99Op0mnU6zcuVKlFJUKpUuuP1ycOmNYmi/yU66/rjZWyKXauhns1lGRkZu2r1wKWC5xDwKgoD9+/cTBMFVTZYipfiz0y/w+PwZWlGQ/K14Ac1YsaFvdNnDbyLbw1y7zkyrxtpcIpHSaLewo5ixTA9xyuVMvULasnjX6g3cNzjGf37maxSMOsXIQwH9dpqstkgZFpXQIxaKQTtNO46IdExkx+BEid6+7jABACHjJAcJEhAqNsATULNQtsA9UCKzdw4ZJGa5wlfgVog2r8RUAhmpJPc0W9D2k3XdbiHVYQZogyXyAH4MzQiakie/sA/PixBSJkPAnjSx0nitgEalhTCSlboVE/186GN3LgOzAbxmwGNfPMTpg3OEXshioYGbdentGJcMjfZQKtSpLDYozFbpG8pRLNTJ5BxuvQLj4NJr39fXR19fH+vXrycIAorFIqVSiUOHDqG17oJLQRBc1zbAzYqlZuTNHHT9cTMZkpcarwHXxYp8eTiGyc7Biyyjybp32VD/Wgb6S1HyWzy5cJbT9SJ5y2UmLHOiFjCR78PtDM8msj2cq5eYbldZnelFdGREsgjmlCLMOMSOxVyrTta2WZNbgVdvU2jXMQ2TVBY8FaNDhYFASkEUawbMNCXPQ6FJGxaN2EdbEcgOeL001EchUx24ORZoXyAaSf6RpZD84+exCi0Mw0AHClGsI+otxOrRhK2kYqg2od5Edwy5sQyEaaK1QuiEDS4IIYxAa6pVI8k7WpPty9KMApqVFvmhHFppQi9ES0HfUI4PfGw3m7dfHFA0Ki18L+TAU6d58ovHcew0qYzN/HQJrTSF/gzDEwNkci4T64Y4fXSGwkyFMIrp7c/wtvduvyKgdGnYts3o6Cijo6NJndVoUCwWmZ+f58SJE6RSKXp7e5k6VeLM0Vnmj0es3TLKplsnMMx/nHrozRroxmJpqP9qPhDXGgsLCxw8eJD+/n5ardYNs8XW5Pr4VzvuZb7dINaa0VSW/fv2LctB1zrQvzS01h2/IMERv8oTF2bJmDbrcv0oNC8UpmmEPs04IGsm5z7gpphp1GiZISMrJpDSYCSToR4G1HyfitciQLE2m6VtxrzQnKJFiOHIZKCPQUskZtRmbBAqhZYK5Sb/TbbTdOLEZgIi0fPXoURoA2UJ8MA9tkjqwFyymWZIRLGOrDRh4zgy7oAmbQ8WK7iWT99oQKNqUa+7CZPSiMEPEi1trdDSoG0amI6JlpKwHSAdEyUkgReQH8rjAT39Gd7z0d287d0XNVPPHpnhO3+/j8lTC1SKDYqLNTbtXEW+L0cYxPhTJUrzVQbGeukdyjG6opd23WPjrSu54y0bWLVhiIGhV5dJhKRWz2azZLNZVq1aRRRFXXDp5MmTtNttJg/XOfrsLPVai/MH6pi2yW171vP9P/mWfxRAaQl0fzMHXV/c7D5MKcWRI0eYn59nYGCAnp6eG8pra3N9/Msde3h05izHKgV67B7uGlpJ6+DxZTIhNzrQh+R3P94s8dV9Ryl4DQwpaYYBi+0W23tGux4CjmFiaEGhUWNl3yhj+T5KhTlmmjWkk8YQgl7TpBn6oBSnakWqZptIRvg6AZmFkWj464iOdgigFbGlIFmy7Uz+EwxIWIl+v1YSZUmMQCCaIe4z57GqbXAtVKSQs2Woe4hbViVpTGmo1knHRXY8VGJoPKBRtjh+IMfM+Qy0dLKCK5OVW+1YIA2UjtCGxDRkQgyQgnbLx86k2LxzJR/7mbcCcHLfeRamSpw6NM3xfRcQhiTwQuqlFl5LUp6v0tOfxklZtDubtauimEbNw01ZvO9ju9m5Z/0rX5CrxBKRcWAg8bFa2qItFoscPnCCx/7mJDoW9AymGBjsJfQVLz52gvFVA9zzzluu+/1uJBqNxvfkQO27AtC+WcyklxuvWZbF1NTUTTjDi3EpQzuOYw4fPkyxWOTOO++kt7d32bnUIx+JIGs5PLlwlpLXWsaCXJXqYaFZp+g3WK36urpuzTCg107xvpWbmarXOFctoetN3tkzzk/e+zbSjsttUcBfnHmBz88c43SjSFuEDOAQBBEmCdDs6RChk2OaQqKIKYoyIu13gewlvck4UjipGNO8CGZrpTEMjXAhtEwCL03u0CL2fIMo7yKERGoQNR9jqoDOpzAbQcIIaLQgijtyI0bCxDbNBEzqqCqhVLLC0vIgjNCOyVy9nbCWlEYhyPemiWON1w6oV9sJ+OzDxIY8H/zYnV0wOzmcYmGyxme+8VUmTxdAa4qFBn2jvWSyyesGhrIszmcoLzZZmC6T789QKTZJp2123bvhuu6DJWb2hg0b8H2/Cy5NTk4SRRFTU1PEcXzNupM3I94spG4sTNO8KatuS8ZrjUaDu+++mzNnzlxRouhG4uWAdr1eZ+/eveTzee64446rrtI9Pn+ab8yeoNdyGe0M1Y61ZylGLUY7ciNLkTYt+pwUrSjkVLVEEPg0my3uHF7B/373Q8y1GlQDj6xlUQjq/NdzzzLtBKTiZOAnhWAxaBCrhNXkSpNa7BPoGMuEyPAJDJ3o02pQcQJoG5bCshMHbKUSgMm0YrATTX+zKMgcWkg+g940JgIZanSxiTm9iNHXhxNXWTE8y+h4g0bJZvpshsX5dAIsmRYohfZDQHcMSzQYktBJdC4NxyKVdamVWzRKDfLDPagoAaHiULF60wgf+dG72bQtAZRaDY/FmQq2a/HkF4+zONkm35tBSEFpvoJVtugfzpHtSeM4Fms3jXLi0DTVcgstYGAox9veu51V64a4nrBtm7GxMcbGxpLnTUcaYPLCFEf3TlKcbpLLHeSWO9Zy5wO34DjXXmDfaHyvrrq91riZzVy5XGb//v1dDf1vfetbNz0HLZ2n1prz589z8uRJtm7dysqVV3eHn2lV+a0jj3OuUcIQklgrymENqR02GJewsQ2DATfDoteiEQZkLJv5xUWavs+dIysZS/dQaLfIWg7vXrWBd65cxzcmj/OXp/cy51ep+SGOMIg0ZE0n0fyPPUId4xoGjTggtDxwg46UdcccVwoEMaYTI4RGa4lWAmWSgN6hQ/p0CWuxBT0uSANLSOKKj1GsoXuyoBRrh89x90enmNjYJA4Njj/Xw3OPDLIwk7rIAk/E/ZPBvmkQawM3lybyQrxaCzvj4jUD2nUPy7EQUrJy/RAf/af3se32VQBUiw2+/rlnOfbCOcIgYn66hOEarN2VsCcrpRaLsxXmzi/SP9qLaRn09KUZGe9jzzu2sunWlaxcO0gme/1/r0IIcrkcuVyONWvWEEURxcUif/+nT3HomfOEQcwhcxLHtbn9vo380D97EOsGDLavN96sga4/lvIPLB+W30horTl16hTnzp1j+/btWJbFkSNHXvP5jaYvgp6X9mFBEHDgwAF837/qQP/S83uycI6vTR9nrl0jL22m/UW0kWbQTUAAA8FoKstRv03Ba5LNOgRBgKy3cA0DaVmcq1fRWmNIyYfXbyEqlJnTELpw3CtRjUNMYWALgSkNmjrAkCZ2YBASIw1ARCg7SnyLdAJm61gjXY1hdXyOdMdnxFTIyCZdgfTxxeSa9adwbQtCTXuuBlOLiBUjSB2ya/dx3vMjZxlb46FCSWU+xZc/Pc4zX+snDjqfhZQI08CwO+bbQYQwDbRpQhTjZB18L6RZb5PtSfO+H7qT+951C4eePMGFE3M0yi0OPXeWMIjI92epFZv4dZ+ZUwWyuzL0DmYpFeq06h61UoNsb5rFuSr9wzne+9FdjK8eeOWLdI1hmiaDg4PdAcbxg+f5xvNfI9YxvUMuhqHRccSzjxxhYsMgd7/9Hw9QuhYvozdjedysTdl2u83+/fvRWnPvvfdy7ty511Rbrcr28mObbu/+W2vN1w6d6OagYrHI/v37r2mgf+kxpltVaqFPXQV8tXieklSszyeypyWvxWyrzoV2meFUFikEbqwQShEbEjeV5LmBVJp66GMKyeH5OSxD8tbcEBeiKjOqTFMoZMd4OiNs/DAmRmOYAmJBZEUoK+7O0pLaRCMtjTA6hUoswBHYyqUPm/SJMrrWxhrK0ptLMZDPMDdTpTZbwaw3ERmHuFLj/vce4/0/fo7e4QABBC2T4vkU3/yrYR7526Hk2AKyA4nsZBjaSCsxaFNaI5XGNAzslM32u9fw1oc2c/L50+x77DiTJ+YIvJDCdBnTsdhw+xpC16IwV0HFitmzi2y5ax2r1g1x5ugsXitg+lyRTM7lnoe2suPOtVe+ONcQjWqbWrlJ70C2u0XbmJUQn6V/OE2rnWySWJZFGAU899hR7npoyz8K0fF7VfLouwLQXmImvRZmQBzHHDlyhEKh0DVem5+fv+krdEuFVLvdZt++fUgp2bNnzzI23Jn6Ip+fPMCx6gJCwK294xS8No5hLPv9pJRkhEHOSXGuXsYxTJTWxFpxz/AqfnDddmrlCs/v28vEho1s3ZL8MbSjgP924kmeLJwjbzpoBbZhUiPRVhSBSgZtWkGsKUdNlKEwUgGRCJO1eSEQUqNiiUaRzUZYnV22JKlp0naEKZNEF2UEnh3Q266TmnBImRn8VogfKuRAmmi2znh2lrfcf5I73jJDtieiXbXZ961BHv/yCHNTaQijjtSI6AreCjoSJKaBYRsEjTaZvhzCENSrbVp1j0zeRcWKdMqi3Q7ZcutKPvzje1i3cYQojJk8OU/ghZRrZR7/26OoUNI7kMXzQiqFGoEf0j+cw7JNDNNg3eYRjh+cwvcimnWfsYl+3vquW1i/5eqOx1cLx3EYHx9nfHycVsPjrz/zVfbPzhPHhxlY4bJl1wTDI4PdSfHrldRardb35GTutcbNAJPq9Tr79u0jk8lw7733YlnWTV/jvRTQXjK7vZI2bisKOF5bQAObckM8sXAWAfR2tPkFMG5nWIzaTLYqDDgZbMMg1orpVpU7Bsf58KptPHriMIutiPu238VDG24hY9n0uSlO1xb5/ePf4VyjxEy7hhQC5diYmKSESTsKCIiotZuJvAlQU3XilIchEjq20gIVC6QBUsa4ToyUKtkO0RrXirGNRL4ozhtQN8lI6FvfT9SIaPkxVkqgcPHbdXa/s8C7332IiY0NLEsRhwaFsxk+/6mVPP+t/oSBKUAYydq/7jC3JRrbdIgQhO2AVDYxTAu8kHa9DUKQSjus2TLKj/6LtzGyog8VKx774j6e/upBGrU2YRBTmK+wdtsK+ofzaA35/iyVxQYLUyWyPUkBapkGK1b1856P38mKNQOMrujDdl7bo1gIQT6fx3XSPPn3p9n36HSSx0WFg0+f48lv7uOdH9vJ0HCSg1Kp1Ouyjra07v+9tup2M+K1NnOXgsubNm1i1apVr4tHyVINdLWB/pXiixcOc7ZeZG22H6OTy/bV61TiNrXAI29frKPytoMpJIV2k5PzsxhScvvK1fzz7Xczns5RDwNcafBSZYbfPvYoj8yfwZIGacclDiSGEHihRyvySWEiNDQin6xhY9g+kRkna/86WaFNzGljHCdk6fGstMKSMY4ZI/o19LiM7NfkR3qx8i5+EGIIjdXvsnhhETtf463vP8OD7zxJ/4iPlBqtBL1Dbc4ccijPaIJ2ByyUAiwLgcZyLGKlE2akaRCFMSnTQDmJVn8cKdZvG+X7f3wPXrnBZ//TVwiDiAunFqgUm/QO5RBS0Kr5yJagulinZzDHwHCOaqlBs5YASm7GpbhQY3z1AA996DbS2Zu3xWGaJotTbc4dLtEzkMO0krqoVmnw9DdfArfNrrdu6hIBrlXH9HrjTcmRG4ul6xFF0Q0D2kEQcPDgQVqtFvfccw+5XI5yuXxTB2pwMQddOtC//fbbr+me+sbsCf7k1PPJJoTpcKFV5byqMxgvr8mHU1lO10rMteqkY0mtWsV3LG4fWMHbx9dTaDVxDJONmTz6wgzN/l6mVMT5RoWqkWxltFWE1gK7s+bf1AEZwyaIIyIrACu8WAspgVYCaSZDfdkxx1YxGBYYaR87G3Brbgg9kCfXm8GPIlARpoSG20u11GBwS8yurQe4721n6B0IUJEANyYdabQO6OtvoYXEdmPGJnyy/YLCfIbTh3vQtotQCikgihRGrLAsyfBwjq07xohKNf7bL/81s+cXky3VQh2vHbJq6zi5vjSprEO77dGotKh18tKKtQOcOTJLvdpmYaZC/1COh75/52sCs1WsmD5TIAwixtYMduUjzx8voCIYXTFAtVajp6eHwPeplct844tPYeRbXXZlLpd73eqUN/uwG4ubUasUi0UOHDjA8PAwW7duxTCMrjHtzQohRHewv2R2ey0D/e45+k3++ORzHCzPEqiYwPOp+AG3DK7s3pN5yyFr2lQCj3roETfaKM9jMJvFjxXzrSYLoknedvi5bbtgvkjZ8fBGsjxaPM+FRhuhk2UMO4aGUrSEj4nZHd7HIgA3RgqdsLE1aCUwnBhpKoToDNWURBvguJKPrN6GbDocmW7TO54nDAOCoMXYqIMTpRkcctj4zlX45b/ngXeeI9sf0PYMtNJYTkDv6oj3/28BY5ubpNKaVRva2JYg8Gz2fqePR76yGt+zE1sBz0fqmJGxNMVjF/jcCyepLNZpN3xG1w+TH0ok01QUc+HoNGtvXY1lG4S+wmsHBO2AbD5F32CG9dtXcOdD2xhf3c/Q2I2x9QECL+Trn3uWfY+fxPcC3LTD7ge38NBHdxP4EaZpku/J0Wo3GRwcIgxDWtWQuekFnnjiiWUSba/XFu33ah/2XQNoa61vGNButVpdN/ZLjddeD004KSWNRoNTp04xPDzMLbfcsgycnG3X+O1jjzLbrtFvp9FoHps/BSQ6sJf+jkvrKh9YtZV+O8OB4iyWlOwaXMlbRlYzNz3DsWPH2LZlCxMTE7SjgM9f2Me3509woraQNG9mP4aQCHQCPKsYyzAJtcKSFkNuhgW/inATiRGzs94fd4onYWhcIyTlREiR6M4qLXDNkLQZYUqFQKNMWJGu0//vPRxfYzchf7iXbH6R1KpZTKPG+GiDiVyNHitCAPlBnx2h5uhzKQrnBVFbJNu8UiJMMzGFtCwEEqk1btYhLDXxai16xnoxmz5+y09+RoPjWGy7YzUf+5m30jeY5fzxWb7w3x9j7nyROFY06i38IGbHPRuQUpLOuYmGUrVFpVBjaEUinRD6ESvXDvLDP/c2evqy9A9mb9o6rNcK+OzvfYu9T50jlU5hSMnC+RZh3WLPB7LMzV3UnVzSXLrUgf21xJurbjcWS6DPayl4ZmZmOHz4MGvWrGHDhg3dv/GbnYOWjnv69Gmmp6evaHb7dOEsf3n2BQp+E41m0MnQDCMcaV52vB7Dpi+VYbJV7eak0XSOf7JuJ965ae7RaXY99NZuga605khllt859m3mvAaDVpaClzCXWnGIEhAgyTgucegjhKQZR1hWDI6HITVagdYSQ+pEMlIr0qkAU17cEJFSk7X8BNDuFFyZ3Yr+/xyRTy0i2xapk3kGnBLp9efIDtTpzbexLI+m1hiBxDEijux1KC0IevpbICSRJxhZFdL2beYm01iGhZYSv+WT6s0QBRFe0yfdt/T7gu2Y3PW2zYwOZ/jip75FvdxEmgaTpwtkelL0DmWZO1/GbwYsXCjSN5RHCMHQaA/1SovibJWxtUMEfkS11GTrzgnufmDTTdd1PPjMaV569izZXpdsPpFIajc9ipN1ilMeQi5y6tQpHMfpFlWvZGpyo/G9uup2M+K15Iooijh8+DClUuky47XXA9CO45hnn332FQf6S6G15mS9wIHyDLFWrM8OsLc4Ra+d6oLZACPSpa5bnKovsqVnGFualPwWUgh+as2tVM9Nw/gw29dvZMfACHZHlqTHdvj7yUP89fn9FLwm9cjHkpJYJc6zWTNFW0WEQmEKCytU6DimYVWQ5tLnkWj2xzFJLeQGWIa6yFYCUqZPykqaPukG8E806dM++TEPGQus81l64yKZTecYWt8ik25QMgSBNrBCjaUVMwXJtrcXuOcH5qgWXIZGQnryijAwOfxiP88+MkKjnUbHMXbawWv5tOttlBRkXchnDUbzJv/w3x9hYaqMkAKvFVCar9E7nCe7fpgwiLHdROu2MFWmZzBHvi/NyIo+5qdKNKoeSsPGW8Z4zw/tfk1gdr3S4sKJOUzLZO3WMeyO38iJA1NEUUxvX4oojklnMqQzGVSwiF8xMAyDM2fOcPjwYfL5fDcH3UxwqdlsXlH67824ckgpEz3pG8wVtVqNffv2kcvl2LNnT9dT5vXqw2q1GqdPn74us1svDvnS5BEEglWZXgDyhsV8vUIhaODFIa7ROW8hGU1n6VMmi9UKuVyOHYMj/OC6bWzpS8zCFhcXeWr/i7yU9nmyOU/Ba5I2bYTQ5CyXRhjQ0iG2beP6YSK3piKkFYF7KZgtkQZoFI4bYpo6AZO0QJuKjB1hGxFWj2Z+uIX4Cc3AhYDUeAhOjJx26ZlvcvtbzjOx6yi2XWbeMKhh4NgxFho55PPR//sU2hfIyCCb1kgtaZcdgrbNiQN5/uoPNtJuOkgdEzU9glaTdC6FNxvxUqnCs9U2jUqLgZV9rNkxQa3cwjBi5s8t0jOQo2cgS2mxRhwr2g2PnsEs0pCsWj/EQx+9k7HVA6xcN4ibuvFtsalTC3zhjx5n5twiKlbk+zI8+OFd3PPubURhzJKjphACx3ZwbId2T0x/Xz/j4+PdLVohxDJw6WZtlb3Zh91YvNY+7FL51y0dzGQpDMMgCIKbdapARybk+HFqtdo1D/Qh6Z/+y7Gn2FecYsjN0uekOd9uU9Ue816VrJVsqpmGwXg6x6laiePzs+QMCyOdYsJJ8YlNt2ELk0gpxk2HqWPHkek0L+UDnlk4TiMIMYQgRhPLGGk42IEg0HEyrI80kQyR6TAZui/5hnTs1CwnwjBUZ5deIESMa4Sk7SaP8xTyLRp3SrMi7RKMR7iGhZ43aDcCNnzkBMO7nsSxZymZkoawMGyFicaSAicdke4PeeAnGhgILG3gN0yqMxne8ZE5RlaF/MlvbiYotzEEuFaKcy+cQUjBqu0rEyluQ1CcLGFaFlJKTNvAa/oEbZ/BsR6mzy7iewELM2WElExsGOEjP/MA/SPXpml+tfjKnz3FU/9wiEzeJdebptXw+dbfvYCKFetuTYxt263kXjMMA9M0ENrkzvu2sHPnrRSLRWZnZzl+/DjpdLqbf3p7e28a0bHRaHxP5p/vGkAbkqbsenSH4KJ249jYGFu2LKfzvx6FlOd5FAoFtm7dysTExGVF1GPzp5ht11iT6e/qHuUtl1P1RQwEF5oVRlJZtIZpr0ZOmLx9bAMr0j28f2ILsFwP7o477mBgYACtNX985kkeXziJFDIxDdKKSW+RtJ2m7CVsJQGsyOaYbNSQQMYx6U1FtJRCaonfed5rQ6G0xECTcX1sQ3XY2SIBcKQiZSYAk+zYq6WMkHS6hUuEaVTRG6ewdZshs0TW9XBkSF1ofMBSCjuG+bLm9vcssGF3jVbNxDLAlILSosv+pwdo1CV21iH0ImI/xHYtfC8k9CNs28RO2YSxpncow213rKR0YZHf/fk/I9uTZnG+Tqw0A2M9GJbB4osV/HZItdCgbySPlILh8V7OVFoUZiqkcin8dki7FXDX2zaxYev1m2S9Wuz9zkmOH5gi2+cwNNSHaZl4rYAzLy1wz9t38Ja3bKPRaFAqlVhYWODkyZOkUqkua6mvr+81rXu+uep2Y3Gj+rVLf6vT09PcdtttDA8PL/v+yzX3X2ssFXuFQoE9e/a84kPrbKPIH556mnYcMJZK7oUFr0HJb2NhMuJmu3kr0ApLSP7Z5rsxhMF8u0Gv7bIl3ceZl47gOM6y5rTkN/mDU4+xrzzJdKuKJQ0UEUYig48rLTxCdKypBT6mlOTdNG2ahJbXcdAWaKnRWhGFEgSknQDXihDiIpNLAikzxDaiLtBtyZjURAtbR5hWjLFuhkAHDIsK/Zk2rhGgifGFwnISmZA7PjzP3d9fQAcGOpI4NoRNi3bV5uzxLF/443UUSzniOHm9VIqo2aYeK6SKMX2P/pEck8+fZN9cFcMyMG2T6dMLIAQDo2uxHYtM3sUwJa2qR6PcItefoW8wS19/hjBSNOsepmVw99s2844fuP2GwWytNeePz1GYrpDrS7Nhx8quNuTx/ZNoNJZzcRsolXGh0KA6H/LOD+0hjmPK5TKlUolTp07heR49PT3dwiqbzd4wuPRmI3fjcaPNXLPZZN++fViWxb333ntZY34lI+sbjVar1QUNXz7QXwqtNX99fh9fnn6JVhQiRCJ7VgsCxtyeZa81hKTfSrEi00vJbxOqmB7L5e09K0idX+D2Ldu7bPOlKHoNvjZ7hL84+zxSSLKmTTMKSRsWNe0REeHHEa40ETqmrSKkBCcTExkRdAZkKiZZvzUkhhHhWp0hvkjymQAydoRjRpgiYS4aToxxVwMpIiw7wtgyg6cjBqRPJtUgY/rYIsLoeAFYQrH9wRLi7RqpBVILXCRxYFCfT7FuW4utu2p85re30ahKdKWOansENYE0JFEuRaiz7HvkMOWFGvmBHBt2raU0X6daatKsNCnNVRlc2Y+bdfDaIa1aIs+mYoWKYnY/sJn3fmIPjmsyvKIPKW/s71trzXe+tJ9H/m5vx1NAMDjWy/f/9P1svn0VUZT4Gmg0l76DkALLtNm4cSMbN27s6k6WSiXOnz/flXBbykHX2wdcGm/moBsLIcQN10FLZozr1q1j3bp1l22i3swaaEleq16vs3Pnzlcc6C9FOw55ZO4EzxTOEaiYiXQvC+06Q+7yGnlIOEyLkBO1AivSvSilKAdtVmiLDzrDbNq1jUwmy3Aq0/XpOX/+PEeOH+PxTJ3TYY1a6GFIiadCQhHhxwZp06IdhzTiANs0UQKUCLFSQWdIn+QZQypULDHsGNdOcpXsfF8ITcoKcY0EADdlgHFrRGVHmx4rxLQi5F0RJhGO4SPtBlnTxxQRjogxhEokcTWYlsJMaxwihBaIwMDMQnnBYdtdFd69OMvn/2glXqOBYUjS+RStxSp+1WDNjlW0Gj7SklQXalTmq1i2SRhExGFMrdhgeNUAc9MWrUpAtdggjjVu2uatH7iN+967/TUPrRrVNp/97a+zMF2mfySPYRpUiw2+9CdPkOtNsXLdIIYh8f2w+15xrPD9kE23TnS3aJfY/cVikenpaY4ePUo2m+3mn9eyRet5HnEcv9mH3UDcaP6JooiXXnqJSqXCXXfdRU/Py2qMm4wFeZ7X3dS/0kD/5VHyW4Q6ZtFrcrQ6z2g6T8ZMnnMjTpa5oM1Uq8LqTD+mTDazojhmQjhsyQ9CPs3aXB8PrFjH5t5BtNYUCgUOHjxIoc/ia94ZjizOJ58HGkOYZAyHIIjxdEjWSlEOPZQAwxTIjA+dLRC0QKmkJjKsGMdKNmVlh0wohCJlBThWTIAPfTHhT8fMNI6S6gsx3ABDxIwSodw2OFVSMsAWUaJYgkAjO1ujiUi3I5KhXashsC2Fk/cpnM+y+bYKIyMtSnMOa3espF3zaDc9pIDZU/NgWQku5IW0ay2cjE2r7oHWxFFMri9FpmAzvnaELbvXsmLdEDvuXkeu99q3tqIw5sizpzl1aAopBJtuX8WW3WupFBscePIkud40+f6EuOOkbISAFx89zr3v28Gm21by0vNnCUIf12zQqHn0DWe5+6Et5PN58vk8a9euJQxDyuUyxWKRo0ePEobhsgHba9ky+17dEPmuALSXHhzXk3C01pw5c4YzZ85c0YzxZjZySimOHj1Ko9FgfHycVatWdb9XCVooremz05yqF3Ck0QWzIWnYHGmyKT+MHynm2nWEEEyketga9LIifTH5hmHIgQMHuokynU7jxxFfn3+JRxaOkJIOvVaGBa+BQBDrmEiH9NspFoMmWkOgYm7rH+Wd4xt4ePE5Co02UiiQMbaEKDYT0X9D45o+KSthZye5q2M+IEMcI8aWMVLEiW4/GkMqUjIBmQwZE2jBosiSIsAixpUxhtakrBhhwu0P1DB1HRV19LoReGWboGHzth9Y5C9+az2LxRwRIX7TRwoNQUirVCdseXiAm7ZI5yQvfmUfpmORybmcOzpDuVBnfP0ITmfan865eK2A4myFvs4krm8oS09/hr7BHKEfkc46vOXd27jv3dtu+F7wWgHH9p6nUWkxvLKPDTtWdsGp4wcmkVIgzQSoA3DTNnGsOPXSNLftWd/VnVy9ejVRFHXBpRMnThAEQRdcGhgYuO61ke9V7aTXGjcCJvm+z/79+4miiHvvvfcVH0A3yx8AkmHFvn37EEJw6623XvE6P1U4SzVsszZzUa9/PJWnESYGiacbRfrsFJFSLIYt1tt57h5ahdNhPpbLZfa+uPeyIaHWmj89+zT7ypOkpIUlTCxh0Ig9pDTwIoUpDAwhGXAzlPw2Q06O2wdGeL5xiGqYFDeRAqUMYqExTI3SipQdYptR8vdPsiUi0LhmiCPjZLAmEoE3hcAxAxwZYhkKQyiKIo+KDUZFhZwRYKJxpUJoyOY0Boo4VhgSdCQxHEWzZrJtd41M7hR/9J93USsF1KcXUVHcAXw0dtolv2qA0A956Ynj2GmbTXeuxzAN5idLBF7I/PlF1t26ilxfGtM2CP0Ir+WT7UvTrHm4aZsP/+g9bLljDam0TbbnxjcyWnWPv/79b3F833kCP8IwJONrB/nhX3wno6sGkgZ4KZO/LG0sPQsNw1imO9lqtbrg0rlz5zAMYxm4tDTMuKbz6xRS32urbq81bhRMWjJeW7FixRW1G29mMzc5OcnJkycxTZNt27Zd8Tofrs7xpamXsKXBmkwyIGmEPgteg+lWhX4njSGSc63pkH47w/91+ztohiHNKCCcK1KdnWfnHXcsM3jTWnOuUeR3jn+TU41FSlETSxgIWmgkCpOUYdMmJIxjvDgib7kMWFkcO2AyngWSDRGFRpoaESes7rQT4pgRhtRdZpICbCPCNUJMoTFlwtT2sOg12rgi6PxMTAOXGSXpjxuMGFW00thLDaNMDJniEKSlabXABsxMyOzxNOtvqbP7viKP/s8ewiDEtE2yvSkaxQZBAzJrBhFSYJgG7Vqb0kwZy3WS660V1cU6Qyv7GV7ZQ6PSIo4Vs+eKaGB0VT8f+sn7GHuNerUAh589w1f//GmkIRmaSGSXCtNl/vr3vsnP/fpHWLtllBcfP0HghV297DCIUEqxYfvFGj2VSnV1J5VS1Gq1RP9/crJrsL2Ug/L5/HWBS61W600w6QbjeuuVpb5obm7uimaMhmGglLopZpNLHiWtVouxsbGrgtmhivm9Y4/x3OJ5DCGRQnCkOkc18EmbNikzea4JIZDAinSebT1jzLeaGAi2K5f7ciM8sPvuZQMWpRTHjh3j2ZmT7O1psrc2Tdp0ECIZWKUMi1DFtJRPVkkcw8DQkjCKGXJd2k6LQHdc10hqnSgCKRW2HWGbMYZUHZ5x8ipLxridoZohFQaaSEiQIa4RYJsRloxoC5OZOE9d2wwYDTDaOIRYIhkxJe8qsEhqgdAzcFIKOxvRrFls273Il/9kDMtNs37nKoozZfyWj5CCuTMLCNvGNE1UHFOZr9E30kur4SWDM6XQGmzHoG/9EPe8+9bOwH0FqzaOXNe1P3t4mr3fPkpxrsrYmkF2v+MWxtYM8dKzZ1iYLjMyMdDdqh0c62X2/CLPfesoP/q/v4dNt67k0POn0TqGsEq76bNi3RC779/UPb6Ukp6eHnp6eli3bh1BEHTBpcOHL27RLtVA17NF22q1gDeNsW8kbqRWWeqLXNe9ohnjzayByuVyV25269atrwpmT7eq/OXZ53mpMkusNSnDphq0GE9dZAtLIRgxXRZ0wKlakbRp0/I8pB/wU+tv5/u2717296OU4sKFC5w4cQK5aojPL+ynFnoIBGnDoq59fO3jYpKSFm0V0lYhlpS4woCMR2TE3fyilAAhUAocO5F5NAzV7ce0BseIcWSEYyikiBGWppoS2CIgY3qYZoxjRARCMROlqUqDrGyTkcmA3xIxEk2IxEYRCoGhNcKJiRoWqXyEkCaZHOR6MqSzA+R6M9SLzWTbIuMQtNps3NHEycTMXkjjtUNWbl3J6cNTBO2QWrmNqGlWbBrgX/zKR+gf6eF6I/Qj/uq3HubgkyeJw+Seeeor+9n9jm3sfGALXitgcKx32c+kcy6VxQb1cosf/Nn7GRzP89g/vIBpGtxx3wb2vGsb42uWPxsty2J4eJjh4eHuVkepVKJQKHDy5MnuFu3AwAC9vb3XtUX7JkP7DQwp5XUVUmEYcujQIer1OnfffTf5/CuvEdysJLYEXMVxzPDwcJcBdaFZ4nMXnuNobRatYUNuCEicqy8NrTUKzS09I3xk1U7ONUpIIRjE5vlnnu2+rtlssnfvXlKpFPfcc09iatkq8anT3+RobZZi0MCWJvW4Qa/lUuis5QYqZCTVhxawJTfCe8e3sLNvnEcWDzLjLWDICANJEHcaZyMi0IlubNoOsDuA0VK+jLXAEArHiDDFEqidNHm+srCsFpaMSIkQUyaAUkll8bDoo8mQbHfMcwWWhCgCx0oA8XZLIFMRxbMpRlb4fP9PXeCPf2sUoghvsQmdojeuNZGWydCGEbL5FOePJJqwG+9cR7Y3Q7sVUC02Kc1VGFzZj+1a5HpTVAp1GtVWMm1UmsJshZGVffz0//l9ZHtSuGn7NRkTXTgxx2d/+xssTJfRSmNaBht2rOQTv/Rusj2JLq1OLvplBdwrFXSmaTI0NMTQULLC2G63u+aSZ86cwbKsbmPX19d3VXBpKSl+L07mXkvcCJi0ZLzW39/P9u3br8iqv1k5aAm4mpiYYGpqalmDH6qYw9UZGpHHqvQABa+BKeSy+00IQcayWZXuZ9zt42h1noxlsbOvn11mfxfMnpqa4ujRo2zevHnZ0K4UNPj7qX18ff4AljDImhamlCitsYVJjGLQTVPwWhhIBpw0P7BqO9+/aiu/euzvaKhGwkhCdGRGInRsgtRYMsI1o6RRWyqgIGEaC5UwtIXCEnHn+4KmtslJD1tEuDJECoVCsqjy1HWKPtFEE5AScbJ619HO1gICT2KYCicfsjCVY2JDk4n1i7w0Y4PW2CmbdM6lsViHKCKVttEIpGUQ+RHF6RJj60ewbJPIj2hWW8RRjO2Y5Adcqgtt6pU2QRDjpGzuemgre961DdN67Y/bh//yGQ4+dYreoSz9I/lER/fEPH/9+9/ik7/+kaSZe+4sgR+RSiXX32sHSCHYsO2V1/DT6USaZOXKlSilqFarFItFzp8/35UGuBRculpj+qbkyI3H9dRAlxqvbdu2jfHxK28b3YwcdClwtXnzZs6cOXPV+2BfaYp2HDKauggsZi2HHitFoGLONcqYHVNIJeDdg+sYT/cQRREHDx6k3Whwzz33LCvKtdZEUcSfnX2KyVaZQTtNLfRJSRNfRwgjohVLQGMIQY/tMGbkeO+KLWzo6eE3T38JQ4cYkDAltSCMJdLQoDWumYBJgovMJC3AlEmjtpR/TJH4ilRJkZMepoxJiQBLxJhC4WmT2bgXS0T0ao+UCEmJGCuOkWbSHApLEzaS9VvTSTwD+oebmLKH/jWDrFg/wvz5Rby6D0JTuFAg3X8R2K0t1llzaz9OyqJRaaHiGKU0fjukZyDNve+9ndHVA/T0Z9l8+8R1yYtUiw2e/soBjjx3BtM2ufW+jdzznltx0zbPP3KMKIgZXdMLgGFIhif6mT9f5NDTp9nznh0cevYs+585iWlKWrWYKIjYsH0Ft+1Z/4rvJ6Wkt7eX3t5e1q9fTxAElEolisUihw4dQmt9XbqTjUbjTQ3tG4jrXfn3PI99+/ahtb6qGePNMptcAq5SqdRV891SvFC8wAvFCww5WVIdJmSkIg6EM1xolchZLo5hEqiYig7Z07uG/2vnO5kvLXLowEHGx0cu20AJw5D9+/dzuDHHt1NF5tt1NJpAhUQiJkLgYJI2LHxi/DgCBGuy/bxleDXngws8V5nrAMqdugSNaUqiSONaEbZx6QA/AaANoTCXejIZY6CRQtPAxdURORlioEjLhCmJ0DS0QzuycESII+KkVhIRlo4RMgGVhB0Td2QAArJYwmbVJhc3M0bfsE8qvYhWPvVyntUbF9n+loh2I+DEwV4K82n6R/LUSw3KC3XazYC5C0VSeYeP/tyD7Lr/1Q0Yl6RGL/2MX3zkCH/3X75Fq7PRduS5M7z4yFE+8cvvo1psIASXSUS6KZvCdBnbMfnYv3gb/f8zxf6nT5HPZbnnHbdw90Nb6B28MsBj2zYjIyOMjIygtabRaFAsFpmfn+fEiRPdLdolcOlq93Gj0UAIcdOkJL9XYqkPi6Lomodf8/PzHDp0iImJCTZu3HjFwefNIjdOTk5y7NgxNm3axLlz57oSjVeKWujxn458k3ONEv12GktKZtoVSmGbgt9guLMpIkRC+NuaH+atQ+s4OTeDjDU/sPMt7F6zsXs8rXV3oDYzO8vcSpe/nX+aBb+OJQy01ERIsqZDOWzTiD1sYWFJA1eYjKXz3DrUy9eLBxMD2s75SymIO7WTacRYVrLZYQjVlT5SCGyZbLDZMqmFBIqmcHBESNYIErxIRKSMgMSdTdLWNqE2cWRIiMYkQmmJJRQhCstQyHSEYQpW3mHgOm0e/LGjlOcG6R8weO+PTRK028ye62Xlyibja2KEjGnWJAeeW83zT/XSN5hj9dZxbtmzAayInjHnVcHs4kyZp768jxMvniOVcdj5tq3c+Z5b2ff4MQ4+cYKegSxuR5u/VW/z/DcOM7Z2CNu18FrBMmKS1wywHYtcX4ZUxuH+79uOO9Ti/vsfuCY5WyEE2WyWbDbLqlWrlm3Rnjx5Es/z6O3t7eagVyMNfa/iQN8VgDZc+6rJkvFaOp1mz549V11NXGrkXgszoFqtsm/fPvr6+ti+fTsnTiTOtkW/wW8c+xrT7Qq9dsKi3V+exDEshJAseHUGnSwazbxXJ2+53DW4Gscw2dyTyBK0Wq1uQllyyV1iWgmRmKL98bnHOdMoMGBlOk62gkbs0WMajLhZ5r06AFJIfmBiOx9ffTspw6IZtvnC7BPEoo2QCoHAFhDGBgKJIRWOcMjaCesarRMWN2AIgRQaUyhcGSHRWCLClsl8vxqlGLPaWEaM1Iq0CLrrcQ3tEMQWjgrpkxFKxxjyIkilYgPTjkn3RpQLLivXtXHdItU2SENiphxSaYdmqYEhIeXa2CkbaRrEQcziZJFsbwbbtZCmTPRuGx62a5HpcXEzNpZtM3u+mBjgDeV4/4/uuW52UuhHyZr0JeB3GET89e9/i/nJEkPjvZiWgdcKOPrCOR7+y6f5wX/xdrbcvorDL5wjDOLuPddq+JimwcYdV9d1FEJ0waWJiQniOO6CS2fPnr0MXHq57uSbq243HtcK+mitu5PxS43XrhSvdd320k2U7du3MzY2xuzsbLc4O90o8KmT32aqVSbSirRh029nCVWcuERfotcfxDG39o3zibW78eMIQ0gmz5+nWk20s5ekU5ZkjpZirl3hN058ldONBVrKx0DQ8nxc06EeJsazSiSM4DWZPt4/fgvvGd9Cv5Pm2dJJzrSmsWQIUhNrQawMYgSGjNHKIG+DbcRYUgGqu9mAvqSRW8pDMgG3QVCLXVYaZQQKR4TYYmmxTdHGIYhtHBFRFREpYmwBjo5RtkLHAjcbEgYCaYJQEabpMjTRz+CKPkozVbx6GzTUCwXGN+UxLY2KJI1SE7FB0D+SZ7LWJg4VcaTw2yGBF3HbWzbw1g/tQsWKFWsHWbFu6JqfP0opnv/GYZ75h0OU5hPd7bd+8Ha23bOeZq3NgadOksm7XYDKdiwGxnqYPlPg7JFZbtuzniMvnOOFJ48RtDSm0QRg251r2H7Xq7t6Synp6+vrajD7vt8Fl6ampgC68kgDAwOXyVt8rxZSNyNM06Tdbr/q617JeO1q8VoB7UsH+vfeey9hGF7WHC76dZ4snGbBrzHgZCn6DZYYiJeGa5hszg9zz+A6TtcXyVsu2fkab+tfQ7vd5sUXX8RxHO65555ltZ3WmslmkT8/9wSPlY4hEESxiykFvo6xhYWWIT2WS8Fr02Ol+NCKW3jP+GYmMj38ytG/oxU3MaVGaY3WEikVFpowNjANsM0YSyZ5qJM10QgiZWCwlIdihEhkRAyhqMZpLFnDtuIEFBcBhkhykC1iPG0SakkgQ0xhYugYR+hEpzsdEQtNajAgNRyx7q42txxpMzSWY+0th2iUaxx+xsSvp7nroQts2RUzPwXPPzbA6WNrMEzJyKr+hEFpGMycLWA6gp0PruOHfu7trypp1G76eA2P/EAWw0wAmlqxwR/++88zeWIOy7XQSnHmpSlO7rvAj/+7D1BeqGG5y9sGKZMhfq3cwklZ/PAn305mQDB1skQul2fL7avY9daNpLPXplFr2zajo6OMjo525SVerju5lH96enouA5feZGjfeFxrH1Yqldi/fz9DQ0PccsstVwX4lr4Xx/ENA9qFQoEDBw4wMTHBpk2bOHXqFL7vX/VnjtcWiLTqgtkApjQZcrO0wpA5r47WCat4WDr81IY7mZud5fDhw2zauJHVq1cve24vAerSMnk+W6XUrtNjujSjEEcmXkBah7TjgFApbGGwMtvHW4ZX8/E1t1GO6vziwceQcokZqZBCECmBVomXiG0m7EjZqXuESABtAZidr9niYq1kCY0nLOqRw7BVT+olFI6IAI0tIkyhWeKDxwiUMNE6TqQHUjGRAHuiSU62CH2bH/6VIiJ26M1qpAxp1hUiNsmlNamMRRzFPPiBKV54ssFT387jpGze8sGd3Hb/Fty0w0LjApvvWMXVolKo8cjnnmH/o0fRSrNtz0be/sP3kO/P8tU/fZLQT8wel+Rd5s4X+Yc/fYK733sbIIijuJuzIBnar+9sgKQyDrseXM/qHT3cdttt13WfQdKHLW3RrlmzZtkW7fHjxwmCYBm49PIt2iXJoze31K4/rnX4pbXmxIkTTE5Osn37dkZHR1/1uK+lBrp0oL9r1y76+/uZnJx8VZD86cJZLjTLTKR7MWXy+2TMQfaG05xvlnCkhWuYlMI2gY75wMqtrKso1tPLHQ+8fdlzTGuN7/scOnSIdrtNY10vX57ZixeHGBiY0sBXPm3VJiMzuIaZsK7jZEP3J9bv4h0r1vOLBz6LkAF2pz6LNURKYhjJYN0yVIfkGAMaU+okdyhBrCVZGSJFnIDbQiOEIsCiEmr6zCYpK0yIQTLs9GoaR4Yd6VqFI5LrECGwpSYmkcDVCCLrAhGSDXcGOKmzWIbAK/YQtGI27zqH0JLihWFaNYN03uf+907i5sdx+3+Ie953G5ZtMjk5SaVS6X5uF47N8NJ3jhP6IWu2T3DLvRupFGr84f/xP5g7V8B2LeJIcXLvOc4cmiKMk2fCEpgNkM6lqBQazJ4tsPn2Vex7/ARCJK9pN3xq5Sb3vHt7d2imlMK0zBv2ZruWLdqlAf8rbdF+r/Zh3zWA9rUwA2ZnZ3nppZcuM1672jGBGwa0l4zeNmzYwJo1a5Y52z65eIqZdpWV6b7u6mzOdLjQKrE5N8aC1+ZCqwxAn53mh9fc0WFwXwwpZRcgO378+GUuuUdr0xytTZI2bXJGirRh04gSXdpG3GbCyaHI8JbB9fzo6rsZcC7ewN8o7KMed5iaQKST4sk2YvxYkjNdfmTVXXyt+A9o4q7xWvJ5QawlQqtEO6kDImk0doelVFMZZNyg3/Q7iolL4LdCdRJlUwvamFjENITGEQrlJqZxphujpY+T1/T2mVQzgo27DHL9mnNHAlpVgWFGDAyeZXxjP4tTEZWCQauaNPz5vgy2Y9Gqt/G9EK/lU5yt0TOQ5uP/8r1YroVpGay7Zey62EkzZwt8/S+f5sTe8wgp2HHvBt71I3voH+3h9KEp5i+UGBzt6WrWummbTN7l4FOned8/uZc77tvAkb3neP7xI8xGJYQAaSRrJ1vvWH1d99/S6n9/f2Jm6XleF1y6cOHCZbqTzWYCXl3vqkmpVOLnf/7n+dKXvoSUko985CP87u/+7lWP43kev/RLv8TnPvc5fN/n3e9+N5/61Ke6K6AHDhzgP/7H/8gTTzzB4uIia9as4Z//83/OL/zCL3SP8eijj/Lggw9eduzZ2dlXLVBudiwxA64WcRxz+PBhisXiZcZrV4qlddsbiUt14S7dRFliG3hxyP974hEutEqMunksYVCPPC60ipjS4nyzzKCTBgSLfpMhN8sDIxsAuoxsIQRRFLF3794uQHbpg1BrzZdm9nGhWWSF20crilA6abQCHbAy1ceC1yTSitt6V/D+8W3s7l/ZbUS+OPs0gW51c4shOsyj2EQLGHV62dpncto7gYHCkhGG0B1zWkmkE1aAQJMyAsyO7EgCKEEpytBnNLA7xZgjQ+zOYE4SY4qYCGgiiYgJBEg7WX0zbcWqe0rYbszH/s8C+77WYOX6KYYnypTnLZ5/uJfBQcXd7yzRO2RSmIFvf3GYA88nn2G+P5nGuxmX0kIdyzYY39jHx37xIVasufr9Wy83Kc1WyA9k6buESfD1zz7D1//yabTWOK7NsefPcvalKX7oF9/F6i3jhH6Mm1k+xLUdk9CPaNbbCaD08w9h5H28siSVSrFl5wS37lmP7Vz/495xHMbGxhgbG0Nr3ZUGmJlJDIuz2ewycOlGV92+13PQEjvy1ZquJeO1bDa7TNv+avFa2EkvH+gvneOlxztem+O3j3+TBb/WxbBNaRBqjR9H3VwTKUWgYu4cXMUPrNre/flny8/SaDQ4duwYo6Ojl3mhaK0ptmv81smHOd8qdijOgkbcQhoSHVm044AYRSw19wyu5l9tvp+VHdO36XaRo42zWGYIJIN30xBEsUkkwdCCHfkRCupU1wTb6G6lQaiMjq9I0uClZZgM6XUiQeJph2qk6TMaSKGJ0WRk1AGtNI6IMEhAJUskepSxAMNWCKnp21DBFAZrbivy4782iW0I8G20Eux5b4zrgAxtkGmGxwM231biO1+LefqxHELAfR+8nT3fdztaaZTlY7j6qmB2q97mq59+jH3fOkIQRAyM9fLQD9/D7nft4JmHDzF5co7hif4uYOS3A44+f4aXnj7F+Lohps4UltXUcZQMAIbGk8/bTdtsu2cldz20mTVr1tzQfbcUQohr0p281GD7RrZEvtfzz1K8Wg661Hht8+bNr+gj9PK4EUnJS99vaaB/6SbKK+W0E/V5vjx9kKO1WfKWiyOcV2RQSiS7Bib44ModLHgN8tKmcuAE3nSBU1NT7Ny5k6Ghi72a1roL4EcDLl9RJ3mpmgx326KNkNCKE/8QS0oypo0fa+4ZWMOPrLmDrT3JQPuvTj5OjI9lJHlEaUEUG50hmyBrp0kZHlKojqeRQmqNkMk2SaAM0maQDNy0It3R1EZotJCU4ww52gwYddBgiKROUoCD6tZFoDtDO40SYAuNJeJEhdIZoXeoTDpXIWg4VKcGyOTqDK+o0qraFKZ6iaOYbE/MA++bQ7qK/ol3svuhbVid+uLRR2eSLdsoZv8jRzjw7SO0mz4bd63hnu+7A8My+KN/+zecPzKNm3URAp744ouc2n+ed/3E/VQKdQZGe7r3lRCC3sEsM2cXGZnoY2Sin9kLRfqGcl0NbcexuOudFxnhSqmbZrB2LVu0l4JLS/nnejGHN3PQcj+1KwHaQRBw4MABPM+7bIvrSvFaAO2XS0suMe+vVFeFKuZ8s4gUgslWJak35MXfRQrJWCqHF8f4KqIWeljS4H53lMHpGr5pXUbWXNoa2L9/P47jsPLWjfzXI1+kGjUxDQPixPg6azg0CfDigFBr+q0sD63cyD/bdDc9tsuR6hTT3kKyxUGSVwwJUijCSGJLE8fQmFJhCo1lxB35NdBSoLRECp0M/jsM7VSnHpJoWsqFEHJGm5z0UQhcESMBhSDVIR1pwBaJP1vS0QmkAIUk0DbSdjBljRgIlI+K3WSsJxV2JsCwhhlcsYp0psL7frhN6O4EcTne982/eIKH/+hR2s1EjkUaklvu3UjfWB9zZwuMrhns1kqtepv93z7C2KbRy+QagcRXJVZ86KfuRyvN8f0XqJWaOGmb3Q9u4X3/ZE/3tTcz/8DlW7SVSqXrP/Jyg+18Pk+r1Vr2DLuW+F8h/3zXANpXYwa8mvHaleLSQup6bi6lFCdOnGDqFYobKSVhGHKhmYCVS2A2JA9eW5o4psF/3PkBjtXmEUKwrWeMXvvy9aOlYuvkyZPdqd9SPFY4zJ+ff4zFoIQpJCVZYdDtBQ8akU9MTCsOeGBoIz+17l5SxvLk92TpELYRo3SECVg6acwiBClD8tNrHmB33wq+VdZIkmm+QHdWTBLZEaVFAhxJhdKajHFx4ibQeNqhqRQZ0SYt486KiSDV0UuCRKfSEBotFD4gzRgpNZnVDQwkCJN/9tuHqU0rBkdjhKGolw0OPpZj87YWo6sC7JTBg+83+PrfDPHkNzZ1f8d0NpEGMC2TZtWjbyTLbQ+u5c6Htl71+tbLTS4cnUkA71snsJwEFFicKfOH//7zFKbLZPIpdKR54kv7OX9slp/7zx+j1fCJY4VpL3/QWo6J3w7xWgH9I3l+6H97AJFukpYDGIZk020T3LJrdRcEv9FwXXeZqcmlupNf+cpX+N3f/V0Ann/+ee67775r1r79xCc+wezsLN/4xjcIw5Cf/Mmf5Gd/9mf57Gc/e8Wf+Vf/6l/xla98hb/5m7+hp6eHT37yk3z4wx/mySefBODFF19keHiYv/iLv2BiYoKnnnqKn/3Zn8UwDD75yU8uO9bx48eXyQZd69/3zQzTNK+q89hqtdi3bx+maV6zCQjceCF16fu9XBduaai2vzzJVLvMmNuD1SmY8lYKL46wDZPV7ghnm0UAtvWM8vE1d7Ay3bvsfZbYJ319fV2Zo6XQWjPTLPLIwkFCQppxi347xbzfQChQKFrKY9DN8MHxW/nYqt3Ljj3ZLjDlzWOIREs20qqTVzSmEZEycvynHT/AVwuPcN5TOEbYNUpaWu2PtQQFlhl3mEbL85BG0NApjBjS0sMSS+M0cOTFAYXZ2TjpmHljCzCMCGErpMgztKLEB366Rui5tKppcj0NttxewETQWMzi+xaDoz4/+DPnyfY5vPhMDmlIbn3LRj78c+/AawWkcy5Hzxzsrrq16x5ey6dnKNd9/oRBxFc//RjPfHkf7aaP7Vjcev9mfuDn30UYRHznC3uxbJPeoYSZ0TOYZWGqxDc++wy/8Ds/Qr4/Q2mhRuoS9kCj2iaVdRiZSJ4fTspi3Y5Btm3bds3O69cSQohlupNhGHYHbIcPH+Yzn/kMzzzzDKOjo5w5c4Z169Zd87HfzEGvPtS/mvHaqx33RnLQKw30YXkjp7TmT84+xYJXZ0W6D9nZLJtul9FCMd2q4pomEkE7jliXHeDBkY3L3icIAs6ePcvWrVuXyRxBUosppXiyeJLpdpmJVB+RUjSjAEda+CpkwLXxokQ7/sfW3MXbRzbSZ1+UP3iieIS2aiEFaEV3+800QlRksb1nnF/c8DZ+5dRJBDFOhyEJgAbTUCgSw22nAyJprUlfMmALtUktzqCRZGW7UwuB06l/VMLfxLrEqyTZgkuyWIyLk1qJIY8Amlolj193GVmxSKYnZOGsTbtmIrDoG45590dLWD2jjK2/jVvfuhnHTfL2uXPnaLVa+K2AR//6aZ776gG8psfmO9fx9h95Cys2jfIXv/ZFDn7nOKmci+VYzJ5Z4HP/6SsIITj2wlks21zGfnRSiQfImZemuedd2zjy3FnmL5TID2RQsaZWbDC2ZpAdl0iKvFZ5iSvFlXQnFxcXOX78OP/m3/wbZmdn2b9/Pw888MA1M7XfzD+vLjmyNGAvl8vceeed1/xsuZQIdD1xpYE+XA4mHa3N8p+OPkw5aJExHCphm3YU4CtF0W/S39mibUUBCsVbhtZy12CSazzP41Fxivn5+VeUOVqSGVi9fi3/tfYsM14FS5iJVIYQGDJCkxAMYq1IWRYfmdjGP1m7u1uXaa15oXocQ4adfyemj4ZU+JGJaxj8yi3fx6cufI6IduIf0hnuL9U5sRZI3dkEMZYG/4qMDDvr/xpP2ZTIkTU88sJbugKX1EUSW0RdjwANmCL5usbAMAW5HkEYGgg7IlYBjqPRSmCnY+xUTCrbx+B4H7Y1y4d+MkNkL2dBL/W1f/MbX+GpL7yQDLyk5PCTx3nxa4e44923cuHYLEMT/V0Ztnx/lvnzRY48fXLZMS4eMwGU0lmXT/zrd/H3f/wEk6fmiWNF/1COBz+8i1t2X9xAu9mA0lK80hbtErh09uxZPv3pT/NXf/VXeJ7HCy+8wK5du675PL7Xc5AQovu/K+WKpQF7T08Pe/bsuWZd4RvdlF16v97eXnbv3r3smfZKZKWnF0/z2fPPMe/VOlsVJoEOL+srY624d2gNP77ubmqhR3NmgcUL0/QN9bBt27bLB/rFIgcOHGB0dJR4LMv/c/IrTPtFBCLxWJSaVqSxpYMpJLZl0m/n+OTG+3jr8Nrue79QOYMWfkdarcPQVoJQGRiG4B2jt3CsdQhPe8lQDYUlO9siJBsekYZ0h+CYMUKk1AitSHVqI4VBQ6VQkUHG8HBkiO786qZQnVqITj8mEdgIEXY2UbIgfJxciKVt/EDh9vrEysEwDYQh6BsXuPYohiFBB0AVCIAEY1NKIYRg8tgMD3/6UbTWjK5Jhopey+fQd45juRZu1l02+E/nUlQXGziuhVKaMIi68rR+O0AIwYZbJ8j2pvnEL72b+QslKsUGfUO5bu+1FK9X/gG6RMYlvND3/e6AbXJykt/8zd/k6NGj3H333czOzjI2NnZNx/1fIf98VwDaV2MnLU3HwjBkz54918W8uHTV7VrBvaXpn+/7l71fOWgyHVWxI01vNo3Sl7O/IxUzYGcYdLPc5155srGkAw5w1113LSu8X6qe58/Ofxs/jrCFiULj64BCUGRNZiULXg3XsPjlTe9nc+5ys41m3GbOn0OQOM4rEjdZy4gQymRHbhUfHLuDZtwiLSW+Tib0llz++WstMFCgwZWJPqTSCTjkymS11tMWMRJDJVM7BFgiXrYmZ3SaQ4XAMegYlCiEsJFigsGhaYYGQooz/UStFLneFu/7iUnChk15rpe2Z+M6Lb7vR2doejmOHEhhmAbj64b4xP/n+0jnUgReSN0vE6tEf2v29AKtWpvRdUNkezOd30fz6P94lq//2RM0Ki2EFAyt6OeHfum9bL5zHU999SCLMxVGVvV3k1G2J8XU6QX2PnKUTbvWkMo4NKrtZY65jUo70ascSN7HtCSrb+nnwQff9rqtnb1cd3Lt2rVMT0/zO7/zO3z84x/v6hu+Gqh09OhRHn74YZ5//nl2704Ayd///d/nfe97H7/xG7/xilqF1WqVT3/603z2s5/l7W9/OwCf+cxn2Lp1K8888wz33HMPP/VTP7XsZ9atW8fTTz/N5z//+csS2fDw8E0F3m4klnJFFEWX5YqldderGa9d7bjXW0gtyQ+93JRxKZaauVrcRmu6TdNSuIZJjOaXtr6NZhwmxmBu7rJ7cakItyyLO+6447Ii6sXSKf7o3DcpRYkkSTtu40iLETdH2W/jqZi0YfNDE7t57+jlJqunmjOEuoEpAyBhJ5pALCSRlnx8/G425EZY0xxlfz3RrZVoHDPqFlsaQYQkJ2I0y/OQJVRHP1vjaZtIycQXQPg4XVYAGIDZGbCJzleNThOnkGgxRtotQgwBIY2qg2lZ9A000UCrbRGHAoTL4FjAuz9eROcnmNiwljsfuq27AaK15ugZaJSbfP43v8b+Rw4ThTHDqwZ4z089wO0PbefhP3mcb/7Fkzhpm1x/Br8V8PSX9+O3A+56306atTZDK5Yz//N9GUrzNarFJvd/cCdf+MPHKUyXSedT+O0AvxVw97u2MbrqokzM61lQLYVlWct0JzOZDKdPn2ZmZoYtW7bw3ve+ly9+8Yuvepw3c1ASVxrqL2kmzs7OXjZgv5a43hx0tYE+XNws01pzoVXkfLPIgJPpyhtJIRhycpSDFg8Ob+ZcvUyoY3b3T/CusS3dTbKlteFWq8XExMQyMHvp+HEcc661wJfnn6calfHaDVzDxVMCT0UoNNWoxbgzyMdX3cm7Ry/XbT3WOI8hE21HbSQDs0glOShrmfwfm9/HeKqHlDRRtDpgtk7WbjtAUKwNlNZYHXA6JROTSKUTppFjJCu1be0QKonCICU83P8fe/8dJkd2nffjn3tvhc6TE8IgZ+xikXYBbA7kMkkMyyRSFCVToqn4yKQfiV+JlmR+f5a+smXTohVoi7IlBomURJEUc9jAzRE5pwEGM5icejpWuPf3R3U3ZjAYYAYYcmkR7/Pw4aKnu6q6qvrUuee8530rTTWBxCKsSJlYiIrkUuS54aAxWHIC27bw/AAVK6DHLWJxA0ZS326QMo4dU9gpi1RqgrveonDTK6ZNXhhj0KHh/3zsHzj4g2PR2KuteO5f9nLshTP81C8/xPGXzlLXkiZeiVuJdIyhC6M8/sUXSDan0eGVdUEd12L5+g7e/ZsP8b0vvsRgzxhSCjbvWsUb3rd7mqbkjyL+XK47WS6X+d3f/V0+9KEP8Vd/9Vd8/OMf53Of+xzvfOc7r7qdm/HnEmaLQVV2oOM47NmzZ4bU1LUw30m1ywkEl+/v8oL2V3r2MeYVWBJvqOU5Ob9EXylLLiwyWYiKu5aQ7Gpazv3tUVOtKnMEsGPHjmnrvcuJVKfEON39Q2TsWMTa9opYKJSICsGOipGx43xs4+tZl5luVnmxNEIunIyKx9X1kBaEgKM02zIruLNlNd8YbqKrOEFMVotDEZtaYSJDbRQulRwIQ6JS9NbGRIZtFTmTgo7hG4VnFHERoCvbk8JBVrIiIVIIUwJCEHEgwJgCSoEt4khdpqEjTioNlmuwgJYVSbyyYjI/SSru4ZVHEcKfQYToOnCB57+2l3gqTrKyVgr8kAvHL1IseBhjpnmKSCWxHMX4wASNrRnGBrK0LImupdaGieEcq25dUnvtg//xzQx0j+J5Ae1LIw+lqfhRxB+gNvpflejr6Ojg/PnzfP3rX+ehhx4ikUhw9uzZa+pp34xBEa5WC6o2li5vsM8F1zMpW23oV9fXl+/v8hh0PNvHn596nGLo0+Ak0MYwVJ4kH5Y5lx9hSaXhP1ouYEnFfW2rWZTIIPrydF+4SCwWY/PmzdP2M7WhtnbtWhYtWcx/OPIlJvwicelE0kZSAR5aaIIwxGDYkGnjl9fczca66XHoeO48lgzQkdEXBiITbAFxGePDax/gz89N8srEPkATV0FFklYgCHFkNDkbsc4jz6PQGFIqQFXWZTEZ4MioBlTQLoGxSJpoTRYXYcTMFklgFISNIAlMVo6wOpUReUC5MQcRs0jUdSLNGbQOCELB2NgoSlmk4mMYtQqtHarL4GpN7sizpyjmSrViNkAs4WLbismRHI2x6c8UYwwYWLlpCUJZnDl0AWWpKBfVhg23r+DWu9ZWjk/QvqyJ9lmkbH9U8QeiKdoq0bGaN//Gb/wG+/fvZ8mSJfzGb/wGn/jEJ666jX8t8efHoqANVx75n2q8tn379nm5fML8mQGTk5Ps3buXdDrNrl27avsrhh6fO/c0z4ycJFcqYhnBHfF1JJVDfylLayyNAEbKeWLK5q6WNVfdz1TzR2Aa29MYww8Gj1AMPTrcBqSQDJWzGC0oi4Ce0iBpleJdS+9gfebKdPwjk2cRwiCMIK4EoQkJtECjiSvJe5bcgxSCtJWkza2nz8tGAchE3CFLaKQ0yErXXogwKlIbUAjiykcY0IaK1ltQWcgpYiIkKTwUBoNEiaBS3FZQYStFkGiS2MLBVgJPg6FMqWDjuAJpGYzSEVMg0ARegkXLfX72Nx2+993thNKnfnGM/vELNKkoocgPCUb7Jvkfn/w/nNnfTeAHJDJx7nv3bl73gfs49NQJvvqXjyIQNLbXoUPNQPcwf/vxr/CR//Vv6DrSi2WraYFIWQoM9Jwe4J63bmfrPWt49luH8Uo+TswmP1nCdizuf9u2GqupGsx+lBpqzc3NPPzww3zuc5+jp6eHAwcOzGnc97nnnqt1n6t46KGHkFLywgsv8Na3vnXGZ1555RV83+ehhx6qvbZ+/Xo6Ozt57rnn2LVr1xX3NTExMW0KoYrbbruNcrnM5s2b+YM/+APuvPPOOXzjhUU1IZ/a/DLGcObMGbq6uq5pvDYb5jPub4zh/PnznDp1aob8UPXvp3MDvKQvcn7MY3FTB7aUFAKPxBSdyMmgzMpUM0k7RvoKkyFwKTlsb2+nWCxOu+e11uT9Ep/t/gG5oESTnWbEz2ELRVl7OLJERzxDaDQfW//TrEpduZPaVehBE+AIG9+ENSkiJTVJ4fLmRTsB2Fa3kW8NfQODj1tlMAESsCuJkSZqrjkirDTaDDHpI4iK1haRaWTJOARYOEZjyyy2EYBAyABwAYkiBBECMTA+hgAlymjpYrshUvooFSKlQChJ27I4QbmOeCpGPGUwOsudb27j4kDAS6+8UDMsa2hoIAw0f/uxL3F673kS6Ri2o7hw/CKf+f0vEQQhz399P07coa45amA6ro1SkqPPnWH9HauRShL4Ic4U5kAQhChL4sQsdr9uM1JJnvrafsaHcyRSMe796a088Mj2aef+h8WQnA1CCLZu3cqtt95KS0sLv/d7v8eFCxfm9NmbMWh2dmSpVKrpV1/NeO1qmE9B+2oN/SqqsUJrTaAjpo68fLFX+fc9rSv55TUzvSOCIODAgQPk83kaGhpmyBxVvU+6C0N84szX6S+PYTAEOiDLJEkrhk2KMT/H0ngjv776QW6tu7JHxcVSf2URF2UiQhgcpZEabsssY3ky0ilclVxEV3ECAcSUH42dmgp3UQZoolxAVkb5TUXjPyb9moGkIsQVIWVjEZCgFMZoNDlcYSNFGQgRIo02ZUQlS4oiHZGRtBTYrk2mMU7KbcGJ5REqwHZdGpui50EYehDmmZwscfD4SziOUyuqhGHIhSN9HHnmJHXNmZoOpGlO0981xBNffB6/HNDQPn0xl8jEGO4dY9trb+HU/guUCmViieg9k2N5nJjN+u0RA3LjjhWs37qMkf4JLMeivnmmXuyPckFXheu6PPLII3zoQx/iO9/5Do7jzGoYPxU3488lXClWVI3XlixZwtq1a6/rus4nBl2roQ/TGZflMOB4doC0FZt2HyYtl4SyeV3HepIqTmA06zNtbGtcgi0VY2Nj7Nu3j9bWVnK53LTnpe/7HDx4kFwux86dOxmWBf7mxKNkwywFPYkQEkdJ/NAnNIZAhHQm2viV1ffOKGYDnMr3YskQgV+Z0ABkRZdWKH5u2R4A7m3aQk/v2ZqkUdLyp6yZqqzqiCwUsRwNxoiavn8UhyJpSEeEeMYiRFEKFXWUiAkLI0JsACEwQlVqSCGgESIBJkBIH0tapDpasciD7gYskslGUsk4QVCAUNDTV8/5/qdrI+/Vwu6Zfd14pYCG9vraObBshZNwGOkdRbozva/CQJNuTHH/z9zKP37ye/SdH47y51DT0Jrhjb9w9zQZktmKSTD/qeyFQmdnJ/fddx9dXV384Ac/4PDhw3Myh7wZgyJMNYasIgxDjh07xsDAwAx/n7liPvGn6ic0W0O/isvXdt/vP04uKLM4Xl+7T5eqRrr0MJaC/mIWjaHOjvPIki3c0bSMU6dOcf78eZYtW8bo6Gjtc1Xzx5MnT9Yaas3NzRyc6OZkrhchDHFL4HkhvgFbWPiEJGyLdeml/OEtb8ZR0+tl2mgGvdFoYlZpBNGxBzpiXW9KdZC247yt4y4OTR5EigAlIwJArDYVGyFE4VAhMJpo/aUrcciZEofsyrS+ZxQhEi9Ik5IertB4IkGd8kGUkTgIodGmFDX/RRPGFDB4WKIFRAZjHIT0SMQyJGNxdDhKEAhOdq9hcPyZmuxYEAQIIfDLPiBmNiIsSbIuTrnk1+o4xhgmhieJp11uvWcd973zdl76/lGOvnAWqQSbdq1ix4ObZjTOZsOrkf9A9Pu59957Wbp0Ke95z3t4+9vfPk1PfDb8a4k/PzYF7akBp9qVOnHiBGuuYM4x3+3OpaDU39/PoUOHWLFiBatWrZq2v//d9QMeGzxCUrkkpUM+KPHMyAk2ZTrpL+a5WBwHoM6O87Yl29hSv2SWvUw3f1y9ejXf//73a+NVxhiCIOBsvo8Qj4kwS70djyRH/DyFoERSOfzC8ru5u2ndrPsYKo/hSgGiTFREBiUjXey4dNiQXlp77x0N2/jm0PmaCVJ8SgIl0NjCRaIRwqsYS17SQ5IQ6UlSHT+WlBAMh2nSysdCYBmNbTSBsRFCYwSYyrgKOGDKIMCybVINLsVJiWUbpJAk6y3cNa1oLYglXdzYJCk83v5vXw9Ei+/qyPuBAwfwvYDv/NdnGb2Qpb45Q6I+TmGiwDf+56PEUzFOvHIO3wtoWxo9EJWlaF7cwNCFUfY9dpR0fYIwuJylHiWW8XTUdHjrL91LU3sdL3z3KPnJEsvXtXPPm7ey5c7Vtc+8WslU1QhASsm2bdvm9Jn+/v4Zox2WZdHY2Eh/f/+sn3EcZ0Y3ra2tbdbPPPvss3zxi1/kG9/4Ru21jo4OPvWpT7Fjxw7K5TKf/vSnue+++3jhhRfmfPwLhWrzq5pIVRc0+Xx+TsZrs2GuidS19LkDHfLps4/z5PBxsn4ea+gcmWySBidJf2mStI7hSIusX8SSkjcuunVGkQkusY4uXrzI9u3bKZVKdHd3A9NZkccnexnxczQ7GTSGgvYohj7awLifxxFx3rpo+6zFbIARbxQlQIoy8QrTURtJoCVr0x2krOg3tTjWSqvTxGhwITJBMhBXQUXPNpISQMQQFGvaZlPjkIUkLsvISslcIwiAMZ3EFWHEbtIxElqD1AjhgilXRAEEkTAACGmwYzaL1ywBU8ZyS4Am1phBycoD2IwjZJwVq7awfFUD+Xye4eFh+vv7o/N6bIiTr5ylriVDIhVHAPFUjMELo3z/b5+mOFkiUTd9gRNLuUyOFYgnHNqWNnKxa5iWJQ0oJfG9gMnRPFvuXluTMtn12k3sfGB9JDWSdK+YZL1aCVUul2PlypWkUik2bLi69FMVN2NQhMvZkVXd1ubmSD7mehsUc22qzdbQnwptDC+Nn+Ub6ixPHvkn1qbbydhxRr08HbG6mnb+aDlPk5NkZXLmYrBQKLB3715c12X37t0cPny4dnzV+FO9f783fJBRP8fiWCPdxZEKS1pS0mUcy6UjXs+vrn5g1pwrH5TwTSn6lQuJEQG6KqemDHsa19be+2DzLv6m5ySWKEfyJAZsGS3QpIiKSSE2inIlTglsUWVZR7zruCzVClYGgRCaHDFKaISJUQ4UGZlHoAiow5JjgIcUjSDSGDMEGGLxJuxkAyIcAwaQVJ4/xmCJUYzdzLLVb2HJynRNU/rkyZOUSiXOHDhHuVSmIX5Jm18IQTwdY+DcEEIpQj+cZnjtlQKSdXF2v+FWuk8OcOjZU4wNZEGAG3O4+6e3smbrJQa9VHLGJMm0++RVij++7+N5Hul0msWLr27CXcXN+HMJU4tJxphaweWWW265IT3duRCLrtXQv3x7fhhE06rSwZGK3GXNQFNZZaxINfGayyY3qvJNVWPvnp6e2jqsGp8sy+L2228nVPBnR7/EmB/JJMqK8qsQIc2xNPkgpM2t4w83v2Waj9FUjPuTCOEjDZUsRYLRWBKSwmJlMrr/7mvawbeHvk8uHMFRVfZ1JAtSjUMGCIysGNRSmRKJytxGCGzAEeVLhXOiabaSsfHR5HScgrCoMwWEiINJkhSjCGkjaI40uc0AihTSOBhRRiBRWCgzCWRxVBlt38rK9T/PohWKkZERRkZGOHfuHADDI8OEYTBTws9AujFJoAXjQ9laYz83XkApydb7N7Dl7rU0tdex78njjA5kaetsYvv9G64aby7HqxV/gJqPiG3bbN26dU6fuRmDLmHqmqlYLLJv3z6EENP0q+eLuRIbp+pzX0sR4PK86kJhFEeqafe7FAJXWdzdupK7mtfi6ZB1mVbqlMuBAwfIZrPccccd5PN5RkYieUhjTG2Cv9pQS6VS9BRH+FTXt5kMJ5GVQq2lojwlCAVGGDZkOvjIutfMKGZDRMzUeDiqEt8rr9tKowzcmomel2uSi9mYWsHp4jEEBlcF2DJEG1EjGUlhounWihQQRFNo1QkRIyRORWLNVKpLkiiX8isrtZJ2KRhFWpYROBFZUpZJSBejyxjhII3EFhrMBYxsRLEimuQVeaRaBIk3s27zg3RUjKN7enqYnJzEtm3cJoWQkfl1VaJRh5py3mPP23YwPpzn9L5zhGGUrcWTMR762T0sWRM95+5963bufet0otBc8WrGH7hkjD21yXg1/GuJPz8WBe2pXblqYWd4eHiGrvT14FqBzBjD6dOnOXfuHLfeemtNzLyK/uI4L4ycJq1ipO04ZV1ChA6hsuguDPLxTe+gtzhBaDQbMh00zpLQADPMH6sJVFUnMggD/qH3CS6Ue8mHZYo6j0TS5DSwMtFKf3mMty++g3ua11/1O1tCEVDAEtFwmTZRYciSZob0wO3123ly9DsU9ARxdSlhEiiEMEgRklCNSANCFqO/G4PEjjTeACmcilFcQFx6CAxFo5BAyaRplvlovNYk8EOBI8cxgBfEEJbEVtF5SNU3kq5vQjCGMGcRwiXVcOl4hS6i1aXE1HEc2tvbaW9vj8zrPvttRi6Mk6iL4ekyYSnATTn45YAn/+F5ZMzBcacXf6pBZ2Jokm33beDQs6fJjuZJNyTAwPjwJLGUy5bKqInlWDzwyA7ue8s2vHKAG7d/LNhJEBW0q47bH/3oR/njP/7jq77/2LFjP5LjOnz4MG9+85v5/d//fV772tfWXl+3bh3r1l1qzOzZs4czZ87wiU98gs9+9rM/kmObimpBqVrYmY/x2myYS0G7Kg8DzKrP/cTQMR4dPEJCuTSKOLayKeiAcZNld9Nqjmf7KYU+ixMN/PTiLdzVvHrGNnzfn5asJRIJ+vv7pxWyqzHpbKGXXDBBUU/gCJsWN4UfJpgMimgMH1h+zzXjkGc8XBUSmrCWPCkRopRmWaK59j4hBK9vfYh/7P8MxoCjfCxZ5XMLhIgWdK6sw5gQJfyKsYjAkg4uZSQgRQxNiIVPrGLgFlTY3aM6QSCLWBhM6KCNT0oW0SYNOk6gEtiMgKjDiSXAuJUxO5DEoqyRAsJkCdVrQDQioDbyvnz5ckqlEv/ru59Bhxo/9BgfL2PbNrZtE0u6DPWMYqdilAoebvwSQ6lc8HBiNs2LG3jHb7yGz/3xNxjqGYvSQAFL17bz5g/eN+3cKktR13RlSavq9Xw1YlCxWKyxiG/GoPmhGiumFnbmarx2re2Wy+WrvmdgYICDBw9e03D78+ef4WsXXyEnCyQmPY5NXiSuHKRQ9BTHcKVFWQeRFFHnDuLWdCbe6Ogo+/btm8a+nCphMrWYLYTgaLYnSlJFSKuTZsjL4ZsopoQm5JHFO7itrvOKxwow5EWLTMeESHEpDhvAaIfW2CUG7876W/n+8GKGvNMYI3BUNMIfITItUsJGCQtjQiRhRboIlHBxRCGKFyKOIcAVZRxhKhMmEoUgjyE0DgqYCCLJt0YZAArf5BEILCGxTAB6ACMMkvrIgElXGo8iQ2C/H0Q9SkXTWc3NzZHk0bFjdCX7CIOQifFxlFKVGOQQ+iGNHfXYCZe+c8M0ddRjOYpCtkS56PHAu+4gkY7zvo++kWMvneXs4V6UkqzfsZxVt87vHnw1G2oAyWTyZvyZJ6pTIuVyeUZh53qMfqfiWsSiMAw5evQow8PD1zTcNsbwzOQZvlbaT7DvFRxlUWclGSyVKFkuMWWjjWGwNEm9k2B7w7Jpnz158iQXLlxg69atNDc31757GIY11nZzczPr169HKcWzI8cZKI/T4dbTxwSTQQllBAbNRDBJs93E+5fdOWsxGyAw0brIlqBkSCTvIQiMJGM5uBUPJFc5vKntAb7U989Y0qs0zTQxy6f665NCIIgRGg9jPJQQlYYbWMLBFpU4IhOEphzJQ9ba/TZKaELhkzUu0mhylBgXSVpMDF9eJAQs2sjIFEKMADGM/VaEaMOYg4AkVLsJrdeBSBKLweLFi1m8eDG+7/PUU0+x4rYlvPiVg/T3DJCuT2I7DsIIvKLHA+/dQzyd4Pt/9ywD54fBgJtwuPtt29lyX9QEX7KmjSVrZjLd5wqt9Q3l7TeCQqFwMwe6AVRrQVXyX3t7Oxs2bLih50k1/szmkQRRQ3+q4fa1FAGklIx6OboGj2IwNLhxTkyG0/ZRXU91xOvY0XRJs//FF19EKVUzfywWi7Xjy+fz7N+/v9ZQq/onfbHnGcb8HDHp4JkQC0UoAqTUOCpJs5vh45t+ipg1c/oBIKZswI+OzVT90qIJDy0MdZX9CCH4+c4380enzuGbbCS7ZmQkNav8mlk2QGBsJD4IUWn2RdUjS7jYYnJKHPKIyRAlIuk2YeJYJkTJcYraRqEQwsLTKRD15BnBmAS2aAe1nqRag5HtFHQeyBNTa5BqMwgXAWQyLul0khUrlnDyZBf5fJ7MWouW1XVcONRHY5tGhzHyE5L2zmZe8767qGvJcOipE2QH9rNo6Xk6VqaoX9wQXbMbnK5/tUiNVVRrQT9p8efHoqANUcAplUo8//zzKKXYs2fPnI3XrrXd2QpKU8deZ2NhDpQnKIU+TU41oRMYAwnlMOEXKGqPXc1X1ymuamD29/dPS9ZqLvFhSBiGvDh2gkdH9pO0YpTDaETWCMOQN0JOeLS5jeyewiiaDUIEte68IyyEDAhNpHUUqbZdQr1dx56GO3ly9HtIEY1oKCSO1ChRQgmBZ4rUW61gcqBHkSoa6ZAiCo4SFyM8EtJcClhYWBigSNYoIlsonzyCRmGREgojJXkvh+NEgc4LBJYqIaWPxMJCgZnEGAvJBBAntN44y3cWFEYjJ9uG5gaM1vh+gO/7aBHS1z3A8m2dFM8WyegUqmoYGmgQguYlDWy5Zy0PnNrJU/+yj8ELo0BkFPC6n9vDys3T2SJSSWKJKz84Xs2CdnXh8ZGPfISf//mfv+r7V65cSXt7O4ODg9NeD4KA0dHRWRk57e3teJ7H+Pj4tO7cwMDAjM8cPXqUBx98kA9+8IN87GMfu+Z3uP3223n66aev+b6FRnUxNzAwwPnz5684qXE9uFZBuyqr1NzczMaNG2dlYT45dByAtB0jV45+f41Oir7SOEuSGX559X3kQ48mJ4V1hXtvqszRVPZlpFGopxWSnh87xneGXiLAiwxDCCLzR7uRmGWzItHKXc3rrnluUpaNIcQRDlVrIzBootHbqdhZv41nxh6lr3weS1Y1+AWOAEuWsARoisREK0EwirQj6RIwUbwTEilsjNHEFEiiRa0SMVxhgxnEM5JQSJAeo9iUjUPaSAr6JJOhJiWTJIUAdR4pBEYsxRHpKPaYEcBFqx0EzvtnvdZuysG2bVLJNIiIaVEul5kYy1LflmHVjsXs/+4JpBAkMjHKRY/scI7Nd65l6boOhBB8+H+8j4PPnCI7mqd5UT2bd6+eNdZcCdXCwatVULoZg+aPalO/2nSar/Ha1XC1GHSthv5UdOeH+Xb/AWxpUWdc6pw0CMFAeZxNmSW0us30FEZZFK/n/rb1M1jTPT09HDt2jHXr1k3Ty75SDBJCcCJ3gX6vj0JYIqslCkVLLIPQNhNhgbd2bOenOq7OgEtbSaSIpj2MEVTb9VIYpApR09hUkncteiv/q/uTBJRxKiO2BokjBJYoY8ty1Ojy6lFuvlLArhpla4RQSKHQJsCRBoFLJOOWIi4tjOnBoJAiBSYkT4jvO7gij5EemAQui2l1MthCEYp70XIRAaPEJCDr0Wo3Ri6f8V2r99Cmu9Zy7NEuvKJPrDlO4AeMj0yQzxa49Q1rufWejXznfz3LcM8YOtS4CYedr72Fh342GvG0bMUte9Zwy56rS+ddDa/mlBpEBe2b8Wf+sCyL8fFxnn322Xkbr10NV4tBc2noT8V3Bw7xhaGX8bVPo8zghQHnvUFcy2G0nI9+4wIyVpxfXHlXjWQUBEFNRuRy80cpJQMDAzUz487Oztr921saoayLjPoecSVRwonY4CZqPv38sru4s+nqvxVbKmJKoinVmvuiIg2ihDftvfc37eHw5AHOFQ8jBMRUdT1XaXYJDxsPYQSOaEEzhsFCViZfq3Go6hgSGbq5SBNiiQxxGaJNCXBwRAdaa/xgjBGZj4pSwkIIQ05Kmux3Y0lDOXgebQ5jq/UknLfhWLcAoPVFwvDlyjXeAUQTOXe/fjdjZ3KcfOnbZBr6GRuy6Tqapnl5E0u2t9C5agkb93SS7fkGzc3HqGtOEm/UhNIDbnzd/2oyJG+uw64f1UnZ/v5+hoaGrjmpMVdU11WzSfHNtaE/Fc+Vu3ls4jTeYKRBXa199BcnaIqlMMYwXM7T4CS5uyJDOz4+zr59+2hpaWHjxo21e7Q22TY6yoEDB2hubp5WxB/38xzP9ZBULgnlMlCawDeVaWITkLIkP7fszlmL2VCdOBNYWmOrS9MsBgNGYbj02uJYK29pf5h/GfgKQvjApWK2QUS+AcbDEhpbuQgsBKVKbqOJnEYMshKHFLrSdHOBAKUSuExgUIBC6SUEPijrHEXGEboBJRNoNcSgN0adVUKHn8EQPd8nRYqU+37i9lvwvc8SBN/AmAJC1JNM3oUQr2Xt2vWs/9Qw431/jhIXCXy4cG4ZResOCjpHPHDYde9+7PBLQDkqmJW/RaBeg+/8Cojrl2x8NeNPtSmSTqd/4uLPj01Bu1wuMzAwwNKlS2fVTbsezJZIVQs8sVjsqizMRieFIy1K2iclVaVxYyiFPo60aHSuzlzwfZ/9+/dTLpfZtWvXNA3MKotucnKSxsZGXhw/jjaaFrceVzoMl7N4OkCjSTs2v7LydTS719YEDAlJWXE8XcSIHAKDJcAWksAUZrz/7sb7OFM4wpB/BoFCEWCJIlFCZKMJKQZZpOew3N3FhHwZYwIs4SIoEeKjKnrZYAMaS9YRkym0PlXR0m5AogkpMaaTaKkI5ADGMZRFPSndQMIU8LwJgjCGF95HfcKQcnqifYh2fPV2jNjGbHdGuiWFkLKmi+S4Do7rUM761HWk2PH6zVw4NkDPmT5S9XGkUJQmy7Qvb2HbA5sQQvBTv3gv2x/cyOkDF1CWZN22ZTQvmvuoG/zo9WurmFpMamlpmZN52O7duxkfH+eVV15h+/ZovOaxxx5Da80dd9xxxc9s374d27Z59NFHeeSRR4DIoba7u5vdu3fX3nfkyBEeeOAB3v/+9/Of/tN/mtN3qGon/qihtSYIAs6fP39dxmuzoTqWdiVmwFSzj87OzqsmUVk/mrioYur2CkGZlB0jZV95ITBV5mjduumFaCEEvu/X7p3AhHyl/xlCE9Ls1DHq58BEUx4D3jDtTgdv7bgDJa4dnx2hKklegJJ+xJA0ArDJB5PT3quE4q1tj/B3Fz+NZ4YRwkJhsGUeGZWU0CYgH46TsVtYmVxJX/kptPGxKnIkofGxRJUlYIEIUSKJJahIkdg4ahFK2IS6jM8gORk134xRjGiLkVIbjK/AjuVQcR/HcUi5G4ir9Qi5EtRGhJGVAreHEG2IyrkwxrD0lja6nx1k5OIYTR11xFyXsKRxHZc737KdlXuWMDYyzrl9fRiGiCdsNt21ifd89Kdq1yVVn2DPG7dc8/zOhlezoF1NpOBmDJovyuUyWmvK5fJ1Ga/NhtkkRy4v8FxLVulwtodi6NHm1jEuyhgMSkiSyqW7MMJ/2Pg23CuMulY1KXt7e2doYFbjWDabpVQqEYtFOrgjXpa/6PqXmiyQMIJQhIz5YyRkmkY7xT3NMw0gL0eTU4cVzfnjSCvSjRRhpblvGPFGgEvFqNXJldzdeC/Pjj+GFB4ChSUktsxHnzUKYzQ4AUl7Ee1OK0PlFys6/HEEeUJTxhaywmJSQIASLpgJRJWtLVuwZBKtxxCyC0iiaCUIPQqmj1NjIY6/hnT915CqjJQ2Siwj7X4UWy7F+McJwq+j9VmkWIRtvwll3YYxhuYlDfzMb2+h9/gXsew8A91pjr64mLX3b+aed9xOrjjJPR9YTHviLJ2LzuAmHJx0htAZxzB/Z/kr4dWeUlNK3Yw/14FsNsvIyAhr1669ohHa9WK2Sdm5NvSrCHTIv/RGJo4Z4ZKwXBKAEyhKoc97V+zECw1Jy2Fn0wraKxMYxWKRvXv3Yts2u3btqrEegVp+dvr0aTZt2jTt3PeXRnli+BVKpoAXVkbnhaTVbaAYalan2ri/ZeM1z9NitxkhonVSpMqvK5FBo4XHuJ+l3s7Utv/zi3+WT57/E7LBEEJUWY+SmCxGEcQIUIJABNRbK6izXCb8w0CIEokpcUhVFLcFCFDCwZiLFf1+gZQOjpXAhKMYPBQd4CfxA49ADTMc/DkxaZAKJA5BeIGy/xzp2O9hiS688meAAlGGlUSp9wKLkWKSt/7bJ/Hfd4gwKBD4ilJxJX7s/eRLcU6fPsbqtr/jli2nkFIglUR4+wjDJ/Hc36uYVF4/fhwkR+BmDjRf+L5PPp8nl8tx++23U1dXd+0PzQHVuBKG4bQYM7WhPx9ZpYPj3XyneAKAFrcegAm/ACIgblmMlgsIAUsTjfyblXeyKF5fM5m8koyuEIJSqcQrr7zCihUrZsTeMS9H1p/AM2WEEMQsFf0edeSR9rbF26/ZVJNC0GinKenRCrUIohqPAKk5Vzw/7f0PNN/FqD/ICxOPIwguFbOROKKIkiFSSAxlhEiSttqJi5Ci7kIQRnr8lTjkCAuBV/muRGRFSlEcEgLHtYm7YHRkWClMjHJJYUySWGyIsvk6SrQgRSsgwIyTK30awpcw4YuACyKGMUOkkl9EiAATZHHEn9DaUQTRAgS0Lu2jHHyFMz1LyI48TmbF36OljZANWMpCUMAKv40ONxFaD8zpXrgSfhwkR1Kp1E9c/PmxKGiPj48zMDBAJpNh48ZrL1Lmgyst5oaGhjhw4ABLly5l7dq1V01GlsQbubV+KS+MnEEgUMZQ0D460NzfupFmd/ZFYC6Xq0kXXK5JWR2vbWtr49ChQ9i2TV9iEI0m1GGk151ooawDRr0s2+tXsSY1twu8yG1DolHSI9KIVUgEAQElM0FfqY+O2KVtpa0M7+x4P3/b+ycUwzy2DJAiYiJooxFGoLSPiGUZt6Azfi/lcJB8cBptSigUSdUIXCAyFhE4Mg1mrCINoJAyjS3SWFpjOErJgC3bkMJFmzxZVSIWeyeE3ZS85wnDF+j3LPJDGxD+64gnN9LY2IJjXsHo0whZh2XdiZTpWuDovKWDjtVNeJM9KJWhXEyTnyigQ82D77mLBx65k+aGFr71v79LMnkWIUPGC0u47fWr6BnopiloorGxkUUrWli04voLmq9WMCsUClfV/LoSNmzYwOte9zp+6Zd+iU996lP4vs+v/dqv8e53v7tmgtjb28uDDz7IZz7zmVqS8YEPfIAPf/jDNDY2kslk+PVf/3V2795dMwI4fPgwDzzwAA8//DAf/vCHa5pK1YUmwH//7/+dFStWsGnTJkqlEp/+9Kd57LHH+O53v7uAZ2VuOHr0KGEYsnbt2gUrZkP0favj9NU4U53Y6Ovrm7PJyYbMYroLI9O24+sAiWDFVXSsq0XzKzEdtNYkEgni8TgvvPACiUQCv0ExXBonZcdxpRPpcgdF/DDACMObF23ntvoVc/ruDU6GpHIImMSYaDErJBh8esvn8bWPLS81Elcm1/Bwy5v51vBnCU2AEl5UzBZONK1iBCnbxhc9XCwXWRa/j8CMk/VPEuqLWCiSsgnoxhAgUTgyg6mM6kcLOwtBHEv4GJ0D0tgqSi61KRKqITLpJEFwAq19fG0YK8JIsBwZ/B4NdaeQ8q/RZn/EhJLLcN0PYlm7McaQrDP8xiddJgdfROsyx19uZu/ja9j20G5++t++Dtux2HZbCm/kf2CLYxgMk6ULXOyzGcnuoLm5mXQ6fUOFhFezoH0zBl0fgiBg//79AGzdunVaweVGcaWm/tSG/uUFntlQLdFC5bdUoRoaogXZlW7Z6hRcoVBg165dM8wftda0tLTQ1dXFM888QzqdpqWlhf3qAuN+jg63iWEvSy4sYQyEaDxT5heXPMzi+Nzk6FIqkoozFBAiYg4pIUAEdBW7uI/p5jWvaX49Y/4gZ4ovR2q3olQpIlVYj1IRU4pCeJ5hP8/yxINoM8m4f5xAl7CEIl6LQx4CB0dkwPRVJk8iFiSANOOABpHAVhlsC4ypw9jnccwFdJigVEwiRIDtHMfzf4c690Ng/hvG5BBCEXKAIHgCN/bvMGYVqdgLrLrr79iyO0vgBRjdTxCWSTT/GspZDGYSp/hpRHiSMFSEOo8p/gNB7imG/Y9R37j6hpspr1ZTv+ojMp/4eTP+ROjr62NwcJBUKsXKlVefOp0vriQ5Up3YmI9P0pifZ9TLE1cOxr805RVXDtmgSJ0d58Elm6Z/piIj0tbWNkO6IAgCDh06hJQS27Y5cuQIFy9epLm5mZaWFv554CmyYYGYcCibKN/SRjPij1CnGnm4deucjrvJqcMWCs8E2MJHyiCSIAEQgnOFbm6r21x7f51Tx88u/nn+/uJfU9IDCKGwhBflHEYiZTT95grIhV1YopXlidcgKDLmHSPQF5AIYrIeKKIpo4hjyyToqoeRQgoHjA/kAYGSCjseJ0acMJTY5iQ6zFDO1yOFQFkJLHuUQum/4ooxEAJBC9E6c5wg+BtSqXch/OcQ+nmcWAZoBUqk6y+A9TcQ+29YYQ92+Rx+kKHkKYIwwJIhrvsSpdJXsNPvvKH48WoWlAqFwrwnq27GoAjVHKizs3PBitlwKReemgdVG/qTk5Pz9kl6aug4vglpVMmaV1GDk2SgNMH2xiW8pm0LSkpWp1qxhOTkyZN0d3fPIEtVc6Dh4WG01liWRVdXF9lsthaDpK34bM938SgTorGMIsBHioCElSGhUjzQunm2Q710DoSkM9HERe88FhYSjZQBkaq/4GKpl8CEWBVmshSSd3Q8QllnOZ7fiyCoMbOVCJFCIbEwhNjCkA+7idmLWJF4CEGZMe8Egb4QmVDKDIYixpSxZBJbpjAaNBpJDIkLjBHVjyRuLEYiniQMNVIPYAgoFiRCFLEsC8vKIEQfYfAkQjQiRSaqlIsExvQTj30P/G6gAKK9JiEiiBOzz7FpwyR2kEMFUPbTBGWPoi6hlCLueBj9KCZ5/3Wvw17tgvbUKZG54F9L/PmxKGjX19ezcuVKstnsgm/7crPJrq4uzpw5w6ZNm2oX6moQQvBvVz2IMXBooptCEBkt3t28jp9fcc+snxseHmb//v1XLJpP1YrctGkTGzZsYGxsjB9cOEkxmKCnNI5EEBcJ0nY9llSsTM7dkGVjeg1xS1EOQhQWAkFYUXFUQrIve2BaQRugzV3Eg01v5snRb+CbYsQkMiHGaOLCQzqRJm1JT3C28AJ19iL2NP4OF4vfZ6j8MmFFx1YQ4opmbJEk1ANVpVusSsddiDzCeEACS0bMZyUS+HqQbPHvK4ZMDsquw1glHPcg2mtipL8NYz5OJnMKJQ1CCnyvFdv5HaTchpSSdPIIH/mzV8A/j18O6TrawGP/tJWNd76Ge98ddYx23DPBrl2vYIL+KP6pYca9NVwYsjh79ixHjhyhrq6uJqY/38URvLrspPkWkwA+//nP82u/9ms8+OCDSCl55JFH+OQnP1n7u+/7nDhxgkLhErv/E5/4RO295XKZhx9+mL/4i7+o/f2f/umfGBoa4nOf+xyf+9znaq8vW7asZhzjeR4f+chH6O3tJZFIcOutt/L973+f+++//zq+/Y1h9erVTE5OLvgifCozQEpJuVxm//79BEFQ07GeC17fvoWXR8/SVxpHaTDaoCmxJtXO7it05qcWzS/3IpiqV+u6Ltu3bycMQ0ZGRjg+2FXR0CxgK4VjubQ7dYQYcmGRlYm5x6FbM+t5buxZQGMJp1I01mg0ZV3gaO44WzK3TPvMzvo9TAT97M0+SWTtaGF0NMKWtAK0KGHQFPQ4ZwrPk7Zauafx/2HCP0R3/jt4ZqJi2xQSk81YIk6IriRObi0OYbIgDFSOC6rat4ME4cso1YFtpSrXrkSouskV/w4rt4+YO4wQSaS0keYExeLv4Th/TOAvZ/2Kz9PadIHmNklQNizb0Mdr36dwGz6MkBZCD+J6v08sOYgR0fYTiT4a6/6e430N7N/fE8nJVBy7m5qa5q0FGYZhpcC4MOy6uaI66nY9eqs/6THIsix27drFU089VdNdXChcXtCuNvSXLFnC2rVr5/ysuq1+GUnlMu7no98OhtBoCkGZB9s248jp6WTVXK1aNJ96H0/NgZqammhpacHzPIaHhxkaGuJo9hSe7eGFJRrtJGkrTln7lLRHq1PHfS3XXsBVsSa5jGx2qKIhGyk9VqWPTuWPMeFnqbMvTb7FVIz3Lv5FPt9b4EL5NLYIQEfMSqQmJn00RQwh+WCY04VnSVnN3N/0/1AO+zib/wqFcABMNDkSV42VppzEEGKJVGUBB1CImJLi0rkTWCjyCOESj7URc6NzFQQxQnORXO6PcOwC0IJlRR4ehhHKpf+JFP+OhuTngBJKtaMSAkwApg/0/wE+hhU8ijJnMCr6vIUhDH3iahCT/RrPPnsHyWSyFn8ymcy885lXm6E9X/ykxx+IRojXr1/PhQsXFnzbU2PQ9TT0q0iqGK6yKPplpmZqvonYgvX29GtfNX+8XOYIIqmTvXv31gznXNelWCwyNDTE8PAwR04d44XUUSwlydhpxsNIYtKYSADk9sZV7Glcx1yQthPU22ny4QQhJQBEZYrD4PHc+HPTCtoAKxKr+NnFH+SLfX9OPpxAGY1EoKRDiE9MBmiKgGYyGOBMYYKU1cwDjR8F8pzNf41x/xSYDBZ5HJnCGI1BAj6ubI7ijonMr0FGkyQVKFHR/bbriLsZgiAgCAK8sovlnCbAATpQFpWiXgPQR3PjC4iwH0iCqF6POGAgPAr6JCp8GYHGdtLYTiSHEIYB6AJe7jGe399BQ0NDLQbN1wzw1S5oz9WQdipuxiC45ZZbOHHixIJvtyplUo1Bl0/oz5dAMObnKwSZ6bmaFIJsUGRzfXT9gyBg/6H9taL51Ny4av545MgRJiYmuOOOO0ilUuRyOYaHh7l48SLHjx9nIF3gpLxAo5ViLCgQVshBgQkp6jzvXHw3Tc7civGrk0vZO3EQjYeSkZSIqJyfnB7iVO4UG9KXvJGEELxz0Xv5zmCKVya/j9Yhjgqj5hYWIQExGUTFajTjQQ+FcJiU1cKDTR/FEtBd+C6D5VfAGIQYRwmHQJcqopIaVzZHOYxWgEbgoEQCiGRABSECSSqVIQggCHyKxSKu46EtD2NcLKVrk7JhGMeycpjwOILEdD1sUQk2ugspCkghahJX1SntUAsmsj0cPPBsLf40NDTMS3rr1Yw/YRhSLBbnXQv61xB/hFno1dN1oFpo7u3t5fbbb1/Qbb/yyiu0tLSwePFiDh06xPj4OFu3bp13988YQ3dhhLPDvYx1XeRt971+9vd1d3Py5Ek2btw448FWNYCcqhUJcDh7mj8/9w+M+5PRkK2JeuhoSatp4YNNr2NZ6+I5s/c+2fXnnC2cI8SACXBUWNGhhRXxdfxy56/ONDM0mqO5l3ls5G8p6QmktnGMxnLylRE1TVI1EJMJCuEYqxI7WBLbjIWkrEcohecZ95/BmOqI7SCSSWzRRkxF5itGDwHdWKIFV11iloZ6AsecxxatSNkw5Ziykei/8xC+/1W0ThAEFmHgYVlZtG6kWPpTGuqyKP+jWKqMUnUEgY8gj5BLUJm/Qoh6hD5PrPSbYPIYUUfEM5sAbMru/4tWWykWizXH7rGxMWzbprm5mcbGxjkHtb6+Pvr7++fscL1Q+N3f/V08z+NTn/rUj3S//xoQhiEvvfQSDQ0NLF++fMG2q7Xmu9/9Lvfddx/lcpl9+/ZRX1/P5s2b561NeSY3wJd7X+blgVNYQnL/4lt525KdNDjTH1xTZY62bds2Q+aoGn+AGYXPnsIAHzvxlxTDUi1hk0aBdmmzm/iDNe+jLn1t2SOI4snvnvgDJoIsVLZlCU1MWRgEu+vu5G0db5vxOV/7PDX2DfZPfDMySjOKuGVhiUmq47oJWUdcpSmEIyxx17E0vpmEasISEk8PM1D6GuVwCABJFotJXLkEW0bHbvRZBOM4shNLXkoGTXgKmyKOmr5QDfUwjoxhm0m0ricIDEEQAAbXnSAM74bwdpLWf8dxmkG40ZSv0cAQ2O9FuB/C8j+H7X0GI5ojunp0URBmkMB6K2X7Q7Wx75GRkcjcJJOpJVapVOqa8b86GXTPPbM3XH8YMMawatUqvv71r886pnYTs8PzPL797W9z1113XVdjcjYMDAxw5swZdu/ePe+G/uX4au8rfKH7OSaKkzi2g5SSJYlGfmf9m2mP19feVzV/XLRoEevWrZuW3F/J/PFy/Evfs3yh9ztAEI3na5uYSVKWmq11q/nw2nfM+ZjP5M/zia4/JSREoWpK/q5Q2MrmrW1vZXfDzPs1G4zx1b6/pbd0ACE9hLBwBDiygECi0cRlmpSqIx8O0+Z0sji2kbTVQZ3VjiGgr/gVsv4RQlNGUUSRJSbbULIO0Bh9FElAXK1BiKjgb3SIZQ6iRB22mj5VE4Y9xEWADusJgsg8K9LOBsvKMTF6Nx2NT6NUK1QaDJFKXhZQkPwirvffUcGTGDm9OSnMEFpuJqf+kNHR0VoMMsZMa7DNZfH/xBNPcPvtt19XcflG8M1vfpOPf/zjHDly5Ee6338N0FrT19fH0aNHF/zZcfDgQRKJBJ2dnezbt48gCNi6det13R9/ffYJ/qX3FZSnaa1rxDcho+Ucnclm/mTLe7Glqpk/9vT0sGXLlpr5I0TxZ2Jign379tHQ0DCr1MlEOcdHDn8KP/TABAgjsKSLUhYFPH6h82EeaJl7jv+X5z7HwdzLSIiMZTGEFXO3tJ3i15Z9aAbRCODI0F6+Mfh5jDuCkD6gsDDEVKlSEjLEZJK0aiAXDtFit9PmriJjLaHD3YKrUvQXv8NA+VECnUcJH2VGUcLFEmm0KSPpRiGJqTWXJNTCHmwGseUqpLwkZ6f1JJbpR5oYvtdAUCFrWMpCqRHykx10NEwAaZAO1dk4TAgMQ+wPccMnUcFjM2OQHiBUtzEW/gdGRkYYHh5mYmKCeDxeiz/19fXXLBbt3buXRYsWzVlCYiHx3ve+l7vuuovf+q3f+pHv+/92BEHAkSNHMMawYcOGBd32o48+ys6dOymXy9fV0J+Kv+9+ls+ffZo6ESNVydW0MQyVJ3j70jv42WV3TZM5uu2226Y9N40xFAoFDhw4gBBixt+r8DyPL3Q9yrfHXyER2oTCUJIhgdAgogbfX9/2YZScGxGrq3CBP+v6G4pmtKJzLVFIAgIUkjXJlfz68l9FXiYp2d/fzzcvfJHB+rNIlQU8QKHQxFWpkg8ZYjJBUjVSDAdosJpotBfR4Kxgefw+kqqVMf8l+ovfp6j7cUWCQJ/EmCIggRCbESzh4MilCGGhTQmhz+HgY6vVl2KT1mjdjUuI79URBBZKKZSy0HoCy1JknFaEGQLZemm20GhgENzfwEZi+5/C0ARVQoEJEWYIz3ong7k313KgUqlEfX19LQYlEomrrsNOnz6N1pq1a6/tebfQGB8fp7Ozk+Hh4Xk1i/814MeCoV01ZLuaedr1YqrZpGVZ7N69+7rGKYUQLEs2k/EU+83oFd+jtebYsWMMDAzMcOqeyooEZizkvjX4DIEJaHObmAwKlEIPg8GyJA9ntqLzHi+//DKWZdVGURobG2dllC6JL6a3fJGkdMjpQQxhRaZf01M6yeMj3+aB5ulFeSkkm9O34xqLbw38r2jR53hE3GyNxCImE4CHYozuwvfoKz2FwmFxbAc7G36ZXPAQfcVvkQu6sOUSdHgCg0doCoBAk8NGYonLFuymUOkUTn9dkECbEQL/uwgcbCsdjeUSR4cJtB5mZPRxhLefloYCQdgMwkLZcYRJAv3o8ncQzjtwg+9HJpOipda1M6YRYYawgm/hqa3E43GWLFnCkiVLCMOQ8fFxRkZGOH36dC2oNTc311gDVwpqr6Yh0tXc4W/i6vhhxKDq77y/v59Tp06xatWq69amXJVq49+veyNHzFF0qLll5UyWYpV5kEgkZpU50lrXGAtToY3mb3q+hhRgCYuwwmkMRYgtA+7Ra3jphReJx+O0tLTQ3Nx81cWFFJIOt60iHyIJGCcqUEWx7UDuGbYWbmFFYjrD3JY2uxMPM3lugq66p3FtF0uU8U1UihJIXJkASijG6C8/x5h/CIGgyVnLnsYPsyh+L8OlpymGfSgZI+/9gFLYjadLFREksHEQYmqSGUYjvVyZES1MCSHAtmNUyaZhGBKEJYLgKKWsT6rF4PkCZVVjgARjQfA8xv4gUp+tbGzKORORFIo0J5FSUl9fT319PatWraJcLteSqvPnz6OUqiVVjY2NV2yK/LgYIt3E/FA19fthxKAwDDl48CBjY2M3pE355sXbWZ1q4wt7v08sk+aW5uXc07KBeudSYaoqc7R+/XqWLl067fNzKWYHOuBw7jhGeJVhWEmgPHLGxwqTNPTC86PP1/QBr9Xk74wvImOlyIcFQqOxpYclg1ox6MWJJ9iS2UxCTc89TF6y5OwWMh1pzqvnsYSDLQJ8k69MnglcmUCbAopxRrwxcsEZADLWYu5u+m021/0HcsFpimE/rmxgrPxtxr2n8HQ/AoEtWrGYRJsCkgygCcwQChdxmVuIMV7EahIWtm3jOPGoKBaE+EGRIAjw/RLGaLwgxFICISNHAWEkiLAy9RIHrnC+jMaQwLZt2traaGtrwxjD5OQkIyMj9Pb2cuzYMdLp9DT29uXnvto0fbWNsW9ifvhhxR+IcqtCocCzzz5LfX0927dvv26zyZ/p3E1ffpQXB08xUJpASUlnspnfXPt6bKlqMkf5fP6KMkf9/f0cPnyY5cuXs3z58lnv07STIOlI+r1stSSLoIgMXKS2CM5lOZc/R0tLy5wakPc338HR3F4CdIX0ExJTIUpAWZd4ZeIF3ui+edrvaXBwkIHD47xp9c9z2n2WM4XnsUUMV2oCExlMXopDOWzGGffHKITdCARn1He4q+m3WZ76GZYm34qvJ7BEHVnvGfqL/4Sn+5EyTlo9jB/uJ9ADSBFHU0agcEUThgmMcSvGdQHaTKLUKpTpx05ETMogCPC8IuAzmV9JY/IglsoiaJpCkMwDMYTsJGQbKnwiYoeLSrHcRBq7Wt1BMpYkmUzS2dlZMycbGRmpSQNOZW9fyUT0Zg70fy+UUpTL5QXfrpSSCxcucPHixetu6FfxQOsmvtm9lxE/D0FUg8kFJVrcNA+1br6qzJExhvHxcfbv33/VhhqA4zgsaWxH5AyeHfkEKaOIBS4lo0kai4u9F2lpabmmmS7A8vgSOuNtHC8MEYnICTQ+jtC4StBXPk93sZvlieW1Yz1//jxnz57lTZt/huHEBZ4d/QpjwTls4RJTBmNKlWzI4Ig4xkygyDIZTOCFg/SX99OVf5y7mn6bJvcOmtxL5IFS2MNI6XuUwm4c2UbKWsFY6bP4+iKYSOE7Zm3FNgOEuj8y0wa0mcSSy3CsFJY6iTFJglDglSexrALj41spqg201n8FwQSGNIIQGAHRgFB3EwgXFXwXqU8TGdEKoIiRi9D2G2vxBaKpi+o67OzZsziOM429ffn1e7UnRICfyBj0Y1HQhiiIRYy3hYXv+5w/f57FixcviNnklbTgIOqk7d+/H9/32b1797QRqWuxIgMdcKHUT0y6uNLGdeoqGmcw7k+iMjZbVm9Ba83Y2BhDQ0McP34cz/NobGysFZemBrTb63dyMHuIrO6HyshGVMixcaXLc+M/YGvd7TTY0zs4pVKJ4SNlVqXuYrjhKPnwAhGzMkZKNSAQeGEfECCIEZeNBKbEhdJzJCZb2FL3XuqdSzICk/5BevN/RTGIDAdcuQFbDBDqMYSxEdhok4sK5iJZ05ysnTvKFeZSWGMwQRR6pLQibTmrSF1qAKVi6ABKpUgWRikLxw7R/hmQAXZw8dKnTWUjlWKS0L1XvNazBbUzZ87gOE6tuF1fXz/NSfnVCGbFYnFBHKF/UmFZ1oLHoOoAzKlTpxbMbNJRNuVgZsJXNX+sMg9mkzmarZB0rthHb2mAjJVE2YpCWCaoyA5ZUnHH2q20Wg2Mjo4yNDTEoUOHpkkGNDc3z5DHuK1uCxfLF4kWM0Fl0qMqVxDy5YEv8OvLfhtbXvrNZ7NZ9u3bx5rWnXS2LGZv9juU9QTVYnbaakAJhRd2Ux1Ri6sGQuMx7B3jUPbv2VH/b2mJ3YcSLlJY+PE3MVL6DhP+S0hs6uzbKQWPUQwOoU1knGSMjys7kWYIbfLISnPNmADwsa1bIDw0Tcc80kgPKJfraGhsQ0mF52u8YlR8UpbCsQLAQQcBQVgfcUS1ATnlGpgwarRdBtd1WbRoEYsWLUJrzcTEBCMjI3R1dc0qj/RqxZ/rHXW7iUv4YTTVgiCgUCjgOM51N/SnYlPdEh62V7O2Yy2trZemrLTWnDhxgosXL84qc3Sl6bTLcSB7knOFXhrtDJNhEV8H0YJJwLr6dt679c0MDw8zPDxMd3c3Uspa/GlqapqxuLClzarkCk7kT+EQUCZqrlenRoa8i3x54O95T8cHasdUjW+rVq2is/Nenh9v5NDkD/DNJNUx46Sqw8LG1z1ACNjEVQPaBGSDC+yf+Cw76n8RT5dIWCtIWUvI2JtoDd9C3j+OkgnS1jbGSn/PRPlrBLofhMCSTaSdn6LsfYVQDyFFulJIymLLtVgKwvAU4CKEjM4lE4S6gfZF70eEhyCcJF92kUJiWRLbyoLagvbiwB0keBR0FkR1OqUAQhJa05m5QggymQyZTIYVK1bgeV4tB+rpmS6P1NjYiOM4tWfe/02yazcR4YdFLKpOPq5evZqVK1fekBxWwnL5dysf5p8uwpLN66i3E9xa34ktVU3myHVddu/ePS0f0Vpz9uxZurq62LRpE21tbVfdz5Mje5kMs5FudmXBYNAYq8R9DXvYYK9kaGiIM2fOEIvFakSj2Zr8S2OLaHDqKYdlEGVCSrUyOSLkxYkf0Ow2sav+bgC6u7s5ffo0mzdvprW1lXVmA4+NOJzJ78U3E1RlQmIyhY2Dr3srrEuLhGxEo8kFg+wf/wwbM28gH/TgqiZa3R00xh6kwb2PwEwgRRwl4uS9FxkrfYlyeBpHdlLnvgFHpJgo/mdC3V/5FgJbLSeV+Ajl4n9C636ESGGMj1RZLLWYJUt/mWLuH0mKrxH6/RjiWFaAUj6oh9FBC6HYg5RPYumXQU9QjcVabSawXjvtvFmWRWtrK62trRhjyOVyjIyM0N/fz8mTJ0kkErUcqK6uruab9WoWlG7GoOtDtamWz+cXdLuRZFdAf3//gphNtsXq+GDLnXx5aC/9FAHY0bCS9yzbgx4r8PKRI6xdu5bOzs4Z67C+vj6OHDnC8uXL50RuKuo8mgKBMZGPidAEto8ixh2xtfT393PixImaCWBzc/MVG80Qnd/7m/fQ1XOKUGuE8LGlhxCg8dHAP/T/b35+8a/Q4rRx4sSJGkEzk8nQSiurE5v45uBfcrF8itDkidZlIbZIYAsnKkZX5N3iqgGDoajH2D/x13TGt1AI+4mrdhbH7yOhlrA4+QvTjjHj3kXee47AjOLITpL2doLwHNnSp/H8fYAg5txHJv6LSGyKhd8nCE9jdBHbtonFdmPZH2ZoqMTAyAXq069gWRNIoUC2YKwPI8IoTpSc38cJ/gkVPg1oQnUvgf0OjJz+bEgkEiQSCZYuXUoYhoyNjTEyMsLJkyfxPG8Ge7uqh/5qIJ/P4zjOvKUq/zXgx6agbdv2giZSVemP0dFRmpqaFsxs8komk1PNH7dt2zYvViRETMaYdJkMLmnTRBrW0X4SKlbbd/VHs27dOvL5PENDQ/T19XH8+PFprqaL04t4c9ub+ELfp6meVUc4pK00trCYDLN0FU7TUHepoD05Ocm+fftobm7mjvXvIcTnaO4x9k78A7aIYYlq8dkDJK6MCii2iKPDgK78d5GMM+Ydw5YZlsTvZ0n8AdbV/SmlSmE8pjoph2foy/0nPN0djfKJBGn3TThmjJL/AyKluHjFRCBLzNqDFCPo8CRCXOo6aVPE9zSet5RUeiXoV1B2PJJq0yFB4KO1pvtijvH8QdYuSdKaMphI1CU6zwYgwKjl17z2swW1EydO4HlejTVQLpdflWQql8vdTKSuEz+MKRHf9zlw4AAAmzdvXjCzySvFoO7ubk6cOHFF88e5FLMBimGJ0GiUkCghSVtRU87XAUVdohCWsGLTFxfZbJahoSHOnz9fK7BWY1AikWBX/e2czp/iaP6F6FjQCARplSamXCaCcU4XTrAhFTXBhoeHOXjwICtXrqwYRW1kbWonx3NPciD7JSzh4oh4JQ75UGEnASjhoIRLT/FxisFRCuFFlIixOH4/a1Lvpj3xLtp5V+37hvo1jJe/zKT3JAaPpLWH+thbyBc/RcH7LqGZpLrQstVaEvFfp5j/9xgzBDQCkiAYJQg06czbqa9fSZh/nLgVgEkRak0Y5AnDkK7upRT8w3S0bGJ5w3cRYhSjI9kjSRaETWC95prXvaGhgYaGBlavXk2xWKwxl7q6urBtm6amJlzX/ZHrZwO1Rch8zHVuYjoWuqk2OjrKkSNHEEKwc+fOBXsuXd7Yr8a6Uqk0wxvg8ob+1WIQwNlCLwZDwooRVzECE2CAcugxHmRxHGdak2dsbIzh4WFOnjxJuVymsbGxVlyqNvnvb7qP7sJ58no0qh8BBkNMxojLOGcKJxnw+mh3F3HhwgVOnTo1rei1u+GtrE3ezonc0xzLfQNLOsRlekocivIhACksLBFjsPwkjw89jzaRXEmjs4lb636dhLWahLW69n1bk79MfexNFIPDSGIk7B1IkSKvlpIrfR5txhBYxOw91CU+AqafQv5jGDOA1uAHPpCgoeG3cWM7CItvxfL+GdcpEmqFMSXKnsuJc9tQznEaGpawtPFh4uJ7CDNAdEIsQvUQobr3qtfdcRw6Ojro6OhAa83k5GStsXD06FEymUxtSuzVikE3c6DrR5VYNLVpeyOoSn+Mjo7S2NjIqlWrFuAoo+NsMwkeaN1YO86xsTH27t1LR0fHDPJSGIYcPnyY0dFRtm/fPqeC1tOj+5BIWt1G8kERTweVCQlDWyLD0valLF26tMYgvlKTf6pET9JKsiV9C8+PvwBUJlJRaKOxZdR8enL0e2xJ76D7dHfN/6R6rEpYPNj0ftYmd3I6/wJdhcdRwiapGtEmiyEAJI5MgojEBGzpMOo/xYujL9S+V8JqZ3v9/0PGXoEtLjUdk87tJJ2Zkp+OtZqi9yihGcWWK4g7DyFlBiX/C+XSpykWn8f3fdzYfWQyv4JSqzGZf48ut6HLX0WHk/iBRd/QNnoHd1FXf5LGxkbq6z5MQj2NpV9ECE2odqLt18Dl07tTIIQgnU6TTqdZvnw5vu/XcqDDhw+jtaaxsRHP834ojZm54CZD+8aw0OuwYrHIvn37AFi/fv2CmU12xhp5b/w2Vt+6AWOgzo5z8uRJjl64wNatW6fJHEEUg7q6uujq6mLjxo1zksMphmW+P/w8MeXi6YDQaKgQghxleMva+8jYyVqjeWho6JpN/jXJVTTZDeTCSQylSnteYoxBCcVkkOWbg//M1tE7yeVy3H777dMImo6M8YbWX+Zk/gVO5V9gsLwPSzikrEa0yUGl4uSIRMU0VmALxYT/IseDA5VpF8G5/FfZVv9RmtzpPkpKJMm4D017zbbW0JT6Y7SejI52ikykVH9K16kvkqnzWbp0F7Z9G0JIIj7Fn1LIHyY/8QrjWY/evkUoS9DQcLpmZOirX0Tav4SUAioEgatBKUVzczPNzc016ZiqPNLp06dr5yqTybwqjbVqHejVyL9ebfzYFLQXkqGttebIkSMMDQ3R1tZ2w4ykqbi8mFQ1WOrs7GTNmjXzZkVCVNDe07iFrw88wZifRxMgUWgUaZXhtsxM4xEhBKlUilQqVWPOVFlL1dH0dEuKpEqAFLjSRaIIyVMIhwCPp8e+jBQ+t6b3MDY6xsGDB1m2bFmtayhxuTX9MMVwhJP5H5APxxDkkYBFPEqcat9BYxjgfOFbCCJx/1HvCGPecW6p+zXi1rLae2PWGpbX/RWF4AChnsC1VuGq5YR6lLF8GS/YF2lnCwfX2kF96nfRwQEKhY+j9SBCJNDaJwjylL1b2bDhHYiwGV3cD3ocRAYlDcqeBNHA8lUfYHg0Sf/4VlLW93GsPrRJI5WFpfIYEhTNazFBgJTXDmgwe1AbGhpibGwMpRSnTp2as+bbQuBmInVjsCxrwUbdqs2hZDJJLBabt+nI1TA1BlUNlvr7+2eVOZoLKxJgSayNmHIpBCVcpdAEKGyKoU/CirMoNr0gL4Sgrq6Ouro6Vq9eTalUqhkqnTlzBtd1aWlp4Z6GOzlXPBRp4QqbmHQRQuOH42CKvDT+XeqsFGbE4fjx42zcuJGOjktakklVx7bMmzCmxNHc98iHo9HoLwZFDFdeuuclHjBMNshjiTiBztOV/yqTQTe3N/x+TYMNQMkUTfH30RR/37TvZSd/B9e+g6L/BJgyjr2dhPMmlKyHxO9QLPwJxowQhgGeb+G676W+/h2AQDhvw3j/DAyiJChHIqy7WbHm1xkeyTM4rJgce4A1i7+PYw8ihcDINGXxLrzwNiThrI3PyxGPx1m8eDGLFy+uySONjo7S29uL53ns27dvzppvC4FqQftmDLo+LGRTbaqXx/Llyzl37tyCPoOmxqCqzFE8HueOO+64ovnjfFi7MelES7ZKUc2u6BsWwxJxNT2Xm9rkX7t2LYVCgaGhoWmspWpx+42tr+OfBz9LaAwSSVzFiUuX0BQITZ6Xxx9nefYWhntH2bZtG/X19dP21eQsZnfDO4kph8OT36rEoRISg8SdFocEOSCHNmkskUQTMFzexytjf8SdTf8FIaazyB21FEdNl2dJxd5Bwn0TQdiNFCksVfVjWUQy9SkK+a8yNPQKlr2Yjo6fxbYjzVEZ+zWMWoXxvoUyQwi1GafuEdYnO2umm2fO3EJbUzuLW3qIx2Oo2O2E3IIIDFLOLQZJKWvxf6o80tBQ5F3w/PPPT5NH+lEwhm7mQNePKjsSorziRg2yq02uYrHI0qVL8TxvIQ4TuBRHqsfZ09PDsWPHrmj+WC6X2bt3L8YYbr/99jmN5kM0HWsJiSUUdfale2rCnyQXXiIfXc4gnq3J39zczOtbHmbQu8iZ4iEwYITGlhYZlcZQphCO8p1jX6FpfMkVNeilkCyLb2ZZfDP7Jho5NPkt8uHIlDjkEJtS7BGMAx5KpLFEHG0CCkEf+8b/hHuaP4nBkAtOA5qUtQYpZv5GLdVJOv4LM16XchU9vf+GgYH7uPXWW6mruyThIISDin0A6b4b9BCOaGRFc4rG9gmGh4fp6enhxIk8mcwiGhp+gYaGhihH8QVSzn0dNps80vDwMEeOHOH8+fM0NTVdlbW6kKgaY99s6l8/FrIWVPXyaG9vn3NePVdUc6A6O0EQBOzbt49cLndF88cgCDh69Oi8GmoA3cU+ckGRjEogbUk59NEYFALPBFwsD5GxkzMazePj4wwNDV2xyR+PxXlD6+v4p75/wDdBNKVeybXSVhptAs5MHqPTX8Pdt993xee2I2NsTt/L5vS9vDL+JY7kvkUhHJseh1S69v0Fo0CILdIoYUeyaHqCQ9m/4O6mP2XCP8iEfxApXJrdu0hOqRdNP+fTf1e5XI5XXtlHe/s9rFy59oq/70RyM4nkZloWwco1IaOjo7U1apVdXSUKxWKx2n0yl/tFCEEyOV0eaWxsjFOnTjE8PMyTTz45bYJtvua214OfZGLjj01Bu6rddqPMgFKpVOvG7dmzh+7u7gVPpKpFou7u7hqT53I9prkWs6vojLUgRSkKMECIj0CwIb1hWjI1G2ZjLWWKDQzYFxEChPIIZHV0X5APxvn20N9xcbQb90yk9XT59xBCckf9e1kW305P6SD5oI+B0rM4MnlZ8X4MKTSOqKsVjQJTpKf0GJ2J11LvrKMQ9FAMe4mpVpLWCpL2jmn7UrKRptQn8MPjhLoXJdux1aZooe88SAIolz9DEJynVJJ4/utZsuS3kdLCyIcQuhvjfQHMEBHrqAEZ/zCWvZbFi4kMOv0mTP6TKNONDotkC3X0TrwZ4dbR0JCvBbQbCWonT56kWCzWHmJz0XxbCBQKhZuLuRvAQhWTBgYGOHjwIMuXL2f16tU888wzV5Qpul5UNXGnmj/u2rXrhliRAHV2ip11G3hs9ElK4aXjFSgebtxdmxSZDbFYjKVLl9YmGKoLi4vHBnAaXIp2nqRyMaZMWY9EbG0BPaWTfObCn7ByeCcPbf3paVIFtWMQgu11b2dJ/Ba6i/spBAMMlJ7BFvFLRiHGVOKQwBH1kbGJgNCUGfEOMOodIWE1M1h6DC8cJmEtpzX2APZlSZIQNgn3dSTc1804Dtu+D5XexvnzX2VifIiVq36KTOaSBriM/RrYd6L9Z4AAYd2GsO4kIRw6k010dnYShlsYH30b5fFnmJycYGh8CfFkJ42N/dTX19fiw9RF3VxYA1PHbs+dO0dzc/OcNd8WAoVCAdd1fyJH3RYKC7GY01pz9OhRBgcH2bFjB67rcvbs2QU6wgjVxVxV5mjx4sWsW7fuuhr6l2Nr3Xq+NfgM48EI4GMwSGwMFrsbbp31c1Ofw1X2XrWAu3fvXnzlEWuJIyQk7CSh8SjpfgwBAtg38ThHwxd4x22/OqOYPXUfWzNvYVFsA93FvRSCEQZKT2MJJxppBbQOwWSjYrxMIxBIrGgWwz/LYPkVSuEpBorfIzA56u0tLE2+m7S9Zsb+pIjjWDMJDYVCA3v33UpHx8OsWDmdSCGEQjhvAudN0z6TTkfTEytWrKidm4sjIwyfHsaYIo2Np2loaKC+vh7btqflQXMpBFTlkRoaGnjuuefYtGkTo6OjnDt3rsbeno+57fXgZg50Y6gWtMMwvKFnRHVqNZlMsmvXLnp7eymVSgt1mLX7MQxDTp06RW9vL9u2bZtmglUtLu/bt49MJsOmTZvmNQa+IrGYvRPHCbRHQJlomsoGAUtjV2ZXXqnJf6mJFDX5b2nezEVxCqUUtnSxEJT1MJoyxhgO24+xYvkGtrtXN5y8LfMW2t31nCu+TDEYYaj8HEpYU+KQD6aIEBaqolMthYVNinzQy7n8lxgsfZ1S2A8YXNnMqvSHaIldfUoj2nbkFzU6Osq2bXfPWkARIgkVbwIBtcLRmjVrpp2b7u5ubNumsbGRhoYG6urqUErNex1WlUfq6elh48aN+L7PyMhIbVKyWliaq7nt9eBmU+36sVA6/lMb+lUvj5deemlBmd/VHGiq+eOuXbtmmD8Wi0UOHjxIGIbzaqhBJJcWSR5plJHEpAUIfBMgjcCRM3NtKSWNjY00NjZescmfTCZpaWnhztQunsp9L5rkUBaudNFmgtAUkBbsa/wGzqTHnobXzzCJnIptdW+jPbaWrsJLFMMRRr2XkUhkhYhgTAmMjxRO7TUhJBZJCuFFDox/hEn/RGVy3nA+/zlWJP8NS5NXN/4eHx9n375900iY14JSqjZBXG0+VWPQ2bNnicfjtRiUTqdruc9ccyDLsmhpaaGvr68W60ZGRhgYGJhVHmmhUc2BbjK0X0VYllVjFF7vhaje4E1NTWzatKnienplzevrRfUGrDLAd+7cOW3xcy3zxytBG803hx7FEoqEjBMSIoTEmJCjuROMeGM0OXM3+5vKWqov/wKf6/krxvxhlMiCMYAkRpyYjFPSefZ7T/Fzt36URS1XNkkQQtAR20BHbAPGaH4wkmWwfBitAyQ2gSlg4aGmFJcAFDF8k2Wg/BK9hS8wUn62wj63qHduY33dR3Fkw4x9OdYGYKbDse08SKG4nUOHn6G9fTmrV18aNxRCoGIfwDhvxAQHQDgIawdCXNYpt7dC3V9j9NnIJKDcgasj1sC5c+dwHKcW0DKZTC2pn09QA0gmk6xevXrOmm8LgZvjttePKjvyRopJxhjOnDlDV1cXt9xyS22kbKFH6KSU+L7Pc889RyqVmtX8cb5aptpoLpTOYQmBNpFrtUSghGDAu3jtDUyBUqrGWtpgNhAbsPj2+JfJBuPYKg8ikv1xZQxL23imRF/bEVL1PzPrNoUQtLvraXfXY4zh+TG4UHwWHQZIYRGYAjYhlkhOS8AkDoEp0lf6DuPlJwhMsfa3C/kvcGvDH5OwOq+0y5nnSGuOHu1mfHwF27Y9MoNBJYQAaxvK2nbVc9PUsgpaVmGMYXElqaqyBhKJBA0NDTQ2NpJKpaYt6OaysAvDEMuypjUXrqX5thDI5XI/Eib4v2bc6GKuVCqxf/9+jDHs2bOHWCxGuVxecKM+KSUjIyMMDg5eVebIGDOvYjbAolgLzW6MC6WR2muaErawWZWcu5GTbdszWEt9g+c4ER7G9z0sOw8i0ueWxsI2DoFd5rHJf+QX6n5n1kXc1DgEsG88xen8dyiGYyhhE+gijjTYIl0zk4NIEikwObpyn6IUdkfbQjJYfpxR72VubfhjMvb6a36vsbEx9u/fXzO1u57f29RzY4xhYiLKgS5evMjJkydJpVK1PKg6vlq9jteKQdX7rLqorhb2pprbWpZVY401NDQsmN7kTzI7aSFQvcZBEFx3wa/a0F+2bFltavWHkQMB0xr6l5s/DgwMcOjQITo7O1m5cuW8Y99DzXewP3uIbJi95KFqIG3Vs6Nu5vrkSojFYtNM5kdHRxkYGiAeJJm0JhAoAmscI7wKk1HhWjG6yyf59tDf8bb2D8667anrMoDD2cUcm/wyxXAUiYWhhCXAEalpcUhgAWW685/GEKBE9Pwv6UGOZf8/HNlMnbOpch41nh5ACgdbRs2CqnxLPp9n586d103QufzcVFmlXV1dlEqlaczJKrNxruswrTWu69LU1ER7e3utuVHV/j927Ni0Btu1jIXng5vrsBvDjcaKyxv61anVKhFooaCUwvM8nnvuuVnNH6c21DZv3jzvJuHyeAdtbhM9pV6k8NEVOQ9jLBa7S1ge77jq52dr8g8PDyN7bexmGyEFMWL4ZgRtoqajFBa+KfPU2NciBYGG1191H4tjt7A4FkmHnMh9nUMTX6AYjhKJ53rYQuDIy+OQRJk8E95hLJlACjfKG02ertxfU+/cRtpeQ6gLjJUfoxx2Y6tWGt2HGB8NOHjwIGvWrJlhPD5XTFU5mCpfVPWo01rX1mH19fU4jjPndVi1IVzd/rJly/B9v7YOO3LkCGEY1pprVanIhUA+n1+wNd3/bfixKmgD151IVR9Sa9asqWivXjLtWsggVi14TUxMzNv8cTaM+uMMeiO40ql03Oza9nJhgdP5c/MqaE9Fm9vBB5f9Jk+Ofpu9E99FYuEIB0Iq8goCY4X0e910hEuuGXCFkOxu+HcczH6enuILaDzishlBsSI1cjkM4+UnKYankThYJNH4jHovcWziD7m1/j/POZGoLuRWrNjE8uXLr3x8sh3hXEObSkiMijQs4wlYmsjUCj9XGkepLuyqAedaQa1aUKq+dzbNt4UMajdH3W4cN1JMCoLoATs5OcmuXbumXYeFjkH5fJ6JiQmWL18+q/ljtTE4nyS9q9DNxfIAKZXAkhbGRNNonvY4mjvFqDdOo1M/7+MVQrC7/W7qU/U8PvJ1Br0TYBS2cRCeQqOxLZeCnqSneIaVyWv7HQghuL3hl0lbHXQVHsfXBeqsFYRGIyqF/EswgGa09CgaD4uoe21MSEkPcGryf7Cl4b/U3l0OeymHPThyETHrUrIUhiGHDh2iWCyyY8eOBZm0uFpSdezYMYwxtUVdNamCqy/sLi9cXkvzLRaLXWqATjG3nS9uFpNuDDfaVLtSQx+o/X8YhgtS0NZak8vl8DzvhswfZ8Ox3GlG/BHSKkGIgYq2o298Hh1+ivWp+evwVgus765/P18f/BKHJ19GmxAQSKNwtINSNgrFsNfHQPkCHbErj71eji11P0faWsSZwqOUwjGa3DWUwsNo4097nzY+kpBSeA4l4kgR/ZaNMQQmy/n857il/v8Xjc77LzFa+h6hyZGyt9AUewOWzNR0eteuXbtgBtBCCOrr66mvr59WfK5KAyilpjEnLcu6ag50JbmKWCxWk0eqNheq5trFYpG6urqa3ueNNMXy+fwM7dKbmDtupPg8W0Mffji6uNV97tq1a4b5Y1dXF2fPnmX9+vUzpk7nvA+dR8kArSWaaE2nhCQwRU4XurglM7eidhVT2YF1xV/i73r/mmwwikUZDAgjicsElrAxBs4UDpENRslYMyfWroRN6beTsRbTVXicQjhCg9XJhP88oZnOjA8pYQkfQ4gl6i6RgrAIzCQXi1+jztnERPlZevN/QSk8DwhS9m0siv8GJw5PEAQBO3bsWDCW89QJM6DGnBweHqarq4tYLDaNaFTNfWZrsF2eA01lzq9cuZJyuVxbh124cAEhxILII1XXYTcZ2tePG/ERqTb0tda1hn4VC01uHBsbI5/Ps3HjxhkyR9WG2uHDh1m6dCmrVq26rmeaFJLdjRv5x77ThFPXNcLHteb/XaY2sjfpTYQ9RV4oPEUuHMNWUZwQRHHIkQ4lXeClicfYWfcgtpzbb31d6k3UWUs5V3iSYjhCndXJsPd9Ap3HcImwGpgCjvAR2EhxqbaiSBKYLEPlH2AJm9MTH8bT/YAEND3ZvyJ75l1s2PD6adKUN4rL5Yuy2SzDw8M1ImI6na6txaoM6NnWYVcij9i2PcPctkoiqDLnqzGoGuOuB7lc7ic2/vzYFLSnjpDNB1UN2b6+vhkjZ7CwiVSk1/MKANu2bZtRzL4eViSAJSwEAsP0Qkz135a8sfHwtJXh9vq7OJJ7EoXCEg5eWEbISvJKkZezX+bA8HdYLDezsW43LS2ts+r9uCrNzoYPcWvde/F1gbhq5MjEX9Jd/B7GhAihKou0PFIoSuE5JHZt7E3hgoFx7wD54CwpexXlsI/B4hfJei8gRYIm92Ga42+pLfp+GAu5yzHbOEq1wH2lcRSYWVy6GhNuNs23ixcv1ow9rzeo3UykbgzXGyvy+Tz79u3DdV127949I8lfKGZAdYyuu7ubWCzGunXrZvz9eovZAJNBHm00llSRbUfl40ooPO2TDXLXVdCuYkPqFuqsFJ/t/S9Y2AS+RiiwlIWvPYwu8b2zf0uj3cba1B2sb9lx1QaPEg6bM+9kY/oRQuNhiRhHs5/mXOFfCE0ZiQMYPJPFETaaAhaXpJKEUEjjMOEdohwOYYk45yf/iHHvyYoMgUXG2cXy9MdAJ2uJ8o4dO35oshpzSaouZ05eXly6mv7pbJpvIyMjHD9+HN/3r1vzrRp/bjK0rx/X21SbraEP03OrG71vqzJHvu/T2dk5o5g9X5mjK+FM4TzGGFxr+m/fhIZT+S600Vcdgb0aXBnjkfb3siaxmq8N/DUilFjSQdmSMNSEvo9RZR7r/jwdiRVsab6XptjVC2JSKFanHmZ16uHaaycmP8fp3D/g6zxKxDAEBKZAUiVr47dVCCGQxmbc248xmt78pxgs/h3GhBg04+UnGCp9mfry73HiaD+bN2+umVX+MHCl4nPVm6VafJ7KnLx8YXetSYCp7O01a9ZQLBZr7O0blUe6mQPdOK6noBQEAYcOHSKbzc5o6MPCsiOrurgAGzdunBbTwjDk6NGjDA0NXVEHfz54cXwfAkGDnakUtAUSQT4s8ML4/nkXtKdiaXw5v7r8t/hGzxc47j2LhYurXHSoKQdlNBqhPJ7u/xKdmbWsTu4gpq7eLBZC0JnYQ2diT+21M7l/5kTubynrCZRw0SYqZCdVA6EZuUyqSIARFIJz5PyDnM3+DtqUEcIFDJPeSxzN/QpS/g7bt981barCC88R6iyOWomSN/77q+Yoy5Ytq5luDg8Pc+rUKYIgqBGN6uvraybYUwvcxpirxg3XdadN71TZ2+fPn78heaRCoYAx5iax6AZwveuw2Rr6N7rdy1E1uu3p6SEWi80oZodhyPnz5zlz5gwbNmy4oaKrMYb92UPYwkYJiRYGhUQKSV+pn+O502xMr72ubUspeePSt5E4l+L5/PfwVTGSJNI2oRdSFmVQUDQT7J34Lu3uMpbGN9Ykja6G9tgW2mNbav/uLizmSPZ/4plxhLEwhEhh4cgU5rLGfzUOBWGO7sk/wtP9SBIIoQhCn1CPU7/6X2hv+bnaZwI9xHjpSxT9V5AiQ8Z9Aynngetei0xtgF3uD1I1Wa+uw+rr62c0+a+VA00lOlYl4Ko50KFDhzDGTCM6zqdxWCgUfmKJRT9WBe35spM8z2P//v14nsfu3buvSLNfqERqqvnj5XqU16sVWUW9nWFVopPjuTPYwkKKSKe7EJZIWgk2pGZqK84XzXYHbc4SLpbOEQQBQihsRxKYISxhKFnDlFw4RjcjuS5aT+4glUzVzEzq6upmfC9XpnEr+rNr0j/DqH+MfNBTGZ0TSGGzNH4fI6WvIZjOZpTYBJQphf1Y0uXk2IfwdXXE2FDwj5L1X2RV5o/p7x/k6NGjP/SF3FTMxpwcHh7mxIkTNV3sqeMocOl+m8s9MFXzrWrsWWUNXE9Quznqdv24Xnbk8PAwBw4cYNGiRaxbt+6KD7GFYAZUNQsHBgZYvXo1fX19tb8tBCsSoCPWiiUsPOPjTim4eNrHlQ6tbtNVPj03tLlLScl6Rr1BXJnAtR20CRBiHEdoilYfPeYiPaX9HDr0LGv1vbUm02zOzVIopIgKr2vT7yEXdjPiHSIwJcDgyAzLE3fTW/gCUZf/EgQSTUBoivTmP8lY+TGEsJHEMQRMlJ/mjP59xk68G8dx2Lp1ay1RDvQo2mSx5SKEWHg9xtmSquHhYQ4fPnzFpAqoxPe5Xf+q5tvUJt71ar4VCoWf2FG3hcJ8F11aa06cOMHFixev2NAHpiXZN4Kq+WMikaClpWXagvFGGvqXIyYvMZenTZ+gcaQ7bWz1etFUXoQMLIwV4ljVZ7cGM4okZJBjDJSOcuDCt1hTepBb6+6PDJXm2OBZk3oXvs7RU3wU3+SQQtHobKLFXk5P8R+v+N2UcCgEJxks/j1ArTBkTEjRP8/E2F9y223/sXaNQ50lW/46RX8/UqbIuK8jbu1c0IbSlfQ4p5qPX0mizfO8OS3qqojH4zOkB65XHummhvaN4XoY2oVCgb17987a0IeFY0deuHCB48ePs379ek6cODHtb+VyudZsu/3222/YgCsb5Gr/LS/LG3JT/na9GO+fIHm+GXdxHCUUlrRBRb933wwhCDhW+gHHSk/wOJ/lTvdn2dy2Z17FjZXJt6CEzdn8VynrMWyZYmniNUgzzsXiV6fFoSh2G+LWEgYKf482ZaRI1QrEQWAQ1gRL1vbWcg0v7KE/93uUggMYo5EiSWP852iM/+I0+ckbweWmm1Vm4+DgIKdPnyaZTNYabOl0etp9NpcYJKWsTaisWrVqhjzSVPZ4Y2PjVeWRCoXILPTmOuz6MHUdNh/52as19KtYiFpQEAQcOHCgxsw+ffp07W/VHOjYsWMMDg6ydevWmtzJ9cLTHhdLAzjSwrmMIV0MQ84Ve667oG2M4czpM6jeGD+18Z18c/JvsIWDsiwMEIY+mnGECHh69O+RSNKymZ9u/01a43ObXquiM/EwMdnIucI3yQc9JK3FLEu8gdHy9xkoPTrtWmsTeZokrFYGC/+MwEEIRRgEhKHGthNoMUTOP0Da2Y4X9nBh4gMEehAqJNCc9zj1sXfRmvytK94LQdhLEJ5CyuaaT9vVUPUHqXrUVSXaLly4wIkTJ8hkMrUYlEgkavfZXHMg27Zpb2+fVR4pnU5PIzpe7Xh/kutAPzYFbZgfOymbzbJ3717q6+vZtm3brA+ZG02kjDGcO3eO06dPs3nzZjo6Ojh37lxtmzdazK7i7R1v4s/P/Q1j/iiIMhAgpGBFfCmhuXHHXyEE96fezhezf4ZnFVBKE5gCUhhckYiSKSAwHiPxE+y5443Eci0MDw+zb98+pJS1sfWmpqYZ5zuuWtjT9J/pLT7OuHccW2boiN1JylrEWPk7lS7cpc9ofCQ2cWsR/fm/xdcjyCka3Nr4TJSf5XTvv3DhZB233XYbTU1NaFNmsvxdSsEBpEiTdl9H7AqmSQuNuY6jZDIZcrkc9fX1+L4/Z91biIw95xLUmpubZ2i+3Rx1u3HMJ/5MjQsbN26MDEdnwY0yA6qNO9/32b17N7lcjt7e3tpxLAQrEqDNbWFb3WZeHN9PaEKUCAmMBwZ21G0loW7coXliLEtb/wZyzVlC6VHQHpIiSoTYIo4j3cp0h8do01Hi6h4mRidqzL1qg62xsfGKvylbJrm94T8y4h1iwj+NIzO0xXYRmhx9hS8TUsQiKooYYwgpEVdLkEjGy08ghHVp/A1FaGCi9AKx9Ou4dcNrkVIS6CEGcn9I3n8KYzSWbKAx/kvUx971Q2UnX55UVQs/lydVIyMjJJPJWmFpPqZKN6L59pM86rZQUErN2TxtLg39qdu9kRhUNX9csmQJa9eu5ejRo9NyoBttpk3FbZlNfGPwUYq6RFzGAINvymgTckf9thve/sWLFzl+7CTbVt/HvuAJijqHwsIwiSTAEi6OimGMwdclziafoH5kaa3BU5MNuEKTvwopbDbXfYhVqbeTC7pxZQNpaznF8AIXS18lNHlUZVpEmwCDps19kAnvKYwJkeLStQxD0AYSzSdqjHg/HKAn+0t4YTfRIk4wUfoKTYkP0Jz41Vm/uzEBYBDi+pj6iUSCzs7OirntlSXaPM/Dtu1ac3g+/iNTi0dT2dtzlUf6SV7MLRTmw9CeS0MfFkYX9/LG3enTp2vbnJycrJlQbtmyZUEmqFYll9emRS4VW6KCycrk8uveblWa5cKFC9x523345WGO519Ba4MlLEIzhiDAEjaOjEU61pR5uvRZBp/O05iKcqCWlpZrsoeFkCxP/hSdiTfg6yyWTKKEQ84/zUDpOwRmElXJh0JTQGKzKP5TXJj8AxCqVsz2PR8pLYT0KYVnKt/Dozf7q3jheQQ2Agtt8gwX/hIpUjTE3zPjePzgBAXvq2g9jG2tJ+68BSXnJqkSfZ/pzEbP82rxoSrRZtv2tMbafHIgmF0e6ezZsxw5coS6urpaDLqcZJHL5VBKLYgc3U8qqrWFq00aVjE1LmzduvWqclM3Wgu6vHGXz+en5UClUomDBw/i+z533HHHDTfUACxp4UibUjg9JzTGYDCk1PURSLTWHDlyhImJiUgHPxHj+dK3GPb7cIkhURiRRRCghIVNjNCEZMMh/uHc/8cdhV+graV9Xk3+1thOWmM7p72WVE2Mll/EN1mEsQGNISRtryNjb2AQjSDKJcIwrDTzDJoyoYmaiiOFvyDQAwgSU+pHJSbK/0Bd7I3ErM1TzluZ8fwfUPS+WZnClVhqPY2p/4al5qbFLaWcZm5bLBZrTf7u7u5a46RUKlEul1FKzdl/BGbKI1VjXLUWVCUyVWPQ5c+6n+R12MJbbN4A5sqQ7Ovr44UXXmDp0qVs2bLlqh3TG0mktNYcPnyYc+fOsXPnztroSPWG1VovSDEbYFGsjQ90vou4FSBFiBISS0hOFo7zZ+f/bEZAmy/GxsY4s+8Cb7R/kTe0vY876l9DQrnYwqkVswEUNgZDt3eIjo4ObrnlFu69915uueUWbNvm9OnTPPHEE+zdu5fu7u6alh2AI9OsSP40Wxt+i811H6LJvQVXNdHiPlBjQRoTEpoSmjINznaS1gomvKdBiGkdfSlstNEMTT7J9u3baWpqItBjdE+8j/7cxxgv/ROjxf/D+fGfYaz4+Rs6N/NFNeCsWrWKO+64g3vvvZfOzk6KxSKHDx+mXC6TzWYZGhqiXC4TBAGe5xEEwbTi41z2sXLlSnbu3Mmdd97JkiVLKBQK7N+/n6effpqjR4/S39+P7/vXPeo2OjrKe9/7XjKZDPX19XzgAx8gl7s6+6RUKvGrv/qrtXG8Rx55hIGBgRnHf/n/vvCFL0x7zxNPPMG2bdtwXZfVq1fzN3/zN/M69oXGXBdyYRhy8OBBzp07x+23337VYjbcGDMgl8vx/PPPY1lWLUmqjnVPbaZV93OjxZ73LH4LdzfsBJEnMJMgykgZ8FL2GZ4ZfeaGtt3X18e+ffvYs+xB3t/5W2zN3ENnbC0xKbGEgyMv6ahZwsGgyaa6ue2227jvvvtYvz4ygzx69ChPPPEEBw4coLe3t+IFcAlCSJrdLaxKPcLSxGtwZJq46mBR4s2AxjeTBKZAwCQShxWpX8DXQxhCBJdioTGa0NcIqVm+OjJnNManJ/sr5LzHMUZHpk56mMH8H5Mtf2XW7+6HXRTKX6HkPY4x5VnfN1dUmZNr1qxhz5493HnnnbS1tdHb28vk5CRjY2OcPXuWkZGRWuyZGoPmgqrm24YNG7jzzjvZtm0b6XSavr4+nn32WV588UXOnDnD+Pg4WuvrKibdjD+XIISYc1Mtm83y3HPPYds2u3btuiZz9UbyoO7ubvbu3cu6detYt27dNGmbagyq6nMvREOn1W3mkfY3IIWkoEcp6AF8M46UOYa8biaDyevabrWQdOLECbZu3cprO9/BG1p+llZnCVJILBFGRSQVFSOEENgyhhGa2Ioi9957b01/df/+/fzgBz/g8OHDDAwM4Pv+FfcZV820uNvI2CsQQpCwOlmZ+sUobphJfJ0lNAXS9jqWpd4XFZynnMLqQs5SCsSl6zdS+BRe2I3ARYokgmhROVr835SCE5cfBkF4gdHcR+gb30nf2A5GJn8ZPzh5XeexiqpE24YNG7jrrrvYuXNnLRfJ5XLs3buXc+fOMTY2hud5eJ6H7/vTnllXgxCCRCLB0qVL2bp1K3fffTdr1qzBGMPx48d56qmnOHDgAD09PbU8NJfL3cyBbhBziRXGGLq6uti3bx/r16+fYYh2PducDb7vs3fvXoaHh9m9e3dtQqE6BTA0NMQLL7xAa2vrghWzAe5pvIOMlaKgi5R0jqIeoWSGcKRPZ7z1urZZLST19fWxc+dOGhoaeEPr+7gtfTeWUATGQwofJRSujCOkRCoLV8bQlk/71qjYms1meemll3j66ac5duwYw8PDVz2/Uihc1YCqTJKl7NWsz3wUVzahTRFtijiynrWZ36Te2YItW8CEGG3wPA+pJMpSgMCqmEPmvB9UitkxhHAqZIAEYBgrfQZjpv/GC+UvM5R9J7nSZyh4X2ei8F8Zyr4VPzzL9cJxnNo69Z577qGpqQnP84jFYrz88sscPHiQ7u5uJiYm8H1/3jnQ1Dxr165d7Nq1i9bWVsbHx3n55Zd59tlnOX78OENDQwRBUMuB5juhdDMGXcJUz4+rwfM8Xn75ZUZGRti9e/c1vRNuJAaNjY3x3HPP0djYyPbt27Fte1oONDk5yUsvvYRSip07dy5IMRsiucddDdvQGHwdoE2Ib/IU9QSulGzJbJr3NqvxtFAosHPnTpLJJEoo3tb+IVqcxfjGo6hzQDmKGzKBUgrHcnCsGIGbxzRF9Y1nnnmGZ599llOnTjE2Nlab0JsrUvYqbm34zzS7d6GEjS0zLEm8nVvr/4ikvR4lMgRhHl0pZgsh0JSQxEhYGzFGk/OeANS0+pHArfztqWn7myh8goL3L4CpqAYo/PAoo7lfqTT75494PF7LUVasWIHWmtbWVnp7e3n++ec5cuQIPT095PN5giCYVw4El2Lc5s2bueuuu7jllluIxWJ0d3fz1FNP8fLLL9PV1cXk5GSN2PiTug77sWFoz2UxV9UuunDhAlu2bKG19dpJxfUWkzzPY9++fYRhyO7du6d1XKvbrG53oRZyL44/T2hC4jI2hRGgGSgP8PLEy9zVeNd1bXdgYIAjR47M0J8+lX+cYuhNe2+kXxT1wALjMeZ1Y8s4DQ2LamOnVW3poaEhTp48STKZrDEGrsRaWpP+VcAwWH6M0BQRWDS7d7Mu85HKPu3qpEgNfuBj0LS3Laaurg6A4cJfUA5O1EZQoi5liaHCfyPp3Imjls/47l5whHz5Hwl1N/9/9s47vK3ybv/30fDelncc2/GKHSdecRJnkYTsxQijtFA2ZY+W2bfQFlr6MtryQltoS36EUSgQZwcCGQ6EDEi87XjPxEuSt6yt8/z+cJ6TI1m2ZVnLQZ/r6vW+OLZ0LOt89XzXfYsEifD1uhniS4aQtoJOjl64cAGhoaGIi4tDb28vLl68yE1O0rVcqjk52amBsTTf2tracPz4cfzlL38BADQ0NCAsLMzi9+PPfvYzdHZ24vDhw9DpdLjzzjtx33334eOPPx7zZ5544gkcPHgQn3/+OQIDA/Hwww/j+uuvx8mTxgXP9957D+vXr+f+m69n2NzcjE2bNuH+++/Hf/7zHxw9ehT33HMPoqKisG7dOjgDkUjEHVDGev1UKhW3sbB48WKLTDytPUjxZY6Sk5O5a6KTBrZqpvHxEHhALDRAxAACxhNCgRAggI7oUNBdgFS/VEg8Jme6RafZW1pauE0LAFgfNjLB83br/dCxpkXpER01A9FBy6rQp2+DR5AvZktmY/bs2VAoFJDJZGhvb+cc6yeaWkr0+wV8hLHoUO2HhpXBT5SEWJ8bEeKZB42hCwyEINCBwcjrq9PpIBASCAVieApHmhbDuu+g0dePTCQxl4xfIQJLlOhRbUeA5zVGBytCtOgf/i2U2v0A9AAEEApCEez7V3iK50/qdRwPDw8PyOVy+Pj4YN68edxablNTE7RaLQIDA7kYRD/LJjs1YGpuy9d8KygowLfffougoCB0d3dbLA3ljj/GWNLU7+zsRGVlJWbNmoVZs2ZZdO/T5GsyUH+Srq4uzJ8/32h9ViAQcMVWW8cgAFgeuggX1S043X8SIwv/QggYBjXDNdh+YTsei39sUs9HJZt6enqQl5fHTbDMC1iMeQGLwRID/t5636giDD0PaYkKeoESbJAcMaFBmDNnDqct3djYiIqKCgQHB3MbJOM1GGb4bEOQOBNSzTcwsEoEiNMg8VoGIeOJAI8F6FJ9BAIt9DohCGEhFgtBoEWg5xJuYnJI+xUAAZhLepYj1+kJQtRQaI8Zba0Z2B7Ih34OAysFrZardd9Aqy9BWMB/ITJzbposNMazLIulS5dCIBBw09s1NTVgWdZIHskSc1tTRCIRtyVIz6E9PT2QSqWoq6vD73//ezQ3N6O+vh5ardZiaQZ3DLqMJZIjBoMBlZWV6O3txYIFC7jz+XhYm4dRmSNvb+9R5o8CgQCdnZ1ob2/H7NmzJxwsmCyhHsF4LOEe/L8LH6BT0zLynAwDQIf3L+4AmfFzZAdkW/x4Op2Om+BcsGABd3b0FHhhQ/jPcFXoNZBrOrCn+08jBiZG8Y0BAwZ6Ro2ACBHYEIJYJglE4cNNJ1P/CxqDJjqbhnktQ4jnAgzqqkAIi0DxHAgFI4U4ifc1UOgqodUrIBR6QygUgCXDEDAeCPUaeT9rDS3gx6DLVyqGnpWDJQoImQAAgIHtRb/yDyDQA/C6FMdYGFg5BpR/hMR/u8WvozkIIaitrcXAwADX4KXSITKZzCpzW3OMJY/U0NCAs2fP4qOPPuKuhTZ/LcEdg0bg/z30ev2YMXxwcBAlJSUICAgYd0Ofj7UxiG5Ip6amGull0zOVTCZDeXk5YmJijPI0W7E5fDXa1V2oU9RCD+Wl5wZY6PFPgdlVAAEAAElEQVRh+/u4d+a98BRMnIcCl/NXb29vI/lEAJB4ROLuGb9Bm6oO3ZoWnO7/BEJGZPT7MBCAMATeISJERQcjSKMBFH5Q9WhQVlY28ji8TX5Lmov+4hRkBP2eK4bT5zMYDND3rgbx/xxCsQYELFhWDzAMwryvh4cw7NJ5bbwi+uV/Y8kwVNqCEScEhr5egkt63c3Q6M/AS2xdjQ0Ampqa0NbWhry8PAQEBIzIBl+SaJPJZOOa21p6BjKVR6IylLQWtH37dhQXFyM7OxsDAwMWfTYDV078cZmCNjB+4Uen06GsrAwqlQqLFi2yeKTemjUTur4WGBiIuXPnjtKKFAgEkMvl8PLysqigZSl1wyMTM/wAQvW0m5RNky5oE0LQ2tqKpqYmzJ07F2FhYUb/nuiTg4qh4yOThpeKMHqiw8iyvQ6ftP8CasMQGDAI9YjH8tCHEOoRb2TYQQsbcrkcpaWlAMAVlqg0iVDgjdmBTyHBcAdUhg54CsPhLbxslBDsuRpS5ScgMAAQQq/XgUALoVCEML+rud9lSHMQAGOSxHmBEA2GNEcQ6nOP0e+n0n6BPsUzlx6XhQbfQ6ndiRC/v8FLvGRSr+V4aLVaFBcXw8vLC/PmzYNAIBi1MiuTydDa2gqxWGx0qKLvrakEtbi4OFRXV6Ompgbr16+Hn58fTpw4gcTExHEfp7q6GocOHcLZs2cxf/5Ice2tt97Cxo0b8frrr5t1hx8YGMD27dvx8ccfY9WqVQBGAlZaWhrOnDmDRYsWcd8bFBRk5HTP55133kFCQgL+/Oc/AwDS0tLw3Xff4a9//avTkjn+ZIC5A1Jvby9KS0sRHh6O9PR0i6cwhELhmBN85qD3bX19PebMmTPq78AwDHQ6Hbq7uyGRSGx6gCKE4NzAOQAj624jTwiIIYaO6FAyWII1kjUWPx5dCZRKpZg/f77Z6bk477moG/7BqJFguLQaryc9+E/7PdCzGjBgIPFIxArJIwjyj4G/vz83MUlXvlpaWiAWi7kYxDcVYxgBon02I9pn86hr8BRGIshzBfrUR6AnKhh0gFBEwDAs/D0Ww1uUAADQ6OswEoOM3x8MRNCznWDJMITM5d9RoX4XSu1ejCxDjcgnGNge9CoeQkTgVxAIgix+LcdCr9ejtLQUhBDucO/l5QWJRILU1FQj3dumpiZ4e3tz+v/U3HayiZ2p5puHhwdKS0vR3NyM6OhobNu2DZ999tm4j+GOP6MZr6lPCEF9fT3a2tosbuhTJttUo+aPGo1m1AQ4vU9pQTckJMTmSZzaoEbpUDGEjBBi3gaZgRjQompBi6oFCT4JFj2WXq9HeXk5NBoNFixYYHYdXMAIEeWZiIvqGrNxaEDbgE/ad8JA9GDAINwzFSsljyE5OBnJyclGiQuVJuE3+U3vKT9xEvzEoxvrfuJsBIlXoVd9GIRhIRCKQKCFSBCMKJ+7Ln0XuXSmMY+pyZJS8zkMbDcAD+6cRwgBS4agUH+EIN/fWPQ6jgXLsqioqIBSqcT8+fO5IsRYEm319fXw8/Pj1nZpA3KyDTa+PJJGo8E999yDJ598En/5y1/wpz/9Ce+99x5uuOGGcR/HHYNGM96mmjUNfcC6PIzKHMXExIwqDhoMBuh0Oly8eBEpKSlm/062IFDkhwG9FCJGxMUhQgj00GNX1y7M858HoQUmaWq1mjMOnz9/vtnzpY/QD7HeSQgUh6NP1wnwZIFYGAAQtKvPoHRgBwhYMBAg2msuViY/htTUVK6JTZv8/v7+XHHbVKKQImQ8EeyRM+rrhsFcqKWL4RV2BgyjAosRTf9Yv1/BWzSSV4iFUQBYEGIwKmoT6CFkgo1kkzS6b0CICrSYDYycxwgRQqs7CwPbA6HAOo8WQgiqq6vR29uL+fPnc9Ox5qRDaB5mibntRPDlkQAgMjISFRUVaG1tRVZWFmbMmIGysrIJpyXdMciYiZpq1jT0gcnHINqYaG9vN+tPwjAMDAYDSkpKEB8fj8TERJufgwDAW+iF22O24aWGl6AlDIQQjtSFQFCvrMcX0i9wXeR1Ez4OrWuFh4ePKQ8lYASI95mNGK8ElAzuhYZVQsjwpWINEIBBjWIvzvRdAMGIX1pceB5WpD0C5ZAWMpkMTU1NqKysRHBwMHcOmmiLkP/a0ZyGZZcgPiYVcs1n0Bja4CmKRpj3DQjzuv7Szwjg67EcQ5qvjOpYBNqRf+MVqFlWDkLUGF32HBkYMBguAlYs99DNv/b2duTm5nI5LsMwZs1t6RnRYDCMa25r6aAjX4ZSq9WirKwMp0+fhkQiwRNPPIFXX3113Me4kuKPSxW0xzpI0fVFX1/fUV36iZhsIieVSlFeXm42QNH12ri4OHR0dKC5uRlBQUEICwtDeHj4lNdMvIReIDrjbhM1WLS0A8f/udraWnR3d2P+/PkICAgY9T15QVvQqqrAoL7nUiNr5LlivOJQo/ji0n8LARDItc34Qvoiboz6P3gJLxds+IUNvli++amlMHgKw0ZdR6TPbRjSfg+VvhEsawBhGAgFIoR5b4OfOOvSdxlAoIXRPi4PlihN/luF/uHfX5oI8OAmmwhRo3/4BUQEfj1qssAatFotioqK4OPjg7lz544KQqYd/b6+PsjlcjQ3N0Oj0ZidnJxsUIuIiMANN9yA7du3QyqV4uTJk4iLm9i04fTp0wgKCuKCGACsXr0aAoEA33//Pa67bvSHZFFREXQ6HVavXs19bfbs2Zg5cyZOnz5tFMgeeugh3HPPPZg1axbuv/9+3Hnnndz9dPr0aaPHAIB169bh8ccfn/C67QXfVI+fcBBCOJ1i0y69JUxGF5dlWZw/fx4ymQx5eXlG3Uz6715eXpgxYwYaGxtRVVXFTeWEhYVNucHGgoWWaEcZr9FJRQ1ruVwGlWZRqVTjmjQtCNqKNlUVNOwwQJhLhyQgzEOCxuFvAJARTTcQyLQNl+LQmxBfiomenp5c4sK/x6qrq6HVahEaGmrR1FKc3zNQq1UY0p+EUEQgEIgR4LEY8f6XCz5CQRhGkrjLhycAIDBAiADOnBIYed8o1B9fev3oZxYDQsRgyRBU2i/h63WLxa+nOfR6PVdgMJ24GHne0Ycq2oDkm9vS/1kzOckwDBYuXIiFCxciPz8fL7zwAlpbWyf8OXf8MWa8RI5O9w0PD0+qoU+ZzDmInrf8/PywaNGiUbHQYDAgMjISGo0G1dXVMBgMRveYLVb++/X90LJaCEyMxQQQQE/06NJ0WVTQ1mg0KCkpgVgsRl5e3riTXAuDrkNX95+hI2oIiBAELAiAEJE/LqrPcc9PQNCtqcEh6R+xLerPEDBCI21peo/RDRsA3Osz0dSSXm9Ab/0mwC8Y/hE1YDEMf3EOwn1uhpdwZLtuJFFbfEn2iL9NNFLI9vXIN3pMrb4EI7rZvJXcS+chrf6HCV/D8aAxXqPRYP78+WZ/N74mZGJiIrRaLddgq6qqAtWE5JvbWpPY3Xrrrfj1r3+NQ4cOcUZyE+GOQaMZK1ZY29Cnj0m19i35uba2NtTW1iItLc1oqxQAl7QLhUIEBQWhqakJTU1N3BkoNDR0Qu1dS2lUNkJLtBDxijoMw0BIhBjSD6Fd3Y6Z3uOfB4eGhlBSUgKJRILZs2eP+/szjAALg67BV7J/QcuqIGREYAkLAhaBQjGkmmowI8qvIGDRrq7AUfmfsTnixVHa0rTB1tLSwm03hIWFISQkZNzXp6OjA9XV1cjIeApBEj2GtEVgGA8EeuRDJLg88efnsQoiQfiIGRvxBCC4lKMBwV43GzX9R2TWGIzO3xiMnKesk2EjhHBawPPnzx9Tu5pvbmva5Dc1t6UNyMnGoISEBGzZsgU1NTU4efIkfvjhB4tW/90xyBi6rW9aC5pKQx+Y3BmImj8qlUosWrTI6O9I41hzczOEQiH8/f3R1taGzs5OLgYFBwdPyRjblLKhMhhggAfjYVz4JXqc6T+DayKuGXVW4tPT08PVteLj4ycsvIsFnsgOWIfT/buhY9UQMCIQwoKFHv5CFv26CxiZ1x45J7WqzuK7vn9jleQxBAUFccN8MpkMcrkc9fX18Pb2NvIfGev1oQOCHh4eXE4T7rtpVM5Fkfg8CJWuCHq2hyd5wiDA83p4ieZy3ycQhINhfECIEsalTwMYMBAJJ2d0CYy8FxoaGtDR0YHc3Nxxz+Wm5rZDQ0PjmttOtsEmEAiwZs0apKamYu3atbj++usxODg44c9dSfHHpQra5gIOLTCbrt1P5THNYc780fTf6XptbGwsp5ksk8kgk8lQX18PX19f7oadyInUHHmBeehQd1wyZBNeMkcbmQjKDrR8tY2uBA4PD49bSAoQSXBz1AsoGzqCNlUlxIw3Uv0WoV7xBQBAgMvrJoQQqA2DqB/+BnMDRk84AqPF8s1NLdGklx/QxIJgzPL7GyoatwOe9QgNiYbEezUCPBbzuvkieItyoNR9b5LEjXzo+Zis72t1P4AlgwDEvMdgQIgIBrYTOkM1PHhmAdag0WhQVFQEf39/zJkzZ8KgIxQKuXUc/jqK6eQkfx2Fvq4TBTVqBODh4cF1zCaiq6tr1KFAJBIhJCQEXV1dY/6Mh4fHqEJrRESE0c+8+OKLWLVqFXx8fPD111/jwQcfhEKhwKOPPso9jqksQUREBAYHB6FSqWymQTYZ6GvMP0jRArNUKkVubi5nyjXZx7UkBvFljhYtWmT0Gpgar6WkpHBr1zKZbMTorKYGAQEBXAwyNayxBCEjxCzvWahX1ptMKo5c/yyfWRY9DtWZpZpy4xVxJB6xuDHqf1A88CXa1FXwYLwx23cxGpQHABAILxWDGYzoWg/r5WhWnkaK34rR18+7x8aaWqKJnenUUnfXILpqNmJ2xs/hF6SGhyAKXiJjoxB/jzWQC/4PBrafS+JoISnQa5vJ5LYWhAzA1KpiZDJJcGlq0np0Oh1KSkogEomQmZlpURIvEomMJifNHapoYkcnJy1N7IaHhxEVFcUd2ibCHX9GYy6R4zf08/PzrSoYWyo5QjetYmNjkZKSMqqhT2OQj48P0tPTufeQVCpFS0sLqqqquCb2ZAyDTAkQBUDICLmzEHcNIBAwAoSIJ47DCoUCJSUlCA4OtqgAF+udhmsjfoXv+/eiU1MPD4EvZvvmo0n5JczFoX7dRbSryxHrbXw2M73HBgYGuJXTyspKbghCIpEYJcq0+O7p6Yl5KY+Nez9LfB6AUncOLBnCZdlKBv4eV8NblGv0vQwTiLHscgRM0LivyXgYDAaUlZVBr9dzuqKW4OHhYTRVRIcgTM1tg4OD4ePjY5TYAZgwBgUEBCAlJcWia3HHIGNoU800BtECszUNfcB4+228vx+VOers7DR73qL3tJeXFzfcRN9DVHpGo9FwDaSwsDCLpWfMIeAm/ohRk59cWmWfaDqbFpLi4uKQkJBg0Xlstt9iEBD80L8XAzoZRIwHknyycEFVCAYj2yTAyB4tSwzoVFejR9uMUI/LDT7Te6yvrw8ymQw1NTXQarVG0iT8InBraysaGxuNpOE8vc1LuQgYH8QEvIXOoaehNVwAwIJhxAj0vB4h3ncZfa+neNElSTctgJGhgpHikw4iYRKEgqhRjz8RVI98aGgIubm5kzJitMTclk5O8iXaLM3DfH19sXLlSouuxR2DRmNat5lqQ9/cY44FNX/kxxgKIQQajQYVFRVQqVRYuHAhfH19ufeQTCZDZWUlWJbl8gyJRGKRJMp4KAyKEdEhk/jBgIGG1UBP9PBgzMc52qBKT08fVdcaj7ygrSAgKBn8GlpWBQEjRILXHEg15wAwJnFIj2blSagMt8NbGARgZJjPtMlPTYQJIVyexh+CUKlUKC4uhr+/PzIyMozuNXPFbADwEMZhZuB/0K/+FErdWQgFgQjw3AR/j3Umagfe8PW8BUPqfwNEjZFxbAMIDBALU+EhWmjxawNclkCmQ6OT0a1mGAYBAQEICAgwMn6UyWQ4f/48ABg1+cViscV5GI1Blgw1AldW/HGZgrZpV44QwnXe586dO+bI+kSMGHmNPxlAPxjlcrlZTTiaxJlqRfJvWCq9IZVKUVxczBVWwsPDERISYlGHZWnwUtQN16FaUX2pKz9yiFoZuhLJPskW/b5arRalpaVgGGbCQhIA+IqCsDj4BiwOvryaebb/XwCMV0AYhgFDGPTrLlp0HQAmnFqiwczf3x/l5TXw8roa81KeGDORk/g8iAuDZSBEDUIEAEYSdB/xYviIF5l890TJu/WO68DICmFRURECAwMxZ86cSRcOx1pHod1MvV5vdnJyrKCmVCq5lZ5nn30Wr7zyyrjPX11dPcnfeHI8//zz3P+fnZ2N4eFhvPbaa1wgc1X4K/+0wMCyLPLz860+3Fmy6qZQKFBUVISAgADMnTvX7FQk7T7z/+507TohIQEajYZrsDU1NcHT0xPh4eEICwtDUFCQxe/RDeEb0NLaAi3RQkAEXPKW5JOE2b6zJ/z54eFhlJSUcPeGJbEv1CMGa8IuSwbpWQ3Khj4AY6YYzAAY0LdP+Jh83WfTqaXW1lajqSWFQoHm5mZkZWWN27QQCvwR7f9XdA49BT0rx8hqiwh+HqsR6nO/yXd7QCiYAT3bApiYTQIGiKag5a/T6VBUVDRS/Jo3z6qJtLEOVfzJSRp/6KEKGDuxUyqV8PX1dcefKWCadE21oT/W45pCCEFbWxvq6uqQnp4+So+W39Dnn4H476GkpCSjJj/116AxaKy1d3P4CH0wP3A+vu//HnqihxBCsGBhIAZEeEQg2Xf881Bvby/KysoQGxs7qVXgGd5pmOGdxjXzhvRS1Cn2mI1DICwGdO2jCtrG38dw8mB0aonGIP7Ukr+/PxoaGhAUFGRRzPQUpSAu6AP0Kj+EUv8DhEwgAjw3I8jrhlGJn4/nFqi0B0GIFpfj0Mg529vzWoteF1MMBsOllWDWYg1Tc5gOQdDXRy6Xo62tzaxE21hnIGr45ufn545BU0AkEnFGy7Zo6AOXzywGg2HMnIQvc5Sfnz9K5qinpwdlZWWIjIxESkqKUYODvof4TX6+vwaNQZM1y0rxTYGP0AdKgxIMYbjNBhYswjzCEOU5doGIFpLS0tImLYmS5rcEs33zoWIV8GC8INc2oU11DALTOAQBCPQY0HcZFbT5UAnE0NBQpKamcq9PZ2cnampq4OfnB4lEAo1Gw/2dLdVe9RKlIj5oF1T6MhjYPniJ0i9JkRgjEsbDx/MnGNb855L0CIORrREPBHg/OenPNZZluaGt3NzcKW0mUnPbsLAwzlSNxujGxkb4+PgYTU7Ss485eSR6BgLcedhU4DfVaEPfx8fH6oY+YNlgUW9vL0pKShAdHT1KloMQAoVCgdLSUnh6emLBggXctZi+hwYHB42kN/hbtJNpvFDivONAQMAS9nKTjYz8d4xXDDwEo4vZtIbW1taG7OzsScduASPAouDrkBO4AUP6HngL/dGhLkW35gcITLQ5GAjAEhYKvZwraFM/EoYRmG3yU4nIqqoqBAUFISAgAB0dHYiIiMDs2bMnFRPEwgiE+U78nvb3fhAsUUKp3QkQLQABPMV5CPb905gFc3NQY2q5XI758+dPKKcyEdT4MSoqyuj1aW9vH9Xkp4Nq4+VhP9YzkMsUtIHLSZder0dFRQUGBwexcOFCs3IZk3lMAGMWtGnRihAyyvyRP5EEjG/+aCq9QTvi1KyDPzEwVkAWC8S4N/Ze1AzXoEZRAzEjxryAeYjztqzTQjuLAQEBmDNnjtVrd35CCfpZ48L1iAEjgZ/osmRIv64FUk05RIw3Zngvhodg7MPiWFNLjY2NUCqV3A2t0WjGDA7e4izEBryLXtV2KHXnIBQEINDzGgR73z4qGHmI53PrJYRclhwB9BAKwiEWpln12gAjXcSioiJu8ssWulmm6yjU9G68yUngcnGJOtsyDINf/epXuOOOO8Z9vlmzZiEyMhJSqdTo67SwPlYDKTIyElqtFv39/Ubdue7u7nGbTgsXLsRLL70EjUYDT09PREZGjnLE7e7uRkBAgNOmAvgr/wMDAyguLkZISAgyMjKmtMI6UTGJNnni4uKQlJQ05lTkRMZrnp6eRvI25hpI4eHhE67kJvok4sG4B/GV7Cs0qZrgLfDGwqCFWC1ZPe5aGwD09/dzupemv8tkEDIe8BYEQGnoA2DsYUDAwk840lHWs2q0qb5Fr64RPoIQxPuuho/QvBbjWFNLlZWV0Ov1CAoK4hpD4x06fcQ5SAj+AsPakzCQPniJMoxM2CgMw8Df+z70Df/mknabGCONNhYiwUx4e1iuRc6Hyhx5e3tzmv22gH+oosaz9FBVV1cHf39/LgbRyUl+cWl4eBh+fn64//773fHHCvhNfX5D39zG2GQZLwZRw0Q6acI3f6T/bmkMMm3ymzaQqDybJSu510Vch2HDMKqGqqCDDgwYRHlG4e7Yu8eNQ11dXaiqqkJqauoouQJLob+jlyAQQoEH9CZSSzRZ8xeNvOf6dS2oVxyAQt+BAPFMJPtuRoB49HN7e3sjNjYWsbGx3Hu9o6MDra2t3BmFeiNMlLh7CBMQ6f/ChL+Lp2gp/L3ugUK93Ui2zcfjWvh4XDPhz5tCZY4YhkF2dvaUp8/48F+fsSTaqP6/6eSkQqEAMNLkdZ+BrEckEmF4eNhmDX3gcu40VmOfmj/6+PiYlTm6cOECampqOGP7sWIQX1vdtMnf2NgILy8vLgaZM7A3xUPggZuibsKH7R/CQEYaegzDwEPggZujbjYbh8YywZ4sDCOAj3Ak9/UXhV/a7GKNmmsELAABAkWRYIkBjcNfonH4ENTsAMI85mBOwM0IEifwHtP49aFN/qamJqhUKojFYrS3t3NT3JacexlGCB/xaB1uUwJ9noVYlHJJ018KD2EGfL3uhKcFP8uHZVmUl5dDrVYjNzd3ShP4pvBfH7759XjmtvwzkEKh4Ara7hhkHfQcZDAYuIa+uY2xyTLRYBGNMbNnz0ZsrPFmJr+hFhERMaYGNb1+KrGVlJQEpVIJmUyG7u5u1NbWws/Pj4tBYxnYm5Lul44ZXjNwUX0RLGHBgAGLkeL2+rD1o75/LBNsa/AQeCHUY2TAIVAUfamJxl6Sox2BgIWAEcFfFI5hvRQlA+/iguo7ELCI8sxFVuBdCPZI5F4f2uSnQxAXLlxAW1sbCCHo7e1FXV0dN4hlS+kWhvFAkO+v4e/9C+gNTRAKwiZtij2WZr/trtH49VGr1VyTfyxzW36DjdaCfozxx+UK2kqlEmfOnIGHhwfy8/On/GE1ntHb0NAQioqKEBQUZNb8caypyIkw7YgPDQ1BJpOhra0N58+f51ZOzQnlCxgB0v3Ske6XPqnfc2BggOssTtVpd47/Rpzs/RcMRA/BJQ1tFixEjAeSfa8CS/Q43fs6WlWFoJ12Yb8nFoc8jVjviY0r6Q0rEonQ0dGBqKgoBAQEQC6Xo6GhgZtakkgkowKat3guYsRvTPgcAsYfgd5PoV/5EgDdpb8jAwYiBPo8B2aM9ZyJUKlUOHfuHEJDQ5GWlmaTYrYp/MlSSycn29raoNWO6NfR99ZE5Ofno7+/H0VFRcjNHVlTPnbsGFiWxcKF5tdv6Grx0aNHsW3bNgBAbW0t2trakJ+fb/ZnAKC0tBTBwcHcJEV+fj6++OILo+85fPjwuI/hCIRCIbq7u3Hx4kUkJSVZpDdmyWOaKybxzR8nkjmaqJBk7jn5DRJqiFNfX4+KiooJdbdn+czCA3EPTOr37O7uRlVVFZKTk0cdCCcLwzCY478RZ/s/HhWHPAV+mOW7GMP6bhyWPQmlQcpp/ZcPfoCloc9jhrfpxoYxVFOxu7sbQqEQGRkZUCgURlNL9PUxN1kqYDzh7zmxtI+3x7VgiRJDqn+AJf1gwMBDnI8gnxdx2WnbcjQaDSc/YbqSZ0v4xrOmh6oLFy5whkhBQUHcoaq1tRUGg8Edf6YAjRWlpaU2aeibPq4pdKNLp9ONKlqNeE4Q7ucmG4PEYrFRg4Su5FZVVUGv1xut5Jor3noJvXBP7D3o0nShQ92BIHEQ4r3jxyxm802wMzMzIZFILL7WMX8HgSfS/NaiYnA/WKK/tDY/sj3nL4rADO8stClP4GTvywAYEBjQpSlBvWI/rpK8iCiv3DEfWyQSwdPTE/39/UhISIBEIjGaWgoMDDQ6J1r7OcQwDAJ8noC3xyaodUdAYICXeDnEwnmTfky9Xs9tIGZlZdlMq9gcY0m0UfkWLy8voya/TCYDwzDw9vbmpLcmwh2DjKFNfbVajVOnTtmkoU8ZKwaNZ/5ITaXb29utKg7zm/z8LVFqYG+J7nZ2QDbCPcJxpv8MerQ9iPSMRH5wPsI8Rr+/qGQKndwzZ4JtDb6iEMzyyUfj8EmwxMAVlQiAKK80hHok4FTPq2hRHQXNydpUPbig+g6rw16DxNP8AI9IJIJcLgfDMFi8eDH3OV9bWwuNRoOQkBAuTlszWcqHYQTw9bwBvp7jG7WOB9Xs12q1k5I5shZT82u+uS1t8tPJ7YCAADQ1NUGpHPFzcp+DrEcgEKCrqwu9vb02aegDY8cfGmM6OjrMmj+yLMtteyQnJ09acsnHxwdxcXGIi4sbtSUqFost0t0WMkI8MPMB7Oveh6LBIm5TbVP4JmQGZBp9ryUm2NYi8UhEhGcqujW1l+IQc6mpBqT4rgAD4CvpY9Cw/dzXuzTF+FpWgQ3hf0eAeHReqFKpcPHiRSQnJyMmJoY7J1ZUVIBlWSP/EVs1r4SCUKtMaC3V7Lcl1DNrxowZ3CAW1f6n5ra0wR8cHAyZTMYNj/zY4g9DLquoOxVCCIqKitDR0YGZM2eO2wGbLF999RWWLVtmVDyWSqUoKytDQkKCWfNHlmU5vTdbFi35K7l9fX1T1t2mv0tlZSWSkpKs0rczhRAWP/R/hMqhgzAQPRgAXsJArAx9FDO8s1A5+DHKBz/AJSdJDgZCbI3cAV/RxPqp/f39KCkpwcyZM42civlaSzKZbEytJUtR605hWP0x9GwrxMIk+HreNumJAIpSqURRURHCwsJGHbwdBX8dRS6X48SJE/jkk0/Q3t6OmJgYVFdXT+q6NmzYgO7ubrzzzjvQ6XS48847MX/+fHz88YiZXXt7O66++mp88MEHWLBgAQDggQcewBdffIEdO3YgICAAjzzyCADg1KlTAID9+/eju7sbixYtgpeXFw4fPownn3wSTz75JH7/+98DAJqbm5GRkYGHHnoId911F44dO4ZHH30UBw8edJq7tlarxbFjx6DX65GdnW2TgggATttx6VK+4/Jl88fs7Gyz5o+WTkVOluHhYUilUshkMgwODk5Zdxu4rL04d+5ciz5ELYElBpzu+3+oVhwGIQYADPxEYVgt+RXCPJNwTPYcujWl3MGJImQ8cX3UfyEWjL0GRldWh4aGkJOTY1TI45uW9fT0QCAQcIU3aw2nCNFAb2iFQBAAocA6+azJavbbC/6hSi6X489//jPq6+vR0tKCZ555Bi+//LLFj+WOP8bIZDKcOnUKwcHByM7OttkBvrKyEp6enkhOvizVwTd/nDdv3rgyR3T6wxbwdbdlMhmGh4enrLvNN8HOzs62SROAYiA6nOj5JxqU33JxKMRjJlZLnoKvKAS7O26Bjgyb/BQDb0EIron6kNOaNIVOfJk7t6nVaqNzoqenJ/f62HpqyVJ0Oh2Ki4shFost1uy3F3SCiEon0EkktVqN8vJyJCVZLufkjkGXYVkWJSUluHjxIlJTU23S0KccO3YMOTk5Rmed8cwfdTodZ8yWlZU1abmQ8eDrbstkMq54Gx4ePqF59FjQzWK1Wo3s7GybFzt0rArf9PwdLcrvL01IChDtNRcrJY9h2NCJr6WPmfkpASQes7E2/K+j/oVq4Gu1WuTk5Bh91tAGEo1BAwMDnDTJVHLVqUAbvQaDAdnZ2XYvZk+ERqPhctX9+/fjrbfeglKpRHZ2Ng4fPjzqTD8e7hh0GZVKhW+++QYGgwELFiyw2Wf5wMAAioqKjDymaIxRqVTIzc0dJXPEsizq6urQ3t6OuXPn2iwnBMBtINEYxNfdHs88WstqoWN18BGObnLzTbAzMzNtuj1FURkGcLznLVxUlQFgIWCESPK9CkuC70GtYhfKBt/H6NqQAAk+q7Eo5FdGX5dKpaioqDAry8SXbpHL5VAoFFyTn/qPODIGmWr2T0XmyFbwm/zPPfccKioqoFAo8Lvf/Q5PPfWUxZ9BV0r8cZmC9uDgII4fPw4/Pz8sWbLEpo99+PBhLFq0CP7+/iCEoLm5mSu+mI7HT2UqcrLQdSZ6w1qju33hwgVuwnOyrr8TMazvQZemBmKBF6K95kJ0aap5d8ctULG9o76fgQAZAbdibsDPxn3c8RI5PvziLU18g4KCuKBvywPuRAwPD6OoqAgRERFTXn2yJaWlpbj22mu5Sa/g4GDU1tZaXBTo7e3Fww8/jP3790MgEGDbtm148803uRWllpYWJCQkoLCwECtWrAAwkjT+6le/wieffAKNRoN169bhH//4B3cvHTp0CM899xwaGhpACEFSUhIeeOAB3HvvvUbv6ePHj+OJJ57A+fPnMWPGDDz//PMTrsjYk6qqKjQ3N2PWrFlITEy02eP29PSgqqoKy5cvB2Bs/piTkzNK5og/FWnLQpI5NBoNZwrY29s7ad1taozR2dmJ7Oxsi7UXJ4NCL4NM2whPgS8iPdMhYIRQG/qxq/PmMX8mP/hpJPhebfbfxkvkTGFZlptu5ye+tppaspSpavbbkzfffBMvvPACMjIyUFVVhZ/+9Kd47733LPpZd/y5jMFgwJEjR6BWq3HVVVfZdJWRNjpnzx7RwKdSROa0uR15BgLMN/kno7ttMBhQUVHBFRPstSo9pJehV9sCH2EwJB4jQxAdqrM43vObMX9mbfj/QeIx2neAbrOkpaVNOH1G5aPoOYhOLdEmvy1X7sdCq9WiuLgYnp6eyMzMdFozzRwajQZbt25FXV0d4uPjUVRUhE8//ZSbHJoIdwy6TGdnJ+fNQM8rtuKbb75BRkYGQkNDuUnmrq4uZGdnj5I5oj4cYrEY8+bNs+t7nOom0xjEb/KHh4dblGfQQhI1aLZnsXVI341+XQf8ReEIEo9IAVQMfoTKwf+Mau5TbozeA7HgclykhtIMwyArK2vC6+XLR9EmP7/4Zu/mlsFg4KRBbS1zZAsqKiqwbt06pKWlQaFQoKmpCXK53J2HWcEPP/yA3t5eREVFcecVWzA0NIQzZ85gzZoRqT86oObt7T3qniWEQKfTcQXCrKysKcl2TAS/eMtv8tNzkCV5xmRNsKfKoK4LCoMcgaJo+IpG9LkLZf+DTs05s9/vK4zANVEfcP9N9aEtrV3RJr9cLudyVVrctkTCbiqwLMudMW0tc2QLCCF47bXX8Nprr2H9+vX44YcfsHjxYnz66acW/fyVEn9cpqBNJ2xkMhnXAbAVx44dQ25uLvz8/FBVVYXe3l7k5OSM6vzZcypyIviarjKZbELdbUIIGhoauFW8yXSDp8onFzeYPTgxECLRdz0WBI8t+N7d3Y3KyspJO+4CMDJU6u3thbe3N3eosufUEjXsi46OnpIusK2RyWTYtGkTMjIy8NFHH3HTNWOtibgZH5VKhZKSEoSGhiI+Pt5mj0u3EVauXImhoSEUFxcjMDBwQpkjexezTeHrbstkMgDj624bDAZUVlZCoVAgOzt7ysYYk2FI3479XXeN8a8McoMeQKrfaH1YmsgJBAJkZWVNKjFy1tQS1ewPCQmxm8yRtRw4cAB33XUXPvroI1x77bWc9n9CgnmDKjfjMzAwgG+++WbURtlUqaurg06nQ3p6OidzNGfOHLNTMY4sZpvCL5zI5XKj1UlzTX6+CbYlhRlbc1F1Gt/2/G7Mf18d9meEe2YY/8zFi6irq7Nqm4W/9i6TybipJX6T39Z/M6rZ7+Pjg7lz57pUMVuv1+Oee+7B+fPncezYMYSHh6Onpweenp52LUBcqRgMBrS1taGxsRHLli2z6WN/9913SE1NRVBQEGf+mJOTM2oqsq+vDyUlJQgPD0dqaqrDNwH4utu9vb2c7vZYTX5rTLBtTdXgJygf/GCMgjaDm2L2QnRJ4ozKlnl7e486g1oCv8kvl8uhVqu5DRuJRGLzhiJfs3+yZzZHUF9fjw0bNuDnP/85Xn75ZQgEAkilUpsPmP1YUCgUqK+vB8MwSEuz3uvKFKVSiRMnTmDt2rXo7e0dU+aINrhKS0u5BpWjC5j8PKO/v39C3W1rTbBtzcmeP6FN9a3ZOBQsTsSGiH8AGCmQNjc3IzMz0yqjYYPBwG1o2bvJz9fsn2gAyhkQQvDOO+/gD3/4Aw4dOoSFCxdyW5C23FScDrjMJwPVvpvIhdYaqCZcdXU1CCHcCDxlqlqRtsBUd1uhUEAqlZrV3fby8kJlZSUGBweRl5fn0EllAAgSJ6BP1wTTtRICA0LEY6960kRu3rx5VskSmDNUsrfWEtVZj42NNZJGcTa9vb3YsmULUlJS8OGHH3KHPHcx23o8PDwgFottHoOodhs1OImPjx9T5shZhSR6nZbqbjMMw+lQ5uXlOfxD3lcYCS9BMNRsn5l/JQj3yBj1VbVajZKSEqsTOYZh4OvrC19fX84wiBaWiouL7TK1RKdIJBLJpJ2/7c2hQ4dw11134b333sO1114LAJyhkhvr8PHx4YwhbYlQKIRKpUJVVRVkMhny8vIcKnNkKaa623Ql9/z586N0t6kExlRNsKdCuOdcCCAGC93o34XxQ6hHitHXmpub0dLSYnYq1RL4hlOJiYmc5q1MJkNTUxM8PT2518gWU0tU5sjPz8+umv3WYDAY8OCDD6KiogKFhYVcAclaEz43I3mIj4+PzeMPfezh4WFUV1fDz8/PrPlje3s7zp8/j6SkJMTGxjrl/WbOXJtKVALGuttDQ0M2McGeKrHeS1E2uGPU1xkIEOWVxxWzlUoliouLERQUZPUUJ/UfCQkJQWpqKoaHhyGXyznTOyqjKZFILDLeHA86gOAIzX5raG5uxubNm3HzzTdzxWwA7mL2FPDy8oJYLIZGo5n4myeBUCjkDGbHkjmipoRlZWWQSCRIS0tzSgzi627rdDqucGtOd1sqlU7ZBNtWJPisRqvquNl/m+W7zmgQMzc31+qCq1Ao5F4DWrzl+9TZQkYTuLzNq9PpHKLZP1kIIdi+fTtefPFFHDx4kKv/MAzzoytmAy40oQ2MFDxrampsPhnwzTffcMmQqcGJs6ciLYFOJkulUvT19YFhGIjFYqSnpyM0NNTh13tBdRInel40+hoDAbwEwdgcud1otQ0Y7fptTSI3HvbSWqLFbKrz7Sr09/djy5YtiI6ORkFBgct1DKcrLMuirKwMQqEQqampNntchUKBkydPQiAQOF3myFroSq5UKsXAwAAEAgG8vb2RkZFhkSyAPWgc/grf9/0F1ARpBAax3kuxLNRYBoAmcsHBwXY5pNpjaslVZY6Aka2nn/zkJ/jnP/+Jn/70py51bdMZnU6HY8eOITMz06afkw0NDWhtbYW3t/coWQ5HyxxZAz9pkUqlGB4e0aymhRlHboeYUjO0C8UD/+SM2uj/XRT8K8zyXctdf319PTo7O5GTk2Mzszg+/KkluVwOvV7PNfmtmVriyxw5YoV5MhgMBjz66KP47rvvUFhY6PRE/kqBEIKenh58//33WL16tU0f+7vvvoNSqURcXNyozzOWZVFfX4+2tjab+nDYEn6TXyqVQq1WgxCCyMhIpKSkOF1TtWLwI1QMfsjFH0AAT4E/1ob/Ff6iGG47kF6vPWK8qYwmwzBG/iOTma6mDUsPDw/MmzfP5YrZbW1tWLduHTZv3oy33nrLpeLjdMZgMKCurg6Dg4PIysqy2eNSjySxWIzs7OxRk8GEEHR0dOD8+fOYNWsW4uLiXO4cRHW3+Zv8hBDExcUhPj7e6QVXQghKBv6NGkUBGIzcrwQGzPBagiUhv0ZtTR16enqQk5Njt0FMfpO/t7cXHh4eFhlvmuJqmv2mEELw4Ycf4qmnnsL+/fs5KZAfMy5V0O7u7kZpaalN/zDd3d0oKSlBVFQU5s2bZ3Yq0h7mj/ZApVJxDvM+Pj5GhmXh4eEIDg522Id+8/ARlA78P6jYHgBAhGcWFgY/Dj+RsYyIIxI5U2yhtTQwMIDi4mLEx8e71Pr84OAgrrnmGgQHB2PPnj0O0/D9MUCNAg0GA9LT0232mOXl5ejq6sKiRYtccipyMgwMDKCkpAT+/v4QCARG91d4eDgCAwMderBvVX6DysH/YEDfCk9BAJJ9t2BOwC0QMpcPH45I5EyhU0t0ZXCyU0vDw8M4d+4coqKiRmkcO5tvv/0WN954I9566y3cfvvtLnVt0x2dTodvv/0WqampNivqKBQKfP/992AYBsuXLx81FUnPQLSQ7ep/T2okJJFIoNfrjcy1w8PDndJgu6g6g1rFbgzp2xEoikOa/zZEeo2YT7Msi+rqak7qzhEbdfwGgFwu59ZPaQwyt7bMR61W49y5c5wepyu9J1iWxS9/+UscOXIEhYWFiIuLc/YlXTHQoi1dzbfF350Qgra2NlRXVyMmJgZz5841+ne9Xo/y8nKugOWIHGGqtLS0oLGxEREREVAqlTYz154q3epSNCq/hsYwAIlnOpJ9N8FLGMTJ3sXFxSEhIcEh10aNN2kMUiqVRv4j4zX5qWa/l5cX5s2b53LF4o6ODqxduxarV6/GO++843LXN50xGAxoamqCTCZDbm6uTR5Tp9OhtLQUPT09WLhwodGwAD0DNTY2orW11S5+ZLaGEMJ5EISHh2NwcNAm5tq2oldbjzbVCRBiQLTXAkjEI/46CoVilG+UPaFNfpqLWdrk1+v1KC0tdVnNfkII/vvf/+Kxxx7Dnj17bN58nq64VEFbLpfbbDKAEIKmpiY0NTXBy8sLiYmJRnqR02Eqks/g4CBKSkoQERHBaT6Np7vtCLMglhgwbOiCiPGBt3D0NJkzEjlTrDFUooc/2qV1FRQKBa6//np4enriwIEDTv3AuhKh71elUol58+ZN+fGoURDLshgcHMTq1au5D8bpMBVpCpX3SUxM5O6LsXS36Uquow4ChLBgmNFJBb2X4+PjER8f75TXeLJTS1SzPyYmxql6eOY4deoUrr/+erz22mu47777XOrargT0ej2+++47JCQkjNrksAZq/hgSEgKdTmckScU/AzEMMy2S8ra2NjQ0NBglnaaGZfx1VEvNte0FNRMaHh52aCJnCp1aksvl6Onp4aaWJBLJqNdIpVLh3LlzCA0NdTnNfpZl8eyzz2Lfvn04fvy4S23OXSkMDQ3h2LFjWLNmzZQHZOiZqru7G76+voiIiDDyJ6FDOgKBAJmZmU6fcp4IaoLd1dWFrKwszgR7srrbjkQul6O8vBzJycmIjY112nVQXWC5XI6+vj74+PhwrxG/ye/Kmv0A0NXVhfXr12Px4sXYvn27y02OT3cMBgNaW1vR3t5uEz+14eFhFBcXw8fHBzKZDMuXL+c2uqj5Y1VVFQYGBpCZmenyUg1jmWCPpbttqbm2vdDr9SgrK4Ner0d2drbTNsppk5+eFcdq8lPNfuqz5Ir3d0FBAR544AF89tln2Lhxo7Mvx2VwqYJ2X1+fTSYDqFlZX18fcnJyUFdXh4iICO7DfLpNRdIDyXhrMIQQTnebmgXxdbcdvZJL/wbOTuT48KeWxjJU6u/vR2lpKafh5yoolUps27YNAHDw4EG3Tq0doGuvfX19yM7OntJjUbmaoKAgzJkzB0ePHsWqVavg4eExLWSOTLlw4QJnJBcREWH2ewghGBgY4GKQWq020t12dLJKC/ApKSkus5I+0dSSXq/nNPsTExOdfblGnD17Ftdccw3+8Ic/4KGHHnL59+x0RK/X4/Tp04iOjp7Se5YQwpk/ZmRkgGEYNDc3Iz8/n/v36dTQp5teHR0d45pg85v8Uql0lO62I9dGaSJnMBiQlZXlMtJgY00tUXm2iooKhIWFjTLLcjYsy+KFF17Ap59+iuPHjyM5OdnZl3RFolQqcfjwYe68Yi3UsFWn03F5mJ+fHxITE7mzQklJCWd27IqFAz6WmmCba/Lzdbcd+Xt2dXWhqqoKc+bMsUmD1FbodDojeSRgZBAiKCgIra2tnC+CqxWzpVIpNm7ciOzsbLz//vsuN7l5JcCyLC5cuICmpiYsXrx4So/V09NjZP549OhRLFy4EP7+/pzJe1lZGRiGmRYNNUtNsE3NtU11tx11X9HrFQqFyMzMdKn7RaPRGA1CeHh4ICQkBP39/fDy8nLZYva+fftw991345NPPsHWrVudfTkuheu8uzBiCEQnF609SFMHZ4ZhkJ+fD09PT86UzRXMHydLe3s7amtrkZ6ePu6BhGEY+Pv7w9/fnzMLokldfX09fHx8EB4ejrCwMAQEBNj19+YncvPnz3eZRI4K5QcEBJg1VBKJRNDpdJgxYwZiYmKcfbkcarUat9xyC3Q6HQ4dOuQuZtsJhmEgFAqnbIhEDYQSEhKMipI0Bk2nqUi+icdERmYMwyAoKAhBQUFISUnhdLc7OjpQU1Pj0JXczs5OnD9/3uUSOYFAgODgYAQHByMlJcVoqqKurg6EEAQFBSE0NHRKn4O2pqSkBNdeey1eeOEFdzHbzohEoikZ07Isi/PnzxuZP0qlUrDsiPP8dCtmGwwGVFVVYXBwEAsWLBi3OW9qrk0b2K2traiqqnLYSq5Wq0VJSQlEIhFycnJcKpHjT7DPnj0bCoWCM1RSKBScObJCoZhQmsRREELwxz/+ER9//DEKCwvdxWw7IhQKuUk1a8/uCoUCxcXF8PPz497/QqEQLMuCEILOzk5UVVUhISEBcXFxLn8OooUZYGIT7MmYa9uzgEaHEDIzMyGRSOz2PNYgFosRERGBiIgIrrnR2dmJmpoaEELg5eWFixcvQiKRONUfgU9PTw+2bt2K9PR07Nixw6Vi+pXGVM9AwMg2l6n5o0Ag4PIwOrxGZbVcsXjJh/oAWWKCbWquTZtHVVVVMBgMRpv89mryq9VqFBcXw9fXd5R3nSvg6emJmJgYxMTEwGAwQCaToaamBgaDARqNhmvsSyQSl2l0fPHFF7j77rvx/vvvu4vZZnCpiEw/IKw9SA0ODqK4uBghISFGNzwNYtNpKpJKprS1tU1YSDKHl5cXYmNjERsba7TyTtf7+Cu5tgw0rpzImeLl5cW5mctkMpSXl3PJf0dHh0PlW8ZCo9Hg1ltvxcDAAL7++muXX4ea7kzlIEUIQXNzMxobG0eZP9JC+XQqJLEsy63i5eXlTVoyyNfXF76+voiPjzfqhjc1NdlVd9uVEzlTqJt5UFAQioqKEBYWBoZhuOTZGfItplRUVGDr1q145pln8MQTT7j8+3Y6Q5tq1sYg+vlrMBiQn5/PbUbRx6R62cD0aOhT7UtCCBYsWDCpz2HTBrZKpTJqHlHdbVs3+fmJnCuuzPOhgxAMw+DChQuIjY2Fn58fenp60NraCrFYzMUgR3q08CGE4NVXX8W7776LY8eOIS0tzeHX8GNiqjGIyhzNnDnTyP+BnoEaGhrQ0tIy7raXK6FUKlFSUgI/P79JF2YYhuEa2MnJyQ5p8tNzaGtrK3JycsbcZnEVGIaBp6cnenp6EB0djbi4OC5fraur46RJqP+IM+JpX18frrnmGiQkJODjjz92OYO4K42pxB+WZTl96fnz5xvVTujjdnV1obKykvPIcvVzEN1miY6OnrSnjkAg4CRWZ8+ejcHBQchkMrS0tNityU9lXuj2jSufgYCRoYnm5mYEBwcjIyMDSqUScrkc7e3tqK6uhr+/PxeDnCXfcuTIEdxxxx149913ccMNNzj8+acDLlVtpG96awJZV1cXp+9qGqAEAgH0ev20mYrka0/n5eVNeSJXLBYjMjISkZGRRiu5NTU1NtXdnk6JHB+5XI6Kigqkp6cjKirKSJrkwoULOH/+/KQMlWyFVqvF7bffjs7OThw9etTlD6ZXAtYepOgUYW9vLxYuXDiq8SAUCqHT6eDp6TltCkl0yyIvL2/KHWrTbjhNWMrKygDYpnA73RI5CtX5TkpKwsyZMwFclm+RyWRobGxERUUFd/B05NTS+fPnsWXLFjz66KN45plnXP59eyUgEoms2hKh5qeBgYGYO3euUeGFNvX1ev20MX9UqVQoKSnhtFSnWkz19vbGzJkzMXPmTKOVXGq0bQvdbZrIuaL+9FhQeazY2FjMmjULDMNgxowZMBgM6Ovrg1wuR3V1NbRaLSdN4igJKUII/u///g9vvfUWjhw5MspQ0I19sCYG8WWO5syZY+RZBIwULru7u8GyLObPnz8thjMGBgZQWlpqE0NphmHg5+cHPz8/JCQkcE1+qVTKNfnpFq21utt8je/58+dPC4NNpVKJoqIiruDGMAx8fX0xc+ZM6PV6zgOJnhVpvhoaGuqQwvLg4CCuu+46REZG4rPPPnOZjeMrGWvPQLQBrtFosGjRIqNzMiEEAoEAFy5cgEwmm3Dr3VWQSqWorKw0yg+shWEYBAYGIjAwEElJSaOa/LbQ3abnUFc0tDeHRqNBUVER17AUCASc2kFCQgK0Wi13VmxpaYFIJOLOQLYeCB2Lb775Bj/96U/xj3/8Az/5yU/s/nzTFZfS0Nbr9Th06BAWLVpk8QcxIQSNjY1obm7GvHnzRnX86cp8a2srtwbmqDehNVC5Dp1Oh+zsbLsmDbbU3Z6OiRwAbjJ7PGkCc1pLtLBkr6klnU6Hu+++G7W1tTh27BjCwsJs/hxuRtPR0YHKykpcddVVFv8MNX+kjsh8vXgqc/T9999DrVZzMSgoKMhlGz60MeXt7Y158+bZNVbyC7dSqdRq3W1+IpebmzttZHn6+vpQUlIyoWETnRiQyWRGhkr2nFqqra3Fhg0bcPfdd+MPf/jDtInp0xmq00oImdQkqlQqRXl5OeLj40cZiVKtyFOnTnFFk/DwcLtLj00FcybY9sKcubY1utt0QzAmJgZJSUku+9ryodc8c+bMcQ0W6VmRxqDBwUH4+/tzr5M9ppYIIfjHP/6BP/3pTzh06JBNDMLcTIxOp8M333yDtLQ0izec+DJH2dnZo5rJarUaP/zwA5RKJWcOGR4e7jKSNuYwZ4JtL8Yy1w4PD7dYd5v+Dfr7+5GTk+MyUh3jMTw8jKKiIkREREzYMKBnRRqDhoeHuXyV6v/bGoVCgWuvvRa+vr7Yt2+fXWWq3IxA5UAm66fGlzmaN2+e0WAMIQR6vR5nzpzB8PAwfH19ERUVhfDwcLu8b2wF3Tblm2DbC1PdbZFIxG3RWqq73dfXh9LSUm7y3dVRq9UoKipCYGAg0tPTJ/wdTc+KWq2Wy1clEoldvOK+++47bNu2DX/9619x9913u+znpSvgcgXtI0eOmD0QmYO6vfb39yM3N3dUEZwaPxoMBm7NQiqVWp2w2Bu1Wo2SkhJ4enqOCsiOen6+U7elutvTMZEDRooAFRUVyMjIsHj1kU4t0aCv0+mMApotGhB6vR6/+MUvUFZWhsLCwmmxlnmlIJPJcO7cOaxatcqi76fvfbqqxE88CCFGBrT8D0JCiNOMgsZjaGgIJSUl3LSMo4vudCVXJpNhYGAA/v7+XAwaayV3OiZywIgmY1lZGVJTUyel2U+nlkwNlSQSic2mlhobG7F+/XrccsstePXVV122+XKlQd/LarXaomlUQghaWlrQ0NAwSuaI/juVGiGEGBVN6FTyZBIWR2CJCba9MGccHRQUxMWgsQoavb29nG9CfHy8w653KgwMDKC4uNiqa+ZPLfX09Nh8aokQgnfffRcvvPACvvzyyymbg7mxHJ1Oh++++w6zZs2yaIKRyhzp9Xrk5OQY3SOEEK45FRgYiOTkZPT390MqlUIulxs12AIDA10md7h48SLq6uqcIovC19221Fyb5sIqlQo5OTkuo/k6HgqFAkVFRYiOjrYqb1SpVFwM6u3thbe3N5eH2WJgZHh4GNu2bYNAIMDBgwdduvB5JUGbp8eOHcOaNWss+iyRy+UoLS1FbGzsqMYIIQQqlQrl5eUwGAxIT0/n6kE9PT1cnSM8PNxpchKm8L2LxjPBthd83W1qHD1RzYw2AFNSUqZkaO4oVCoVioqKOA31yf7dCSFG+erg4KBNJtz5fP/997j22mvx8ssv48EHH3SJ96Yr43IF7cLCQqSnp084GUCLvwzDjJpkNjV/5K/X8qeSpVIphoeHERISwiUszjoI0O4inXB2dnLJ192Wy+Vj6m5Px0QOuOz+PXfuXKs7n/S9RF8jOrVEXydrpk8MBgMefvhhnD59GsePHx+1tunGvvT29uLkyZNYu3bthN/b3d3NFV7oqjaFxh8aXvn3M500oTGIrnKHh4c7tcHW09PDTXnGx8c7/cNTq9Vyh4Wenh5Od5uu5FIZhfLycqjV6mmTyAGXi3azZ8+e0j1uj6mllpYWbNiwAddccw3eeOMNp38W/ZhgWRZ1dXUYGBhAVlbWhN9bVVUFuVyOnJwcBAYGGv37eOaPtMFGYxDLslxx25kNtvb2dtTU1LiMmSt/Jbevr8+s7jZN5CbbmHImVOYoMTFxymvM/GatXC6HRqOZ0tQSIQTvv/8+nn32WRw4cADLly+f0vW5mRw6nQ5nzpzhJMLGgxYlAwICMHfu3FFTkd3d3aioqEBcXBwSEhKMPktMp5IZhuFi0FRkf6YCv5CUmZk5ae8iezA8PMxt0Q4ODo7S3aZbvSzLIjs722UGtMaDvm9iYmJGbRRZg16v5wpwcrkcLMtyTX5rztQqlQo33XQTNBoNvvzyy2kh3XKlQAvQhw8fxqpVq8aVeCGEoK2tDXV1dUhPTx8Vr/gNtYCAgFFDR3q9npP9kcvlEIvFXAxy1hYty7KorKzE4OAgsrOznd5IoU1+GoOGh4dH6W53dnbi/PnzkxoOdCYqlQrnzp2zqaIAbfLT/021yV9UVIStW7fit7/9LR577DGn5+PTAZcqaBsMBnz77bdITEwc96agkyWhoaGc5g2FPxUJTGz+qFQquaRucHAQgYGBXEBz1KQfLQrTQ5+rvXHNreSGhobC09MT7e3tmD179rRJ5ACgs7MT1dXVmDt3rk2lPKg0iVwu56aWaFJnSUBjWRaPP/44CgsLUVhYOOVE083kGRwcRGFhIdatWzfmfUgNW5uamsaUObLU/HGsBhuNQY4q0HZ0dKC6uprTkXc1zK3khoSEYGhoCGKxeNokcsBlmSN7vNZTnVq6ePEi1q1bh3Xr1uEf//iHu5jtYFiWRWNjI2QyGXJzc8f8Pktkjug5yJIYZCr7QxtsYWFhDrmvqHTchQsXkJmZiZCQELs/52ShTX6pVIqenh4IhUL4+Pigv78fc+bMccm4aQ5LZY6sgT+1JJfLMTAwwE0tSSSSCWVuCCH4+OOP8ctf/hL79u3DypUrbXp9biZGr9fjhx9+QFhY2LhnUOqBERcXN2rClmVZNDc3o6mpCWlpaRPeGyzLcpPbUqkUBoPBSHLDEduqtEFIN72cXUgyh6n8oaenJ/R6Pby9vZGTkzMtzkBUs38imSNroUVMGoMUCgWX11MpzfFikEajwS233IL+/n589dVXoxrFbuyPWq3G119/jWXLlo1Zh6FeY93d3cjOzh7VfCKEcFvYM2bMmHALgGVZLseQSqUAYNRgc0STn+9dlJ2d7ZJ67aZNfg8PD2i1WqSmpmLGjBkuV78yhWr2h4WF2U3OjtbMaKymTX5a4J6oyV9WVoZNmzbh2WefxVNPPeXyr6mr4HIF7ZMnTyI2NnbMqTVq/piUlDRqipBfSLLG/FGj0XDBrLe3F76+vtwqir203mhxdaqTeo6CFuBo0g3AqFvn6uv+1F08MzMToaGhdnseurJDA9pEhkosy+Lpp5/GF198gcLCwmmhP3UlMjw8jCNHjmD16tVmkyiqcdvX14ecnJxRxkaTKWabgzbYqORGQEAAF4PscW/R4nxbW5vLFpJMIYRALpfj/PnznHGMNbrbzsAamSNrmezUUmdnJ9avX4/ly5fjX//6l8vI4PyYYFkWra2tuHDhAhYuXGj2e2hBICgoaJRZ4mQb+qbQgiQtLCkUCgQHB3PFbXtoBFKZlb6+PmRnZ08L/XuWZVFbW4v29naIRCKwLOsSWzYT0dvbi9LSUoetBfOnlnp6erhNPyqPZPre3blzJx566CEUFBRg3bp1dr8+N6PR6/UoLi6Gv7+/2YIj3/wxIyNjVLGaGmTL5XJkZWVNuiBIC5L0HKRSqYy2aO1R5NHpdCgvL3eId5GtoFPOdFMNsI25tj2hw2iO1NilUppyuRy9vb1mN/0oWq0Wt912Gzo6OnDkyBGXmND/MaLVanH48GEsXLjQ7HS8VqtFaWkpdDrdKJkj4PI5qr6+HmlpaZOurVDZH3oOokN89vx8pybYjvAusgWEENTX1+PixYsIDAzEwMAAN8Q3VXNte0E1+yMjIx1mWEnP1LQWRJv8NFabNvmrqqqwYcMGPP744/if//kfdzF7ErhcQfv77783OxlAJ3haWlowb968UTIRUy0kmUIF8vlab/xVlKk+PtW+pL+PPYurtqa1tRWNjY3IzMyEr6+vVbrbzoDq4mVlZTm0cGdOa4kaKolEIsTExOD5559HQUEBjh8/jqSkJIddmxtjNBoNDh06hBUrVowq3mg0GhQXF48rc2TpVKSl12LaYAsLC0NERIRNGmx0wqGnpwc5OTnTopAEjBz8iouLERAQgDlz5hhNDFiqu+0Muru7UVlZOSWZI2vhTy3xpUkkEgk0Gg0CAwOxceNG5OXlYceOHS5/mL5SIYTgwoULaGxsNKsbLJVKOYkvc+aPY8kcWQu9t6RSKfr7+7l7y1ZmSnwT7KysLLsUzG0NPYtevHgR2dnZCAgIMKu7Tc+LrmIkRjX7nTU8Qadw6etEp5Y8PDzg5eWFiooK3Hffffjvf/+LzZs3O/z63IxA70lPT08kJycb/dtE5o90c8RgMCAzM9Mm731+g21oaMgiTfvJQOUrvby8RsmmuCpUojIsLAyzZ88GAE7GzlLdbUdDZY6oN4IzoJt+tLhEG5EDAwOIj4/Hs88+i6amJhw7dmxa5eRXGlqtFseOHTMbYywxf6ypqYFUKrWJbJAjZGqHhoZQXFyM8PBwpKamulwh2BRCCGprayGVSrnckS9jZ6nutiOxtcyRtfDNN2mTXyKRoK6uDrGxsbjxxhtx33334cUXX3SZ3HW64FIFbZZlcfbsWQQGBhp1b6nhxcDAAHJyckZ17GxdzDbF1lpvLMuipqYGcrkc2dnZ00afyzSRM528sFR32xlQt2Bzq0mOhm+o9MQTT6C8vBwA8Oc//xm33367y0+5X8nodDocOnQIixcvNirwUvPHkJAQzJkzx6ZTkZZeF9+BWiwWc4Ulaxpser0e5eXl0Gg0oyQLXBnTRM7097ZEd9sZ2EvmyFro1NKFCxewefNmsCyLhIQE/O1vf8OKFSucfvj8sUIIQWdnJ6qqqoy0gwkhaG5uRmNj44Tmj/Y4AwGX7y0quTHV5rWzTbCtgRCCmpoayGSyMZuAVPZHKpWOqbvtaKjOtyXyD46AEAKlUgmZTIZdu3bhhRdeAABs27YNTz75JPLy8lw+qb9SofkWAKSlpXFfp+aPBoMBOTk5o84MVKvWz88PGRkZdrmf1Wo1VzDp6+uDn5+fUYNtsveWs02wrWFgYAAlJSWYMWPGmIUZOkBDpTRNdbcdHYP6+vpQWlqKpKQkm8scWQvfAPiZZ57Bl19+CW9vb/zqV7/CT3/6U6P3vhvHotVq8e233yItLc3IT43KHM2cOXPUhC0hBGq1GhUVFVxeY49msqlM7VS3aKmfDvUhc/UiJpVmGhgYQG5urtnXmH9v0SaAqe62I6FbjbGxsaP8rpwJbfJfuHAB1113Hbq7u5GQkIBf/epX2LZtm0v4yEwnXK6gXVxcDC8vL24yQK1Wo7i4GEKhcJSmkD2mIi25RrqKwu9CWar1xjcxm06FJEsSOT5j6W7Tbp0jtaHa2trQ2NhottvrTAgheOmll/D2229jy5YtOHXqFDIzM7F7925nX9qPFp1Oh8OHD2P+/Plcw4bKHCUmJo7SuLfHVOREGAwG9Pb2cjEIAFdYCg0NnfAa6BSVWCxGZmbmtCgkAZYlcnz4jUi5XA5CiFNWch0lc2QNvb292LBhA7y9vTF37lx88cUXeP311/Gzn/3M2Zf2o4TqPpaUlHD6wXSFn25SjGX+SAixSzPNHFM1U3I1E2xLoGZNQ0NDZteczWHa5BcKhQ5fyXWkzJE1fPXVV7j11ltx5513oqenB4WFhWhoaJg2G0NXGgaDAdXV1dBoNMjIyABweYIwMDDQrMwR9YWgn82OeF/TwRDaYPPy8uLOQYGBgRPGQVczwbYEumWRmJho8ZSzOd1tRzb5HS1zNFkMBgMeeOABnDp1Cg888AC+/fZbBAcH44MPPnD2pf1o0el0+O677zg/Nb7M0Zw5c0ZtGNEp6pKSEvj4+Dhs02KqMrXUBNtVvYtMofUr2jCwdDrdEnNte0GH0ahHnSvS3NyM9evXY+XKlZg3bx4OHjyIxx57DNdee62zL21a4XIF7fLycjAMg9mzZ3N6WxKJBHPmzJmS+aM94K9xS6XSCbXeNBoNSktLIRQKkZmZOW2m4KxJ5PjwV3boSm5gYCD3OtlzIrmlpQXNzc1mCwHOhBCCP//5z3jzzTdx9OhRZGZmcq/TdJnYvxLR6/U4duwY5s6di+DgYDQ2NqK5uXnK5o/2gr/GTbXeaIONStrwoYe+4OBgpKenT4tCEnA5kUtKSrLKLJVvfEd1Oak2sEQisVtj0VkyR5bQ39+PLVu2ICoqCrt27YKHhwdYloXBYJg2n01XInK5HGfOnMGaNWvGNX8EwJ2BnB2D+A02QgiXrJjqJAOXTbCpKdh0KCQZDAaUlZVBq9UiJyfHqob8WE1+e+pyOlPmyBIKCwtx880345133sHPfvYzMAzDvZfdOAeDwYC6ujoMDg4iKysLUqkU5eXlZs0fqXRifX29U83hDQYDV7SVyWRc4yg8PBzBwcGj3k+uboJtju7ublRVVU1JMsicubY9m/zOljmaCJZl8cgjj+DEiRMoLCzkpsdpc9iNc9DpdDh9+jRmzJiBqKgonD9/npO3MB1K4zfUoqOjkZKS4pS/HV+mtqenBx4eHmPK1E5H7yKdTofS0lIAQFZWltXnFVPJDXs2+WkNkU6/uyJtbW1Yt24dNm3ahL/97W/us88UcLmCdlVVFWegV1lZOa75oyOnIi1hPK03lmVRUlKCwMDAUcV5V8YWiZwpdN2dr7tNA78tu3XNzc1obW01a97nTAghePPNN/Haa6/h66+/xvz58+36fN9++y1ee+01FBUVobOzE7t3756w83f8+HH88pe/RFVVFWJjY/Gb3/wGd9xxh12v0xXQ6/X45ptvkJSUhK6uLvT39yM3N9eszBE1JHRGM80cdM2LxiClUsltRYSHh0OhUEy7QhJwuShjjbnLWPA17anuNn2dbLWS60oyR6YMDg7i2muvRWBgIPbu3Wv3TSF3DLKcgYEBHD9+HPn5+VzzKSMjw+EyR9bAN1PimyHToi01c7XlvWxvdDodSkpKwDDMlBI5Puaa/LbW3XY1mSNTTpw4gRtuuAH/93//hzvvvNPu7193DLIMlmXR2NgIqVSK0NBQNDQ0jGn+WF1dje7ubpto1doKvparVCoFy7JGDba2tja0trZOm0ISMDLJWVtbi4yMDJs1pvhNfqlUanPdbVeTOTKFZVn86le/wtdff43CwkK7F7zc8cdydDodzp49i+DgYG4TfizzxwsXLqC2thapqakuswFgukXLl6kNCgpCbW0tent7p40JNvWP8vLysqlhpbkmv610t6nMUWJiolVDUI6go6MD69atw6pVq/DPf/7T7nXBKz0GudSuOcMwEAqF6O/vR1dXF7KyskYdxF1hKnIsfH19kZCQgISEBK5oK5VKUVdXB0IIgoKCps1qG2CcyOXm5tpsgsjLywuxsbGIjY01WsktLi62ie427X5euHDBbDHSmRBC8M9//hOvvPIKDh06ZPdiNjBSvMvMzMRdd92F66+/fsLvb25uxqZNm3D//ffjP//5D44ePYp77rkHUVFRWLdund2v19kIBALU1tbC09MT+fn5Y5o/EkJcKgYxDIOAgAAEBAQgKSmJK9rSaSQAiIiIQHR0tMtc80TQRG7evHk2Lcr4+vrC19cX8fHxRrrbzc3NNlnJpTJH5iZKnM3w8DBuvPFG+Pj4YM+ePQ6RvXLHIMuhn3k//PADZs2aNar55KoNfWAkBgUHByM4OBgpKSlc0balpQWVlZVgGAYzZsxwOemdsaCJHJXksVUixzAM/P394e/vj8TERKPzYn19/ZRXcl1Z5ggATp8+jRtvvBGvvfaaQ4rZgDsGTQaGYTA4OIihoSEsWLBg1HajVqtFaWkpNBoNFixY4FK+LwKBAKGhoQgNDeU2fWUyGerr61FRUQGGYZCQkOBSecF40C1TW295MQyDoKAgBAUFITk5mTsvdnZ2oqamZkrm2q4uc8SyLJ577jl8+eWXDilmA+74M1mob0hISAhyc3NHmT+yLIva2lp0dHQgKyvLpT7n+FPHfJna8+fPQ6vVQigUIikpaVpIzqpUKhQVFSEoKMjmW738WJ2amsrpbre2tqKqqspqA2BXlzkCRqRMN23ahKVLl+Kdd95xyDn+So9BLjWhrdPpcOLECQwPD48yZQNccypyIuh0YUREBPR6vVVab87AXh258TDVJ7dGd5saV7a3tyM3N9elup+EELz33nv4n//5Hxw8eBBLly51+DUwDDNhV+6ZZ57BwYMHUVlZyX3tJz/5Cfr7+3Ho0CEHXKXz6OnpwalTpxAQEIAFCxa4nMzRZKHac42NjYiOjoZSqeTMlOjEgCVab86AJnKOnKTiT1ZYq7vtqjJHwIihzY033giWZXHw4EGnxEd3DBobQgiqq6tRX1+PjIyMUYdxGoMMBoNLNdPGgyae3d3diIqKwuDgIAYGBqZspmRvlEoliouL7ZLIjYc53W0qI2XJSq4ryxwBwLlz57B161a89NJLePjhh53yHnbHoLFRqVQ4efIkVCoVli9fPqroQvXvaZNnOshT6fV6lJWVQaVSITw8HL29vVAoFJxRWXh4uMsVlwghaGhoQHt7u8O3TKdiru3qMkcsy+K3v/0tPvnkExw/fhwpKSkOvwZ3/Bmfjo4OnDt3DkFBQViwYMGohr5Go0FlZSWUSiWysrLg6+vrxKu1DGqCLRAIEBwcDLlcPqFMrbNRKBQoKipCREQEUlNTHfpZba3uNpU5Sk1NdZoE1kRIpVJs3LgRmZmZ+PDDD53iY3UlxiCXmtDW6/UQCAQICAgwSrRdeSpyPGghiT9dSDXMqPHTRFpvzsBZiZxAIEBISAhCQkKQmpoKhUIBmUyGtrY2nD9/fkLdbUII6uvr0dnZifnz57vUhxwhBB9++CGee+457N+/3ynFbEs5ffo0Vq9ebfS1devW4fHHH3fOBTkQhUIBHx8fREREjCpmu+pU5FgQQrhCUl5eHpcQ8bXeWlpa4OnpyRWWXKHBxk/kcnNzHZrI8Scr+Cu5jY2NqKio4A6fY+luU5kjR1+3JajVatxyyy3QaDQ4dOiQSzX7TPmxxiBCCJRKJQCMKka68nbaWFATIZVKhYULF3JTNnwzpYaGhkmbKdkbaoIXGRnpcE1OsViMyMhIREZGGq3kVldXGzX5w8LCRhUTXVnmCABKS0txzTXX4Pnnn3daMdtSfqwxSKvVwtvbG4QQo884Qgh6enpQWlqK6OhoJCcnT4tzEN8Ee+HChdw9QwsmdIuWTiRT2TFnQhubPT09yMvLc/j1eHh4ICYmBjExMUa62xUVFeM2+anMka036mwFIQQvv/wyPvroIxQWFjqlmG0pP9b4A4xI4oWGho46CxBCMDw8jJKSEnh6emLBggXToqFmzrsoJSWFk6ltb29HdXU1V+OwlezYVOjv70dJSQlnpujoz2pvb2/MnDkTM2fO5Jr8UqkUxcXFY+puy+VylJeXu6zMETBScN+6dSvS0tLwwQcfOKWYbSnTLQa51Cvp7e2NhIQENDc3c18znYqcDokcIQR1dXXo6upCbm6u0ZSeUCjkAhZf662ystJI600ikThkKtoUZyZyfPgrubNmzTLS3a6vrx+luw0AdXV16O7udsli9qeffoonn3wSu3btwooVK5x9SePS1dU1ak0wIiICg4ODUKlUTv+gtSczZszgdBcp/Bg0HeIPMFJIqqiogFKpxIIFC4z+ZmKxGFFRUYiKijJqsJWWlhppvdnaoMMSnJ3I8bFkJZe+Vj4+PmhubnZJmSNgJKm/9dZbMTAwgK+//trliu2m/FhjkEAgQGZmJqRSKbeNBriG+eNk4Ztg5+XlGSWenp6emDFjBmbMmGFkEnT27FmIxWLujGRqpuQInJ3I8TFdyaUSLrTJT3W3w8LCIJfLXVbmCAAqKyuxZcsWPP300/jlL3/p8u/hH2sMCggIQGJiIsrKyrivEULQ1tbGadXGxMS4/N8PGFmxLi4uNmuCzS+Y0IlkqVSKpqYmeHt728XXxxJYlkVFRQWGh4eRl5fn9Mlxfs46XpPfYDBwA1wSicSp12wOQghee+01/Pvf/8axY8eQnp7u7Esalx9r/AGApKQk6PV6aDQa7mu0oVZWVsZNDE+Hhtp4JthjydTW19fDz8/PqMHmyBhEC8PJycmcUaozsaTJ7+XlhQsXLiAjIwORkZHOvmSz9Pf345prrkF8fDw++eQTl2/GTLcY5FIFbQAQiURcIjcdpyINBgMqKyuhUChGFZJMGUvrraGhAZWVlZyZkrlJHHvgSomcKXzdbb1ezyXAVHdbLBZDq9U6vQhmjt27d+ORRx7BZ599hrVr1zr7ctyMA8MwZmPQdCokUX1LhmFGFZJMMW2w8bXeDAYDt+puqdzGVHC1RM6U8XS3BQIBWJbF7NmzXS7+6HQ63HHHHejs7MTRo0ddstjlxhihUMidfWgMAqZHQx8AN0VliQm2aYONSv6UlZVxDTY6DWjvM6CrJXJ8xtLdlslkqKurAwBERUWBYRgQQlzqfVJdXY3NmzfjkUcewbPPPutS1+ZmNPwzEMuyqKmpcUmt2vGgpmCxsbFITEwc9z3Hn0im0pD8aUB+g82eMYhKo+j1esyfP9/lJAjGavK3tLRApVLBx8cHg4OD8PLycngRbjwIIXjzzTfx5ptv4siRI5g7d66zL8nNOFA/NXruYVmWm2JOTk52WZM/U7q6ulBVVYXZs2dPKH9h6i1m6uvjqC1aes3p6ekuOeVsTne7paUFbW1tAEYk1zQajUtMufMZHBzEtddei4iICHz++ecuF9uvBFyyoE0Tuek2kWRaSJrMG5Z/UKCGbvxJnODgYK64bY9CjysncqaIRCKuW0dXmvv6+iASifD9999PWnfbnuzfvx+/+MUv8J///AebNm1y6rVYSmRkJLq7u42+1t3djYCAAJf6gLAX9CA1HaciaSEpICAAGRkZk0q+TCV/BgcHIZVK0djYiMrKSrtqvbl6ImcKTYCjo6NRW1uLzs5OSCQSNDQ0oK6uzqgI58yVMr1ej7vvvhtNTU04duyYS2rqmsMdg4TQ6/VGDf3poNkPjDTGS0tLERMTg6SkpEldszkzJZlMhpqaGuh0Oq7BJpFIbH5fuXoiZwpNgHU6HQYGBhAfH8/pG9vCXNtW1NXVYfPmzbj77rvx29/+dlq8h4EfdwyiZyCtVovy8nJu08vVmrVj0d3djaqqKqtMwUQiESIiIhAREQGWZbkGG19ugzb5bXlfabValJSUQCQSjTLBc1V8fX3R29sLrVaLzMxMrhBnK3NtW0AIwdtvv41XX30VX331FXJycpxyHZPlxxx/AOMzUH19PS5evIjMzEyXnP43hXoXNTU1WXXNYrEY0dHRiI6OHiVTKxAIuOK2rWVqqf+Gq0oGmcIwDNdUy8rKgp+fHyenaQtzbVuhUChw/fXXIyAgALt27YKnp6dTrmOyTLcY5HKfmPwgNp0KSUqlEiUlJfDz80NGRsaUDjoMw8DPzw9+fn6YNWsWp/XW3d2N2tpam2u9TbdEjkLlCZRKJRYvXgxPT0+zutt8WQBH8uWXX+Kuu+7Cjh07xhXedzXy8/PxxRdfGH3t8OHDyM/Pd9IVORahUAiNRjPtpiJpIYnqW07lmhmGQWBgIAIDA5GcnMzdVxcvXkR1dbXV7tPmoI1AoVA4bRI54LJGuUwmw8KFC+Hj4zPmSi49VDly6txgMOD+++/H+fPncezYsWlxQKX8mGMQ3RLR6XTT6gwEXC4k2aIxzm+wpaSkYGhoiJMEoBts9LN9qg0wqj09XRJmYCT+NDU14cKFC5g/fz4nc8RfyaWNAGc1+ZuamrB582b89Kc/xR//+Mdp8z4GfrwxiMYfQgjOnDkDT0/PSQ/oOAsqjdLY2Ii5c+dO+TNPIBBAIpFAIpFwn+1Uc1uj0Rg12KayRatWq1FcXAxfX1/MnTt3WmwjA+CKdnyZI6q7zW8E8OU0HdnkJ4Rg+/bteOmll/DFF19gwYIFDnleW/BjjT8UoVAInU6H0tJSKBQK5OXlubTvC4UQgpqaGkilUsyfP3/K8n7mZGplMhmqqqqMtminIlNLCEFLSwtaWlpc1n/DHB0dHaipqTE6t/Gn3Kn2P920mYy5tq0YHh7GDTfcALFYjD179rhkIXgsplsMYggd/3EB6IHhm2++QVxcHCIjI+Hv7+/yh+CBgQGUlJQgKirK7rrTfK233t5eeHt7c4UlazpQtCNni8OfI2FZFlVVVRgaGkJubq7Zjhd/Jbe3t5fT3Q4LC7P72s7Ro0dxyy234F//+hduueUWp76HFQoFGhoaAADZ2dn4y1/+gpUrVyIkJAQzZ87Ec889h/b2dnzwwQcARoztMjIy8NBDD+Guu+7CsWPH8Oijj+LgwYNYt26d034PR2AwGNDQ0IDm5mbMmDEDERER02IqierwO2LDQq1WQyqVQiqVor+/30jrbbIHzumayNFDq1wux/z588c8pNDpAZlMhoGBAU53OywszK7mdwaDAY888ghOnTqF48ePIzo62i7PYynuGGQ5Go0G586dg1qtRnR0tMutTo4FNcF2xFmC3ldSqRSDg4NWmykRQjgj1+zs7Gkjx0ONczs6OpCbmztm3CWEcLrbMpkMCoXCSHfbnk3+1tZWrF+/Hlu2bMGbb77p9NjujkGWwbIs9u3bh+bmZqSlpXG5mKtPlfFNsLOzs+3qE8G/r6RSKYaHh7kt2vDw8Em9VlTnOyQkBGlpaU6/TyylpaUFzc3NyMnJMfKJMoXf5JfJZFAqlQ5p8hNC8MEHH+CZZ57B/v37cdVVV9nleSzFHX8sR6/X4+zZs5wE6qxZsxAVFeXyTTW+d1F2drZdz22EEG6LViqVQq1WczK1k2lc8z3fcnJyXM7/Zyza29tRW1uLrKysCTdP+Y0AmUw2obm2rVCpVLjpppugVqtx6NAhp7+2V3oMcqmC9okTJ3DvvfdizZo1WLBgAYKCguDp6YmIiAinmHNYAnV+TkpKcriuE1/rTS6XQyQScRNLE6148TtyWVlZ06YjB4wEp8rKSgwPDyMnJ8eiw6Ppa2XPldxvv/0WN954I/72t7/h5z//udPfs8ePH8fKlStHff3222/Hjh07cMcdd6ClpQXHjx83+pknnngC58+fx4wZM/D888/jjjvucNxFO4lf/OIXaGpqwsqVK5GVlQW9Xg9fX1+Eh4dzxW1n/z1NaWtrQ0NDAzIyMhAeHu7Q59ZqtdyKV09PD7y8vLikbqJ4PV0TOUIIzp8/j76+PuTm5lp8aDV9rey1ksuyLB5//HEUFhaisLDQJfQG3THIMpRKJTIyMrBixQosX74ccXFxGBoagr+/P3cOcvSm0UTQhKizsxPZ2dnjFjfsAd9Mqa+vD35+ftw5aLym0XRN5AghqK+v50zHJ9NwNdfkn8pAxFi0t7dj7dq1WLt2Ld5++22XiO3uGGQZ9957L7Zv347Vq1fjl7/8Jby9vTEwMIDAwEAuBrmavwXfuygnJ8fhDUClUsnFoIGBAQQEBHD31Xj35+DgIDcMNdWtOkfS1NSEtrY25OTkTLpx4IgmPyEEn3zyCZ544gns2bMHV1999ZQfc6q444/lLF68GEVFRVi0aBFee+01KJVKDA4OWt00cgR8ydmsrCyHG/7RLVqpVIqhoSFui3a8eM2yrFEu42pny7GgG3XWTJM7qsmv0Whwyy23oK+vD19//bXDz8XmuNJjkEsVtBUKBfbt24ddu3bhyy+/RGRkJNasWYP8/HyEhITAw8ODKyzZe8LWEuhNNWfOnFFOoI6Gr/Umk8lACDFa8eIXbKdrIgeM/J7l5eVQqVTIzc21qmPLN7+TyWTQarWQSCQ2Wck9efIktm3bhj//+c+45557nP4edTM5Ghsb8dlnn2HXrl0oLS3FkiVLcPXVVyM7OxuEEHh5eXFJnbO3R2hhg5o1OXu60GAwcAVbuVzOrcqFhYWN0nobGhpCcXHxtEvkCCGoqqrCwMAAcnNzrU7s6UouTexstZLLsiyefvppHDx4EMePH0dCQoJVj+PGORgMBhw7dgw7d+7E3r17odfrsXHjRixfvhyJiYkYGhriNiJcYXuEX0jKzs52ekKk0+mMYtBYZko0kevv70dOTo7Tr9tS+DJHU01A+ebatmzyd3V1Yd26dVi2bBn+/e9/O1W/283kePHFF/HnP/8Zd955J2pqanDs2DHMnj0bmzdvxtKlS+Hn54f+/n6uYBsREeH07RFnF5JM0Wg0Rlu0tGlkemakppUJCQmIj4936jVbCiEEjY2NuHjxInJzc6ecO9qryb9z5048+OCD2LlzJ9avXz+la3TjWAoKCnDbbbdhwYIF6OrqQmtrK1avXo0NGzZg/vz5UKlULtdg43sXzZkzx+mfeaZbtFSmljaNgMvT5CqVCtnZ2U5/DS2FyhzZaqPOtMlvC91trVaL2267De3t7Thy5Mi08S6a7rhUQZuPQqHAl19+iV27duHgwYMIDg7G2rVrsWjRIkREREAoFHLBzNGGE3Tds7293SUKSabwtd6kUim0Wi23ihISEoKGhgb09vZOq44cMJKElpWVQaPRIDc31yYHV9qtowdQhUJhte72999/j2uvvRZ//OMf8dBDD02bIp2b0dANhoKCAuzatQs//PADFi1ahKuvvhq5ubkQCARGDTZHb48YDAZUVVVhcHDQJQsydMWLxiBasA0PD4dAIEBFRQXi4+OnVcHVEpkja7DVSi7LsvjNb36DnTt3orCwEMnJyTa5PjfOQa/X47vvvsPOnTuxZ88eKBQKbNiwAStWrEBKSgoUCgW8vb25c5A9JWzModVqUVZWBkIIsrKyXG4dmG+mJJPJuIKtRCJBe3s71Gq1xRtergD1DOnp6RlX5sgaTJv81upuS6VSbNiwAbm5uXj//fednti7mRwHDhxAUlISZs+eDUII+vr6sG/fPhQUFODw4cOYNWsWV9wODg7mNiJoDHJ0g416F/n7+7tEIckU2jSiDTaxWMxp/jc1NSE1NXXSppXOwlKZI2uxVZN/7969uPfee/HJJ59gy5YtNr1GN/bngw8+QFBQELZu3coNkOzcuRO7du1CbW0tVq5ciY0bN2LhwoXQaDROb7DZ0rvIHpjbopVIJOjr6wPDMMjJyXF6E9BSLJU5sha+7ra1TX6dToc777wTDQ0NOHbs2LTxZLkScNmCNh+VSoWvvvoKu3btwv79++Hj44O1a9ciPz8f0dHRRq6v9hZ7p0WNgYEBZGdnO31CaiJMtd4UCgWEQiESEhIQHR09bZI5g8GAsrIy6PV6ZGdn2y0AW6u7XVxcjC1btuCFF17A448/7nIfam6shxCCixcvYteuXdi1axdOnjyJ3NxcrFmzBvPnz4dYLIZIJOJiUFBQkF3//tQoxVULSabwG2ydnZ3QarXw9/fHzJkz7apfZktYluW08azdDLEUa1ZyCSF48cUX8cEHH6CwsBCzZ8+22/W5cTwGgwGnT59GQUEBdu/ejd7eXqxbtw4rVqxAeno6FArFpOR+pootTbAdAW2wdXd3o6OjA4QQhIeHIzIy0qEmZdbClzmaP3++Xaepxmry0wmvsZqncrkcmzZtQlpaGj7++GOXf03dTI6BgQEcOHAABQUF+OqrrxAdHY3Nmzfjqquu4gokdBrZEfJsjvQusgW0YNva2oq+vj6joSxbyx7aGrrV293dPWmZI2ufz5om/8GDB3HHHXfgww8/xPXXX2/Xa3TjWOh7kA4ZlZWVYdmyZdi8eTPy8/O5+8uRDTbqXeQMyVlr0Ov16O7uRl1dHQwGAzeUZW6L1tWYisyRNYynuz1Wk1+v1+Pee+9FRUUFjh8/7nAJ0B8706KgzUetVuPo0aPYtWsX9u7dC6FQiLVr12Lx4sVcQAkLC0NERARCQ0NteoPqdDqUlZXBYDAgOzvb5QtJfPR6PUpLS6HX6xEeHo6enh4jrTdX1OakGAwGlJaWwmAwICcnx2GJkqW622VlZdi0aROeeeYZPP300y5/sHZjPYQQdHV1Yffu3SgoKMC3336LefPmYc2aNcjLy4O3tzcYhuGSOltvj6hUKpSUlMDHxwdz58516STIlM7OTlRVVSE5ORkGg4ErllBdPHsaBE0FKnNEJzodGffpdAWdGDC3kksIwf/+7//in//8J44dO4aMjAyHXZ8bx8OyLM6dO4edO3di9+7d6OjowJo1a7Bq1SrMnTsXw8PD3CSgPeTZBgYGUFpaisjIyGlRSKJotVoUFxdDLBZj1qxZ3NSSWq1GSEgIF4Nc7VxH5VGmKnNkLZbobvf19WHz5s2Ij4/Hp59+6nKvoRvbolAo8MUXX6CgoABffvklQkNDueJ2dHQ0NwloL3k2Z3oXTQXqdzJv3jwIhUJu0Ein03Gyh2FhYS7VDLKlzJG1WNLk//rrr3Hrrbdi+/btuPnmmx1+jW4cByEETU1NXIP/3LlzyM/Px+bNm7F48WIwDGP0WWWPBpszvYusRaVSobi4GP7+/khPTzfa5Odv0ZrK1DoTW8scWXsNE+luGwwGPPjgg/jhhx9w/PhxREVFOfw6f+xMu4I2H51Oh2+++YZbydXpdFi7di2WLFnCaZLRG1QikUzpBqWFJG9vb+4wMl2giZyHhwcyMzO5azfVeqPmd85YXx4LWognhCA7O9tpBz26kktfL61Wi6NHj0IgEGDHjh14/PHH8fzzz7vEa+bGMRBCIJfLsWfPHhQUFKCwsBCpqamcNJKvry83CWiL7RFqIBQREYHU1NRp9V6jh7/MzEyEhoZyX1epVNyBijbYaMx2he0Xg8GA8vJyaLVap6/mma7kqlQqbN++HR4eHvjmm29QWFiIzMxMp12fG8dDZbhocbu5uRmrVq3C6tWrkZmZCZVKxWnZh4eHIzg4eEpxgxaSEhMTERcXZ8PfxL7wE7mMjAyjOGyNmZKjoAbYCoXCpjJH1mLa5C8uLsb333+P6upqJCcnY+/evU6/RjeORalUchu0Bw4cgK+vLzZv3oxVq1ZhxowZ6O3ttak8myt5F1kKLcBduHBhlHEuIQRDQ0NcsWR4eNiowebM+4nKHFGJSmfrpQOjm/w7duxAf38/Tp06hbfffhu33377tDobu5kahBBcuHCB26A9deoU8vLysGXLFixduhRisRhyudxmDTZX8y6ylOHhYRQVFUEikSAtLc3o9zeVqdVoNEYNNmflPfaWObIWfpO/o6MDv/nNbyASiTA4OIiTJ09Oq7PxlcS0LmjzMac3uWbNGixduhSJiYkghEAikSAiIgISiWRShVFqYBYeHo7Zs2dPqw9LtVqNoqIis4kcH2qmRA8JdMLLERIKY6HX61FSUgKBQICsrCyXaSLQbt1vfvMbvPfee2BZFkuXLsW9996L2267zdmX58YJ8PUmd+3ahcOHDyM+Ph7r1q1Dfn4+AgICuA54RETEpFdMaSFp1qxZiIuLmzYxaLxEzhStVssVlnp6esY0U3IU/M0Qe8ocWQMhBK2trbjrrrtw9uxZCIVCrFq1Ci+99BLy8vKcfXlunACVpaB6k9XV1VixYgXWrFmD7OxsaLVaMAzDxaDJrphevHgRdXV106qQBIwUrIuLixEWFjbh+c0SMyVH4UiZI2tgWRbHjh3D3XffDYVCAYFAgHXr1uHDDz90iWakG8ejVqtx5MgRboNWLBZj8+bNWLlyJRISEkZJbUwmt3B176KxoBPOUqkUOTk5E8YROo0slUoxODjIyf2Eh4c7tKDsSJkjazEYDPjf//1fvPLKK/D19YVQKMTDDz+MF1980dmX5sYJEELQ2dnJbdCeOHECmZmZ2LJlC5YvXw5vb2/I5XKuwWZqFj0RfO+i6SA5S6HyTDNmzEBiYuK4vy8hBMPDw0Yytc7YonW0zJG1DA4O4qabbsK5c+cgEong5+eHd999Fxs3bnT2pf3ouGIK2nwMBgPOnDnDFbflcjlWr16NpUuXIjU1FYQQziRxou6TXC7nDMzi4+OnTSEJGDkYFRcXIzQ0dFRHbjzoJCCdGADAvVa2lnEZC51Oh5KSEohEIqOpclehoaEB69evx89+9jM8+uijOHjwILy8vHDHHXc4+9LcuABUb3LXrl04dOgQoqKisH79euTn5yM0NBR6vd7i7ZGLFy+itrYWc+bMQWRkpAN/i6kx2USOjzkzJfp6OcIE2GAwoKSkxOmbIWNBCMG//vUv/P73v8eXX36JsLAw7Nu3Dxs3bnTrZ7vhpohocZvqTVLdf71eD0KI0YrpWPcUv5CUmZmJ4OBgB/821jOZRM4Uc2ZKjtIo5xtgO1rmyFKGh4exbds2CIVC7N+/H01NTSgsLMSjjz46rc7JbuyDTqfD8ePHuTzMYDBwk9vJycmcKRl/e2SsGDTdvIso9LqpefdkC9IajYbLwxy5Rcs3wM7JyXHJYjYAnDlzBtdddx3+9Kc/4Re/+AXOnj2LoaEhrFmzxtmX5sbJ0A1aWtwuLCxEWloatmzZgpUrV8Lf3x8ymYzbYKMSkWPdU9S7iGXZaSU529vbi9LSUqu36pyxRUsIQU1NDeRyudNkjiyBZVk899xz2LNnDwoLCxEXF4cTJ04gOTkZsbGxzr68Hx1XZEGbjzm9yVWrVmHp0qVIT08HIQQhISGIiIgYpZ/Y3t6O2tpapKWlTTs9nMHBQRQXF1uVyPExldqgWm+0EGePQo9Op0NRURE8PT1dUt6lubkZGzZswHXXXYe//vWvDjNS+Pvf/47XXnsNXV1dyMzMxFtvvYUFCxaY/d4dO3bgzjvvNPqap6cn1Gq1Iy7VDQ+qN7lr1y588cUXCA4OxoYNG7B48WJERERAq9Wa3R6h2mEXLlxAVlbWtCok8RPQqa6qsixr1GDjF+LsYaZEN0MYhkF2drbLxR9CCHbs2IHnnnsOBw8exLJlyxzyvO74Mz0hhKC5uZkzUzp79iwWL16MtWvXctP8/AYbXz+R3sf9/f3IycmZNoUkYOqJHB+DwWDUYKNJsD3MlKgBtk6nc7rM0VioVCrccMMN0Ov1+PLLLx02ve6OQdMTukH7+eefY8+ePVAqldiwYQNWr16NtLQ09Pf3c5/rdION3lPT1buI3sdarRbZ2dlTlg6hW7Q0Bnl6elo1ZToRriZzNBbnzp3D1q1b8fvf/96hTTR3DJp+0A3avXv3oqCgAEeOHMGsWbOwdetWrFq1CkFBQZDL5WM22Kard5FUKkVFRQXS0tIQHR095cdzxBatK8ocmYNlWfzud7/Dxx9/zMmNOgJ3/BmbK76gzYdOvdDErqmpCStXrsTy5cuRkZEBQgi3WqFUKtHR0YHMzEyEhIQ4+9InRW9vL8rKypCQkMBpidsCvtabVCqFUqnkXF/Dw8NtctDUarUoKiritMpdzXW3ra0N69evx4YNG/D3v//dYdf36aef4uc//zneeecdLFy4EG+88QY+//xz1NbWmjWk2LFjBx577DHU1tZyX2MYZlqtil+JKJVKfP311ygoKOD0JtevX4+lS5ciKioKWq2Wu6eocWt2drbLaIdZAtWd1mg0Nknk+BBC0N/fzxW36etFG2xTLf7QzRChUOhSMkcUQgg++ugjPPnkk9i3bx9WrlzpkOd1x58rA1O9ydOnTyM3Nxfr16/HwoULIRQKuQZbaGgoOjs7odfrbX4f2xtbJ3J8WJZFX1+fXcyUXFnmiKJWq/GTn/wEQ0NDOHTo0LgyUrbEHYOuDAwGA06fPs1Nbvf19WHdunVYs2YN5syZg8HBQRgMBs74uLW1FT4+Pi453DIWdJoTALKysmx+HxsMBiMteyolNVWvFmqArVKpXFLmiFJaWopNmzbh17/+NZ588kmHFbPdMejKYGBgAPv37+c2aGNiYrB161ZcffXVCA8PNxqc8ff3R1NTEyIiIqaV5Gx7eztqamowd+5cu5hW2mOLlhBiNAjlqpshhBC8/PLLePfdd3Hs2DHMmTPHIc/rjj/j86MqaPMxpze5fPlyLF26FN9++y2WLFmClStXIjo62iXMgSxFKpWisrISqampiImJsetzUZ0lmUxmE603Wsz29fUdV+/bWXR0dGD9+vVYsWIF/vnPfzr0cL1w4ULk5eXhb3/7G4CRg2dsbCweeeQRPPvss6O+nxpV9vf3O+wa3UwOtVqNo0ePoqCgAPv27YNIJML69euRnZ2NgoIC3HrrrZg9ezaioqJGbY+4KvZO5PjwnaelUumUzZR0Oh1nnuuKyTMhBJ999hkeeeQR7Nq1C2vXrnXYc7vjz5UHX29y165d+PbbbzFv3jxs2LAB8fHx2LlzJ+655x5ERUUhMjLSJg0jR0A36zIyMuySyPGxpZmSqxhgj4dGo8Gtt96K7u5uHD582KFbQ+4YdOXBsizOnj3LbdB2dXVhzZo1WLt2LcRiMU6ePInrrruOkwSYSJ7NFdBoNCguLoaXl5dDzhF0i5bGIIPBwG3RhoaGWhxH+IMIubm5LhvrKysrsXHjRjzxxBP49a9/7dACozsGXXkMDQ0ZbdBKJBJs3boVq1evRn19PQYHB5Gbm8vFoKk2rR1BS0sLmpubHTaQaYstWr7MkStvhhBC8Prrr+Ott97CsWPHMG/ePIc9tzv+jM+PtqDNh+pNfvTRR3jjjTcwNDSEBQsWYMOGDZx+c0BAABfQXHUFoqOjA9XV1XbryI0HdX2VSqXo6+uDn58fF9As0XrTaDSceeWcOXNcrpjd1dWFDRs2YOHChXjvvfcc+oGm1Wrh4+ODnTt34tprr+W+fvvtt6O/vx979+4d9TM7duzAPffcg5iYGLAsi5ycHLz88ssO6yS6mRxUb3LHjh349NNPwTAMrrvuOqxevRoJCQlQqVTc9kh4eLhLftg7OpEzRalUcknd4OAgF7PDw8Mn1GDTarVG1+5q8QcAdu3ahfvvvx+ffvopNm3a5LDndcefKx++3uSOHTtw+vRpBAYG4t5778WyZcvg6+uL4eFhbhsiPDzcJQsejk7k+EzFTMlVDbD56HQ6/PznP0drayuOHj2K0NBQhz23OwZd+bAsi9LSUhQUFODDDz/EhQsXMGvWLDz++OPIzs6GSqWCWq3mirVhYWEu1/RRqVQoKipCUFAQ0tPTHX6OIIRgcHCQKyypVCqjJv9YQxFUHoVu47hibAeA6upqbNiwAQ888AB+97vfObSY7Y5BVz5KpRJfffUVt8WvUqmwfPlyPP7444iLi4NcLh8lEelKn9V8v5OcnBwEBAQ45Romu0XLN8DOyclxyfwWGPnd3nzzTbz22ms4fPgwcnNzHfbc7vgzMa51GnASDMMgJSUFP/zwAxYvXoxXX30VX331FXbv3o0//OEPWLhwIVatWoXs7Gw0NDTAz8+Pc+l2FU3J1tZWNDY2Ijs72ykSKV5eXoiNjUVsbCx0Oh1kMhlkMhlaWlom1HpTq9UoKipCYGAg5syZ43IrPTKZDFu2bEF2djb+3//7fw7/AJPL5TAYDKPWRCIiIlBTU2P2Z1JTU/H//t//w7x58zAwMIDXX38dixcvRlVVFWbMmOGIy3YzCcRiMZYsWYJ7770Xt99+O2655Rbs2bMHv//97zE8PIz169dj+fLlSE5ORm1tLQIDA7kY5ArbI85O5ADAx8eHM+/VaDRcg62hoWFcMyW6GUL18VyxmH3gwAH84he/wH/+8x+HFrMBd/z5MUBX1pctW4annnoK//M//4NZs2Zh9+7deOuttzBr1ixs3LgRixcvhkajQXV1NYKDg7kY5OztEX4il5ub65REjmEY+Pn5wc/PD7NmzeLMlLq6ulBbWzummZKrG2ADIwX3e+65B42NjSgsLHRoMRtwx6AfAwKBADk5OWhvb8cbb7yB//3f/4VKpcK///1v1NbWYuXKlVi3bh2Cg4PR0tKC8+fPG/kfObsIq1AoUFRUhIiICKSmpjolj2EYBoGBgQgMDERycjLXYLt48SKqq6sRFBTEFbfpYBaVOaIFD1drElDq6uqwefNm3HXXXQ4vZgPuGPRjwMfHB9dddx0aGhpw8OBBPP/886irq8M999wDDw8PbN68GevWrYNYLEZDQwMqKytdpsFGtad7enqQl5fntNoUwzAIDg5GcHAwUlJSuC3alpYWVFVVjdqipTJHarXapWWOCCF4++238corr+Crr75yaDEbcMcfS3BPaPNoaGhAXFwcdzDi603u3r0bJ0+eRG5uLlatWoX58+dDLBZzhZKIiAj4+vo6/EOWGsddvHgR2dnZDtMztBS+1ptMJoNAIDBaRaGT2SEhIUhLS3O5YnZPTw82bdqE5ORk/Pe//3XKobmjowMxMTE4deoU8vPzua8//fTT+Oabb/D9999P+Bg6nQ5paWm45ZZb8NJLL9nzct1MgXPnziE3N5e7D6jeZEFBAXbv3o3e3l6sXbsWy5cvx+zZs6FWq52+PaJQKFBcXIzw8HCnJXLjwTdT6unpgYeHBxeDvL29UVxcDD8/P5eUOQKAQ4cO4ec//znee+893HjjjQ5/fnf8+fHAsiy++eYbI212vt7kV199hejoaGzcuBHLli1DaGgohoaGuEKJMxps/ETOVY0rxzJTCgkJQW1trdO2WizBYDDg/vvvR3FxMQoLCxEZGenwa3DHoB8PMpmMk4AERu7vuro6FBQUoKCgAOXl5Vi2bBk2btyIvLw8GAwGKBQKrlDijAZbf38/SkpKEBcXh4SEBJc7AwEjg0M0D6NbtBKJhDO5dVWZIwBoamrC+vXrcdNNN+H11193yjnNHYN+PJw5c4bbFgdG/m6FhYXYuXMn9u7dC5ZlsWnTJqxfvx4pKSno6+vjNtic0WDjG7nm5OS4xJCTOcxt0ep0OggEAq6m5ooQQrB9+3Y8//zz+OKLL7BkyRKHX4M7/kyMu6BtIeb0JufOnYurr74aeXl58Pb2hre3N1dYskRmwxbXVFNTA5lMhpycHJc3jqNmSjSx0+v1IIQgKCgImZmZLneY6u/vx+bNmxETE4OCggKndQ6tWTUxx4033giRSIRPPvnETlfqxp5QvUla3O7o6MDq1atx1VVXISMjA2q12uHbIwMDAygpKUFsbCxmzZrlkokcH4PBwGm90Rjk7e2NlJQUSCQSlytoHz16FLfccgv+9a9/4ZZbbnHK6+uOP24oCoUCX3zxBQoKCji9SVrcjoyM5JIUGoPs3WCbLokcH2qm1NXVxTX5o6OjERERYbWZkr0wGAx45JFHcPLkSRw/ftzuvixj4Y5BboCRnKepqYmTBCgqKkJ+fj42btyIhQsXgmEYDA4OIigoiItB9l5fl8vlKC8vR3JyMmJjY+36XLZCq9Wiu7sbDQ0N3BmIFuLMbdE6k9bWVqxfvx5btmzBm2++6bT46I5BboCRz+8TJ07g888/x969e6FUKrnidnp6Ovr7+x3aYNPr9UZyQa464WyKUqlESUkJtFotDAbDuFu0zoQQgg8//BBPPfUU9u/fjxUrVjjlOtzxZ2LcBW0roHqTe/bsQUFBAY4dO4bU1FSsWbMGeXl58Pf3h4eHB3egCggIsPnNSRO5oaEh5OTkuKyu91gMDw/j7Nmz8PLygsFggFqtNtJZcnZQHhwcxNatWxESEoI9e/Y4PVFeuHAhFixYgLfeegvAyN9/5syZePjhh82aAZhiMBgwZ84cbNy4EX/5y1/sfblu7AzLsigrK+NMbVtaWrBy5UqsXLkS8+bNg0ajsfv2SE9PD8rKypCUlISZM2fa9LHtjUqlwrlz5+Dr6wsfHx/IZDLodDpufVAikTi9wfbtt9/ixhtvxFtvvYXbb7/dqQc8d/xxYwpfb/LgwYPw9fXFpk2bcNVVVyEmJgYDAwPw9/fnYtBEOvaTZbomcsBlvwEfHx9ERUVBLpdbbaZkL1iWxRNPPIGjR4+isLAQcXFxTrsWwB2D3BhDN2hpg//UqVPIy8vDpk2bkJ+fD5FIhIGBgSmb1Y9HV1cXqqqqkJ6ejqioKJs+tj2hBthisRgZGRncoJFMJoNQKORiUHBwsFMbbO3t7Vi3bh1Wr16Nd955x+nNPncMcsPHYDDg1KlTXAzq7+/H+vXrsWHDBsybNw+Dg4NGDbaJvDQmi1arRWlpKee94eycxVJMDbBpTc3cFm1QUJDTch9CCP773//isccew549e7B69WqnXAfFHX/Gx13QniKEEPT19WHfvn0oKCjA4cOHER8fj7Vr12LhwoUIDAyEWCzmkjpbdL+pgYdWq0VOTs60SuSAkWL2uXPnEBUVheTkZDAMA4VCwU1uO3uFWaFQ4LrrroOXlxcOHDjgEs2CTz/9FLfffjv++c9/YsGCBXjjjTfw2WefoaamBhEREfj5z3+OmJgY/OlPfwIAvPjii1i0aBGSkpLQ39+P1157DXv27EFRURHS09Od/Nu4sSWEEFRVVXHF7ZqaGqxYsQKrVq1CZmYm9Ho9vLy8uAabv7//lGNQd3c3qqqqkJaWNq0SOeByMTs0NJSTOSKEYGhoiJvcttRMyV6cOnUK119/PV5//XXce++9Tp9WcMcfN+OhVqtx5MgRFBQUYN++fRCLxdi0aROWL1+O+Ph4DAwMwNfXl4tBU90mo7rTQqHQJbe7xmMsA2xrzJTsBcuyePbZZ7Fv3z4cP34cs2bNcthzj4U7BrkZC0IIOjo6uA3aEydOIDMzE5s3b8aSJUvg5eWFvr4++Pv7czFoqg22ixcvoq6uDnPnzkVYWJiNfhP7M54BNt2ipecglmURFhaGsLAwhxvgdXV1Yf369Vi8eDG2b9/uEnJM7hjkZixYlsUPP/zAFbe7urqwdu1abNy4EVlZWRgeHrZpg02tVnNN8blz57rE/WEJ1ACbYRhkZ2ePum7+Fq1MJuP8XcLCwhAaGurQptbOnTvx4IMP4rPPPsPGjRsd9rxj4Y4/4zN9sgAXhWEYhISE4I477sAdd9yBgYEBHDhwAAUFBdi+fTuioqK44jZdaafFbWvWS2kiRzWHplMiB1w2TomOjkZSUhJXqKFmSgkJCZzWm1QqRV1dHTflFRYWZndZFaVSya1k7N271yWK2QBw8803QyaT4YUXXkBXVxeysrJw6NAhziCgra3N6L3U19eHe++9F11dXQgODkZubi5OnTp1RQaxHzsMwyAjIwMZGRn47W9/y+lN7ty5E88//zyWLl2Kq6++Gjk5OWhra4OHhwcXg6zZHpmuiRwwcn8XFRUhLCzMSO+bYRgEBAQgICAASUlJnJlSe3s7qqur7TrlZcoPP/yAG264AS+//LJLFLMBd/xxMz5eXl7YvHkzNm/ebKQ3+fTTT8NgMGDTpk1YsWIFxGIxmpubpyTPRhM5X19fZGRkTJtEDrhsgE3Nc/m/92TNlOwFy7J4/vnnsXv3bpcpZgPuGORmbBiGQUxMDB5++GE89NBDkMlkXHH75ZdfRlpaGrZs2YKlS5eit7cXDQ0N8PPzM9pgsxRCCFpaWtDS0oLs7GwEBwfb8TezLRMZYAsEAoSGhiI0NBSzZ8/GwMAAZDIZZ4BHG2z21giWSqXYvHkz8vLy8O6777pMjHfHIDdjIRAIsGjRIixatAivvPIKSkpKUFBQgNdffx2tra1YvXo1Nm3ahOjoaMjlctTX11vdYBseHkZxcTHnPebszQVLscQAm26IhIWFgWVZrslfU1Pj0C3affv24YEHHsAnn3ziEsVswB1/JsI9oW1H+HqTX375JYKDg7Fu3Trk5+cjPDwcDMNwRZKQkJAJgxJdU/X29p5WHTnK0NAQioqKJqW3yzdT6u3thZeXF/ea2VrKRaVS4eabb4ZSqcShQ4cQEBBgs8d248bR8PUmd+/ejbNnzyI/Px9XX3015s+fD4ZhIBQKuQOVJatdzc3NaGlpQVZW1rRK5ICRQ2BRUREiIyO5zRBLUKvVXAyiZko0BtlayqW4uBhbtmzB888/jyeeeMIlitlu3FgL1ZvcuXMn9uzZA6VSiQ0bNmDFihWYPXs2BgcHJyXPNl0TOWDkfGGtAbY5MyUag2wp5UIIwUsvvYQdO3agsLAQaWlpNntsN24cDd2g3bt3LwoKCnDkyBEkJiZi8+bNWL58OYKCgtDb28tpSE+k30oNKru6upCTkwN/f38H/0bWM9ZmiCUQQrgmv1QqhUKhQHBwMCcLYMst2p6eHmzatAmpqan4+OOPXdYozo0bSyCEoLKyktugraurw8qVK7F582YsWLAAWq0Wvb29RnnFeIN7Q0NDKC4uNtpwnw7odDoUFRXB09PTKgNs0y1apVKJ0NBQLgbZcov2iy++wO23344PPvgA27Zts9njurEv7oK2g6B6k7t27cKBAwfg6+uLtWvXYvHixdzKflhYGCIiIsyuVSiVShQXF3OTPdMpkQNGNKmLi4sxc+ZMqyd+9Ho9enp6IJVKOWduOi0wVa03jUaDn/70p+jp6cHXX3+NoKAgqx/LjRtXg+pN7tq1C7t27eL0JlevXo0FCxZAKBRyDTZz2yOEENTX16Ozs3PaJXLA2Jshk0Wn03Fak3K5HJ6entwhdKpyUuXl5di0aROeeuopPPPMM9PmoOrGjSWY05tcu3YtVq1ahfT0dCgUCohEojHl2aZrIgeMvRliDRqNxqjJbyszJUIIXnnlFbz99ts4duwY5s6da/U1unHjigwMDGD//v0oKCjAV199hZiYGGzduhVXXXUVJBIJenp6uKGZiIgII3k2lmVRXV2Nvr4+5OTk2NwTwJ7QzZDAwEDMmTNnyrFTpVJxMai/v5/bop2qGXlfXx+2bNmC2NhYfP7559NOTtONm/EghKC2tpYzta2oqMCyZcuwZcsW5Ofnw2AwoKenZ8wNtr6+PpSWliI+Ph7x8fHT5gxEN0O8vb1HyRxZC22wyWQyDA4O2myL9vDhw/jZz36Gf//737jlllumfJ1uHIe7oO0EqN7krl27sHfvXohEIqxbtw5LlixBbGwsp1tG1ypoMTsyMhIpKSnTJohRBgYGUFxcjISEBMTHx9vkMVmWNdJZ4r9moaGhk+r+abVa3HbbbWhvb8eRI0cQEhJik2t048YVIYSgs7MTu3fvRkFBAU6cOIF58+Zx0kienp4ghHCHg6CgINTW1qK3txe5ubnTKpEDrNsMsQR6+KQxiMpJWWOmdP78eWzYsAGPPPIInn/++WkX4924mQwsy+Ls2bPYuXMnpze5Zs0aXH311cjIyIBSqTS6nwCgrKwM8fHxSEhIcPLVTw66GRIREWHz85tOp7OJmRIhBG+88Qb+8pe/4OjRo8jKyrLZNbpx44oMDQ0ZbdBKJBJs2bIFK1as4GQBxGIxIiIiIJFI0NraCrVajezsbKebxE8GuhkSHBw8SubIFphu0Xp7e3MxaDJbtAMDA9i6dSvCwsKwe/duu8oquXHjbOgGLT0DFRUVIT8/H1u3bsWSJUsAgBuaiYiIgIeHBxoaGpCamooZM2Y4+eoth26G+Pn5ISMjwy7DmOa2aGkMmkyT//jx47jpppvwj3/8A7fddps7D5tmuAvaTkan0+H48ePcSq7BYMDatWuxZMkSxMfHo6amBuHh4UhKSkJ6evq0W7/q7+9HSUkJZs2ahbi4OLs8ByEEAwMD3CqKRqOBRCLhdJjGe810Oh3uuusu1NfX49ixY5BIJHa5RjduXBHqLk2L24WFhZg9ezbWr1+PhQsXQiwW4/vvv8fixYuRkpKCyMjIaSV1ZIvNEEugZkr0UGUwGIy03sZ7zWpra7Fhwwbcfffd+MMf/uA+RLn5UcGyLEpLS7nErqWlBVdffTXWrFmDzMxMnDhxgtusmDVr1pS3sRyJrTZDLGEsM6WJJO0IIfj73/+OP/3pT/j666+Rl5dnt2t048YVoTKDdIPW398fW7ZswcqVKxEcHIx9+/Zh9erViI6ORlRU1KSaRc6EGmBLJBLMnj3b7tc81hYtbbCNFYOGhoZw3XXXwdfXF/v3759WDQM3bqYKIQRtbW3c9trp06exYMECbNmyBcuWLcPXX3+NyMhIxMfHIyoqyuwGmytCN0MCAgImLXNkLdZu0X733XfYtm0b/vrXv+Luu+92+dfWzWjcBW0XQq/X47vvvsPnn3+OPXv2oL+/HxqNBjfddBNuvfVWGAwGh5ly2IK+vj6UlJQgOTkZsbGxDnlOQghnpiSTyTitN/qa8Q9Ker0e9913H8rLy1FYWMgJ67tx82PEVG/y8OHDEAqF8PX1xRtvvAGJRMKZctCpJVcubttjM8QSCCEYHBzkGmxqtZqL2xKJxGiNtqGhARs2bMBPf/pTvPLKK9OmUOfGjT3g603u3r0b58+fByEEt9xyC+666y5otdpR21iues/QYnZMTAwSExMdmiDxzZRkMtmYZkqEEPz73//G7373O3z55ZfIz8932DW6ceOKqNVqHD58GLt27cLu3bsxPDyMkJAQvPbaa0hJSUFvb6+R/5GrNtjsuRliCaZbtIQQLgbxt2iHh4exbds2CAQCHDx4cEqSJW7cTHcIIejo6ODkIb/99lsAwE033YQHHngAXl5ekMlkRs2i4OBglyvAqtVqnDt3zm6bIZZgbovWXJP/zJkzuO666/Dyyy/jwQcfdLnX0o1luAvaLsonn3yCu+66C8uXL+fW/VevXo1ly5YhJSUFBoMBISEhiIiIQFhYmMtpjfX29qK0tBQpKSlOXY9RqVRcYWlgYAABAQHo7e1FVFQU3n77bZw5cwbHjx9HdHS0067RjRtXQy6XY926ddBoNEhISMDRo0cRExOD9evXY8mSJQgJCeE2IWizyJ6O05OFboYkJiZi5syZTr0WhULBTW4PDQ0hKCgIZWVlSE5Oxn333Ydrr70Wb7zxhksmxW7cOIu//e1veOaZZ3DDDTegsrIS5eXlWLZsGdatW4f58+dDr9dDr9dzDbbJSo3ZEypzZO/NEEswNVNSqVQQCAQoLS0FALzyyis4cOAAli9f7tTrdOPGlbh48SKuvvpqREZGIjExEQcOHAAhBJs2bcLq1auRnJyM3t5eEEI4/6PxNiEcyfDwMM6dO+cyfgPmtmibmpqgVquxf/9+AMCXX3457bxZ3LixJy+++CLeeOMN3HvvvSgpKcHx48eRnp6OrVu3YuXKlfD394dUKuW2sSIiIlyiwUY3Q0JDQydtgG0vzG3RHjhwAAEBAXjnnXfw4osv4tFHH3WJa3VjHa5TgXBjRHNzM3bt2oUNGzYY6U3+/e9/R2dnJ66++mosX74c6enpqK6u5qaQw8PDna491tPTg7KyMsyePdvphWJvb2/ExcUhLi4OWq0WUqkU77//Pt5//32IRCLcf//96OrqQlRUlDuQuXFzCa1Wi6VLl+LVV1+Fp6cnpze5a9cu3HvvvQgNDcWGDRuwZMkSKBQKnD9/3qjB5sztEWqckpSU5LDNkPHw8/ODn58fEhISoFar0dXVhXfffRfl5eUICwtDZGQkmpqakJSU5OxLdePGZRAKhTh69CgWLVrE6U1SM6Xf/OY3WLRoEdavX4+8vDwMDAxAq9WanUJ2NHQzxFX0vhmGQUBAAAICApCUlITh4WF89913+Mc//oGOjg7MnTsXRUVFSEtLQ1hYmLMv142N+OMf/4iDBw+itLQUHh4e6O/vn/BnCCH47W9/i3//+9/o7+/HkiVL8PbbbyM5Odn+F+xieHt747bbbsNzzz0HoVAIvV6PEydO4PPPP8fTTz8NlUrFFbdDQ0NRXV0NvV5vtZePrXDmZshYMAyDoKAgBAUFITk5GQqFAuXl5Xj55ZehUqmwcuVK/Oc//8F9993n9GKcGzeuQkpKCk6cOIE5c+aAEILe3l5ug/bVV19FYmIirrnmGqxatQoAUFVV5fQNNlsaYNsSgUCA0NBQhIaGIjU1FQMDA3jvvffwr3/9CwKBAEePHsWsWbOwZcsWZ1+qGytxT2hPM6jeJE3sWlpasGLFCqxYsQJz5swBy7IIDAxEREQEwsPDHa5FJpfLUV5ejrS0NERFRTn0uS2BZVk89dRTOHDgAJ5++mmcPHkSzc3N+P777519aW7cTAuUSiW++uorFBQU4MCBA/Dz88OGDRuwbNkyREdHQ6lUIiQkhGuwOXJ7xFU2Q8ajs7MT69atw4IFC3D11Vdj7969yM/Px3PPPefsS3PjxuWhepN0Jff06dPIy8vDhg0bsGDBAohEIqhUKoSGhnLSSI5qsDnCM2SqEELw+eef4+GHH8Y777yDoaEh7N69G2+88QbS09OdfXlubMRvf/tbBAUF4eLFi9i+fbtFBe1XXnkFf/rTn/D+++8jISEBzz//PCoqKnD+/Hm3rjEPg8GAU6dOcd5H/f39WL9+PdauXYs5c+ZgcHCQa7A5Up7NlTZDxkOr1eLWW29FZ2cn3n33XRQWFqK0tBQffPCBsy/NjY1xN9ZsD9142L9/P3b9f/buOz6qKv//+HvSe6EkoXfpCqKUgBRFmmLdVXFXxNXVde36XXtZu+iq2BDLrrh2BeyKFd1dUBSEUIVQQw0hvbc5vz/43etMMkkmIclkktfz8eChDFPuDJkP577vOZ+zZIm++OILde3aVWeeeaZOOeUUJSQkKCMjo9lXsPm6zVF9bNy4UdOnT9f111+vc889Vx988IGSkpJ0ySWX+PrQ0EAE2n7MGKONGzdq0aJFWrJkiX799VdNmDBBEydO1LHHHitjjGJiYpSQkKDExESFh4c36fEcOnRI69ev1+DBg5WUlNSkr9UQTqdTt99+u95//30tW7bMnhFpjGnywvvcc8/pscce08GDB3XcccfpmWee0ciRI2u8/3vvvae77rpLu3btUr9+/TR37lzNmDGjSY8RqK+SkhJ9/fXXWrx4sT766CMFBwdr+vTpGj9+vLp166aioqJmWz3SklaG1CQ9PV3Tp0/XiSeeqIULFzbrDC5qEFobq9+ktant//73Px133HGaMWOGxowZo5CQEBUWFrrtPdJUF9ha2sqQmrz//vu6/PLL9c477+j0009vttel/vjGwoULdf3119cZJBlj1LlzZ9100036v//7P0lHVhskJiZq4cKFuuCCC5rhaP2P0+nUTz/9ZPf9T09P15QpUzRlyhQNGzZMBQUFKi4udls90hQX2PLy8rR69eoWszKkJuXl5br44ou1c+dOffvtt2rfvn2zvTY1qPlxYa3p5efn69NPP9WSJUv0+eefq0OHDjrjjDM0ZcoUde7cWRkZGU2+gq05N8A+Wr/++qumT5+uyy+/XPfdd1+zHis1qOkQaLcSxhht3bpVixcv1uLFi7Vu3TqNGzdOEydO1PDhwyUdWfpuzdxu7I030tPTtWHDBg0ZMqRFbq7odDr197//XW+88Ya+++479e/fv9le+5133tHs2bO1YMECjRo1SvPmzdN7772nLVu2KCEhodr9V6xYofHjx+vhhx/W6aefrjfffFNz587VL7/8oiFDhjTbcQP1UV5ermXLlmnRokX68MMPVVlZac/c7tOnjwoLC5ts9UhLXxkiSRkZGTrttNM0ZMgQvf76683aEoEahNbOGKNDhw7pgw8+0OLFi/Xdd99p4MCBOu2005ScnKzIyEjl5+crPj7ebo3UWBfY/GFliCR98sknuuSSS/T666/r7LPPbrbXpf74jreB9o4dO9SnTx+tWbNGw4YNs2+fMGGChg0bpqeeeqppD7QVcDqdWrNmjT3JKC0tTZMnT9a0adM0fPhwFRcX2xfYGrM9mz+sDJGkiooKXXbZZdq4caOWLVvm8bvfVKhBvsWFteZRWFiopUuXasmSJfr0008VExOj008/XVOnTlWPHj10+PDhRl/BZq0M6datm3r37t2iw+zU1FRNnz5dF110kR5++OFmbclCDWpaBNqtUNV+k6tWrdKYMWM0adIkjRgxQg6HQ5GRkfbM7cjIyKMqQAcPHtTGjRt17LHHtsgejMYYPfTQQ3r55Zf17bffavDgwc36+qNGjdKJJ56oZ599VtKRQW+3bt10zTXX6NZbb612//PPP1+FhYX65JNP7NtGjx6tYcOGacGCBc123EBDufab/PDDD1VUVKRp06Zp/Pjx6tevn4qKiuzVIwkJCYqIiGjwax06dEgbNmzQ4MGDW+TFNOlI4DVjxgz17dtX77zzTrP3GKcGoS1x7Te5ZMkSff311+rTp49mzJihcePGKSYmxt6g1apBDb3A5g8rQyRp6dKluuiii/TKK6/ovPPOa9bXpv74jrdB0ooVKzR27Fjt37/f7aLweeedJ4fDoXfeeaeJj7R1McZow4YNdri9detWTZo0yV6hVVpaqvz8/KNuz2atDGkJG2DXprKyUldeeaVWrVql7777rtlX8VKDfIsLa82vuLhYX331lZYsWaKPPvpIoaGhmjlzpqZNm6bevXsrMzPzqFew5eXl6ZdfflGPHj1a9MoQ6cjedNOmTdO5556rJ554otn7i1ODmha7L7RCDodDffr00c0336wffvhBO3bs0DnnnKPvvvtO5557rh566CF98803Sk1N1cqVK7VixQpt27ZNeXl5qu/1jQMHDmjTpk067rjjWmyY/fjjj2vBggX68ssvmz3MLisr0+rVqzV58mT7toCAAE2ePFk//PCDx8f88MMPbveXpKlTp9Z4f6ClCQoK0qRJkzR//nylpaXpo48+UmJioh555BGde+65+ve//60NGzbowIEDWrFihX788Uft2LFDhYWF9Xqd9PR0rV+/vsWuDJGOzJ4688wz1aNHD7399tvNHmZTg9DWOBwOtW/fXn/605/0ySef6ODBg7r11lu1bds2zZo1S5dffrmWLVumjIwMpaen63//+59++ukn7d69W8XFxV6/zuHDh5WSkqKBAwe26DD722+/1ezZs/XCCy/o97//fbO+NvWn8dx6661yOBy1/vr11199fZjQkRo0dOhQ3XvvvVq3bp1SUlJ00kkn6dVXX9XEiRP1wAMPKDU1VZK0f/9+/ec//9GqVauUlpamkpISr14jKytLa9asUb9+/Vp0mO10OnXttddq5cqV+vrrr5s9zKYG+Y+DBw9KUrXxfGJiov1n8E54eLjOOOMMLVy4UAcPHtTChQtljNFf/vIXnXrqqXr99ddVWlqqyMhI7d27V//5z3+0evVq7d27V6WlpXU+f25url+0OZKktLQ0zZgxQzNnzvRJmE0NanoE2q2cw+FQ9+7ddcMNN+j777/X7t279cc//lE//vijzj//fN1zzz36+uuvtWXLFq1atUrLly/X1q1blZubW2e4vW/fPm3evFnHHXecOnTo0EzvyHvGGD399NOaN2+evvjiCx133HHNfgyHDx9WZWVlvf5xPnjwIP+Yo9UIDAzUSSedpHnz5mnnzp364osv1KtXL82bN09nnnmm/vWvf2ndunU6cOCAfvzxR61YsULbt29Xfn5+rTXIdWVIcy5drY+8vDydc8456tixo957771m3SDTQg1CWxcXF6eLLrrI7nH7wAMPaN++fZozZ47mzJmjr776SocOHVJGRoaWL1+uH3/8UTt37qz1AtuhQ4eUkpKiQYMGtdg2R5L0n//8R7NmzdIzzzyjP/zhD82+HJj603huuukmbd68udZfDd0M0AoZ09PT3W5PT09vkXvi+BOHw6EBAwbojjvu0OrVq7Vp0yZNmTJF7777riZNmqS7777bvhDh7QW2zMxMrV27Vv3792/RbY6cTqduuukmfffdd/r66699cqzUoMbFhTX/ExISoqlTp+qll17S/v379c477ygsLEzXXXedTj75ZP3rX/9SYWGhoqOjdeDAAf33v/+t9QJbTk6OfvnlF/Xp00c9e/Zs/jdUD/v379eMGTM0ZcoUPfvss80eZkvUoObQfE084XMOh0NdunTR1VdfrauuukoZGRl6//33tWTJEj355JMaMGCATj31VI0cOVL79u1TUFCQvRQuLi7O7URo79692rp1q4YNG6Z27dr58F15ZozRggULNHfuXC1dulQnnHCCrw8JaPMCAgI0evRojR49WnPnztWaNWu0ePFiLViwQLt379bJJ5+sk08+Wccee6x27dqlsLAwuzVSdHS0XYMOHDigzZs369hjj22RF9OkI5uk/O53v1NkZKTef/99NrMBWoDo6Gidf/75Ov/881VUVKSlS5dq8eLFuvzyyxUdHa3TTjtN48ePV3BwsLZv3+7Wni0qKkrSb3uGDB06tMVeTJOOzPA577zz9Nhjj2nOnDkturcl6taxY8cmWwnZq1cvJSUl6ZtvvrGX+ufl5WnlypW68sorm+Q12yKHw6G+ffvqlltu0c0336y0tDS7PeTtt9+ukSNH6vTTT9eYMWN0+PBhpaamKjo62q5BERERfrFniHQkzL7tttv0+eefa9myZS26vze8d9NNN2nOnDm13qcxLqy5/mynp6e7tSBBwwUFBdnnWs8++6yWL1+uRYsW6ZZbblFubq6mT5+uGTNmqHv37jp06JC2bt2qmJgYe/+j4uJirV27Vv369WvRG2BLR0LhGTNm6KSTTtKCBQt8EmajeRBot1EOh0MJCQm64oordPnllys7O1sffvihFi9erOeee069evXS1KlTNXLkSO3fv18BAQH2gKqgoEDbt2/X8OHDFR8f7+u3Uo0xRv/6179033336dNPP9Xo0aN9diwdOnRQYGBgvWa9JCUlMUsGrV5AQIBGjBihESNG6MEHH7T7TS5cuFBbt27VxIkTdfLJJ2vYsGHas2ePgoODlZiYKIfDobS0NA0bNkzt27f39dvwqKioSOedd54CAwP14YcfKjw83GfHQg0CPIuIiNA555yjc845RyUlJfrqq6+0ePFiXX311QoNDdWMGTM0adIkBQcHa9euXQoPD1dYWJiys7NbfJj9888/69xzz9WDDz6oK664wmdhNvXHN9LS0pSVlaW0tDRVVlZq7dq1kqS+ffvaF2YGDBighx9+WGeffbYcDoeuv/56PfDAA+rXr5969eqlu+66S507d9ZZZ53luzfSijkcDvXo0UM33nijbrjhBu3fv19LlizRkiVLdM8992jYsGE6/fTTNW7cOOXk5Gj79u1yOp0KCAhQ3759W3yYfffdd2vJkiVatmyZ+vTp47NjoQY1Li6stR6BgYEaP368xo8fr3nz5mnlypVatGiR7r33XqWnp2vKlCk6/fTT1b17d2VmZup///ufPdGxJU5mdHXo0CGdfvrpOuGEE/TPf/5TgYGBPjsWalDT41IF5HA41K5dO11yySX65JNPlJ6erjvuuEO7d+/WZZddpuuvv16ffPKJNm/erAceeEAff/yx4uLiVFlZKafT6evDd2OM0Wuvvabbb79dH374ocaNG+fT4wkJCdGIESP0zTff2Lc5nU598803GjNmjMfHjBkzxu3+kvTVV1/VeH/A33nqNzl+/Hi9++67Ov300/X4449r9erVWrBggebNm6fAwEBlZGQoOzu73n3/m1pJSYlmzZqlsrIyffzxx3Z44CvUIKBuYWFhmjlzplu/yYCAAN14440699xztWjRIv373//WtddeK2OMtm7dqtTUVK/aszW3NWvW6KyzztJdd92lq6++2qczs6k/vnH33Xdr+PDhuueee1RQUKDhw4dr+PDhWrVqlX2fLVu2KDc31/79zTffrGuuuUaXX365TjzxRBUUFGjp0qWsLmoG1graa665Rt9++6327NmjSy+9VMuXL9f06dN11VVX6aWXXtIll1yioKAgbd++3d7/qK72bM3NGKMHH3xQb7zxhr766isdc8wxPj0eapDvpKWlae3atW4X1tauXauCggL7PgMGDND7778vSW4X1j766COtX79es2fP5sJaMwgICNCYMWP0+OOPKzU1Vd9995369++vuXPnKjk5WTfccIOuuuoqZWVlyel06ocfftAPP/yg7du3u/19tgSZmZk644wzNHDgQL366qsKCvLt/F1qUNNzmJb0ryBanPz8fH322WdavHixPvzwQ5WXl+v000/Xueeeq4SEBDmdTnXs2FGJiYlq166dT6+AGWP09ttv67rrrtMHH3xQrZm+r7zzzju6+OKL9cILL2jkyJGaN2+e3n33Xf36669KTEzU7Nmz1aVLFz388MOSjuw2P2HCBD3yyCM67bTT9Pbbb+uhhx7SL7/8oiFDhvj43QDNxxijHTt2aNGiRXr++ee1e/duDR48WOedd57dRshabZKQkKD4+HifLikrLS3VH/7wBx0+fFhffvml4uLifHYsrqhBQMNUVFToP//5j+6//359//33ioiI0JlnnqmTTz5ZxxxzjPLy8uz2bImJiYqNjfVpgLx+/XrNmDFD//d//2f3OvU16g/QMMYYZWVl6fbbb9c///lPORwOHXPMMZo5c6YmTJiguLg4ZWZmKiQkxG4JEBMT47PvvTFGjz76qObPn69vv/1WQ4cO9clxVEUN8o05c+bo1VdfrXb7smXLNHHiRElHxvCvvPKK3cbEGKN77rlHL774onJycjRu3DjNnz/f5xdG2ipjjJ599lnddNNNSkhIUEZGhk4++WTNnDlTo0ePVklJiTIzMxUeHu7Wns1XNSg7O1szZ85U165dtWjRIp/sXeQJNahptdqWI1lZWbrmmmv08ccfKyAgQOeee66eeuqpWmfLTZw4Ud9//73bbVdccYUWLFjQ1IfbYln9Jnfu3Klvv/1Wt9xyi1JSUnTdddcpKipKU6dO1dixY5WZmanKykp17NhRCQkJ9vKK5rRkyRJdd911evfdd1tMmC1J559/vjIyMnT33Xfr4MGDGjZsmJYuXWo3+09LS3ML4ZKTk/Xmm2/qzjvv1O23365+/frpgw8+oID5GWrQ0XM4HOrTp4+SkpKUm5ur999/Xzt27ND777+v++67TyeeeKLd9//QoUMyxrhdYGvOcLusrEwXX3yxDhw4oG+++abFhNkSNQhoqKCgIAUHB2v16tX6+uuvFRQUpMWLF+vee+9Vbm6upk2bplNOOUURERE6cOCAHA6HHSzFxcU1aw3atGmTTj/9dF1zzTUtJsyWqD9AQzkcDlVUVGjRokX65JNPNHr0aH388cdavHixnn76aXXt2lVnnHGGJk2apOLiYv3yyy8+u8BmjNFTTz2lZ555Rl9//XWLCbMlapCvLFy4UAsXLqz1PlXnVTocDt1333267777mvDI4C2n06nXXntN77zzjs466yz9+uuvWrRokV566SVdf/31Gj9+vM444wyNGTNGRUVF+vnnn312gS0vL09nn322EhMT9d5777WYMFuiBjW1VjtDe/r06Tpw4IBeeOEFlZeX65JLLtGJJ56oN998s8bHTJw4Ucccc4xbEY2IiFBMTExzHHKL9sUXX6hz5872AMXqN7lkyRJ9+OGHCgkJ0bRp0zR27Fh169ZN5eXl6tChgxITE9WhQ4cmX+7x0Ucf6dJLL9Wbb76pM888s0lfC/AGNajxpKena//+/Ro+fLikIwNg136T//vf/3Tcccdp6tSpGjVqlEJCQtwusLVv375JL7CVl5fr0ksv1ZYtW/Ttt982WX9BoD64qNY4nE6ntm3b5jZDzOl0auXKlVq8eLHef/99u9/kKaecoqFDh6qwsFDGGLd+k00Zbm/ZskXTp0/Xn/70Jz344IMtJsxG20YNahw5OTnVLpLn5+fr008/1eLFi/X555+rY8eOdrjdqVMnZWZm2vsfWSvYmqouGGM0f/58PfTQQ/riiy80cuTIJnkdoL6oQUevsrKy2jmUMUbbt2/XokWLtGTJEq1Zs0bJycmaOXOmTjrpJEnS4cOHm+0CW0FBgc466yxFRETo448/9uneRWh+rTLQ3rx5swYNGqSff/7ZXpa+dOlSzZgxQ3v37lXnzp09Pm7ixIkaNmyY5s2b14xH6//Kysq0bNkyLV68WB988IGcTqcdbvfq1Uvl5eVq3769EhIS1LFjRwUHBzfq63/22We6+OKL9eqrr+p3v/tdoz430BDUoOZjjNGhQ4f0wQcfaPHixfruu+80cOBATZs2TaNHj1ZkZKTKysrcLrA1ZrhdUVGhK664QikpKVq2bJl9tR3wNS6qNQ+n06k1a9bYJ3ZpaWmaPHmyJk+erGHDhqm4uNi+wJaYmKj27ds3ari9fft2TZs2TRdccIEee+wxn7ZdAlxRg5pHYWGhli5dqsWLF+vTTz9VbGysZs6cqZNPPlndunVTZmamJNk1qDHbsxlj9PLLL+vuu+/W559/ruTk5EZ5XqAxUIOanjFGu3fvti/w//jjjxo1apRmzpyp8ePHKzg4WBkZGXaLyMTExEZdwVZYWKhzzz1XDodDn332mSIjIxvleeE/WmWg/a9//Us33XSTsrOz7dsqKioUFham9957T2effbbHx02cOFEbN26UMUZJSUmaOXOm7rrrLkVERDTXofu9iooK/fe//9V7772nDz74QMXFxZo6darGjRunPn36qLy8XO3atVNiYqI6dux41MtBvv76a1144YV66aWXNGvWrEZ6F8DRoQb5htVv8sMPP9TixYv1zTffqE+fPpo2bZqSk5MVHR2t0tJSdejQwb7AdjSrRyorK3X11Vfrhx9+0HfffVfjhQqguXFRzTeMMdqwYYPee+89vf/++9q6dasmTZqkKVOm6Pjjj1dpaanKy8sbrT3brl27NH36dJ1xxhl66qmnCLPRYlCDfKO4uNheQfvRRx8pNDRUM2fO1OTJk9WrVy+7RaQ1c/toLrAZY/Tqq6/q1ltv1ccff6wJEyY08rsBGo4a1PyMMdq3b5+9gnb58uUaNmyYzjzzTE2cOFFhYWHKyMhotBVsxcXFOu+881RaWqrPP/9c0dHRjfyO4A9aZaD90EMP6dVXX9WWLVvcbk9ISNC9996rK6+80uPjXnzxRfXo0UOdO3fWunXrdMstt2jkyJFasmRJcxx2q1NZWakVK1Zo0aJFev/995Wbm6vJkydr/Pjx6t+/v8rKyhQfH28XtNDQ0Ho9//fff6/f//73mj9/vi666CKW2KLFoAb5njFGubm5dr/JL7/8Ul26dNGMGTOUnJysdu3aqbi4WO3bt7cvsNVn9YjT6dT111+vZcuWadmyZerevXsTvhugfrio5nvGGP36669avHixlixZovXr12v8+PGaOnWqTjzxRFVUVKikpKTB7dn27t2rqVOnaurUqZo/fz5hNloUapDvlZWV6dtvv7VX0DocDp122mmaMmWK+vTpo+zsbFVUVNg1qD7t2YwxevPNN3XjjTfqww8/1Mknn9zE7waoH2qQbxljlJ6e7raCdvDgwfbG2tHR0Tp06FCDV7CVlpZq1qxZys7O1pdffqnY2NgmfkdoqfxqU8hbb71Vc+fOrfU+mzdvbvDzX3755fb/Dx06VJ06ddIpp5yi7du3q0+fPg1+3rYqMDBQJ510kk466SQ9+eST+umnn7Ro0SI9/fTTSk9P1ymnnKIJEyZo4MCB2rJli2JjY+1NBMLCwmp97uXLl+v888/XvHnzCLPRbKhB/sPhcCguLk4XXXSRLrroIrd+k5dddpk6dOigGTNmaOzYsSopKdGmTZvUrl07+wJbbatHnE6nbr75Zn399deE2WiRDh48qISEBLfbgoKC1K5dOx08eLDGx1144YXVLqpt2bKFi2oN4HA4NHDgQN15552644477H6Tixcv1u23367k5GRNnz5dI0eO1I4dO7Rx40av27MdOHBAp512miZNmqTnnnuOMBstDjXI96z9jaZNm6bnn39e33//vRYtWqQbb7xRpaWldridkJCgrVu32u3ZrNUjtV1gW7RokW644QYtWrSIMBstEjXItxwOh5KSkvSXv/xFV1xxhTIzM+0VtI888oj69eunM888U6eccoqCg4P166+/er2CraysTLNnz1ZGRoa++uorwuw2zq9maGdkZNh9wGrSu3dvvf766w26IldVYWGhoqKitHTpUk2dOvWojh2/8dRvctKkSZo4caKGDBmiiooKxcTE2H2Wqjb2X7lypc466yw99NBD+utf/0qYjWZDDWodrH6TS5Ys0aeffqro6GjNmDFD48aNU5cuXVRQUKC4uDh75rbrBTan06k77rjDnm3Qt29fH74TtDXeXlRbsmRJg1aJVPXtt9/qlFNO0bZt27io1kisfpPWktwff/xRI0eO1LRp0zRmzBgFBgaqoKCgxvZs6enpmjFjhkaMGKFXX321STe8BaqiBvm/yspKLV++3F5Bm5eXp+nTp2vKlCkaMmSI8vLy3FawdejQwe0C2wcffKDLL79cb731lmbOnOnDd4K2iBrk36wVtB999JG9grZ79+4644wzdOqppyohIUEZGRk1rmArLy/XnDlztGPHDn3zzTfq0KGDj98RfM2vAm1vWT2TVq1apREjRkiSvvzyS02bNq3WnklVLV++XOPGjVNKSoqOPfbYpjzkNsvqN2mF21u3btWECRM0adIkHXfccaqoqFBUVJRiYmJUUVGh8vJynXHGGbrnnnt03XXXEWajRaIG+Q9P/SZnzJihk046Sd26dVNhYaFiY2NVWFioLl266I033tBrr72mZcuWacCAAb4+fLQxXFRrXYwx2r9/v5YsWaLFixfb/SZnzJihMWPGKDQ0VPn5+YqPj9eWLVs0ePBg/fnPf9bgwYP1xhtvHNUeAEBDUINaF6fTqZUrV9rh9qFDhzR16lRNmzZNxx57rAoLC1VQUKCIiAj9/PPPat++vW644Qa99tprOuecc3x9+GiDqEGtS15enr2CdunSpUpISNAZZ5yhadOmqVOnTjp8+LCKioq0b98+5eTk6Mcff1RqaqqWLVtWbQY+2ijTSk2bNs0MHz7crFy50vzvf/8z/fr1M7NmzbL/fO/evaZ///5m5cqVxhhjtm3bZu677z6zatUqs3PnTvPhhx+a3r17m/Hjx/vqLbQ5TqfTbN682TzwwANm+PDhJigoyEyaNMncd9995pFHHjGBgYEmICDATJ482axfv944nU5fHzJQI2qQ/yktLTVLly41l112menYsaPp0KGDueiii8zLL79s5syZYxwOhwkKCjI33nij2b59u68PF6jRpk2bjCSzatUq+7YvvvjCOBwOs2/fPq+f53//+5+RZFJSUpriMOHC6XSaAwcOmOeff95MnjzZBAcHm+OOO87cfvvt5pNPPjHDhw83kkz79u3NE088Yfbs2ePrQwZqRA3yP5WVlebnn382t9xyi+nXr58JDw83M2fONPPnzzfvvvuu6datm5Fkhg4dap5//nmTkZHh60MGakQN8j8FBQXmvffeM7NmzTIxMTGmW7du5qqrrjIff/yxeeKJJ0xMTIyRZCZNmmReeuklU1RU5OtDRgvQagPtzMxMM2vWLBMVFWViYmLMJZdcYvLz8+0/37lzp5Fkli1bZowxJi0tzYwfP960a9fOhIaGmr59+5q//e1vJjc310fvoG1zOp0mNTXVPPLII2bkyJEmICDABAUFmbPOOsucc845Jjw83Hz99de+PkygRtQg/1ZeXm6++eYb85e//MV06tTJhIeHm/DwcHP33XebadOmmYSEBFNWVubrwwRqxEU1/+V0Os3hw4fNyy+/bGbMmGGCg4NNWFiYGTVqlHnqqafMpEmTzKWXXurrwwRqRQ3yX5WVlSYlJcXceeedZvDgwSYoKMgEBQWZJ554wjzxxBNm3Lhx5tNPP/X1YQK1ogb5r6KiIvPBBx+Y2bNnm/j4eBMREWESExPNf//7X/PYY4+Zk08+2ZSUlPj6MNECtNpAG62H0+k0W7duNddcc409K7ugoMAnYVJmZqa58MILTXR0tImNjTV/+tOf3EJKTyZMmGAkuf264oormumIARytiooKs3DhQrNw4UL7Nl8NoqhB8BYX1VoHp9NpsrOzzdVXX20yMzPt2ysrK31yPNQgeIsa1Do4nU6zcuVKc/vtt/t8dSz1B/VBDWodSktLzdy5c81XX33l60OhBrVArbKHNtBUpk+frgMHDuiFF15QeXm5LrnkEp144ol68803a3zMxIkTdcwxx+i+++6zb4uIiFBMTExzHDKAVoQaBMCXqEEAfIX6A8CXqEEtT4CvD6C1eu6559SzZ0+FhYVp1KhR+umnn2q9/3vvvacBAwYoLCxMQ4cO1WeffdZMRwpvbd68WUuXLtXLL7+sUaNGady4cXrmmWf09ttva//+/bU+NiIiQklJSfYvChiaEvWndaIGwV9Qg1onahD8AfWndaL+wF9Qg1onalDLRKDdBN555x3deOONuueee/TLL7/ouOOO09SpU3Xo0CGP91+xYoVmzZqlSy+9VGvWrNFZZ52ls846Sxs2bGjmI0dtfvjhB8XFxemEE06wb5s8ebICAgK0cuXKWh/7xhtvqEOHDhoyZIhuu+02FRUVNfXhoo2i/rRe1CD4A2pQ60UNQktH/Wm9qD/wB9Sg1osa1EL5uudJazRy5Ehz1VVX2b+vrKw0nTt3Ng8//LDH+5933nnmtNNOc7tt1KhR9NZpYR588EFzzDHHVLu9Y8eOZv78+TU+7oUXXjBLly4169atM6+//rrp0qWLOfvss5vyUNGGUX9aL2oQ/AE1qPWiBqGlo/60XtQf+ANqUOtFDWqZmKHdyMrKyrR69WpNnjzZvi0gIECTJ0/WDz/84PExP/zwg9v9JWnq1Kk13h+N69Zbb5XD4aj116+//trg57/88ss1depUDR06VH/4wx/073//W++//762b9/eiO8CoP74K2oQWgtqkH+iBqE1oP74J+oPWgtqkH+iBvm3IF8fQGtz+PBhVVZWKjEx0e32xMTEGr8IBw8e9Hj/gwcPNtlx4jc33XST5syZU+t9evfuraSkpGrLhSoqKpSVlaWkpCSvX2/UqFGSpG3btqlPnz71Pl6gJtQf/0QNQmtBDfJP1CC0BtQf/0T9QWtBDfJP1CD/RqCNNq9jx47q2LFjnfcbM2aMcnJytHr1ao0YMUKS9O2338rpdNqFyRtr166VJHXq1KlBxwugdaEGAfAlahAAX6H+APAlapB/o+VII+vQoYMCAwOVnp7udnt6enqNV26SkpLqdX/4xsCBAzVt2jT9+c9/1k8//aTly5fr6quv1gUXXKDOnTtLkvbt26cBAwbYuxlv375d999/v1avXq1du3bpo48+0uzZszV+/Hgde+yxvnw7aIWoP60bNQgtHTWodaMGoSWj/rRu1B+0dNSg1o0a1DIRaDeykJAQjRgxQt988419m9Pp1DfffKMxY8Z4fMyYMWPc7i9JX331VY33h++88cYbGjBggE455RTNmDFD48aN04svvmj/eXl5ubZs2WLvXBsSEqKvv/5aU6ZM0YABA3TTTTfp3HPP1ccff+yrt4BWjPrT+lGD0JJRg1o/ahBaKupP60f9QUtGDWr9qEEtkK93pWyN3n77bRMaGmoWLlxoNm3aZC6//HITFxdnDh48aIwx5qKLLjK33nqrff/ly5eboKAg849//MNs3rzZ3HPPPSY4ONisX7/eV28BgJ+i/gDwJWoQAF+h/gDwJWoQ0Lzood0Ezj//fGVkZOjuu+/WwYMHNWzYMC1dutRu+J+WlqaAgN8mxycnJ+vNN9/UnXfeqdtvv139+vXTBx98oCFDhvjqLQDwU9QfAL5EDQLgK9QfAL5EDQKal8MYY3x9EAAAAAAAAAAA1IUe2gAAAAAAAAAAv0Cg3UY899xz6tmzp8LCwjRq1Ch751VPFi5cKIfD4fYrLCysGY8WQGtC/QHgK9QfAL5C/QHgS9QgtHYE2m3AO++8oxtvvFH33HOPfvnlFx133HGaOnWqDh06VONjYmJidODAAfvX7t27m/GIAbQW1B8AvkL9AeAr1B8AvkQNQltAoN0GPPHEE/rzn/+sSy65RIMGDdKCBQsUERGhf/3rXzU+xuFwKCkpyf5lbWQAAPVB/QHgK9QfAL5C/QHgS9QgtAUE2q1cWVmZVq9ercmTJ9u3BQQEaPLkyfrhhx9qfFxBQYF69Oihbt266cwzz9TGjRub43ABtCLUHwC+Qv0B4CvUHwC+RA1CW0Gg3codPnxYlZWV1a6uJSYm6uDBgx4f079/f/3rX//Shx9+qNdff11Op1PJycnau3dvcxwygFaC+gPAV6g/AHyF+gPAl6hBaCsItFHNmDFjNHv2bA0bNkwTJkzQkiVL1LFjR73wwgu+PrQGe/DBB5WcnKyIiAjFxcV59RhjjO6++2516tRJ4eHhmjx5slJTU5v2QIE2rjXWH4kaBPgD6s9vqD9A82qt9UeiBgH+gBrkjhrkHwi0W7kOHTooMDBQ6enpbrenp6crKSnJq+cIDg7W8OHDtW3btqY4xGZRVlam3//+97ryyiu9fsyjjz6qp59+WgsWLNDKlSsVGRmpqVOnqqSkpAmPFGg9qD+/oQYBzYv68xvqD9C8qD/uqEFA86IGuaMGtV4E2q1cSEiIRowYoW+++ca+zel06ptvvtGYMWO8eo7KykqtX79enTp1aqrDbHL33nuvbrjhBg0dOtSr+xtjNG/ePN15550688wzdeyxx+rf//639u/frw8++KBpDxZoJag/v6EGAc2L+vMb6g/QvKg/7qhBQPOiBrmjBrVeBNptwI033qiXXnpJr776qjZv3qwrr7xShYWFuuSSSyRJs2fP1m233Wbf/7777tOXX36pHTt26JdfftEf//hH7d69W5dddpmv3kKz27lzpw4ePOi2kUJsbKxGjRpV60YKANxRfxqGGgQcPepPw1B/gKNH/Wk4ahBw9KhBDUcN8h9Bvj4ANL3zzz9fGRkZuvvuu3Xw4EENGzZMS5cutTcJSEtLU0DAb9c2srOz9ec//1kHDx5UfHy8RowYoRUrVmjQoEG+egvNztosoT4bKQCojvrTMNQg4OhRfxqG+gMcPepPw1GDgKNHDWo4apD/INBuI66++mpdffXVHv/su+++c/v9k08+qSeffLIZjuro3HrrrZo7d26t99m8ebMGDBjQTEcEwJPWWH8kahDgD6g/1B/AV1pr/ZGoQYA/oAZRg1o7Am34rZtuuklz5syp9T69e/du0HNbmyWkp6e79Y1KT0/XsGHDGvScAFoXahAAX6H+APAlahAAX6IGQSLQhh/r2LGjOnbs2CTP3atXLyUlJembb76xi1ZeXp5WrlxZr91xAbRe1CAAvkL9AeBL1CAAvkQNgsSmkGgj0tLStHbtWqWlpamyslJr167V2rVrVVBQYN9nwIABev/99yVJDodD119/vR544AF99NFHWr9+vWbPnq3OnTvrrLPO8tG7AOCvqEEAfIX6A8CXqEEAfIka1HoxQxttwt13361XX33V/v3w4cMlScuWLdPEiRMlSVu2bFFubq59n5tvvlmFhYW6/PLLlZOTo3Hjxmnp0qUKCwtr1mMH4P+oQQB8hfoDwJeoQQB8iRrUejmMMcbXBwEAAAAAAAAAQF1oOQIAAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNoAAAAAAAAAAL9AoA0AAAAAAAAA8AsE2gAAAAAAAAAAv0CgDQAAAAAAAADwCwTaAAAAAAAAAAC/QKANAAAAAAAAAPALBNpoFI8++qgGDBggp9Pp60NpEkuXLlVUVJQyMjJ8fShAm1VQUKCEhAS98cYbvj6UJjN69GjdfPPNvj4MAPXAGAhAc9izZ4/CwsK0fPlyXx9KkygvL1e3bt00f/58Xx8KAC/99a9/1amnnurrw2gyCxYsUPfu3VVaWurrQ4EHBNq1WLFihf7+978rJyenUZ/3o48+0vHHH6+wsDB1795d99xzjyoqKrx6rNPp1KOPPqpevXopLCxMxx57rN56661q91m4cKHOOOMMdevWTZGRkRoyZIgeeOABlZSUVHtOh8Ph8dcjjzzi1THl5eVp7ty5uuWWWxQQ4P2P1KZNm/T3v/9du3bt8voxjW3OnDke3/uAAQPc7jdt2jT17dtXDz/8sI+OFPDfmiRJL730kiZMmKDExESFhoaqV69euuSSS+r1/X/qqacUHR2tCy64wOvHSNL8+fO1cOHCej2mKWzfvl0XXnihEhISFB4ern79+umOO+5wu88tt9yi5557TgcPHvTRUQJHtJV605bHQDW9d4fD4XZyyhgILYU/1yVX5eXlGjRokBwOh/7xj394fZz33XefRo0apbFjx3r9GEl66KGH9MEHH9TrMY0tNTVVF1xwgbp27aqIiAgNGDBA9913n4qKiuz7BAcH68Ybb9SDDz7o8ZwVaC5todbs2rWrxjHA22+/7dUx7dy5Uy+//LJuv/12r+5vaarPtz7Ky8t17733qnfv3goNDVXv3r31wAMPVPv7mDNnjsrKyvTCCy/46EhRK4MaPfbYY0aS2blzZ6M952effWYcDoeZNGmSefHFF80111xjAgICzF/+8hevHn/rrbcaSebPf/6zefHFF81pp51mJJm33nrLvk9+fr6RZEaPHm0eeOAB8+KLL5pLLrnEBAQEmIkTJxqn0+n2nJLMqaeeal577TW3Xxs2bPDqmJ588kkTExNjiouLvf8gjDHvvfeekWSWLVtWr8c1posvvtiEhoZWe+8fffRRtfvOnz/fREREmLy8PB8cKeC/NckYY6688kpz8cUXm3/84x/mn//8p7nzzjtNYmKi6dChg9m3b1+dr1NWVmY6duxoHnrooXq/x8GDB5sJEybU+3GNac2aNSY2NtYMGjTIPPLII+all14yd911l5kzZ47b/SorK01SUpK56667fHSkwBFtpd605TFQ1ff82muvmeuuu85IMo8++qjbfRkDoSXw57rk6vHHHzeRkZFGknnssce8ep1Dhw6Z4OBg8+abb3p1f1eRkZHm4osvrvfjGktaWpqJi4szPXr0MA8//LB54YUXzJw5c4wkc8YZZ7jdNzs724SEhJh//vOfPjpaoG3Ump07dxpJZtasWdXGArt27fLqmK677jpzzDHHeHVfV03x+dbXeeedZxwOh7n00kvN888/by6++GL7863q5ptvNj169KiWo8H3CLRr0RRftEGDBpnjjjvOlJeX27fdcccdxuFwmM2bN9f62L1795rg4GBz1VVX2bc5nU5z0kknma5du5qKigpjjDGlpaVm+fLl1R5/7733Gknmq6++crtdkttz1texxx5r/vjHP9b7cS3hZO7iiy82kZGRXt03PT3dBAYGMsCCz/hrTarJqlWrjCTz8MMP13mcS5YsMZLMtm3b6rxvVb4OtCsrK82QIUPMqFGjTFFRUZ33v/rqqxk0wefaSr1py2MgTy699FLjcDjMnj173G5nDISWoDXUpfT0dBMbG2vuu+++egXaTzzxhAkPDzf5+flevrPf+DrQfvDBB42kahcKZ8+ebSSZrKwst9tPP/10c9JJJzXnIQJu2kKtsQJtb2tQVWVlZaZDhw7mzjvvrPdjfR1o//TTT0ZStQlEN910k3E4HCYlJcXtdmsM+c033zTnYcILBNo1uOeee4ykar+O5ku3ceNGI8k899xzbrfv27fPSDL3339/rY9/7rnnjCSzceNGt9vffPNNI8n897//rfXx69atM5LM008/7Xa7dTJXVFRU7xlGO3bsMJLMwoULq/3ZW2+9ZY4//ngTFRVloqOjzZAhQ8y8efOMMca88sorHj9f1xO7zz77zIwbN85ERESYqKgoM2PGjGoDISuQ3r59u5kyZYqJiIgwnTp1Mvfee69XYZD1+IqKCpObm1vn/YcPH15tJgHQHFpjTTp8+LCRZG655ZY6j3X27NmmZ8+e1W4/cOCAmTNnjunSpYsJCQkxSUlJ5owzzrA/lx49elT7zFzD7ezsbHPdddeZrl27mpCQENOnTx/zyCOPmMrKSvs+rgO+J554wnTv3t2EhYWZ8ePHm/Xr19d57J9//rmRZD777DNjjDGFhYW1hm8ffvihkWR++eWXOp8baAptqd605TFQVSUlJSYuLs5MnDjR458zBoIvtZa6dMkll5iRI0fa9cPbMGn8+PEev5tbt24155xzjklMTDShoaGmS5cu5vzzzzc5OTnGGOPxM3MNt/fu3WsuueQSk5CQYEJCQsygQYOqXbhatmyZkWTefvttc9ttt5nExEQTERFhZs6cadLS0uo89ltuucVIMhkZGdVuDwgIMAUFBW63P/XUU8bhcJjMzEyvPhugMbWVWuN6flNQUGBKS0vr9Z6+/fZbI8l899131f7s6aefNoMGDTLh4eEmLi7OjBgxwrzxxhvGGO8+39dee80cf/zxJiwszMTHx5vzzz+/Wq2ZMGGCGTx4sFm1apUZM2aMCQsLMz179jTPP/98ncf++OOPe/w8f/75ZyPJ3H777dUe065dO3Pttdd689GgGQUJHp1zzjnaunWr3nrrLT355JPq0KGDJKljx46SpNzcXJWXl9f5PGFhYYqKipIkrVmzRpJ0wgknuN2nc+fO6tq1q/3nNVmzZo0iIyM1cOBAt9tHjhxp//m4ceNqfLzVk9V6L64WLlyo+fPnyxijgQMH6s4779SFF15Yx7s70v9Iko4//ni327/66ivNmjVLp5xyiubOnStJ2rx5s5YvX67rrrtO48eP17XXXqunn35at99+u/2erP++9tpruvjiizV16lTNnTtXRUVFev755zVu3DitWbNGPXv2tF+rsrJS06ZN0+jRo/Xoo49q6dKldj+q++67r873UFRUpJiYGBUVFSk+Pl6zZs3S3Llz7b83VyNGjPB5Dzq0Ta2lJmVmZqqyslJpaWn29/OUU06p87hXrFhRrc5I0rnnnquNGzfqmmuuUc+ePXXo0CF99dVXSktLU8+ePTVv3jxdc801ioqKsvtVJyYmSjry3Z8wYYL27dunK664Qt27d9eKFSt022236cCBA5o3b57ba/373/9Wfn6+rrrqKpWUlOipp57SySefrPXr19vP6cnXX38tSQoNDdUJJ5yg1atXKyQkRGeffbbmz5+vdu3aud1/xIgRkqTly5dr+PDhdX42QGNra/WmLY+BXH322WfKycnRH/7wB49/zhgIvtQa6tJPP/2kV199Vf/73//kcDjqPFZLeXm5fv75Z1155ZVut5eVlWnq1KkqLS3VNddco6SkJO3bt0+ffPKJcnJyFBsbq9dee02XXXaZRo4cqcsvv1yS1KdPH0lSenq6Ro8eLYfDoauvvlodO3bU559/rksvvVR5eXm6/vrr3V7vwQcflMPh0C233KJDhw5p3rx5mjx5stauXavw8PAaj3/ixImaO3euLr30Ut17771q3769VqxYoeeff17XXnutIiMj3e4/YsQIGWO0YsUKnX766V5/TkBjaGu15t5779Xf/vY3ORwOjRgxQg8++KCmTJlS5/tbsWKFHA5HtXOVl156Sddee61+97vf6brrrlNJSYnWrVunlStX6sILL6zz833wwQd111136bzzztNll12mjIwMPfPMMxo/frzWrFmjuLg4+7Wys7M1Y8YMnXfeeZo1a5beffddXXnllQoJCdGf/vSnGo/d2uCxat2KiIiQJK1evbraY44//vhWuyGvX/NxoN6i1bYUYsKECR6vLFX95XoF3Ho+T1eyTzzxRDN69Ohaj+e0004zvXv3rnZ7YWGhkWRuvfXWWh8/efJkExMTY7Kzs91uT05ONvPmzTMffvihef75582QIUOMJDN//vxan88YY+68804jqdryt+uuu87ExMTUOguxpuW2+fn5Ji4urlr/ooMHD5rY2Fi3261eR9dcc419m9PpNKeddpoJCQmpNhOgqltvvdXccsst5p133jFvvfWW/Xxjx451Ww5keeihh4wkk56eXuvzAk2hNdSk0NBQ+1jat29fbcWIJ+Xl5cbhcJibbrrJ7fbs7GyvZjfV1HLk/vvvN5GRkWbr1q1ut996660mMDDQ/lysGQzh4eFm79699v1WrlxpJJkbbrih1tc/44wz7Pf7hz/8wSxatMjcddddJigoyCQnJ3ucSRkSEmKuvPLKWp8XaEptpd605TFQVeeee64JDQ2tNk60MAaCr/lzXXI6nWbkyJFm1qxZxpj6Lffftm2bkWSeeeYZt9vXrFljJJn33nuv1sfX1HLk0ksvNZ06dTKHDx92u/2CCy4wsbGxdps0a4Z2ly5d3Prov/vuu0aSeeqpp+p8D/fff78JDw93+7u44447PN53//79RpKZO3dunc8LNIW2UGt2795tpkyZYp5//nnz0UcfmXnz5pnu3bubgIAA88knn9R6PMYY88c//tG0b9++2u1nnnmmGTx4cK2Prenz3bVrlwkMDDQPPvig2+3r1683QUFBbrdbfw+PP/64fVtpaakZNmyYSUhIMGVlZTW+/uLFi40k89prr7ndvmDBAiPJDBkypNpjLr/8chMeHl7r+0LzY4Z2Az3++OPKzs6u836dO3e2/7+4uFjSkVl6VYWFhSkvL6/W5youLq7xsa7P78lDDz2kr7/+WvPnz3e7qiWp2pWmP/3pTxoxYoRuv/12zZkzp9Yr7pmZmQoKCqo2mzkuLk6FhYX66quvNG3atFrfV1VfffWVcnJyNGvWLB0+fNi+PTAwUKNGjdKyZcuqPebqq6+2/9+aZfDpp5/q66+/1gUXXFDjaz388MNuv7/gggt0zDHH6I477tCiRYuqPTY+Pl6SdPjwYSUkJNTrfQFNyV9q0ueff66SkhJt3rxZr7/+ugoLC+s85qysLBlj7O+fJTw8XCEhIfruu+906aWXVvvzurz33ns66aSTFB8f71ZrJk+erEceeUT/+c9/3GYqnnXWWerSpYv9+5EjR2rUqFH67LPP9MQTT9T4OgUFBZKkE088Ua+//rqkIzPLIyIidNttt+mbb77R5MmT3R5T9ZiAlqQ11Zu2PAZylZeXp08//VQzZsyoNk60MAZCS9bS69LChQu1fv16LVq0qM5jrCozM1OSqo1zYmNjJUlffPGFZsyYYc8u9IYxRosXL9Z5550nY4xbvZk6darefvtt/fLLLxo7dqx9++zZsxUdHW3//ne/+506deqkzz77TNdee22tr9ezZ0+NHz9e5557rtq3b69PP/1UDz30kJKSktxqmOv7ZByElqi11Jru3bvriy++cLvtoosu0qBBg3TTTTfptNNOq/XxmZmZHs+94uLitHfvXv3888868cQTa32OqpYsWSKn06nzzjvP7fuflJSkfv36admyZbr99tvt24OCgnTFFVfYvw8JCdEVV1yhK6+8UqtXr9bo0aM9vs6MGTPUo0cP/d///Z8iIiI0YsQIrVy5UnfccYeCgoI8jinj4+NVXFysoqKietVaNC0C7QayloTXh3VSZC1xcFVSUlLrSZP1+Joe6/r8Vb3zzju68847demll1ZbquZJSEiIrr76av3lL3/R6tWra21jUpO//vWvevfddzV9+nR16dJFU6ZM0XnnnefViV1qaqok6eSTT/b45zExMW6/DwgIUO/evd1uO+aYYyRJu3btqvex33DDDbrrrrs8nggaYySpXssEgebgLzVp0qRJkqTp06frzDPP1JAhQxQVFVXtZMYT6/tnCQ0N1dy5c3XTTTcpMTFRo0eP1umnn67Zs2crKSmpzudLTU3VunXr7CVuVR06dMjt9/369at2n2OOOUbvvvtura9jfQ6zZs1yu/3CCy/UbbfdphUrVlQLtI0x1Bm0WK253rTVMdDixYtVUlJSY7sRiTEQWraWXJfy8vJ022236W9/+5u6detW7+O0VB0H9erVSzfeeKOeeOIJvfHGGzrppJN0xhln6I9//KMddtckIyNDOTk5evHFF/Xiiy96vE9d4yCHw6G+ffvWWWvefvttXX755dq6dau6du0q6UhbB6fTqVtuuUWzZs1S+/btq71Pag1aotZca9q1a6dLLrlEjzzyiPbu3Wt/X2tStSZJ0i233KKvv/5aI0eOVN++fTVlyhRdeOGFbhfHapKamipjjMdzLkkKDg52+33nzp2rtSxyHQPVFGiHhYXp008/1Xnnnadzzz1X0pHzykcffVQPPvigx9az1KWWiUC7gbKyslRWVlbn/cLDw+0BRadOnSRJBw4cqFZgDhw4YPdAqkmnTp20bNmyakHHgQMHJLlfBbR89dVXmj17tk477TQtWLCgzuO1WMeXlZVV6/3at2+viooK5efnu12xT0hI0Nq1a/XFF1/o888/1+eff65XXnlFs2fP1quvvlrrczqdTklHekh6CqWCgpr2xzY8PFzt27f3+N6tq7Ge+pADvuQvNclVnz59NHz4cL3xxhu1Bkzt2rWTw+HwOBvi+uuv18yZM/XBBx/oiy++0F133aWHH35Y3377bZ39p51Op0499VTdfPPNHv/cGhAdLetzqNpn25rh6Ol95eTkUGfQYrXmeiO1zTHQG2+8odjY2Fr71TIGQkvWkuvSP/7xD5WVlen888+3w9+9e/dKOvK92rVrlzp37qyQkBCPr2OFvZ7GC48//rjmzJmjDz/8UF9++aWuvfZaPfzww/rxxx9rDaOsWvPHP/5RF198scf7HHvssbW9fa/Nnz9fw4cPr3Y8Z5xxhhYuXKg1a9a4Xdin1qAla821RnIfA9VWQ9q3b++xJg0cOFBbtmzRJ598oqVLl2rx4sWaP3++7r77bt177721vk+n0ymHw6HPP/9cgYGB1f7cU9DcUIMHD9aGDRu0adMmZWdna9CgQQoPD9cNN9ygCRMmVLt/dna2IiIi6rz4gOZFoF2L2q6+nHPOOfr+++/rfI6LL75YCxculCQNGzZMkrRq1Sq3orV//37t3bvX3qijJsOGDdPLL7+szZs3a9CgQfbtK1eudHt+19vPPvtsnXDCCXr33XfrdRK0Y8cOSapx5qJlwIABkqSdO3dWG/SEhIRo5syZmjlzppxOp/7617/qhRde0F133aW+ffvW+PlaG5UkJCRUm7XoidPp1I4dO9zCp61bt0qS28ZJ3srPz9fhw4c9vvedO3eqQ4cOdX4uQFPw95rkSXFxsccZB66CgoLUp08f7dy50+Of9+nTRzfddJNuuukmpaamatiwYXr88cft9h611ZqCggKv6oz028xJV1u3bq2zzowYMUIvvfSS9u3b53b7/v37JVWvs/v27VNZWVm1jV+A5tRW643U9sZABw4c0LJlyzRnzhyPS5otjIHga/5al9LS0pSdna3BgwdXe46HHnpIDz30kNasWVNjHevevbvCw8NrHAcNHTpUQ4cO1Z133qkVK1Zo7NixWrBggR544AFJnj+3jh07Kjo6WpWVlQ0eBxljtG3btjqD7/T0dI+tCayN9SoqKtxut94n4yD4SlutNVL9xkBvvPGGcnNzq60IiYyM1Pnnn6/zzz9fZWVlOuecc/Tggw/qtttuU1hYWK1jIGOMevXq5dXEov3796uwsNBtlnZ9xkAOh8Pts/rss8/kdDo91sSdO3dSk1ogAu1aWF+MnJycan/WkN5JgwcP1oABA/Tiiy/qiiuusK86Pf/883I4HPrd735n3zc3N1cHDhxQp06d7AJx5pln6oYbbtD8+fP17LPPSjoykFiwYIG6dOmi5ORk+/GbN2/Waaedpp49e+qTTz6p8UpSRkZGtWKVn5+vefPmqUOHDnUuqRkzZoykI8XZdTCTmZnptnQsICDA/nPrZLKmz3fq1KmKiYnRQw89pEmTJlVbWuLpmJ999lk9/fTT9mfy7LPPKjg4WKecckqNx15SUqLy8nK3WVWSdP/998sY43Fp8OrVq+33DDQ3f61J1gzGqiczP/30k9avX68LL7ywzuMeM2aMvvvuO7fbioqKFBAQYPePk44MhKKjo91Cq8jISI+f2Xnnnae///3v+uKLLzR16lS3P8vJyVFUVJTbhcAPPvhA+/bts/to//TTT1q5cqWuv/76Wo/9zDPP1HXXXadXXnlFc+bMUUBAgCTp5ZdfliSdeuqpbve3dtZ2relAc2sL9aYtj4Fcvf3223I6nbW2G5EYA8H3/LUuXXvttTrrrLPcjuPQoUO64oorNGfOHJ155pnq1atXjcccHBysE044QatWrXK7PS8vTxEREW5jlaFDhyogIKDOcVBgYKDOPfdcvfnmm9qwYYOGDBni9ueeas2///1v3Xbbbfa506JFi3TgwAHdcsstNR67dGTF25dffqmtW7e6hVRvvfWWW320rF69Wg6Hg3oDn2kLtcbTd3zfvn3617/+pWOPPdaeVV6TMWPGyBij1atXu7VJqzoGCgkJ0aBBg/T555+rvLxcYWFhNX6+55xzjm677Tbde++9ev31192Cb2OMsrKy3J67oqJCL7zwgm688UZJUllZmV544QV17Nix3q1hiouLddddd6lTp07V2kRK0i+//FLnOAk+0CxbT/qpn376yUgyM2bMMP/+97/NW2+9ZQoKCo7qOT/++GPjcDjMySefbF588UVz7bXXmoCAgGq72b/yyitGknnllVfcbv/b3/5mJJnLL7/cvPTSS+a0004zkswbb7xh3ycvL89069bNBAQEmEceecS89tprbr9WrFhh3/eee+4xxx13nLnzzjvNiy++aO69917To0cP43A4zOuvv+7VexoyZIi9i67lrLPOMuPHjzd///vfzcsvv2zuuusuExcXZ4YNG2YqKyuNMcYcOHDABAYGmtGjR5uFCxeat956y6SnpxtjjHnjjTdMQECAGTJkiHnggQfMCy+8YO644w4zbNgwc9VVV9mvc/HFF5uwsDDTr18/M3v2bPPcc8+Z008/3Ugyt99+e63HvXPnThMXF2euvPJK89RTT5mnnnrKzJgxw0gy06ZNs4/Tkp6ebgIDA83LL7/s1ecCNDZ/rUnZ2dkmMjLS/OlPfzKPP/64WbBggbnqqqtMRESEadeundm6dWudx7lo0SIjyWzZssW+bc2aNaZdu3bmL3/5i3n66afN/PnzzamnnmokmUWLFtn3++tf/2ocDoe5//77zVtvvWW++eYbY8yRncGPP/54ExQUZC677DLz/PPPm3/84x/m4osvNpGRkSYjI8MY89vu4EOHDjU9e/Y0c+fONffdd59p166dad++vdm/f3+dx3/fffcZSebUU081zz33nLn88suNw+GoVjuNMebqq6823bt3N06ns87nBZpKW6g3bXkM5GrEiBGmc+fO1cY9rhgDoSXw17rkiTW2eOyxx7w6zn/84x8mNDTU5Obm2re9//77pkuXLub666838+fPN08//bQ58cQTTXBwsPnhhx/s+82YMcNERkaaxx9/3Lz11lvmxx9/NMYYc/DgQdOjRw8TERFhrrvuOvPCCy+Yhx9+2Pz+97838fHx9uOXLVtmj4OOPfZY8+STT5pbb73VhIWFmb59+5rCwsJaj/377783gYGBJiEhwdx3333mueeeM9OnTzeSzGWXXVbt/qeffroZN26cV58L0BTaQq2ZM2eOOemkk8zf//538+KLL5rbb7/dtG/f3oSEhJhly5bV+X5KS0tN+/btzW233eZ2+/HHH29mzJhhHnzwQfPyyy+bm266yYSGhpqZM2fa96nt83344YeNJJOcnGweffRR8/zzz5ubb77Z9OvXz+09TJgwwXTu3NkkJCSYa665xjzzzDNm3LhxRpJ58cUX6zz+3//+93bde+yxx8zAgQNNaGio+frrr6vdd9WqVUaSxz+DbxFo1+H+++83Xbp0MQEBAUaS2blz51E/5/vvv2+GDRtmQkNDTdeuXc2dd95pysrK3O5TUyGrrKw0Dz30kOnRo4cJCQkxgwcPrnbSZRWtmn5dfPHF9n2//PJLc+qpp5qkpCQTHBxs4uLizJQpU+zAxxtPPPGEiYqKMkVFRfZtixYtMlOmTDEJCQkmJCTEdO/e3VxxxRXmwIEDbo996aWXTO/evU1gYKCR5FY8ly1bZqZOnWpiY2NNWFiY6dOnj5kzZ45ZtWqVfR8reNq+fbuZMmWKiYiIMImJieaee+6p9cTMmCMnvX/84x9N3759TUREhAkNDTWDBw82Dz30ULW/D2OMef75501ERITJy8vz+rMBGps/1qTS0lJz3XXXmWOPPdbExMSY4OBg06NHD3PppZd6ffylpaWmQ4cO5v7777dvO3z4sLnqqqvMgAEDTGRkpImNjTWjRo0y7777rttjDx48aE477TQTHR1tJJkJEybYf5afn29uu+0207dvXxMSEmI6dOhgkpOTzT/+8Q/7M3AdCD7++OOmW7duJjQ01Jx00kkmJSXFq+N3Op3mmWeeMcccc4wJDg423bp18/g5V1ZWmk6dOpk777zTq+cFmlJrrzdteQxk+fXXX40kc+ONN9Z6P8ZAaCn8sS55Ut9AOz093QQFBZnXXnvNvm3Hjh3mT3/6k+nTp48JCwsz7dq1M5MmTaoWuvz6669m/PjxJjw8vNq5YHp6urnqqqtMt27dTHBwsElKSjKnnHKKWyBkBdpvvfWWue2220xCQoIJDw83p512mtm9e7dXx79y5Uozffp0u94ec8wx5sEHHzTl5eVu98vJyTEhISFcPIPPtfZa8+abb5rx48ebjh07mqCgINOhQwdz9tlnm9WrV3v9fq699lrTt29ft9teeOEFM378eNO+fXsTGhpq+vTpY/72t7+5XYwzpvbPd/HixWbcuHEmMjLSREZGmgEDBpirrrrKbWLThAkTzODBg82qVavMmDFjTFhYmOnRo4d59tlnvTr2uXPnmgEDBpiwsDATHx9vzjjjDLNmzRqP973llluYbNRCOYzxsDUpUA+5ubnq3bu3Hn30UV166aXN+tpz5szRokWLVFBQ0OSvNXz4cE2cOFFPPvlkk78WgOruv/9+vfLKK0pNTfW4UUhT2bVrl3r16qXHHntM//d//9ekr/XBBx/owgsv1Pbt2+tc6gfA9xgDAWgul156qbZu3ar//ve/zfq63333nSZNmqT33nvPrTVCU5g3b54effRRbd++nc3XgBZux44dGjBggD7//HOv25w1lokTJ+rw4cPasGFDk75OaWmpevbsqVtvvVXXXXddk74W6i/A1wcA/xcbG6ubb75Zjz32mL1jdmuzdOlSpaam6rbbbvP1oQBt1g033KCCggK9/fbbvj6UJjN37lxdffXVhNmAn2AMBKC53HPPPfr555+1fPlyXx9KkygvL9cTTzyhO++8kzAb8AO9e/fWpZdeqkceecTXh9JkXnnlFQUHB+svf/mLrw8FHjBDG36tOWcnAWibmnOGNgB4izEQgObQnDO0AcAbzTVDGy0bM7QBAAAAAAAAAH6BGdoAAAAAAAAAAL/ADG0AAAAAAAAAgF8g0AYAAAAAAAAA+AUCbQAAAAAAAACAXyDQBgAAAAAAAAD4BQJtAAAAAAAAAIBfINAGAAAAAAAAAPgFAm0AAAAAAAAAgF8g0AYAAAAAAAAA+AUCbQAAAAAAAACAXyDQBgAAAAAAAAD4BQJtAAAAAAAAAIBfINAGAAAAAAAAAPgFAm0AAAAAAAAAgF8g0AYAAAAAAAAA+AUCbQAAAAAAAACAXyDQBgAAAAAAAAD4BQJtAAAAAAAAAIBfINAGAAAAAAAAAPgFAm0AAAAAAAAAgF8g0AYAAAAAAAAA+IUgXx8Ajp4xRpWVlXI6nQoKCpLD4ZDD4fD1YQFoI5xOpyoqKhQQEKDAwEDqD4BmY42BKisrFRQUpICAAGoQgGZjjFFFRYWMMXYNAoDmwnkY2jICbT/ndDp18OBBORwO7d69Wz179lRkZKSCgoIUFBRkFzUKG4DGZoxReXm50tLSFBsbq/379ysxMVFRUVEKDg5WYGAgAysATcYYo+zsbOXm5iomJkYZGRmKj49XdHS0PQYi4AbQVCorK7V3714FBgYqIiJCeXl5ioqKUlRUlD0GIuAG0BSMMSopKdHOnTuVkJCgwMBAlZSUKDQ0VJGRkZyHoU0g0PZT1oykiooK7dq1S3FxcTp8+LC6deumiooKlZeX20F2YGCgW7jEwArA0bLC7LKyMm3cuFFjxozRwYMHFRsbq9DQUJWVlcnhcCggIMDtAhsDKwCNobKyUuXl5crMzNTBgwc1dOhQ7d27V8HBwQoODpYkewzkWoMIuAEcLWtWdkVFhdLS0tSxY0dFR0dr165dSkpKss+1PI2BOA8DcLScTqfKy8tVWlqq1NRUJSUlKTAwUNu3b1dcXJy6dOkiyXMNYgyE1oRA2w9ZQVJlZaUk2UXJCrCDgoLs+1kDLteAm4EVgKNhBUlOp7Na/bAGTsYYSUcGXGVlZSotLSXgBnDUXIMkY4wCAgJkjLHHOA6HQ8HBwfYYyOl0qrS0VCUlJQoICKhWgwi4AdSHFSQ5nU5J1c/DAgIC7Bpk3be8vNy+j2v9sVpFAoA3XOuKNQayuNagwMBAexxUWlrqdh5mTXSkTRtaAwJtP1M1SLIKl3UyZ4VIkntRk34LuK1ZlRIzBwB4z1OQ5Mq1BlmDo8DAQPuxEgE3gIaz+kRaF/StgNq17rj+v2stscZAVr/tmk7uaNMGwJOqQZLrRbSaapA1Bqr6eGsVm2vA7doqEgCq8jSp0TXnsW5zrU+S3MJtq02J6+ODg4O5yA+/RaDtJzwFSa4zAjwF2lXVFXAzgxtATTwFSVXDotoGQJ4CbteZA7VdZGNgBbRtNQVJkucLaZ7UNAay2re5tmljHxIArjwFSa41yFJXDaor4LZmVrIPCQBXVq2orKyslgNJqnMcRMCN1opA2w/UFSQ5HA5VVlbWGmZ74unkjqVxAFzVFiS5qqysrPOimqvaBlaelsYxsALaptqCJOv3VjDdkBpUNeD2tA9J1RYlANqOmoIki+t5WH1rkDcBNxf5gbbL9cK76wp9i/X/FRUVCg0NtR9TF28DbvYhQUtHoN2CeRMkGWNUXFysgwcPyhij7du3KyEhQfHx8YqIiKhXwanPzAGWxgGtX11BkiT74tfPP/8sh8OhvXv3yul0Ki4uzt6YzRvMHABQVV1BkiQVFhYqPz9fy5cvV0BAgDIyMhQWFqbo6Oh6hc/1CbjZaBto/eoKkqz7FBYW6tChQ9q7d6+MMQoKClK7du0UHh5er9dzPQ+jTRuAqudhnmpQaWmpJGnlypWKjo62x0sVFRX2vmreqOk8jH1I0NI5TH2n9aJZuLYYkTwHSRUVFdq0aZMOHjyojh07Kjs7W+3bt1dJSYlyc3MVFBSk+Ph4+1dYWNhRFRyrqFkFjqVxQOvlTZCUm5urtWvXqri4WEOHDlVqaqoiIiJUWlqqwsJCRUVF2fUnLi6uXgOrqlwDbteNmJg5ALQ+3gZJO3fu1LZt2xQcHKyhQ4dq48aNCgoKUnFxsYwxiouLs2tQVFTUUY+BXMdBEvuQAK2VNxf0S0tLtW7dOuXk5CgpKUkdO3bUli1b7JVmoaGhbudh1uzJhh6PJI/nYQTcQOvjad+0qjIyMrRu3TqVl5dr2LBhKisr086dO+3aFRMTY9efmJgYt4mL9VX1HEySxxrEeRiaGzO0WyDXIMl1tpCrvLw8rV27VuHh4UpMTFRoaKhyc3OVmJiodu3aqbKyUnl5ecrOztaBAwe0ZcsWhYaGup3chYWF1eu4apo5YM3gzszMVFhYmNq1a8fACvBT3gZJu3btUmpqqvr27att27YpLCxMwcHB6tKlizp27KjS0lLl5OQoOztbqampKikpUXR0tF1/YmNj6zWwqm3mgDWDOz09XR06dFBkZCQDK8BPeTsjaf369SosLFS/fv20b98+RUZGKiwsTElJSUpKSlJBQYGys7OVnZ2tnTt3yuFwuI2BIiMj672KrbZ9SCorK3X48GF17dqVGdyAH7NmRdcVJK1fv17t27dX+/bt7fA6KipKcXFx6tSpk3Jzc5Wdna09e/Zo06ZNioiIcLvIHxIS4vUxebMPSWlpqYqKipSYmMh5GOCnats3zeJ0OrV161bt2bNHgwYN0vr16+0MJisrS+Hh4UpKSrLHQPv371dFRUW1gLsxVrG57kNSXFwsSYqPj2ejbTQbAu0WxNsgKS0tTVu3blXv3r3Vu3dvbdy4UZL7JgCBgYF2wZKOXOXLyclRTk6O9u3bp19//VVhYWFuMweOdmCVkZGhmJgYRUVFsTQO8EPeBEllZWVav3698vPzdeKJJyo+Pl47duywL3JZ/w0NDVViYqISExMlSSUlJfbAavPmzSorK1NsbKwdMMXGxjZoYCX9FnDv3r1b4eHhCgoKYmkc4Ie8CZIyMzO1bt06xcfHKzk5WTk5OW79Iq2Zi9HR0YqOjlb37t3ldDrtgDszM1Pbt293GyfFx8crPDz8qAJu6wQzISHBbXUd+5AA/sHbICk1NVVpaWkaOHCgunTponXr1lV7nqCgIDvslo60Z7Mu8u/cudNexWaNgRqjTVtRUZF27NihuLi4avuQWPWHMRDQctW1b5okFRUVKSUlRU6nU2PGjFFUVJTWr1/vtimkMUbh4eEKDw9X586d7Ra11nnY3r17VVlZWW0V29EG3IcOHVJJSYndFcDTSloCbjQ2Au0WwtsgacOGDcrLy9MJJ5xgh9VW4aptI5LAwEC3gVVFRYU9sNq9e7c2btyoyMhIt5kD9R1YWccdFBRE7zfAz3gTJGVlZSklJUVxcXEaO3asXSO8qUFhYWHq1KmTOnXq5DawysnJsWcOxMbG2jWoIf1vJdkDJ9eZA5WVlTWe3DGwAnzP+q5ae4bUFCRt27ZNu3fv1oABA9S1a1f7+1v1RK6qgIAAxcTEKCYmRj169JDT6bRXsaWnp2vr1q0KCQmxxz9WwF0f1vFaoZGnfUhcA272IQFajvoESZWVlXaQJKlaDfIkODhYHTt2VMeOHSUdOaezzsO2b9+uoqKiaqvYGtr/Njg4mH1IAD/izb5pknTgwAFt3LhRnTt3Vv/+/e2Jha739TQOcjgcioiIUEREhLp06WL3/rcC7t27d8sY4zYGqm+bNteA27UGsQ8JmhqBdgvgTZCUnZ2tlJQUxcTEKDk52W02tTdhUlVBQUHq0KGDOnToIOnIzAErXNqxY8dR97/1ZmmcJLdwiYAbaH7eBEnGGG3btk27du1S//791a1bN4/fU29rkKeBVVFRkT2wSktLO+r+t94sjWPmAOB73gRJxcXFSklJUUVFhUaPHq3o6Gj7z6qeyHkjICBAcXFxiouLU69evVRZWanc3Fzl5OS4tWmrT/9bTyeQ3m60zT4kgG94GyQdPHhQGzZsUKdOnTRgwAC377Y3F9WqCgkJUUJCghISEiQdaaNkjYG2bNmi0tJSxcTEuK1i86ZNm3XsNbVpqxpwsw8J4Fve7JtWWVmpzZs36+DBgxo6dKi9+tXizUW1qvePiopSVFSUunXrJmNMtTZt1jjJGgNFREQ0ynmYFXBL7EOCxkGg7UPeBkk7duzQjh071K9fP/Xo0aPafeoTZNckODi42sCqOfrfMnMA8B1vVoaUlJQoJSVFZWVlGjVqlGJiYqo9z9HWIIfDocjISEVGRqpr165uA6ucnJx69b+tqV7UNbBi5gDQvLwNkg4dOqT169crMTFRAwcO9Dj2qG+YVFVgYKDatWundu3aSTqyiq0x+99ax+ZNwM0qNqB5eBskbdmyRfv379eQIUOUlJRU7XmsulO19Vp9hIaG2v3/JbmtYtu8ebPKy8vr7H9b2+vWdB7mug8JATfQvLzZN62goEBr165VUFCQxo4dW+Pqsaqt1+rDU5u2/Px8ZWdnKyMjQ9u2bVNQUFC1VWyNEXBbYyCJgBsNQ6DtI94GSevXr1dxcbFGjhyp2NhYj8/lcDjkdDobJdi2eNP/1nVgVdOx1YSAG/Cd+gZJCQkJGjFiRI2rNFxnBDVGDfI0sPKm/219X4OAG/ANb4Ikp9OpLVu2aN++fRo8eLA6derk8bmq1p3GqEG19b/dtWuXCgoKqrVpqy/XgJs2bUDz8jZISklJUUBAgJKTkxUREeHxuepa7t8QDel/Wx+1BdylpaXsQwI0IW/3Tdu3b582b96sHj16qG/fvjWeg9R3hnZdAgICFBsbq9jYWPXs2VNOp9O+yF+1TZv1KywszD6n9Ian87Da2rRxHoaaEGj7QGVlpdLS0hQcHKwOHTp4/OK77p49fPjwWtt9NKTlSH156n9rndxZ/W8DAwPldDoVExPToP63LI0Dmp4VJG3cuFE9e/a0N+5w5bp79uDBg9W5c+dan7Opa1Bd/W9TU1MVFBSkiooKHT58WCEhIY0ecFvHwcAKODpOp1NZWVnav3+/+vXr5/E7VFhYqJSUFEnSmDFjFBkZWePzNfaJnCfe9L+1jjEzM1Px8fFH3aZNIuAGGpsVJO3cuVNBQUHq1KmTx+/Qvn37tGnTJnXv3r3GOlX1eaWmqUGe2rR56n8bERGhsrIy5efnN7hNm+v7qWkfEs7DgIazJjWuWbNG/fr189jKo6KiQhs2bFBWVpaGDx9ut4itiacwvDEFBATYwbUku01bdna29u3bp19//VVhYWH2JKDS0tI627RVVdsqNus8rGrAzUbbkAi0m5XrjKTMzEyFhYXZJ0cWT7tne/NFPZplbvXlOrCyZg4UFRVpw4YNKi0t1bp16+R0Ot127o6Ojm7wwKqmpXHMHADqxxoYOJ1O7du3z95UzVVRUZHWrl0rY4ySk5NrDZIsTXkxzZOa+t+uW7dOhw8fVlpaWr3731ZV19I4Zg4A9eM6I6m4uFjp6enq379/tfvt379fGzduVNeuXdW/f/86v1MN6V97tDz1v83IyNDWrVuVmpqq0tLSo27TJnm3DwkBN+Ad19WxeXl5CgkJ8Rgkbdq0SYcPH9awYcOqnad50hSrROp6PU/9b/fs2aOioiL98ssvcjgcbmOgxup/yz4kQMO57pt2+PBh9e7du9r3JTc3VykpKQoPD9fYsWO9On9p7nGQpzZtOTk59gq25cuXKzIy0m0VSXBwcL1ew9s2bZ5qENoWAu1m4hokSUdOQqoWm5p2z65Lc8zQruv1IyMjFR4ernbt2qlLly4qKCiwZy/Vp/9tba/hKeC2Zg5YS+OcTqeCgoLsq4QE3ID7IMBa2mZ9X1y57p49YMAAr8PZxm45Ul/WwCooKEgDBgxQZGRkk/S/rWlpnDVzQDoyayEyMtIeXFF/gOpt1qx/x11VVFRo8+bNOnTokI477jg7LK5LU89M8kZoaKg6dOigrVu3asyYMSopKbHHQFabttjY2Fr739amtlVspaWl9uzJiooKBQcHKzw8XEFBQYyBgP/PNUiyxkBVa0VeXp7Wrl2rsLAwJScnKywszKvntlo/Wv/f3DXIatPWsWNHFRYWasSIER7737qehzVW/1vXNm3SkRaVsbGxdqs2Am7A875pVWuQMUa7d+9Wamqq+vTpo169etWrfUdzX9h3FRQUpA4dOig3N1dRUVHq06ePWw60YcMGRUVFuZ2H1WcVm+RdwF1WVqbAwEBFR0dzkb8NIdBuYp6CJGtA4Bom1bZ7dl1cA+2WwLX/bbdu3ersfxsXF9doMwe2b9+ugIAA+4qn1YPbdVlKS/mcgOZQU79+1wGPtXt2enq6x92z6+Lri2pV1dT/1nX2QNX+t40xc6C0tFQrVqxQcnKyXW+sYJuZA2irqgZJnsZA+fn5Wrt2rUJCXzkYEQABAABJREFUQjR27FivgyTJvf60lBpk9b91bdNWtf+tFXC3a9dOUVFRjRJw7969W5KqjYFYxYa2ylOQZH1/rBpkjFFaWpq2bt2qXr16qU+fPvU+J/H0/75SU//bnJycWvvf1oen87Dy8nL99NNPGjNmjIKDg+1xEvuQoC2r7TzMqkFlZWVav3698vPzdcIJJ9itPbzVEi7sWxwOh8c2bdYYKDU1VSUlJYqOjnZbzV+f7Mt6napt2vbu3Sun02nXcFaxtQ0E2k2oto0frZMub3bProuvZ0fWxdv+t42xwZsku2CxNA5tneumR1WDDGsglZ+fr5SUFAUFBSk5Obne3z1LS7mo5ukYvOl/W7U9QENmDlgnatYy5pqWxrme3LWEzwxoCjUFSdJvq9SMMdqzZ4+2bNminj17qk+fPvUOPKrOTGppXNu0Ve1/m5OTo7S0NBljqm3wdjSr2IKCgtiHBG1ebedhAQEBqqysVFlZmTZs2KC8vDyNGDHCXkJfH76eHWmp6XVd+9+6tmmr2v/WtQY1tE2bdGQMZNV49iFBW+Y6BqqaOVi1IisrSykpKYqLi1NycnK9V5BarH/zW2IeFBISosTERHvCVElJiT0G2rJli0pLSxUTE+O2iq0hbdpcxzkS+5C0FQTaTaS2IEk68oUrKSnRjz/+WOfu2XVxLVwtrYB54qn/rRVwHzhwQFu2bGlw/1vXfzDqWhrHzAG0VrUFSRaHw6FDhw5pz549de6eXZeWUoO8fW1P/W+tmQPWwKoh/W9dT2i97f3GwAqtUW1BkvTbBbW1a9cqJydHxx9/vL2ioqGv5+n/faGu77DD4bn/rVWDrDZtDel/W3UMJNW8DwkBN1ozawzkujLElcPhUHFxsVasWKHo6OijCpKqBki+rkF1qan/bU1t2rztf1t1DOTpPMwaA0kE3Gi9XPdNk6pvumrdtnfvXqWnp+uYY45R9+7dG/zvb0u/qFZVWFiYOnXqpE6dOkmS2yq2/fv3q6KiQrGxsYqLi1O7du0UHR3tVW2oes7raaNt9iFpfQi0G5nrrOCaBlHWycvhw4fVs2dPr3bPrk1LaTnS0OLp2n5EOjKw8tT/1nXmQE2Dzpo+BwJutBV1BUnSke9YWVmZ9u7d69Xu2XVp6atE6hIaGqqkpCR7hUxxcXGD+t+69tCsytPSOGYOoDWqK0iSpIKCAlVUVKiyslJjx45tcJAktZwTuYZyOH5r09a9e3d75UxD+t/WNQaSqgfcpaWl9j4kbLQNf1c1SKrpPMz6N75///7q0aPHUf2ct7SWI/Vl9b+1xoJWm7b69r+tbaWMp/Owqhf5HQ422ob/87RvWlUlJSUqKytTZmamRo0apZiYmKN6TX8c+7iy2rR17txZxhgVFRXZM7itNiKu52HR0dH1HgNJ7qv4XfchcQ24XVvVMgbyDwTajcjbIGnTpk3KyspSfHy8+vfvf9Sv6+9hUlWe+t9aAffu3bu1cePGGvvfehvs1xVwS8wcgP/xJkjKzc3V2rVrJUkDBw486jBbank9tI9WffrfWgMra3mtt/VH8jxzgIAb/srbIGnnzp3atm2bHA6HRowYcdQ/0y0lTGqs2uep/61rm7ba+t/WdwzkeuzWhIzKysoaaxAnd2jJvAmSSktLtW7dOuXn56t9+/bq2bPnUb9u1YtqVTfcbk6N8f2srf/ttm3bqrVps/rf1nZR39Nx1rSKzToPqxpws9E2WrKa9k2rKiMjQ+vWrZPD4dCAAQOOOsyW/P/CviuHw6HIyEhFRkaqa9eubm3arCxIkttF/sjISLv21ncMVDXgdl3Fxj4k/oFAu5F4EyS57p7do0cPFRcXN9rrt4Tl/lLTnEwGBwe7zRyorf9tSUmJIiMj6/0adS2NY+YAWjJvg6Rdu3YpNTVVffv21YEDB+rdJ7omLWWVSFNwOKr3v7VmDmRnZ7v1v7VqT30/C08Bd00zBwi40RJVDZI8La8tLS3V+vXrVVhYqGOPPVZr165tlJ/f1nQi54mnNm1V+99abdqKiorq3ftWqnkMxD4k8AfeBkmHDx/WunXr1L59e/Xo0UMFBQWN8vr+1nKkvqr2v/XUpi0mJkZRUVGSjpwTH80Gb1LNbdrYhwQtkTeTGp1Op7Zu3ao9e/Zo0KBB2r17d6P9/Fa9sO/rTSEb+/mqtmmzVrFlZmZqx44d9jiptLS0XhOMXF+DgNt/EWgfJW+DJGv37N69e6t3797atWuXioqKGuUYWtvsyLrU1v82Pz9fubm5Onz4cL3737qqbWkcMwfQkngTJLnunn3iiScqPj5e6enpjTaLyLX2+LoGNfV30NPMAav/bUZGhowx+u9//+s2c8maOVCf16hpYFVaWuo2e5KlcfAlb4OkzMxMrVu3TvHx8UpOTrZP+hrjQlhrD5Oq8tT/1gq4i4qKlJeXp4yMDLcaVN+WLnWtYqsp4OYiP5qbt0FSamqq0tLSNHDgQHXp0kW7d+9u1FpRW7uN5tJctc9TmzZrDCRJ//3vf6tt8NaQzX4JuOEP6to3TZKKioqUkpIip9OpMWPGKCoqSnv27GmSGtTaORwOxcTEKCYmRj169HBr05abm6v8/Hy3MZC1iq0pAm72IWkZCLSPgrdBkrV79gknnGD3iW7MJWmteXakN1wHVuXl5YqOjlZYWJjH/rdxcXGKjY1tkoGVa8DtOnsJaAreBkmuu2ePHTvWbs9jXcFuTG3loporh+O3/rfx8fFas2aNjjvuOLf+t677BNTW/7a212DmAFoab4Ok7du3a9euXRowYIC6du3qNv5xOp31vuBclfWaLWEc5IvXd23TVlxcrOjoaEVGRtr9bwsLC+3+t9ZMb282eHNVn4CbfUjQXLwJkoqLi5WSkqKKigo7SJIa/zzM9f/b2jjIatMWExOj7OxsnXjiifZK2vr0v62N63mYa5s2NtqGr3izb5okHTx4UBs2bFDnzp3Vv39/++e4KbKgqv/f3Hzxuq5t2goKChQZGam4uDhlZ2frwIED2rJli0JDQ91alFht2rxV03mY60bb7EPiOwTaDeAaJFknUJ5+WLOzs5WSkqKYmJhqu2c3Zpjk+tptbRBVldPpVEhIiL1zbn3639ZHXQF3VlaWQkJC1K5dO2YOoNF5EyQZY7R9+3bt3LlT/fv3V7du3dzuExAQ0CQX1XxZg3xd/4wx9e5/GxcXp/Dw8Hq9Tl0Bd05OjoqLi9WtWzcGVmgS3gZJ69atU3l5uUaPHq3o6Gj7z1yD0cbSEmqQrzmdTgUFBXnsf5uTk1OtTZtr/9v6qC3gzs3N1d69ezVgwADatKFJ1DdI6tSpkwYMGOD2c97Y52FtaZVITawxkLWKzWrTVlv/27i4OEVFRR11mzZJ9ia3P/74o4YMGaKwsDACbjQJb87DKisrtXnzZqWnp2vo0KF2yx5LU2VBbXkcZIxxm0QkHfl7yMnJUU5Ojt2mLSwszG2iUUNXsUnu52GVlZVKSUlRUlKSOnbsSMDdTAi066lqAfMUZhtjtGPHDu3YsUP9+vXzuHt2U4RJTTHjsj5aQvGsOkPL4fC+/61V1Oo7sLJex3WgnJGRocjISEVHRzNzAI3KmyCppKREKSkpKisrq3H37MYc8PBzfISnGaL16X9r/apvD9yqA6vi4mLl5uaqS5cuLI1Do/I2SDp06JDWr1+vxMREDRw4sFpgaj2mMcZBnsZgvtASx0CS9/1vXdsDHE3AbYxRbm6uHA6HfZFfYqNtNA5vg6QtW7Zo//79GjJkiN0aw1VrnB3pa9a5qCuHo+b+t1lZWW79b60aFBER0eCA2+FwqKCgwA6Z2IcEjc2bfdMKCgq0du1aBQUFKTk52ePElaasQW2VpxoUGBhor2KTjrRps1aQ7N69Wxs3blRkZKTbRf6jWcVWVlZm15aqG21b52GurWrb8t9XYyHQrgdvgiRr9+zi4mKNHDlSsbGxHp+rsQc8VmgREhLSIpbd+kpd793hqLn/rbU81+FweNw5t77HYQ2aXGcOlJWVufW/ZWAFb3kbJFm7Z3fs2FEjRoyocePHxhxIGWOUkZGhioqKNh1QeFN7a+t/u2fPHm3atEkRERFH1f/W+vmw6orr0rjS0lKVlJSwNA715m2LkS1btmjfvn0aNGiQOnfu7PG5GnOGtnUMu3btUmlpaaNtduuPvKlBNfW/zc7O1v79+1VRUXFU/W+t+mP9so6rtjZt7EMCb3gbJKWkpCggIEDJycmKiIjw+FyNPQmoqKhIe/futVfv+oKvz/+8eX2Ho+b+t1abtqCgoGqr2Lx9X9a41hr/eNqHxDXgZh8SeMvbfdP27dunzZs3q0ePHurbt2+N/342ZhZkjFF6erqkI3WyLV9Uq+s7HBQUpA4dOqhDhw6SpPLycnsV244dO9zatFk1qD7jyprGQN7sQ0LA3TBtd9RfD9Y/gCUlJQoJCfFq9+zhw4fX+sPfWGFSRUWF9u7dq6KiIgUHB2v//v1KT09XfHy82rVr16B+rUfD11/C+g7mHI7f+t92795dTqdTBQUFysrKUmZmprZv396g/rdWMbNeQ/K8NI6AG96wZrxJR8IIb3bP7tKlS63P2Vgnc7m5ucrNzVVoaKh91TsnJ8ftO9NWAian01nv76xr/1vpyMDKmjng2v/WdXluXTMHXOuPVH0lkevSONeZA1VP7hhYwVJZWalDhw4pKipKwcHBHn8uCgsLlZKSIkkaM2aMIiMja3w+6/FHW4OMObLptvX6OTk5qqysVHFxsT0Oaki/Vn/VkEDL6n/buXPnGtu0VV3FVlvAXbX+SLW3aWOjbdTFaluRl5en+Pj4Gs/D9u3bp02bNql79+7q169frT+njXUeVlpaqj179qi4uFiZmZnKycmRw+HQpk2b7BpU31VX/qoh9adqm7bKykq7TZvV/9a1TVtd/W+tv9OaxkDsQ4KGcDqdOnz4sL3iwNP4uKKiQhs3blRmZqaGDx9uB6Y1aazzsIyMDBUUFMjpdGrXrl0qLCxUYGCgtm3bpnbt2ik2Nvao9yqpD19+ZxpyHhYcHKyEhAQlJCRIOlLTrfOw1NRUlZSUuLVpq+vzrGkMVFObNvYhOXptI2U4CtaMpP3792vPnj0aNWqUxyCp6u7ZdX2ZGqOIFRQUaM2aNZKk6Oho+6Skffv2ysrKsvu1ui5nb9euXb1n+/kTT0tN6iMgIMCeOSCp1v631gmep2VE1ix+TzwF3DXNHCDghjUjafPmzYqPj1evXr2q3cd19+zk5ORagyTL0c4MMMZoz5492rJlix2GFBUVSZLi4+OVnZ2t7du325uUWRfYGrIpa3209NlJdQkODq7W/9YaWHnqfxsbG1vtgkFdG+3VNLCyVgAwcwAW1xlJP//8s8aNG+dxDLF//35t3LhRXbt2Vf/+/ev8jjdGy5Hy8nKtX79eeXl5kqQBAwbYwVJ8fLyysrLssNt1DNScF/mb29HWIE9t2qr2vzXGuI2BqrZp83Qy5+l16tpo21plwj4kbZv1c5GVlaXU1FSNHTvWY5C0adMmZWRkaNiwYfa/n7VpjNmR1qbb1oZjxx57rHbv3q3s7GyFhobaMzUjIiLsMVBrvsjfGGMgT/1vq7Zpq63/rfVvSl2rdQm44Q3Xf5vS0tIUGhqqY445ptr9cnNzlZKSovDwcI0dO9ari1hHe1HNGKNt27Zp165dCg8PV/fu3ZWUlKS0tDSlp6errKxMmzdvVnl5ub13WFNf5PeHVSJ1CQ0NdWvTVlJSYo+BNm/erLKyMrdVbFXPa73Z7NzbgJs2bd5pnf+iNpKqS9s8fUlq2j27Lkc7kLJOHnv06KHIyEilpaXZx2Zd6bb6tVphSFpamjZt2nRUyyhq0xKWtzR2Ia2t/+3+/fvtnXOr9r/15oTOUtvAqrS0tMbZkwysWjfXIMna5MLTwOfAgQPauHFjtd2z63I0ffytWQhZWVkaMWKE3arH+uV6pdsaCGRlZdnL2ePi4uyTu4b0rG+pmmIgFxISUm3mgKf+t1a4FBsbW6/6I9Vv5kDVFiVovZxOpyoqKtxajFT9d76iokKbN2/WoUOHdNxxx9k/p944mgv7ubm5Wrt2raKiojR69Gh999139nMGBQWpa9eu6tq1q9uqq0OHDik1NdXesLmhPetr4+tadrQX9auyZqNV7X/ruoqkav/b2i7o1/Y63gTcXORvO1x/BlzHQFX/zvPy8rR27VqFhYVp7Nixtc7edXU09ccYo507d2r79u3q37+/pCMbUEpHxvEhISHq06ePpN9WXWVlZbld5LfCpaa+yN+cmmIM5KlNW039b+Pi4mpcxVgbbwNu9iFpW6q2WbN+NqreZ/fu3UpNTVWfPn3Uq1cvr38mjqYGlZaWKiUlRaWlpRo9erQ2bdpkP1dQUJBCQkI0aNAge9VVVlaWnQVJcsst6tuzviVrihoUFhamTp06qVOnTvbnadUg67zWumBwNGMgT+dh7EPiHQJtD6oGSdYskarhT227Z9eloWGS64651iyEAwcOSPJ8IlW1Eb612312dra2bt1qhyHWyV19eyW2NE19ZdDb/rdlZWXKz89v1J1zmTnQdngKkqrWoLp2z65LQy+q5efna+3atQoNDVVycrJCQ0O1a9cu+7tX9TmrDgSs2X5ZWVl2GFJ19mRD+fqiWnPMTKit/+2mTZtUUVGhoKAgRUREKCcnp0E1naVxbVvVIMn158G1Blm1ICQkpF5BkqUhs5NcV4ZYJ4/W995TDXJddWUtZ8/NzVVWVpb9b3ZkZKQ9BmrMi/y+0NQ1yOH4rf+t1aatav9bqzbs27evwW3vXANu2rS1PVWDJOvnwbVeWO2Gtm7dql69eqlPnz71DjEbch5WVlam9evXq6CgwN4rae/evfbPadUaVHXVletsv40bN9oX+a0xkD9f5G+OMVBt/W+tNm2SlJqa2uCaXtN5mNPptM/D2IekdfO0b1pAQIBdk6TfakF+fr5OOOEEe1WBtxpag6yVIe3atdPxxx9frT2Xaw1yXXVl7R2Wn5+vrKws+9/s4OBgt1a1/twiqTnGQNbnabVpKyoqsmv6nj17VFlZqa1bt6pDhw6Ki4tr0Iz4ugJuZnC7899RexPxFCRVLWLe7J5dl4aESUVFRVq7dq0cDofbjrmuz1XXc1bd7d4KQ7KysrR37145nU63gVVDNkT0peZe6lJT/1trxlpaWlqj7ZwrMXOgtaspSJLcL4Ll5+crJSWl1t2z69KQgZTVn7Jnz57q27evfWze1rOqs/2sMKRqiyTX2ZP+1CLJF0vtPPW/3bRpk92Oob79bz2pK+CWmDnQWngKkqrWINdQuWfPnurTp0+D/q7rOzupoqJCGzZsUHZ2tkaMGGFfWPZ2/CNVvyhthSGuvRKtpaTt2rWr1wUhX19Qs46hOWtQ1f63TqdT27ZtU2Zmpg4ePOjWps2b/reeuI5/JALu1s5TkCS5j4HKysq0YcMG5ebmutWC+mjI7Mjc3FytWbNGMTExSk5OtsfzVcdAtT1v1Yv8RUVF9uzJXbt22SseGroPki9/5hvSv/ZoVe1/m5mZqQ0bNqiysrJa/1trxW19+wnXdB7maR8SzsP8m2v7vaqbzwYEBNgbQlqhcmxsrJKTkxt0rlLfGlR1ZUi3bt08nofVdk7melHa9SK/68Q8K7do166d313kb+4xkMPhUGRkpCIjI+1Vgd99953i4uLsi2wOh8PtPKwh2Zqn8zD2IfmN//yENrHagiTpt4GUt7tn16W+M7TT09O1fv16denSpVp/SqtwNSQkrxqGFBQU2Cd3O3bscNtpul27dvU+EWluvu7dZM3ESE1N1cCBAxUZGVnv/rd18WbmgMPh0HXXXaerrrpKo0aNavT3icZXW5Bk/b6yslJ79uzRr7/+Wufu2XWpz0DK08oQV641qD51zTUM6dWrl73iISsry15KarVIsgZWzbmxSX019nL/+rJmDoSFhSkmJkbdunXz2P+2asDd2DMHJGnbtm167LHH9O6777aZAZW/qylIsgQEBKi0tFRr165VTk6Ojj/+ePtibkPUp154Whni+jyS5xnadakahriueFi/fr3fXeT39RgoICBAYWFhio6O1pAhQ+rsf2u1CKiP2gJu131IFixYoA4dOujPf/5zI75DNJXagiTpt/Om7OxspaSkKDo6WmPHjm3wRe/61B/X2eB9+/ZVz549q43PPP2/N8dghSG1XeR3nT1Z2/v19UU1X9cfSfbKsQEDBkhynxH/66+/Vut/GxMT0+CA29M+JFbAbYzR73//e73yyivq3r17o79PNL6q52GealBlZaW2bdumnTt36phjjlH37t0b/DNfnxrkaWVI1edqyPff9SJ/nz593C7yb9u2rUH7IPmyBrSEGiRJXbt2VUhIiJ0dZmdnKzMzU9u3b3fbJyAuLq5BLV9cV7FJ1du0VVRU6PPPP9fq1av19NNPN/bba3EItOXeYkSqHiRJv12V++GHH7zaPbsu3hYep9OprVu3au/evTXOBj+aQLvq80RHRys6OtpeSmqdiFg7TYeFhbnNnqw629jXRcQXswNqOg6rj15d/W/rs3OuJzUF3N9//73mzJnT2G8NTaCuIEk68veckZGhgwcPerV7dl28HUgVFhZq7dq19kU8T7PB67NKpDZVVzxYLZKysrLs70vVjU1a0izgljKQcg0Dqva/db1oac0cONpeep5O7tLT07Vq1aqmeHtoZHUFSa7327hxo2JiYo4qSLJ4e1GtppUhlpqW2jZE1Yv8hYWF9uxJ1xZJrrMnW5KWUINc+0d62//W9SJbQ1axWa/lOgZKSUmxQy20bHUFSdJvF/VXrVqlfv36qUePHkf1s+5t/alpZUjVY/NmdqQ3x1TTPkhVL/K3xBZJLaH+VN1DpOqMeNeA21P/24aMKz2NgfLz8/Xtt98e1aZ/aD5V902raQyUmZmp3NxcjRo1SjExMUf1mt7WipycHK1du7baypCanutoalDVi/wlJSX2GMgf9kHydQ2yvu9WLXBte9ejRw85nU7l5eUpOztb6enpSk1NdZs82tBxZdWAu7CwUGvWrNGGDRsa5421cC3nX0EfcQ2SXP8xclVRUaHt27eroqJCI0aM8Gr37Lp4M0Pb2nCysrJSY8aMUWRkpMf7NdUX17W3rfTbiYjV+3bDhg1uG5v4emaA5PtCZqlpU7ba+t9aO+e6Dqwa2v9WOlLMvN2kFL7hbZCUm5urvXv3KjAw0Ovds+tStRecJ9Y+AZ5Whriqb+sRb3lqkWQNrKwWSa6DAF9//339+paaNiTxdNGyav/boKAgt3Cpof1vCwsLW/xsVngXJBljtGvXLpWUlKhLly4aMmRIo/y91nVRra6VIVWfq7G/f64XhKzvS15enrKystwu8ltjoJCQEJ//vLeEi/q1bUrrqf+t6waTGzZsOOrAzgqXrBqEls1qHVPbGKi0tFQbNmyQMUYnnnii4uLijvp1vbmon5+frzVr1ig8PLzaypCqz+Vty5H6qO8+SL4+D2sJY6Da6o/D4ah20bJq/1trVY41Dmpo/9uCggJJOurQE03LdVKjtcrS0993RkaGdu3apeDgYCUnJzfKhaS6zsPqWhniqjEv7LsKCwtT586d3S7y17YPUluvQVUD7aqsllJxcXH2RUsr4LbGldaqnKPZuNxasdZWcqA2G2h7GyRZu2cHBwfL4XA0Spgt1V1sMjIytG7dOiUmJmrgwIF1ztptjBnadal6IuI623jz5s32Us/S0lJ79mRzFxVfFzJLbQMqV57631qf6d69e+3+t9bV0Pr0vyXQbtm8DZKs3bPj4+MVFBTUaJt11HYy53Q6tWXLFu3bt8/rfQKa47sXHh6uLl26qEuXLm6zja1lXFb/1oSEhAb1aj1a/lZ/PPW/tVblWMudG9r/lvrT8nkbJK1fv94OBzt06NBoP+O1jVmslSGBgYFe7RPQWKtEauN6IiK5zzZ23Yxs27Ztdhjb3C2SWkIN8rb+SNU3zHMN7Fz731rhUn0+U2pQy2adh1mtHmuqQYcPH9a6devs711jBYR1zdCua2VIVY0xO7Iude2DZF3M3rNnT4N7tR4Nf6s/ri1frA3zCgoK7Lq+a9cuORwN63+bl5cnSdSgFqymfdOq3mfr1q3as2ePEhMTVVZW1mirImo7D3NdGeLNhpNVZ2g3haqrPl1bJFl7Zri2HfPFPki+rkGubUO94dp+RJLdetO1p3lERIQ9/vH2M7VaH7WV+tMmA21vgyTrqljv3r2VlJSk//73v432RampiBljtG3bNu3atUuDBg1Sly5dvHquhvSvPVqus42NMVq1apUiIyOVn5+vtLQ0SXJbltKQpez15etCZh1DfQZUFofjt51zrcDOtf9tWlqa1/1vKysrVVJS0mYKmb/xJkiqunu29Q9cY6npZM7blSGumiNM8vSaVWcbf//99woNDbV7tYaHh7v1367vUvb6agmzI63jaOgmfa4Dq5r637rWoJousDA7suXyNkjKzMzUunXrFB8fr+TkZP3yyy+NOsaoqQZ5uzKkqua4sO+q6kX+7OxsrV27VuXl5Xav1tjYWHsM1BwtklrCGMhqudYQVQO7o+l/W1RUxBiohfI2SEpNTVVaWpoGDhyohIQEu4VDY3yPaqoVritDvG3vVnV2ZHOpOilm165dOnjwoLKysrR9+/Zm3wfJ1/uISDWvUPOG67jSatNmrWLLzMzUjh077HGSNQ6q6dy2oKBAISEhLaolDI5w7Tds/Zvp6e+wqKhIKSkpcjqdGjNmjHJycrR///5GO46axkDergxx5SnHamqe9kHauHGjysrKfLYPkq9rUG1jam9Ubb1ZXl5un4e5tmlzXcXm6dyWQLuV8zZI2rBhg/Ly8ux+adZme411suCpiJWWlmrdunUqKSnR6NGjFR0d7dVzNcVS2/qyevfEx8fbfcqsq3bWUvbg4GC33pONNdPUla8LmXUMUs3LTbx1NP1vraVubaWQ+QtvgyRr9+y4uDiNHTtWwcHBys/Pb9QwydPJXH1XhlR9rvru2N2YrM+yW7duioyMVEVFhdsGt4WFhdU2NmnsgZWv67ClsU74a+t/m5aW5jZzoGr/WwLtlsnbIGn79u3atWuXBgwYoK5du9ot2Rq7Brk+n+vKkKFDh9qhprfP5fpfXwgODlZAQIAGDhzotuIqKyvLviDtGi41xUX+llCDnE5no1089Lb/rTV5wvWiATWo5fE2SLIurFdUVGjMmDGKioqya1Zj1SBPk4BcV4aMHTvW6wDYGgM194X9qscQGhqqsLAwHXfccQ3aB+lotZT601jngQ6Ho8b+t4cOHbLbtHnqf5uXl6ewsDCffx5w59piRPK8b5r024X1zp07q3///goMDGyS87Cqz7d3715t3rxZvXr1Up8+fer189Mcq0RqExQUpLCwMEVFRalPnz4+2QfJ1zWoMeuPdGRc6TpxoqyszD4P2759u4qKiuzZ8NYKwqCgIHtio9ULvbVrObtpNTGrgJWWltYaZmdnZ2vFihWS9P/Y++8gSRL7vhP9lPemq9p7O97P7JheDEEYAksjCRIFUSQl8qgL6v5BHI+40JFgSAzxeHFgxIl85ImKQ+DuUUfFCUc+vqfgSQQEcQlwidnZmdnZmfbe++ry3mfm+6Mnc6qqq7uruqunG7v9jUAstrc6Kys781s/+/0yODioJPLyzVnLQKqQbILBIB988AE6nY4HDx5UXMwuPdZJaxfJkIOA7u5ubt68ycOHD7l48SIGg4G1tTUeP37Ms2fPmJ2dxefzKV8sR8VJExkcrJ90WMiTA52dnVy/fp2HDx9y/fp1bDYbPp+P58+f8/jxY/7mb/5GcbStJJn7N//m39Dd3Y3RaOTevXt8+OGH+77+z/7sz7hw4QJGo5GrV6/yne98p+i//1f/1X+lBAjy/955552i1wSDQX7+538eu92O0+nkv/6v/2ulCP9xhbwZksvlgL03Q+bn53nx4gV9fX3cuHFDSThqXUwqPJ4kSczNzTE8PMyFCxe4cuVKVcXewmLSaeEgrVZLQ0MD586d4969e7z99tu0t7eTyWSYmpri0aNHDA0Nsby8TDQarcl5nwb+gdoHVDLkidSBgQHu3r3Lw4cPlYB7aWmJR48e8eGHH/Lv/t2/49mzZxUny2ccdPyQm2nZbLbIM6T0fk2n0zx//hyPx8P9+/fp6OhQXqPRaI5tQjuVSvHs2TNCoRCDg4NVFbOhuJB9GjhI3rhqa2vj6tWrPHz4kJs3b+JwOPD7/cr39eTkJFtbW2QymZq872lo6h8X/8j6t62trVy+fJm3336bt956i4aGBuLxOKOjozx69Ijh4WF+53d+B7/fj9lsPvC4Z/zzZiDnYdlsdt9i9vb2No8fP8ZmsynFbKh9Hibzj8wXHo+HJ0+e4Ha7uXv3blXTzKXr/qeBg+RJ4t7eXm7fvs3Dhw8ZGBgo+r5+/vw58/PzBIPBAz1VKsFpiIGOi3/gtexUT08Pt27d4uHDh1y+fBmTycTW1hZPnz7lgw8+4Nvf/jb/z//z/1Qst3DGQW8G8lDjfnmYIAhMTEwwPj7O1atXuXTpkpIPHUceJnOFIAiMjY0xMzPDzZs3K5I5KsSbkBypFvLG1cWLFxkcHOT+/fs0NTWRSCSU7+vR0VHW1taIx+M14c2T3pQ9Tv6BnWva2NjI+fPnuX//Pm+//TYdHR3kcjlmZ2d59OgRH330EX/6p3/K2tpaRRz0ceCfT8SEdqUSI4uLiywuLpZ1zz6uQEoURZaXl1lYWOD8+fNFyWOlOE3FpL3OvXDSr6+vj1wup0zZLCwskEqldk1PHoYQTkswBbUvaJdiL/3bZ8+e8Rd/8RcADAwM8JnPfIZ/+S//JT09PbuO8ad/+qd89atf5Rvf+Ab37t3j93//9/niF7/IzMxM2a7eBx98wM/+7M/y9a9/nZ/6qZ/iW9/6Fl/60pd4+fIlV65cUV73zjvv8G//7b9V/r10Gv/nf/7n2dra4t133yWXy/FLv/RL/NN/+k/51re+VavLc2pQ6URSOp1WNjTKuWcfx3SkJElkMhlGRkbIZDJVbYaUO9ZJP3vyuZSDwWAomvSTjYDk6UmgaHryMGaIp+UaHHdAJWMv/dtvf/vbfP/73ycej3P37l3+1t/6W/yLf/Evyh7jjIOOH5VOJHm9XsbGxmhqauL27du7VqWPa0L7sJsh5Y51GuKgciid9JONgILBIBsbG0xNTWE2m4umJw+zqn4aOOgokiPVQKXarX+bSCTY3Nzk0aNHbG9v8+Uvf5nPfvaz/Mqv/Aqf/exndx3jjH/eDOQYqLCZVgpBEJiZmWFzc7Osd4fMW7UcLJLfd25u7lCbIYXHOm3FpFLs5YMUDAaZmpoil8vtmp78YYyB3lT8A3vr337nO9/hL//yL/H7/Vy4cIHPfOYz/M7v/E5ZM9MzDjp+VOqbFo/HGR4eRqvV8vbbb+/y7jiuPCyRSDA0NKS872GkgUpjn5OKg/Z733I+SMFgUPFBkrcd5DjoMNfhpDnoKJJHh0Gh/C/sDIeEw2EmJycZHR3l5cuXPHv2jJ/7uZ/jn/7Tf7rr9z8u/POxL2gXrvfvlcTJUh+pVIq7d+/icDh2veY4JrQBhoaGlKS/3PtWeqw3rR15VOh0OhobG5WHRV4jDQaDyhppof72XlrRpThpIoPqDQFqBXka45133qGpqYkvfelL/NEf/RF//dd/veeU0u/93u/xy7/8y/zSL/0SAN/4xjf49re/zR/90R/x67/+67te/wd/8Ae88847/LN/9s8A+O3f/m3effdd/vAP/5BvfOMbyutkgi2Hqakpvvvd7/L8+XPu3LkDwL/+1/+an/iJn+Bf/at/RWtr65Guw2lCpYUkuaDT0NDArVu3yhYyDnLDrhYqlYp0Os0HH3yAy+Xa830rPVbhtPdpR2khRBRFJbDyer3Mzc2h1+uLikuVSCSdBv6BN5vQFUKexvit3/otZdri05/+ND6fb8/fOeOg40UlhSRZ6mN9fZ3Lly/v+fmPI5nb2toiGAzu+76VHus0bKpV+vyXFkJyuRzhcFjRvpWb/HJyV2mT/zRw0Enxj0q1I9N27tw5/uIv/oLW1lb+9//9f2dtbW3PbZEz/jleVFNIGhkZQa1WMzg4uGfMWksOku/R58+fI0nSvu97EE7jhPZBKPVBSqVSBINBRVIMKJLSqEQi6ZPMP/Ba//Yf/+N/TDqd5pvf/Cb/6l/9K37wgx/sKQF5xkHHi0qHGuXGcldXF/39/WXvoeOY0E6lUjx58oT29nbOnTt3JP33095UK4S8dW6z2RQ5n1LPnsP4IJ00B50k/8BrX4Vf//VfZ319nc9//vO0t7d/7GOgj21Bu9JCkuye7Xa7uXnz5p4FHZkAa0Vk8li9HEQdRcfstExHHiWAK9VJlM0Qg8EgS0tLRWZl8vRkufc/Dddhv6D9TSEej2O1Wvnc5z7H5z//+bKvyWazvHjxgq997WvKz9RqNZ///Od58uRJ2d958uQJX/3qV4t+9sUvfpE///M/L/rZe++9R2NjI3V1dXz2s5/lf/qf/ifF4ODJkyc4nU6FxAA+//nPo1arefbsGX/37/7dw3zkUwe5kLTfxH6he/ZBJrC1DKQkSSIQCBCJRLh06dKhNkMKcVqaaod9b7VarUxPdnd3K2aIwWBQcZm2WCxKgVvWKCv3/ifNP/DmJiT3QyKRoKenh3/0j/7Rnq8546DjQ6WFpEQiwcjICLAjs7afTFUtOSiTyRCLxdBoNEWyAofFaYmDDovSbYdCreiJiQmlyS/HQHs1+U/DNTjphE4+h2Qyyd27d/mH//Afln3NGf8cLyopJAFsbGwwOTlJR0fHgQWdWjb2A4EAsOM1UygrcBiUK5D9MEGWSDKbzcq2w2F8kE563V8+h5OOf2AnD7PZbPzUT/0UP/VTP1X2NWccdLyoxDdNNjIMBAIHmsDWMgYSRRGPx0MsFuPGjRuH2gwpROFnO+lc7DAorPP09vYW+SAVakUf5IN00jHQaYh/AEVDu7u7WylWl+LjxD8fy4K2PG2n0WhQq9V7FpIK3bPb2toOfABqQWSSJLG6usrMzAwA165dq4kpx2mYTKoV5Ckb2QxRFEUlsNre3mZ2dhaDwVAUWOn1+lPTmTwNZJZIJA6cavf7/QiCsOtLtKmpienp6bK/4/F4yr7e4/Eo//7OO+/w9/7e36Onp4eFhQV+4zd+gx//8R/nyZMnaDQaPB7PrjUWrVaLy+UqOs4PK+QkLh6PYzQa9wyiSt2zDyro1CqQymazjI2NEQ6HsdvtdHZ2HvmYhbJHHweUmiEWSiTNzc2RTqex2+0KB9ntdkVG6qSffThdHLQfzjjoeCBJEtFoFEEQMJlMe3LQ5uYmExMTtLe3c/78+QPvmVpxkGx6q9Fo6OnpqYl58WmQXqvl+5Y2+ZPJpDI9uby8rGi5yjGQ3OQ/6WQOTkdRK5lMIknSvhJaZ/xzfBBFke3tbUwm057GePl8nsnJSXw+Hzdu3FCaOfuhFhwkiiLz8/OsrKwAKIZvR8Fpmo6sxfsXSiQVNvlDoVBRk79wglur1Z4a/jnp+Ad2CtoHTfyfcdDxQJZT3Nraoqmpac8YKBKJMDIygslk4u233z5wE7NWMVAqlWJ4eJhMJoPdbj9yMRtOj+SIfC5HheyDJH8vZDIZJQbaTyLppDnotPCPIAikUql94+uPE/98rArahVq1f/M3f8Pg4GDZP2Q59+xKcFQiy+fzjI+PEwqFuH37trLmdlSclunI40KhVnRPTw+CICiruSsrK0xMTGC1WhVtslquAx0Gp4HMkslkRYaQx4HCaairV69y7do1+vr6eO+99/jc5z53Iuf0piAXs71eL1NTUzx8+LDsF+vW1hYTExNF7tkHoRaBVDgcZnh4GLvdzsDAAFtbW0c6XiE+Tk21UpRKJKVSKaXAPTY2hiiKOJ1ORFFEp9OdaEAlb6qcBg6qRaHyMPgkc5A8kbS4uIhKpeLixYu7XpPP55mamsLr9XL9+vWKXdCPykGFXiXnz5/fV4rmsMcv/OfHBYUSSfs1+eUYKJfLHUp7slY4DROSyWQS4EQ46JPMP/JmSC6XY2JiggsXLpTdqIxGowwPD2M0GqvSjD0qB8leJdlslnv37vHBBx/UdPMNPj5NtUJU6oOkUqkU8+CTikFOA//AWR52UpDzsEQiwdjYGM3NzWU3KFZWVpibm6O3t5fe3t6KYvZa5GGyV0lzczMOh4ONjY0jHa8QH2cOqtQHSZIk0un0oXyQaoHTUAOCygrax4WT4J+PTUG73GpbuYfK4/EwPj5OS0sLFy5cqOpL7yhEFovFGBoawmQyMTg4qLiOnhW0q4dGo8HtdiurC7IRmbw++PTp011duzdJLqeBzOLx+IGBVH19PRqNhu3t7aKfb29v76l71NzcXNXrAXp7e6mvr2d+fp7Pfe5zNDc34/V6i16Tz+cJBoP7Hue0o1CrVqPRKJq1hRAEgampKba3t6s2HzoK/8ibIbOzs/T399Pd3Y3H46m5J8AnhYNkjbLW1lZFIikYDLK+vk44HOb9998v2iApl9AfF96UKe1BSCQSZxz0BlFYSJIkCa1WSy6X2/W6WCzG8PAwer2+avMhtVpd9piVQN4MKfQMCQQCNeOL0zCZ86awV5NfjoGeP3+O1WpVJif3kkg6LpyGGCiRSKDVaveduDvjn9qiXB5WGmMUxiI9PT309fVV9czKxdLDIBAIMDIyQn19Pbdu3VLyv1rmYTI+7nHQXj5Iq6urxGIxfvCDHxzKB6kWkAcLThqJROLACe0zDqotSmOgcs+hHIvEYjHu3Lmj+FhUgqPkYYXKALJnyNbWVk3zsNMivXrc2MsHKRAI4PP5GBkZOZQPUi1wGuIf2HmeDypof5z45+SveA0gTyTl83nF9EguKMkQBIHJyUnGx8e5cuUKly9frrqDe1gi29jY4OnTp7S0tHDnzh0MBoNCNrUgstNURDoJEpWNyAYGBgC4c+cOTU1NJBIJRkdHefToEaOjo6ytrSlGZceJ0zAdUEkxSa/Xc/v2bb73ve8pPxNFke9973s8ePCg7O88ePCg6PUA77777p6vB1hfXycQCNDS0qIcIxwO8+LFC+U13//+9xFFkXv37h342U4bZL3+TCajuBtrtdpdz3Y8HufJkyfE43EGBwerXjE7bCKXz+cZGRlhcXGRO3fu0NPTo/DkcRSTTpqL3jQHyRJJnZ2dNDQ00NbWxtWrV7FYLGxtbfH06VOePHnC9PQ0Xq+XbDZ7rOdzmgraB00GnHFQbSAXkuRic7kYSC4kPX36lObmZt56662qp3gPGwOFw2E++OADVCoVg4ODigF2rTlI/ucP+6pttZCb/L29vQDcv39fkQmYnZ3l0aNHvHjxgqWlJcLh8LFvsZ2GhE5u6u/39zjjn9pBEAQymcy+eVgul2N4eJjFxUVu375Nf39/1c/LYThIkiQWFhZ4+fIlAwMDXL16Fa1Wq3gr1bqg/XEvJpWDLJHkdruVXNftdhMKhXj58iXvv/8+4+PjbGxskEqljvVcTgP/wFkM9CYhx0DZbFbJReQmbiEHBYNBHj9+rMQi1RSz4TX/VMsZ6XSa58+f4/P5ePDggWJ6dxwxkIyTzsXeJGQfpK6uLmAnBrp48SI6nY61tTUeP37Ms2fPmJubw+/3K/56x4HTwj+CIBy4JfJx4p8f6gnt/UyPCgOpSt2zD0K1gVThNGY5o4FaEdlpSeROGvJnN5vN2Gw22trakCSJeDyuTHAvLCyg1WqLpidrvZp7GsiskkAK4Ktf/Sq/+Iu/yJ07d7h79y6///u/TyKRUAwEfuEXfoG2tja+/vWvA/Arv/IrfPrTn+Z3f/d3+cmf/En+5E/+hI8++ohvfvObwM6z9lu/9Vv89E//NM3NzSwsLPA//A//A/39/Xzxi18E4OLFi7zzzjv88i//Mt/4xjfI5XJ85Stf4R/+w3/4Q+esvZfpUaFxUaXu2QfhMKa0pZshhR3qWvLFJ517ZMjNLKfTidPppKenh3w+TzgcJhQKsbS0pDybhQaTtWyAnYaCtjy1fsZBxw95Imm/GEhe/w+FQty6dUvZbqoW1cZA5TZDSo2Laj2dJL/vJxHy59br9WUlkuQtElkiSeaggwq/1eI0xECVbKnBGf8cFXJDXy4QlHKQ/HyHQiFGRkaw2Wy8/fbbypZqtaiWM7LZLKOjoyQSCWUz5CjH2++8Cv//J62pJkOWO6vEB6lwevKw90M5nIahItiRHKlEzuuMg44GeTu2NPaV/ykIAlqtloWFBZaWljh37hydnZ2Hek7kY1YzBV24GXL79u2ibanjioFOmoNOCvJnlvWYq/VBqgVOQ/wDrwva+/mIwMeHf35oC9oHuWfLBSXZPbuzs5OBgYEj3WTVJHOJRILh4WE0Gs2ea721nAyQA4bj7DodhJMmT/n9C//GKpUKm82GzWajs7MTURQVY5ONjQ2mp6cxmUxFxiZHXVU7DWRWyYQ2wM/8zM/g8/n4zd/8TTweDzdu3OC73/2uMj28urpa9FkGBwf51re+xT//5/+c3/iN32BgYIA///M/58qVK8BOAjM6Osof//EfEw6HaW1t5Qtf+AK//du/XVRM/ff//t/zla98hc997nOo1Wp++qd/mv/1f/1fa3wVjhd7FZLgdSKXy+WYnJysyD37IBROBlQSSK2vrzM1NbXnWm+tA6l0On2kdeBa4DRwUOl11mq11NfXK3/7bDarGJtMT0+TzWZxOBxKcndUiSTZkO2kp8QqLWifcdDhsF8hSf53URQJh8OMjIxgsVh2NbWqRTUxUKFnyF5rvbWcToKd6SuDwfCx046s9v1Ln/1SiSS5yR8MBoua/HJyd9Qm/2mIgSrVrz3jn8Njr0KSDI1GQz6fZ2FhgcXFRQYGBujq6jrSd1M1MYbsGeJwOBgcHCwb29dysEgURbxeb8157YcJ5fw7SiWS8vk8kUhklw+SzD9HbfKfBv6BnUbiGQcdHwp908rlYfK/p1IpRkdHSafT3Lt3D7vdfuj3lP8OldxjhZ4hFy5coL29vWweVkuuSCQShEKhE2/onKSHULn3r9QHSeagozT5TxP/CIJwYB72ceGfH8qC9n6FJBlqtZqlpSXi8XjF7tkHodJkTtbpbm9v59y5c3ve2LVyy5V1E8PhMJlMhqdPnyqdqTetnXiSqORLQa1WK4lbb28v+XxeIbWlpSXGx8ex2WxKccnhcFT9xXAayKzSgjbAV77yFb7yla+U/W/vvfferp99+ctf5stf/nLZ15tMJv7Lf/kvB76ny+XiW9/6VkXnd9pwUCEJUO6ZDz74ALPZXJF79kEo1Hvc74tWllfyer37FtFrlXTJSVw0GiUej5PL5Xj58qXCQbJR0CcBlTQb9Ho9zc3NNDc3I0lS0fTk6uoqkiQVFZfMZnNV1+808A+ccdBxorSQVK6BoVaricfjPH/+vOx09GFQacxSuBmy3zRmrZpq8XicVCpFPp9X9DMnJiYUDnpT2oknjXJN/VLs1+Tf2tpiZmYGo9FYND1ZbZP/NHCQzD+V3PNn/FMdDiokFb5ONusqNx19GFTCQYWGbwdxXy04SJIkPB4PgiCwurpKIpFApVIxPz+Py+U6VB5xlHM5SVQSA2m12rI+SMFgkJmZGTKZzJF8kE4D/0B1xthnHFQdDhpqlKFSqXj58iUNDQ3cunXryPWQwoL2fpA3Q5LJ5L5F9FrlYblcDq/XSzqdZnJyEkEQkCSJtbW1Q+URR8FJclClsk97+SDJtSC5VnQYH6TTwj+JRAKozBj748A/P1SVzkoKSYBSWJGTqVpJShwUSImiyMzMDBsbGxUZvh21MydJEvPz8ywvLwPQ2dmJz+ejo6ODYDBYtFbhcrlwu93HXlw6ycLVYSYTtVotDQ0NSsMjk8kogdXU1BS5XG5XYHXQ8U8DmSUSCdra2k70HD6OqKSQJEkS6+vrALS0tDAwMFCT56KSyYBEIsHQ0BBarfZA7qtFIpdOpxkaGiKdTuNyuWhsbGRtbY3GxkZl+qYwMKjF9N9pRrVmLCqVCrPZjNlsLpJICgaD+P1+ZXpSDqoqKc6dBv6RA8SDVt3OUB0qLSRls1lWVlaUiSSn01mT96+kmHTQZkjp8Y6a/Hg8HsbGxtBqtYom7/z8PEajUTkXi8VS1OQ/6eml48JhrmVhkx9QJJKCwWBRk1/mn0qKc6eBg+LxeMXFpDNUjkoLSX6/n0AggNls5v79+zUbrDmIg/L5PGNjY4TD4YoM347KQYUDBCqVirfeeotAIMD09DS5XE7JI2SJn6NO/512yHlYNZB9kOScOZVKKcUlWSKpcIv2oOt3GvgHdj7HWQxUe8gxkOxZVO5ekA0YRVGkp6dH8dg6KiopaBduhjx48GDfhnAtBhvlAQJJkmhoaODChQv4/X6mpqYUqVWdTqfwT60lfk4TCnPzSiH7IMleSKIoEo1GCQaDRU3+wg2S/a7faeGfZDKp5JifBPzQFLQrLSTJeo1Go5HOzs6aFk8KdXFLkUqlGB4eRpKkinW6j0Jkhd2/W7du8fz5c+WaFBZo5cAgGAyytrYGUFRcqqbrdNpRC2dfg8FQND2ZTCaLpieBoulJk8m06z1PA5lVuu5/hspQTSFJds8G6OjoqFniclAgVelmSOHxjpLIybpwjY2NNDU1EQqFFP3w9vZ2xXlaDgw2NzeZmZnBZDIVBVYfp+LSUTmocHqyq6sLQRCU6yfrsJvN5qLpydJCwWngn3Q6jSAIZ8lcDVFpISkQCDA6OorJZMJsNtesmC2/5178Ixd2fD5fxfJKR2nqywnr2toa165dY2FhQTlHjUZDX18ffX19inZiYZFJlvhxuVxYrdaPTXFJ5p+jfJ5SiSS5yR8KhSpq8suyWCfNQdVsiJyhMlRaSJqfn2dlZQWn04ndbq/pluh+HBSNRhkeHla24iop2hylsZ9MJhkeHkalUnHz5k2eP38O7BRo1Wo1Fy9eVPIIOQ9bXFws0nd1uVwfq+JSLfIwk8lEW1vboX2QTkMMBDv591HkLc5QjP180wqRTCYZGRlBFEUMBsOhPUPKQf5+LVcLKtwMqVRe6aiDjVtbW4yPj9Pd3a1sfKpUKiwWC2q1mhs3biAIwi6JH3kTXW5Sn4bnpRaohTGvWq1WfJCAqn2QToOGvzxU9HFunpbi1Be0CwtJ+wXr2WyW8fFxIpEIt2/fZmVlpeZarnsFUj6fj9HRUZqbm7lw4ULFN/JhiSwajTI0NITNZuPBgwdF51R6vMLAoNCYw+PxMDs7q+hHyw/mD7M8SS0CqULIXwoWi0UpzsnTkz6fj7m5OfR6fVFxyWAwKMH+SaJS/cgzHIxKC0nBYJCRkRFFr/G9997bswF2GOxV0BZFkenpaTY3NyvaDJFx2EROkiSWl5eZn5/nwoULdHR0KFsipZxWGBj09vYqxaVgMMjs7KyyWlpLeZLTYIhUK2g0mqLpyVwupwRWCwsLygRQ4fTkaeEf4IyDaoRKC0kLCwssLy9z4cIFTCYTk5OTNT2PvZr68Xic4eFhdDodg4ODFQ8S7JUYHoRsNsvw8DCZTIb79+9jtVpZXFxUjlnIQYXaiaVN6uXlZdRqdVFx6ajyJKdhS62WKG3yF05Pyk3+QoNJuTh30hx0VtCuHSotJKVSKUZGRsjn8zx48ICNjY2axkBQPg8rNN6uZDOk9HiHycP8fj8jIyM0Nzdz8eJF0un0rnOC4jxCNkiUi0tra2tMTk4qxZFayZOcdAxU6zysUh8keXryNBW0zwaLaoNK8zB5sKe1tZXz58/z5MmTN8JBuVxOqUFVshki47B5WKEiwPXr12lsbGR+fr6Iy+T/r9FoigwSZR+fYDDIxMQE+Xy+aNDxTcqT1Bq1KGiXolofJEEQjuzFdlSIokg6nf6h/ltWi1NdvSwlsL2K2eXcs+U1pVqilMQKJxEuX75ctTPnYYhMNrns7e2lt7cXlUpFNput+PxLjTnkxG5+fr5InkR2fa3mQfhh0G47CtRqNXa7HbvdTnd3d1HXUw5M5a6oVqsln8+fWIPgbN22NqikkCRJUln37FobJMr8V3jMw2yGyDhMIicbvYXDYd566y2lgy0XkQ5q0pUac8iTS6FQ6GMhT3LcHKTT6XZJJMnXTw5MzWYz+XyeWCx2YtOn8Xj8E7XqdlyotJCUTqcZGRkhm81y//59bDYb4XD4jSRy8oTQYYy3D8NBkUiEoaEhHA5HkSZmJRxUrkldugHxwyxPctz8UyiR1N7ejiRJypCEz+djfn5e+Xv4fD7cbveJ6ZefbanVBpUWkra3txkfH6epqYmLFy+i0WhQq9Xkcrmank8pBwmCwMTEBH6/n1u3blU9jVltHlZo9Hbp0iVF2q+Qdw6SWZKb1H19fUX60R8HeZI3kYft5YO0uLio6Jd7PB5UKtUb1S8vhFxQqoVu/CcdlfimCYLA9PQ0W1tbXLlyhebmZmCnmHvccVDhZsjg4GBVGxeHiYEymQzDw8PkcjkePHigNG4Lr8t+cVCpj4+sH/1xkCc5bv6Bg32QBEHAZDIp1/EkisqCIJBOpz9RMdCpLWhXWkiSA4vS9Y7jJrF0Os3o6CiZTIYHDx4c6qaphsjkKcytra1dJpeF16YaYizVj/5hlyd5E0RWiNKupzx9ury8TDQa5dGjR9jtduUa2u32NzY1kEwmz9b9j4BqCkl7uWcfNwd5vV7Gxsaq3gyRUe2GSDweZ2hoCIPBsCtoO+y2SWFxRN4gCQQCZeVJDjK4PemGmnwOb5KDDAYDLS0ttLS0KNOnq6urpNNpXr58iUql2mVs8ibOTy4m/TAl4qcNlRaSZB5oamri9u3byjNy3PxTuBkiTwhVi2qLSWtra0xPT5c1eivkoEq5YL8NEnnyprC4dNA9fdIc9Kb5R6VS7Wry+/1+JiYmlOlJi8VSpH/7ppr8ZxPaR0elhaSZmRk2Nze5fPkyLS0tyn87bg467GZIIaqJXXK5nCIpVxrvydemksZ+IQr1ow+SJ5G3QPfDaeCgNzkdXc4H6dmzZ+Tz+UP7INUCckH7THLk8KjUN03mAa1Wu2uwpxYa1aWQjyn7JU1PTxcNGVaDamOgUCjE8PAwLperKN6Tj1XthHKpfnSt5ElOKvY/iRio1AdpaGgIjUZzaB+kWkAuaP+wNUSPglNX0K60kJTJZBgdHSWVSpV1z95P7/qwkElM1o51u91Hcs2tNOhJp9MMDw8jiiIPHjzYNfUmX5+jajGV6pbJk0uyPInRaCwKrE6bPMmbJrJSyNOn4XCYuro62tvblcmBsbExRFHE6XQqid1xFnzOkrnDo9JCkiw1tJd79nFxkJxArq6uHmozpPBYlQZS29vbjI2N0dHRUXYKsxYcVLhBIheXZHOy45InqTVOkoPk6dO6ujqSySQ3b95Upie3t7eZnZ3FYDAUeQAc1+TFJ027rdaopJAkr5yur6+X5YHj4B9560TWqDzMZkjpOVbCF4IgMDU1hdfr3XMKs3BC+7AolScpbPIfhzxJrXHSMZBGo1F4+a233lIaBKUSSXIMeZzanYlEomjw4wyVo9JCUiKRYHh4GLVaXZYHjrOgfZTNkNLjVcJBsvGa2WzmwYMHu747Cwvahf+sBichT1JrnDQHGQwGVCoVvb29WK3WQ/kg1QJyQelsQvtwqNQ3Td6s2osHjoODNBqN0tw67GaIjEr5p9Ajbi997tL86zAcVAt5kpNsqp20f4e8ne12u2lvbz+UD1ItIAgC2Wz2bEL7pFCNe/bo6Chut5ubN2+WvRk0Gk3FUhyVQq1WK4nNhQsXaG9vP7Lw/EEFpWAwyPDwMA0NDVy6dOnA4KVWRCKvapXKkxQmJoXyJPI08MdJu+2wEEURnU6HyWTCZDLR2tqqrPXIgdXS0lKRvII8PVkLyO/1SSKyWqHSQtLs7Cxra2tFK6elqLXkCOw8X+Pj40iSdOjNkMJjSZK073MjSRJzc3OsrKxw9epVZY1vr2MdtalWiFJ5jdLEpHD6uLC49HHTsD3MOajV6l0SU4IgKPrbq6urSnIsB1UHTcBXg0QicSY3cggUFpLkwHyvQtLIyAgAg4ODZZuXGo3mwOe7WqjVavL5PE+ePKGlpYULFy4cKXmoZDoplUoxNDSESqXiwYMHe35P1qqxX3i80g2Sg+RJThqnIQYq1K8tlZhKp9MKh29ubpLP54v0t2vZ5E8kEvT09NTkWJ8kVFJIgtfyhx0dHXuaUB9HU02lUuH3+4+0GVJ6vIM4qNB4rb+/v+z1KJ3QrgUqkSdxOBy43W5FnuSkcZo4qJzEVCU+SLVAOp0ml8ud5WFVolLftHw+z8TEBIFAYF8T6uMoaANMTk5iMpkOvRkio5I8TJZVCgQC++pzl05o1yIOOkie5LQZ3J4m/oG9fZCCweCePki1KMjLBe1PUh52agralRaS5ubmWF1d5eLFi7S1te1549a6mJTNZvH5fOTz+bIT4YfBfoQjSa/dcs+fP09HR8een/VNPLzl5EnkwEqWJ4GdArzVaj0ReZKT7szJKGdIUrjWI09eRKNRQqEQW1tbzMzMYDAYipLjo3wxnE1oV4dKC0mF7tkHFZRrHUgFAgGy2Sw2m23PRl41OCgBy2azjIyMkE6nD/ystSxk74XCta5Cg1v5+ZE5JxgM0tDQcCIbJKclmCrX+JSnBuRJkmw2qwRWc3NzRR4KdXV1R5JIisfjZxPaVUIURfL5/IEN/c3NTSYnJ2lra+P8+fN7/o3ke0AQhJo8C6Iosrq6Sj6f59q1a4feDCnEQbxRarx20P14lOnIg7CfPMnMzAyZTAar1YogCCemX39a+Gevv5PRaCySSJKb/KFQqKjJXzg9eVicGWNXh2oKSZOTk/h8vl3yh6WodR6WTCbZ3Nzcc1v1MNhvQrKc8VolOK54aD95kqWlJTQaDQaDAUmSyGQyJ7JBcpo5qFIfJDkGOkqTPxqNApxJjlSBSn3TIpEIIyMjmEwm3n777X3v81o31TY3N0kmkzQ1NXH9+vUj1xwOysOSyaQiYfHgwYN9i+elEmz7Hfew57qXPEnhkIz8/J2EOetp5h/YPaglN/kLfZAKN5EPG0cKgqDEpJ8UnHhBu9JCUql79kF/pFoWk8LhsLJW19TUVLMVor0mtGXjtVAoVGS8thcKr9ebWvUonT6OxWKMjo4SDofZ3Nw8EXmS00BksD+ZyShMjuUJeHl6cnl5WTF1LAysqlktTCQSZxraFaLSQlKpe/ZBf49acVChV4Ber6erq6smz5N8j5bjjELjtQcPHhz4fscxob0fyhncBgIBJiYmWFpaYnp6+kTkSU4DB1UaROr1+qLpycImpWyqXDg9WU2B+mxDpHJUU0iSZTeuXbt2YHGllgVt2XQyk8mgUqlqUsyGvYtJkiSxtLTEwsICFy9epL29/cBjFU5ovwmUkyfZ2NggkUjw8uXLE5En+WHin3JN/nISSYXTk9U0+c+MsStHpYWkaDTKyMgIBoOBt99++8DJxFrmYV6vl9HRUSwWC0ajsWaTZ3tNaO9lvLbfceB4m2ql71dOnmR5eZlYLMbjx4+VDaw3aXB70hwkaxtXwkF7+SCFQqGiJv9hfJBisRjAWVOtQlTqmyYP+lWqWV2rppooikxNTeHxeLBYLDQ3N9ekWLtfHubz+RgZGTlweEFG6YT2cWMveZLFxUW8Xi/b29tv3OD2pPkH9h4qKofSJr/cpJRrQXKtqFofpLOC9huGKIoEg0HF1fmgQpK84lrJjVKLrlwhefb395PP50mn00c6ZiHKFX8SiQRDQ0Po9XoGBwcrSoJqvWpbLVSqHWMgvV5PT08PdXV1u1YqSuVJjqNrdxrW/eXzqDZw1Gq11NfXK2tT8hdDKBRSzKlKjU32uoa5XO4Tp510GMiFpJWVFex2+56d0EL37KtXr9LU1FTR8WvBQdlsltHRUZLJJPfu3WNsbOxIxyuE/FlL79f19XWmpqbo6+ujp6enqmfqpDhI3iABuH37tvLdUqibWFhcOsqK4H44DVsih52KKG1SxuNxpcAtrxYWTk/udw3PJEcqgyRJpNNp5ubm6OvrQ6PRlH3eYrEYw8PD6PX6igpJ8Pr5PioHyZ4h9fX1XL58mffff79mSUO5pn4+n2dsbIxIJFLVNtybbqqVvrfZbKahoQGv18uDBw8OlCc5juLSaeGfw3y2vSSSCs2pqinQJZPJsxioAoiiiN/vx+fz0dfXt2chSdZv7enp2fN1pahFDFS4mXvlyhUymQyhUOhIxyxEOb4Ih8MMDQ1RV1e3y3htv+PAyRVU5O2GeDyOVqvlwoULSgw0PT1dJE9ynB4+J11Qkr9PDsODpRJJcpP/MD5I8Xgcg8Fw6jTOTxtk3zR5Q2evzftsNqsYsu4nu1GKWjTVkskkw8PDiuzZ+Ph4zTZPyuVhkiSxsLDA0tJS1T5JpVz2Jp9HWZ4kEAhgsVior69X6hilBrfHJU9yGupAh83ByjUpD+uDJGv4f5I2RE6soC1PBHg8HtLptNLhKUShe/aVK1f21G8th6N25XK5HOPj44TDYYU8FxcXa7o+V5rMyRMI7e3te2rSlcNJTGjvh9LibDl5kkLt21pqR580kcHhyawQpbpVpddQkqQiUis0ZojH4wBnydwBkCSJbDbL6uoqXV1dZSfaC92z33777aru1aNyUCgUYmRkRJmS1ul0NV2fK50MEEWRyclJtre3qzY5KUwKTwMHFRrc7iVPUlhcqtUGyWngoFrwj0qlwmazYbPZ6OzsLNIPlq+hvIUj85BOp1N+/2xCuzLI22lLS0v09PTsug8lSWJtbY2ZmRm6u7vp6+urKi44CgcVJlWyxJvsS1Kr+7y0mBSPxxkaGsJoNDI4OFhVwnOSBe1SVCJPIm+QuN3umhWXPi78A+UlkuTiUuE13KvJfya7djDkGCiZTLK9vU1/f/+u1xTmQrdv3y6bq+2Fo8ZA8maIPCVttVpZXV2teR5WGLvIfLuX8dpeKC1onxQHye+r0+kOlCcp50FyVJx0QekoBe1SHMUHKRaLHZvh5McJ8mR2PB7fc6gxGAwyOjqK3W6vOi6QfT8OC7ku09raqniGVOJ/Vs35wevnNpfLMTo6SiKR4P79+1VtWpeb0D4JHpI5sFCeRBRFpUF9nAa3H6cY6Cg+SJ/ECe0TG+VQqVSo1Wq0Wm3ZAk08Hufp06dEIhEGBwerKmbD0bpy0WiUJ0+ekM/nefvtt5VOYC1JDIrNAGZnZxkZGeHKlSuHMlo6DUncXpADgitXrvDw4UNu3LiBzWZje3ubp0+f8uTJE2ZmZhSN8sPiNBAZ1I7MZMjTX21tbVy9epWHDx9y69YtHA4Hfr+f58+f8/jxYyYnJ1lcXGRmZgaobNXt3/ybf0N3dzdGo5F79+7x4Ycf7vv6P/uzP+PChQsYjUauXr3Kd77zHeW/5XI5fu3Xfo2rV69isVhobW3lF37hF9jc3Cw6Rnd3t7LSKv/vd37ndw5xZY4GOXjSarW7nmtJklhfX+fJkyc0NjZy9+7dqhsvh+UgSZJYXl7mo48+oru7mxs3bijFwlpyUOFkQCqV4tmzZ8RiMQYHB6t27D7N/CMHBT09Pdy+fZuHDx/S19enGF4+evSIly9fsry8TDQaPdLnOA0cdBy6dXKBrre3V7mGAwMDqFQqlpaWePToEc+fP2d+fp6JiQlCoVBFgdQnmX8AhX9g9yR1LpdjZGSEhYUFbt26xcDAQNV/18NyUDab5cWLF2xubnLv3j3FAFt+/1pykHwsj8fDkydPaGpq4s6dO1VP75y2ploh5Mm/Cxcu8ODBA+7du0djYyPRaJSXL1/y/vvvMz4+zubm5pG2AD+u/AOv9YMvXLjA4OAg9+/fp6mpiUQiwejoKI8ePWJ0dJS1tTXGxsaIx+MVFQM+yRwkP9M6na4sT4RCIR4/fowoirz99ttVFbPhaHmY3+/ngw8+wGw2F8lM1loTV46pBEFgbGyM+fl5bt++rfyNKkXpa08TB8mTfx0dHVy/fp2HDx9y+fJljEYj6+vrPH78mGfPnjE3N0cgEDjS9T1pDqplQbsQcoGu8BrKz/nW1paSy05PTzM3N8fa2lrFOcMnnYPkOKj0vpOb6i9evKCnp4ebN29WHRccloNEUWR6epqRkREuX77MpUuXlHvquPKwWCzGkydPAHjw4EHVsqFvWnKkGsgSbP39/bz11lt86lOforOzk2w2y9TUFI8ePWJ4eJjV1VXi8fih+fOk+QeOLwaSm/z9/f3cvXuXT33qU4oXwOzsLI8ePeLFixcsLS0xNzdX8WDRx4V/TlRyRJ4gKi1iVuKefRAOQ2KSJCnroeXW6o6joJ3L5Xjx4gXJZLIibfCDjncQCeSFHX0xnfZ41qAOIhJZnkQ25ZC1o2shT3IaiAyOj8xkFE5PdnV1IQiCMj35/e9/n//+v//vUalU/Oqv/iqf//zn+cIXvlB2/f9P//RP+epXv8o3vvEN7t27x+///u/zxS9+kZmZmbL6rB988AE/+7M/y9e//nV+6qd+im9961t86Utf4uXLl1y5coVkMsnLly/5F//iX3D9+nVCoRC/8iu/wt/+23+bjz76qOhY/+P/+D/yy7/8y8q/n5Tet9xUK+SgSt2zKzl2tRwkT0NFIpGya3XHEUjJK6mNjY1cvHjxUF3y0zQdeRAHlDO43UuepHTq5iCcBg56E0YspVs48hp4KBTiN3/zN/ne975Hc3Mz//P//D/zhS98gTt37uw6xhn/oEz7lMYr4XCYkZERLBZLxdJjex2/Wr4otxlSeDyoXUFbPr/p6WnW19e5du1axZJOpSiUXjvNkBvUZrOZ9vb2ou2Hzc1NZmZmMJvNRZN/lXLyJ4V/oHgLp1AiaW1tjS996UtkMhn+l//lf2FtbY0f//EfL3tfnXEQZYtJhRr21U4qF+KweVjhZkipfv5x5GGZTIZnz56hVqsZHBw8lCRZOcmR0/A8lkOh+Wp3Tw/JZJp4LEo4HCqSJzmMMdlJf2Z5Qvy4z2E/H6T/+//+v/nd3/1ddDodv/Zrv8bnPvc5PvvZzxZ9l8r4pHNQYUE7lUopP0+n04yOjpJOp7l3796hpRMOsyVSuBkyODi4azjsOPIwj8fD3NxcVZJO5Y5VTnLkNEKv1+N01SNpzTgb2jBoIJmIKhrch5UnOWn+gTcXA+3ng/S1r32NqakpVldXcTqdvPPOO1y8eHHXMT5O/HPippCFgVQ17tkHoVrCEQSBiYkJ/H7/nuv2tQ6kBEFgeXkZt9vN4ODgkdbeC6e9yyGVzTHvCbIWjCCKEs0OK33NLuostZH7OCwKCyPZnEAimSQRjxJ+lZhA5fIkp4HI4M2RmQx5dbCuro6+vj56e3v5x//4HwPwta99jevXr9PT07Pr937v936PX/7lX+aXfumXAPjGN77Bt7/9bf7oj/6IX//1X9/1+j/4gz/gnXfe4Z/9s38GwG//9m/z7rvv8od/+Id84xvfwOFw8O677xb9zh/+4R9y9+5dVldX6ezsVH5us9mq3ro4LhQmXdW4Z1dz3EoQjUYZHh7GbDbvuVZXaw4CGB8f59KlSxUZr+2FgwragViSZX8YXzSBxaCns95Bh8uBWl275/WwgZvRaMRscyFqLLibO9GrBWLRyKHkSU4DB4mi+EZMeAthMBgUiaQ/+7M/45d+6ZeIRqO8ePGCjz76iP/wH/7Drt8545/XkJtq8nbG/Pw8/f39VU8JlqIaDir0DNmriFXrgnY+nyeRSCCKYkXGawehHAeJosRWOMZGKEYml6PRbqHd7cBiqL1+Y7XPvyhKbAfibIeSCHk9DW19XHKYiMd3ErvZ2dkieZKDDG5Pet1fPoc3reNdKpG0vLxMZ2cnXV1dfPOb30Sn0/HzP//zu37vjIN2UNjUz2QyjI6OkkqlqtKwLwc5Xqn0uchms4yMjJBKpfYsYtU6Bspms3i9Xtrb2w+1HVuKUh37bF5gMxQjlEih02hocliot5mP9Tmt5NiSJLHqCbO0ESSZymLQa+lqbeDeuXNk0mmlMCIbk1VqcHvSMdBJ8A8U57K/+Zu/icFg4I//+I8JBoP8d//df8fQ0FDZgvYZB+2gMFbx+XyMjY1RX1/PrVu3jhTPVpuH+f1+RkdHaWho4NKlS2WbybXkIDlWmZ+fP3Ldq9yEdiKdJZCMkcnlsRr1NDms6I9poLH0XPbD+naYicVtovEMADazgYu9jVy//trg9jDyJCfNP3ByHFQokfR//p//J//kn/wT+vv7effdd1leXuYP/uAPdv3Ox4l/TsWEtjxhOjw8jNForNj0aD9UQ2KyTq5Op9u3O19LEltfXycQCOByubhx48aRH8D99JJyeYGPFjdZ8YdxmA2oVSpmPAH88SSD5zqxm2qjnXZYZHN55lcDrG6HyeUFHFYj/R2dXL58eZcgvqzbKk8uFX7RnQYig5MjMxlyZ/Nf/+t/vef1kFfKv/a1ryk/U6vVfP7zn1dWnkrx5MkTvvrVrxb97Itf/CJ//ud/vue5RCIRVCoVTqez6Oe/8zu/w2//9m/T2dnJz/3cz/Grv/qrb7wIJ0Oj0ZDL5VheXq7KPbuS41YioSPLm0xPTx/43rXiINl4DeDq1au0tLQc6Xj7FbR90QRP5teIpbLYjHpi6RgboSiJjiyX2nd3gN8kcnmBiYVtVrZCZLJ51GoVboeFG+dblakbObErdL2XtW9Li0uf1IJSIdRqtbKK9lu/9VtlX3PGP8XQaDSk02nm5+dJJBK89dZbu875sMetJA4q3AzZ773laapacFA4HGZmZgaVSsX9+/ePfP33khyZ2vAxvu4FQKtRsRqIsB6Mcq+/A6ux9kXtSiGKEhOLHuZW/EjscOfiRpD2Jge3L7Yp0zGF2rcrKytFuq2l5qynIQY6af6BncmlbDbL1772Nbq7u8u+5oyDdlCYh8nFHJfLxc2bN498PhqNRhm0Oei+DIVCDA8P43Q69x3wqVUMJEkSi4uLhEIhpXh1FJSbyk5lc7xY2mItEEGtViGKEgadhisdTZxvOdzmX62wshXi5dQGWq0Gs1FHKptnaGaTfF7kQk8jFotF2SCJRCKEQqGKDG5PmoNOA//ATh7W2trK//F//B97vuaMg14/N3K+NDMzw+rqKpcuXaKtre3Ix6+ULw7aDDnMMQ+CPAkOcP369SMVs6G4iKxSqYhk8vzN9ArRdPbVD6HNaeduXxuWE4x9QtEUI7NbiKJEa8NO0zIUSzE6u4XVbMDtMBcN6cn+GcFgkKmpKXK5HE6nU+Egi8VyqrZiTgsHaTQa/s7f+Tv84i/+Ytn//nHjnxOf0NZoNIp+61FWLcodt5JEbmtri/HxcTo7Ow/UqKwFiYmiyNTUFB6PB7fbjcPhqMnn3W/FajsSZz0Ypc1lQ/cq8LCZDKz5I6z5I1zueF1USmVziKKESa+renryMBOSkiQxMuthft2Pw2LAqNfiDyUIRlPcu9JBS/3B8iR1dXW43e5TUUyCncn7kySzeDxeRPDl4Pf7EQRh1xpuU1MT09PTZX/H4/GUfb3H4yn7+nQ6za/92q/xsz/7s0WTNv/tf/vfcuvWLVwuFx988AFf+9rX2Nra4vd+7/cq/Yg1hUqlUj5DNe7ZB6ESyRF5K2W/zZBCHNVkCYqN1zQazbGaRkiSxNxWgGQ6R1f960mvcDLNnCdIZ71TKSrlBZF0Lo9eq3kjEwQAy5tBZlZ8uB1mGuqs5AWR7WCUkdlNPnWzZ195knIbJGfB1A5kDtoLZ/yzg8J7ZXx8nPr6egYHB8tOch0GlcRB0WiUoaEhRd7koNXOo8ZBhcZrLS0tBAKBmiTRhU01GaFEihmPH7tJj+1V414UJVYDEZa8Ia52vr6fUtkckrQT+7yJZzgYTbKwFsBuNWIx7VzzXF5gzROm2W2jp21Hr7hUniQWixEIBBR5ksINEkEQzviHHUNI2H+F9YyDXkO+Z4aGhhQD2FrlYbB/TFy4lVKJvEktYiDZeC0ej9PQ0FCzGKi0ob/kDbHiD9PusqPV7Hz+UCLF1IaPFocVu3mnGZUXRDK5PAadVnndYVFJHpYXRBbWAuh1GtzOne9pi0lPJJ5maTNIV0sdJuNr3xa5uFRqcFtOnuSkn/+Tfn8ZiUSirNRjIc44aAcqlQpBEIhEIkUGsLVAJTFQ4WZIJUaMtagFyQ08t9tNNBo98hAnFPNPXhBZjqRosGZor3eiVqnICyLrwQg2k4E7va3K76WzO4NXRn1tSoIHcZA3GCORztLR5FR+5naYWd+OsOWP4nYUPzeyf0Y5g9tSeZKTjoHkjaST5iBBEEilUvs+Rx83/jnRgnY2m2VhYYFcLsfdu3erNhzZDwcVk2Tdxs3NTa5fv15WK6baYx6EdDrN0NAQkiQxODjI4uJizXWYyhFJLJ1FlCSlmA2gVqkwGXT440lgZy1lYs3LWmBHksRtM3OxvYGWuuPV1ApGU6xvh2mss2Ay7ARQFpOeTV+UpY0gze7XE5Cluq3pdFohtY2NDQRBQKvVsrGxQV1d3YHBxHHhpAOqZDJ55NXtoyKXy/EP/sE/QJIk/rf/7X8r+m+F3b1r166h1+v5b/6b/4avf/3rNXNarxTy1Im8nVGt4ch+OCjxqnQzpBBHDaQ8Hg9jY2N0dnZy7tw5vv/979eEg/aa0M7mBfzxJA5z8d/VYTKwFogSSaaxGHQsboeY2fITT2Yw6HT0NdVxvq3+2LT+AQRRZGUrjNmox/yqqK7VqGly2fEGYwTCCZrcxfxXqtsqa996PB5mZ2eVYl0ul9u1QfKmcNL8AyfPQT8s/COKInNzcySTSdra2rhy5UpNg/H9+KKazZBKj3kQBEFQZOVu3boFQCAQONSxSlFuQjucSJPK5mm0v74X1WoVNpOejVCUKx2NxFIZJtZ8bAajSECjw8KljkbqbccbP4SiKbJ5QSlmA+i0Ggx6LVv+qFLQLkSh671cXJKb/LOzs6TTabRaLcvLywfKkxwXTgv/AMfarD0IPywclEqlGB4eBuD27ds1z8Ng57kv16SrdDOk9JhHiVlisRhDQ0OK2eT8/HzNdGZLdfzXg1EsRl1RkdppNrIaiOKPp7AaDSxsB5nbDJDIZDHpdfQ3uxhodaM5xmcomc4ST2WxW4tjTqtJz3YwTiKdVQrapZANbhsbG5EkqajJv7y8rEhpptPpA+VJjgOiKB7KB6bWqKSgfdz4YeGgra0tZmdnUavV3L9/v6Z/v4MK2nJhua6uruKtlKNwkCRJrK6uMjs7y7lz5+js7MTn89VcwiSUTBPPCFy0mVDLNRSNGqfFxEYwypX2RjL5PJNrPjZCUZCgpc7KpY7GY5eiTWeFsvwmShLbvhidTc5d3CRDpdoxuJVNbkvlSWKxGGq1mvn5+QPlSY4D8vU/6RiokoL2ceNN88+JFrTlREbW56ol5FW3csF1MplUArjBwcGKv3SOQmKBQICRkZEi4zW1Wl3zQKrc8fRaDUi7VzFyeRGTXkcuL/B0do0VfwSX1YRBq2Y9GCUUT/Hpy93U24+vMJFMZcnmBaWYLcNq1hOOpckL4p5FLaPRSGtrK62trcq6kN/vV+RJDAYDbrdbmS6o1dTbQTjphC4ejx9IYvX19Wg0Gra3t4t+vr29vaemUXNzc0Wvl0lsZWWF73//+weaedy7d498Ps/y8jLnz5/f97W1xtLSkjIVXctiNuwfSG1ubjIxMVHRZkghDstBcuFsbW2tyHitVhy0V0Fbo1ajUavJl5yzIO50sDVqNYvbIT6YXUWn0WAzGkhnc3y0uEE6n+dOX/Urh5UWcARBIpsTdk2DazVqBEEklckd+D5ycUmWJ3n8+DFAWYNbu93+RopLJ70hAhzorn3GPztIpVL4fD6cTmfNtrUKsRcHVbsZUojDcpAcd6lUKqWBFwqFah4DydjPnE2UJDRqFelcng9m1tgKxXDZzKiApe0g4USaH73crUxQvilIkkQ8kUElwcZ2hEa3dd+mnk6nK9ogWVpawuv1EovFDpQnOS6cdPwDO/yj1+v3jfnOOGgHm5ubWK1WwuFwze8PtVq9p0RRJBJheHgYq9Va1TDBUfIwOe7q7u6mv7+/phJKsHtLpBy3qVQqePXj2S0/z+c30Gs1WIx6kpkcz+bWyQkiV7sOZ45bCfQ6LQadlmw2r0xlCqLImifCljfKU/UyvR1uuttcmE17/13KGdw+fvwYg8FQkTzJceA08A/scNBBTf0zDtr5e62srNDb28va2lrN74+9YqDCzRC5sFxp/KVWq8lms1WfSz6fZ2JigmAwWLQNXOs8DHY+n4i0q3CsUavJCzkSmSzP5tbxhOPUWY2oUDG76ScUT/GjV3qPVY7NYTUgCCKCKKJRqxFEkdWNMNOL2zS6rIQiKdqbHFy/0LpnY01G4QZJX18fa2trbG5uksvlDpQnOQ7I3yUnzUH5fP7AgvbHjX9O9Iq3trZy9epVZUS/lpBJsTRQ8Xq9fPDBBzidTu7fv19VB/UwgZTsFv7y5UsGBga4cuWKcm57GagdBvs9oI12Cw6zge1oAuHVtQ4lUqjV0O6ysxXekSRpd9txmI1YjHo63A5i6SxL3jAAmVwefzRJPLU/iVdLFHqdBrVaRS5f7LDuC8QJhhLMr/gJR1P7HOH1++r1eiwWC7du3eLhw4ecO3duR5dycZH333+fjz76iMXFRSKRSM2N9Qpx0gFVJYGUXq/n9u3bfO9731N+Jooi3/ve93jw4EHZ33nw4EHR6wHefffdotfLJDY3N8df/dVfVVQoGR4eRq1WV7QlUWvcunWLhoaGY7kfygVSoigyMTHB1NQU169f5/z581XdK4fhoGw2y0cffYTX6+X+/ftF60K1Sub24jKtRk1XvZNoMkP21TMuiCLbkQT1VhNOs5GZLf8rsyQrZoMOl81MndXM0naIaDJNLi/gCcXwhGJFPHFU6LRqnHYTsWRG+ZkgiMwt+1hYDfBkaIX3XyzhDcQrOp5Wq0WlUtHd3c39+/e5f/8+zc3NJBIJRkZGePToEWNjY2xsbBS5udcaJ80/cHBB+4x/dmCxWHjw4AFGo/FI2197odxWWTwe5+nTp6RSKQYHB6sqZu91zIPg9/t58uQJDoeDe/fuKYWzWvqSlCsm1dvM2Ex6AvHXz1s2L5DM5Oh0O9gIRvGEY3TUO7CbDNhMBjrqnQTiSVb9EfKCyFYwxvJ2CH80WdM41eUwY9BpFf7JCyJTC9tMzW+zvB7gr5/N8/2n8wTCyYqPqdPpMJlMXL16lYcPH3Lt2jUsFgtbW1s8efKEp0+fMjs7i9/vr8jf4TA4DfxTiezaGQftoK+vjytXrqDT6Y7lniiNg+QJxQ8//JD29nZu3bpV1TDBYThDlnqcnJzk+vXrDAwMFE1T1zIPKzxWW52NRDpHXnh9vpFkGrNBh9WgZ3YzgFGno9FhxWLQ02C3YDMZmPMESKSzeMMJZjb8LHqCJA9osJeex34w6rW0NzsIx1IkX23wTi94GZ5cR8gLJFI5no+t8fjlEskDcr5CyA2M9vZ27ty5w8OHD+np6UEQBGZmZvjBD37A0NAQKysrxGKxmuf9cDr4B3YauAcNFp1xEMpUdkNDw7HFQKV8kcvllPvwrbfeOlDmqJJjHoREIsHTp09Jp9MMDg4WSVvWMg+T4TAbMWk1hApiH0mSCCdS1NvM+KMJtsNxOup36j52s4GOBifeaJL1QIRwPMXkmpexZQ/rr2Khw55LKZrr7TS5bGx4o0TiaeaXfYzObGC3GOnvcGMyaJld8jE0uV41R2g0GgwGAxcvXmRwcJC33noLt9tNKBTixYsXPH78mMnJSTweD5lM5uADVonTUtAWRfFADvq48c+Ja2jL6x2yXEStUKjdptVqlQnF1dVVrly5cigTtGpJLJ/PMz4+TjgcLrtOJ+tG1QKSJLG5uYkgCCSTyaJCvc1k4FZPKyMrHjZDcSRJwmrUc62jiRanlekNP5JEkSQJgNmgwxuNM7GyzdSaj3g6i16roafZxY3eZkz6o088u50WGuuseAJRmlw21CoYm/WwthWmyW3lyfAKVrOem5faGeja30SlMJk9SJ5EFMWiyaVarYbJBjgnLTlSyZrJV7/6VX7xF3+RO3fucPfuXX7/93+fRCKhuN3+wi/8Am1tbXz9618H4Fd+5Vf49Kc/ze/+7u/ykz/5k/zJn/wJH330Ed/85jeBHRL7+3//7/Py5Uv+4i/+AkEQFF0ll8uFXq/nyZMnPHv2jM985jPYbDaePHnCr/7qr/KP/tE/qpl2dTVQq9UVmzce5tiFz3fhhOKDBw8Odc+p1WpyucoTm0gkwtDQEA6Ho6xbeC23RPL5PCsrK4iiSD6fV95roNlFNJVmLRBBECVUgMtm5npXM3lRJJ7MYDMWrxjZjHrWEilmN4Ns+MMEYjtBmctm4nZfGx0NjtK3r/pzqFQq+tvdBMMJNn0RLCY9c0s+1j0R2prsmAxaFtf8bAdiPLzTS6Pr4Geq8NkvlSeRtW8rMbg9Ck46oZM17g7SITzjn9feF9WYWFeD0uPKE4pdXV309/cf6j6pJg6SjdcWFxfLmjzVspgkCAKhUEg5t8I4Z3hlmxV/GBUq1CoVPfV1dDfUMbnmQ6VSF00xqVQqDFot6/4I674oW8EYeUHAoNPS2+zirXNtGHTln9VqNPRddhPnuhqYWfYSiaXw+mOsbUXoaHZyvqcBRIktf4yPxtf43P0BtNqD/1aF718oT7KXwW2h9m2t5ElOmn+gsqY+nHEQFJuyHTcHyROKgUCg6s0QGdXmYZlMhuHhYUWbt/S+OKqUZCFEUSza+uuqdxBIplkPRNFrNeRFEZ1Gw9WORnRaNYlMdtd6v81kYCsU5QcTy3jDCbK5ndi0zmbi/vkO2ut3xz6FqJRPz3XWk80JrG9HWNkIsbIRpLOljoHOevQ6DYIosu6JsLQR5HJ/+Wm9vd5fvqcOkieRt7Pl/9VC6uI08A/sbF/tNeVYiDMOem1M+yYaaofdDClEtRzk9XoZHR2lra2t7BBTLfOwTCbD/Pw8brebdruRnCCwHohg0GlJZrM4TEYutDaw7A2j1qiKYh+1SoVeq2Z8xcvL7CaxV80srUZNf4uLBxc7a+JvZNRruXO5nYW1AGvbYbyBBG1NTvo73RgNO38PlUrF+naEUDSFy1F5rlzopXaQPMnk5CRWq1Xhn1rIk8ga3iftZZLP5yuqBX2c+OdEC9oqlerYCtryzSQIguIke1SzgWpITDZeMxgMe5JmrUjM4/GQzWYxmUyIosizZ88UuQ23243T6aS1zobbasIf25kyclpMykqJQacFaccsqdAIMpPLgyjxxLeG2aDFbTORzuUZXdoim8vzI1e6j/zQajVqbp5vZWRWhTcUZ9sfY9Mbpa/DTU+bC7VahT+UYGhynYY6C0773tpO+yWTpfIksViMYDCI1+tlbm4Og8FQVFw6rDzJaejOVZrM/czP/Aw+n4/f/M3fxOPxcOPGDb773e8qE7yrq6tFn2NwcJBvfetb/PN//s/5jd/4DQYGBvjzP/9zrly5AsDGxgb/8T/+RwBu3LhR9F5//dd/zY/+6I9iMBj4kz/5E/7lv/yXZDIZenp6+NVf/dVdrrlvElqt9tgSOfl+kAOa1tZWLly4cOj7oxoOWltbY3p6mv7+frq7yz+rtZgMEASBxcVF8vm88h6PHj3CbrcrHHS3r43eRheJTPbVNLZlZ+U1L2DQ6Uhnc5gLZIfSuTx5QWRkaRO1Sk2Tc4ezvZEEj6dW+IKxH1cNNG4bXVbuXulkcSPI6laIaDzDpf4m2pucaNQqHDYTq1th5ld8FRe097rOdvuOwa1cXCpncFtYXDrsPXIaErqDTCHhjH9kyHHQcSVzoigiCALT09N4PJ6KPUP2QqVxSy6XY2xsjFgsxr1798quHNZqMikWi+H1etFqtYp+8uPHj3G73bhcLgb7Wgin8+RFEbvJQLPDilajxmTQKhuChc9tJpdnxRtGJaloddvQ67Q7PiOrXixGHTf7Wvc6lYqhUqm40N1AvdOMJxAjFE4y0NVAd2sdGrUK1NBcb2M7EMcXitPSsP/KJuwfA+1ncLu6ugpQVFw6rPxErWP5w0COgQ6KT884qLigfZyN/cKc6O233z508VKOgSppHsn6uC6Xi9u3b5e9L2vBQZIkKc18tVqtJPCTY6M0OutwNDnIqjQYdDqaHVaaHBZS2Rx6jYb0KzNIGelcjkgiQzSeps3twGK0IYoSW6EYT2fW+AmbGaNOi0pV/UZsIfQ6LTfPt9LX7mZ0ZpNcNs+57kbkI6pVKvQ6DZvbkUMXtAtRTp5E9iCppTzJaYh/oPLBojMO2oFWq91TJvYokAvahWbUfX199PT0HPr5qTQPkySJ+fl5lpeXuXz5Mq2t5eOGWnBQNptlfn6efD6vxHtNZh0CKbJqE2qNjt72Rrrq63BZTXhCMQShjOdaMosnFaPZYaO7cUcGL5XNMb3up8FpocPtQBAl7GZDUb2o9HMfBItJz7VzLXS2OInHMtgsBkyvitnxRIZoLIU3sFMTqqagvd/3Qqk8STabVZr8sjyJw+FQ4sbDyJOcFv5JJBI7Qx0HcNDHiX9OfEJbXlGqdUFJ7vjJZjn19fXcuXPnSN2XSklse3ubsbExOjo69tXHPSqJFZKlXq+npaWFeDzOpz71qbKTOHJxqfQhbamzUu8wsxGK0uSwolGrCCfSqIBkJodBq1F0tA06LVq1mmVvmM7tECpU6LQamuqshy7O261GBm90EYqm+MHzBYw6Ld2tr7s09XUWljdCePyxQxe0C1FYXOru7kYQBKW4tLS0xMTEBDabrUj7tlKCOg0F7Uo0tGV85Stf4Stf+UrZ//bee+/t+tmXv/xlvvzlL5d9fXd394H3wK1bt3j69GlF5/amcJyTAfl8nunpadbW1g69GVKISjhIEASmpqbwer0HTkEdtakmG93Kpk89PT1sb29z//59pVgia7nKQYLL7kL/KoHTazX0NtXx0cIGOq0Gq1FPOpfHE46jValI5wV6mp3K+7W57Sx5QowtbeO2mREliUanhaa6wxtfNLqsNNRZqLMaScazdLUUd4itJj2+QAJBENFo9n+uK+Wg0g2SVCqlcPba2hpA0QaJyVS5SctpCKgOkhyRccY/O9BoNFVtXlRz3Ewmw7NnzxTt6mrupXKoZKKx1HhtrymoWjT1ZaNbq9WKzWajq6uLx48fc/nyZSKRCBsbG0SjUaxW6078Y3Yh52GtdTYcFiNboRiNDisqFQRiSQRRJJ+X6GiwK1xlMepxWPIML2yRSGZJ5/K4bWZ6Wlw49zAwOggqlYqGOit2i5H5JT9ajXqnmA0kkhmi8Qz+QIxgKFFRQbtwOukgFG6QiKKoNPm3traYmZnBZDIVFZcqLVKfFv6p1JT2jIN2cJyNfZ/Px9ra2pE2Q2TIv7vfd20547X9ihxH4SDZ6Nbv96PVauns7MRms/Hee+/R0dFBNBol6d0gl8thrKsjr8mT0qsxm810NToZXdlGq1YrGtr+aBJRkKiz7sg/7pyjipY6G1NrXv7TkylEUcKo13KuvYHzHfVFppPVQKVS4bAaaXRZWdTrULFz7bb9MTzbUbyBOM0Ndvo76unucFXELZVykFqtxul04nQ6FYNbOQaamZkhk8kUad9ardaK3/+k+QeoaEtNxhkHFW/V1/LvJ+dMo6OjBIPBmhjfVpKHZbNZRkdHSSaT3L9/f9974agcJMdber0eg8HAuXPnUKvVvPfee3S3NhGLxQiHt0llQnjTUQS3myaHBZtRjyccp8G+UzDeiX0ktGo1DQ6z8ryZ9DqQRL79dIZGuwVRkqh3WLjZ30J7mW3ZamA1GbBbDSRSO0a0a5sh1jbCJBIZcoLIk4+WEPMil841V/T8V7Mlp9fraWpqoqmpSdkslfPWpaUlNBpNUR5WSRP2tPCPLGv5ScrDTrygDRzLdJJ8QScnJ5VV16NOEx80GSBJEnNzc6ysrHD16lVl3UiUJDyxOJFMBqteR5vdjlqlKktioiSRyu107kslQAqRz+cZGRkhkUhw//59hoaGlHPQaDRFxZLCh3R5eRmNRvO6uORyYdLruDfQzsvFLXyvdLbtJiPXupoYXfJiNhTfJia9jtFFD+FICq1ajVarpqnOiqkKjbdSaNRq6p0WLCYD2ezroDqdyRGNpQmHk0Ri++vOVkNkRe/96nrIhb90Oq0EVmNjY7vkSUwm057vcxoK2olEQvnbn2F/yNORx5HI5fN5MpkMfr//SJshhTgokEqlUgwNDRUZr+2Ho6z8h0IhhoaGaGhooL29nZcvXyrPhdFoLCqWlK552Ww2hYPOtbjI5PMsbYcIxpMYdFr6m13ksgIrvnDRe0qSRCCS4D1fFLfSZNNwtbeJm32VTxGVuw4mox61WoUgiDubIcEEW9tRvIEYdXYzywNBejvd+ybRh+Ugk8mEyWTatUFyGHkSURTfqKt3KSRJqrigfYYdaDSaY9FVT6VSbG9v09HRcaTNkEIcxEFbW1uMj48XGa/thaPwT2FD/9q1a4RCoaItEbmJ39vbSzabVWKgiYkJBEGgrq4Ot9vNjY56prZCeMIxREnCaTbR4XYwsbyNQVf8HEUTGWZWfESiaSwmPdOrPmY3/HzmRh+NzsObZ+t1GlxOM2tbYaxmvZLUxRJp8oLEs6EVVCoVlwb257jD8k8t5UlOQ0JXTVP/DDs4DskRQRDIZrOsra1x48YNZTvgKJDvrb3uM0EQFFmTQuO1vXCUwSK5oQ872qJPnjwp4rP6+npFciyRSBAMBvH5fMzNzWE0GrHaHbTZ9ARSafyxJMZXsc+6L0rp4xVLZVjZDJGIZ+ludhKKpXhvZJFQPMXblys3tCuHRpcVs0lPMJIkkciwsBxQcl1BEPmbZ/Pk8r2c6z3473dYDpINbo8qT3Ia+Acqn9A+w+sBRNjJmw67IV0O6XRa+efg4GBNZG0OioGi0ShDQ0NYrVYePHhw4Oc5Shy0vb3N6Ogo3d3d1NXVMTExoRxTpVLR3NxMX1+fMrgXCASUrVCr2sBWUmQpnkRn0FNnMXGhzcLCZrDoGc7mBVY8YVKZPJ31DtRqFRv+HZ3tL7517kixj1arpr+rgQ9HV1laDbCyFkSlVqEzaOmst2Ex63k5vo7bZaH5iFtq5ZDLCayvhwiHEmh1Gtpa63bJk6yvrzM1NYXValVqQXttkJy05KyMeDyORqN5I0bgpwWnoqBd60Aqm80yMjKCKIpcvnyZ9vb2mhx3v8kA+T3T6XRR8SqRzfK9hUXmAyHSQh69WkNPnZPP9/fuIrEZn5+h9S38iSQmnY4rzY3cbGvZpVm0vO3jo5ERXBYzD1+R5X6u2qVrXvI08srKChMTE4o0wFtdbnKq5p2kzmJEp9GwsBUikcoUOd6ubIfxhpI0O220ue3k8iIb/ijpSJRrl4/2d2xttLPhCSOIIv5AgsUVP9F4hkwmh1G/48x9/WLrng2FWhCJ0WikpaWFlpYWJEkiHo8XBaL7yZPI0wknraFd6XTSGY4nkfP7/YyNjQE7iU6tCoz7BVJ+v5+RkRGam5u5ePGicg8uh8KMb3vxJhK4zSYuNzbS796ZUChM5iLpNAv+EPFMBrvRQF+9C1uZ4E98tbo3OzOjTD/JBj+FPFSo5Vq65hUIBJSGkSRJ1NXVcb3Zhs5kxW4147KamFz1Mb8VLDpWOJ5m3Relr9lFT/NOohpLZhie38JlNR46mQJocltxO814fFGQYH7JTyaXRxBFQOIHT+fJ5QQu9DeV/X2Ze4/aOC3dIKlWnuSkE7pUKlXRqtsZdnAcTTVRFJmdncXr9eJwOLh06VLNjr0XB4miyMzMDBsbG0WyJqIksRmNEctksOj1tNltim6j3NSXn9tgMkUmn8dpMmLaJwnM5/OMjo4Si8WU6adwOLyLg2To9Xqam5tpbm5WvtNlPftIJILDYKDOZsXpdNLd2kROkFj2hIgmMzgsOwlBLi8wu+5Hr9XQ3+5G/Sp+W/KEeH9sifsXO5FyuUM9/yqVinPdDfgCcaYWvGxshlEBeoOW7gYHJqOOj0bWcDstNDXsPel1FP6LRlOkkjksVgNWq+HQ8iQnzT/ALh+ZM+yNQt+ZWg4WyZ4hgiDQ399fk2I2FBe0y73n0NAQWq1WMdut5HiHKSbJcib19fVcunQJjUajxFOlHKRSqbBarVitVjo7O4u+0205P9lkAoPZRrPbQk+7G61KzdjKNnXW18Mzi5tBcoJIX6tL4aRIPM2ziVVyWYFml5WOJmfVnwOgzmHmxoVWno+vMTHrQRRErFYjrc0OulpdBIJxJma36OlwodPtH8tWy0HpdI6ZGQ9LCz4EUaKj08WFC83Y7XvLk0xPT2M2m8vKk5wG/oGdAmqlE9pneF3UrmUcJHuGwI78QS2K2bB/HraxscHk5CS9vb309vZWvDVebVOtsKEvD1AGg8EiLit879LBPfk7vWHbx9q2H3VWRadbh85oZEUN8XRWqfv4wwkC0RRXuhuxmXeuoV6rYXhui/8rOERvcx29bS4GOuoxvZKOrIYD+jrciKLIXz2aJZnO4nZZaXBaqHdZkESJcCTFpidS84J2KpXl/UfzrK4EEMWdONRqM3D3bg/9A01FeWsul1NioOnpaUWepHSDpNYbBoeB3EA1m80nfi5vEieuoQ21DaTkIMPpdGIymWpGYMCeX5iFxmsPHjwomp57vLrGqMdLu92OWa8jlcsx5fOj12i4ajIoJDbj8/OdqTnyoojTZCSZy/G9uUWimQw/dq4PgHgmy396OcqzmTkMZgttBivS4ioP+7qV4nheEPFE46hQUW81FQn+A0VdbtgxEJCLS/Kqu8vlglfTkxfaG3h/YoVALIndZCCVzTG74afOaqSt3o6KHZ21JqeV9xdX+f7QChd7cnQ2O6l3VF9U7W13s+6JMLvoY209RF4UMRq0dLQ04LAaeTGyisthprNt99TFUZK5vaBSqbDZbMoq80HyJBqN5sQJJJFInAVSVaBQY+2o948kSSwsLLC0tERfXx9zc3M1nZYtF0hJksTS0hILCwtcvHixqIE37fPz3dl5Uvk8Vr0ObzzBfCDIj/X3ca25SUnmNiJR/vPUHJ54AjUgItFqs/ETFwdotu/cS4lMlpdrm7w/MUUkGuPBpfPYGhqLDDAkSSIv7q+DJ8sjyQ0j2SwxGAwQXVlSEhWbxYbbZmLVG8H9SmpoZs2HTqOhuyBx02k1bHqj/OlfjaJKRzA1rHGtvxWruTruN+i1vHWtk6dDyzx9sUwmJ+C0m2hwWelscRIIJRib2aKn041Bv/ur8ygFbUEQ8XgiBAMJNFo1bW11OBw7n3k/g9ty8iQnndAlEgmgslW3M+yglolcOp1WCknd3d3E4/GaHFdGoTeAjL2M1+KZLO8uLDDvD5ER8ug1Ow39Lwz04TAalWclkkrzaGmVhUCIrCDgMBq43d7CrfZW1K9ek8nnWfSHWA8EWVlcpKvOzqcL5ExKn7u9ilSF3+lyw0ieRg541vlwdXFnFV4nshxMkMnmMRl1rPsipNN5Lg20KOeUzuYJhpPMrvhY24pg0IjYNGnulviRVIKWBjufut3Dt78/ST4v0FBvo6HOQoPLilqtYnUjxPpWuOYF7XQ6x4uPVlha8pPJ5DCb9PQPNHLjZqdSvKpGnuQ0JHRnGyLVo5YcJMsutrW1odPpaqqpvldB2+fzMTIysst4bTEYYtSzzXY8QYPFzNWmRgbqX8uwqVQqsvk8Ex4vc/4gOUGgx1XHxaZ6LAVSSZIk4Y0lSOZyJENBNpcWGRgYoKura0/N6L04qPA7/dy5c8oWbSAQ4OXLlyRzEtmEwORSgsY6J3lRYssfpdVtw27eKWZnsnmWN4MsboZIJLI4rUbcDjP9jXpshupjkIHuBiRJYmszjMNuxmbWI4oSm5thBEEkmcoSS6Rx7TONKX/eSp//XE7g/R/Msbjow2zZ2ZB7+WIFz1aEz37uAtZXUk6VyJPIxaVUKnXihmzyhHk534gz7I1aNfZl2cXt7W2uX7/Oy5cva+LVIaNcHiaKItPT02xtbRVtowiiyPqrhr5Nr6fdYS9bl4lmMkS9flBBh8OBWb+7oS++av5LryRUChv6sJtz9uOgwu/0WwXTyH6/l1zYy/imhNVsxmqzsBlMYjHqaHXv3M+5vMD0khePP0rCbMRq0LHiCbG6HebH3ho4xPVUcb6nkc2tMBq1ipYGO1ueCCOj6+TzAulMHofNyI3L7QfGVdXEQLMzHpYWfbS2OdC9kpbz+WK8eLFCU7MDm+11Q1Sn05WVJwmFQoryQV1d3aFMRmsNURTJZDKfuMHGE5/QrlVXTpIklpeXmZub49y5c3R1dfHkyZOakxgUB1LyKkI5k4FoJsOsL0CDxayQk0mno8VmZTEYorPBvWOCIEkMrW+RF0W66pwAOIxg1GmZ9Pi43tpMg8XM/+fxMz5cXOF8RzstbjfRdJqny+votVpUwGo4xvvbEcY/HEOtUtHssPKwv4tWp025RoIoFemtGQyGIrPEaDRKIBBQTDrMFgutFg3eZJpkJodOq8VlNdPisqLidVI3vezFG0ozsejFG05jtxh5eKOHcx3VSV9YzHp+5E4vmXSO9fUQbU0OXA4zbqcFjUbF6maI5fVAzQvagiCytOhjcdFPJpOntc3BwEAT9hLN7tIuZyaTUYpLY2NjSmF0fX39QHmS40I1+pGfdNTSmFbe0kilUty7dw+DwcDs7GxNC4ylgVQ+n2dsbIxIJMLdu3dxOF7rmeUEgWdrG+RFkT7X6+dlMxrj2do65+p35DNyeYEniyv4Ekn63XWoVSpEUWIxFObR0io/fe0SOUHgP45O8cHUDCa1ipaWVsb8YcJjM/zd6xd2+DeaZHloisnNEOHhaW50tnCucW/9bthtlignKoFAAO/SAvp4Ck1WjcebwGQ20+i0YNbpML7i02xOYGppG48/Rr3ThCYv8nR8je1Qknfun1OmBSpFo8vKW1c7WF4NYLUYcdiMqCUIhnaKtJFIikg0RWP97qLSYQvauZzA48dzzM96yeUFkMBmN3L/fi/9A7unwfcyuJXlSeTvwsbGxgPlSY4Dn8RVt6OiVk19eUujsbGRS5cusbW1RSQSqcEZvkYpB4XDYYaGhsoar72/ssqYx0tHQUN/+lVD/+9curAzmSRJfHd6nrlAkGabFZfWSCiV5q/mFjFotVxtaSKeyfLtiVnG1zbw+/2YLRaSNjWtgTCXWxrJ5PPMB6Ms+0PMZyGYyJAXRSpJLQrNEgsTFUH0ExCibG8G0BlMmI0m2uttip+IKErMrvjwheIY9Toa66wEwxGmtmJMr3i51FN+k2M/NDfY6eusRxQlWhvsbPtijIytk8sJCKJIZ6tz398/TAz00fNlxsc3cLutOJ0m4vEML1+uoNFquHWrc9frD5InSaVSZLNZstnsgfIkx4UzyZHqUQsvEXkzZH19nStXrtDc3Kx4bNQKcgNd5qDCIYJS47Upr49vz8yRyeex6g1M+/zMB4J8caCP6y2yJCS88AUJRVKoVSq0ajXTXj+zPj9/+/IFrAY90XSa780sMe8P4PH5ENNpPn3lEm0dHahUKtK5PEv+EPORJHp/mGuvCpmVTn6X26JtWN9ibHGT1dUlLCYTjVYdDtNrRlv1hNkOxrGadbQ3OnDbTSxsBNnYTHJnwM15UdxVODsIDS4rjfU2TAYdmxthtn1RBEEimxPQ6dSsboQrKmhX+ryvrQVZXvHT0upA/2pIwOk0s7YWYmnRz9Vr5berdTodjY2NyhZQoaxmIBBQJiWPanB7WJwVtKtDLY1p5S0NtVqteIZU6n9WKUqb+oVDBA8ePFC2g2KZDP95dp75QJCcKKBVa+itc/Lj5wdwFtyT89E4y4Eogk6HChVui4kf7evhUtNOUTyWzvByfYspj49MJos6FuJyg4tPvWroZ/MC29E4sViCvLB74OkglG7RXr2aYmR+lZlVD6GQH6sokVdBKhFHq7ISiKTxhhIYDVqaXVaaXFa2AzEevVgkFEriNKSx2avX1m5tcjK/7GdlLcDmZgSTWY9BryUaz7CyHGB6zsOl8/v7UFUaA4mixMKiH4vVoBSzAerrraythdjejhYVtAuhUqmwWCxYLJZd8iRer5dUKsWzZ8+ObHB7WAiCQDqd/sTFQCde0Iajk1gul2N8fFwp6jidTuW4tQykCgvaoigyOTnJ9vb2nsZr6VyerCBgL5kSN2q1BJIpcpKIJIqkcjn8iSROU/HD4zAa8ceT+GNxJsYnGF/b5GpvDw3OHaJwmk3kRJHxLS8NyTTTvjjRbJ5+qxkRWAlGSEzO87evnWPFH2Fs3Us6l6e1zsaNzmY6XcWEo1KplERF7oIHg0HsgQBGwU8inaXeVodBMLMdy9D0qlC+vh1mOxjDbNDS2eSgpcHFhi/Key8WqLebq3KohZ2idluTg662Ojrb6giFkywu+cgLInlBJBIprzV6WMkRSZL48NkSIyNrqFSg1WlYWfGztOjn8z92Cadz7/M3GAxF06Yej4fZ2dmK5EmOC2cT2tWhULvtsMU/eTOkrq6OmzdvFhWoajmxVmjIFo/HGRoawmg0Mjg4uKszHE6nCSR3ppIKUW8xsxmNEUgmUavVBFMpNiIxWmxWZfJQrVbRbLWwHo4STKZY3Nrm/fFJOuocdLW3o1GrEUSRBX+IKY+fRCLJS1+Udv3OfbccCLMRiZG/1E+9xczkpo/NcAy7ycCFlnr6GurKBh2FiYq8NhUIBFj3eIlEIqRUKvzJLIGQnjqHDX84ji+cwGzS0V7vIBFKU2c3MTS9jkalYvBaF/VV6ruZTXpcDgt6nYZtT5QtT4RMNo8oShiMWmLxdE0L2nNz20xNbtHYaMNk0iNJEj5vjGdPl2hotCuT2uVQKk+SzWZ5//33UavVFcmTHAdkyaOTntL8YcJRY5XC9dPCLY1KDByrRaGXyNraGjMzM2UnFSPpNLP+AE0Wy+6GfiiEL5GkzqAnmM2zFgzR6XRgfJVYNNusrIUjDG96uNzcyMu1TZ7PL2LMpLnZ04XD6WQzEuVv5pdptFp4NLfC08VNRCFPQNKw6Yvhnl3m85f6WQ1GWQmEQYJ2l52+BteeJmqlicqN6wKBYBCvP0AgEOADb4jhqRhdTXUIaAlEdji0sc6K2aDFmxPxBlL8u//0gs+91c+VgWZa6qsrajTVW5me32Zu0ceWJ4xOq0GlVhEMJpiZ3ebWlQ4a95jSrjYGCoeTLC35qK+3KtOQTqcZUZSYn/Vw6VILRuP+MUthQwDg2bNnOJ1OYrHYLnmSurq6I5uSVoIz2bXqcdTpyNKijnz9j0PSTeagXC7H6Oio4iVUGPdmBYEnq+uIkkSvYgJnYTMa4+naOucb6jFqtWwnU8xHYlzqacBq2ImhcoLAvD/E1LaPOx2tvDu9yOj6FlIihlOtwtbZyZg/ROPKBv31Lr49Nst6KMqWL8JidpG5SAJ7XiSZzbEY9JLIZnGYjHTXOxWO2++zyc/LnWuXlY2s55PLPJ3ZJB7yY7dZWN1Kkhck6m0WbCY9SxtBtrYjbAciBMNJolkjn77TS5298vzLaTfR1uzg2UfLBAMJnM6dYmAkmsJs1DM2vk5PhwuHvfwzXG0MFA4lEUVJKWYDaDRqjEYtW1vhPQvapShsCMzMzJDP5zGZTGxubu7aIKmrqzv24pI8IXlW0K4OR+UKj8fD+Pj4ri2N46gFyQXtYDCoSA9dvny56N56b3GZiW0v7U4HZt3rhr5Bq+XvXb4IwFIwxMtAGLvVSp/LtbMlEYvzlzMLuM0m7EYD/3FshjlfAJ0k4PP6wGDEojZyR5RY8vj5wdwyvniSXCZDNhKiPRCmr9FNLCcw4wlgT2TpcNl3zB0rgNls4sG18zy4dn6nruEL8OePxplf82LSbBGIC4RieeocFupsRuZX/Wx4I0QTGcbmt9CrckRSKlpb28pus+6FrvY6XDNmHk1sYjLrEQWRcDxLg8uC02FiYmqLgb5GdNq9n99qYiBREMll8yQTGYymnQ0RmbtEsXIZqsKGgMViUQyQA4HAvvIkxwW5oG2xWE58W+VN4lQUtI8SSEUiEYaHh7FYLLuKOrVO5uTJALkDCCgdwHJwGA3YjQZC6RQtuteBVjidxmYw4DAYCEkSeo0G4yuycxTUtDP5PJIoMD0xgVajwdXUiLvkC9Ki1xNKpViOpIgJUG/UYdBqUKnVdLmdLHiD/IcXU/hjSUx6HQatlvENL6uBCF+40kcmmyecSGM26OhtrKPO8vqzFK5YXLz4Wks6ltxg0uvB5/PS4LAxvxkjL4LDrMNm1rPtj+0EVsEYkWiaB9c6uXOpA2MVxFbnMIFKxeKyn42NMHlBRK1SEYmlMRt1xOMZrNbiRsFhJ7R9vhiTk5s4nCalIyeKEmsrQaantrj/oK+i46hUKgwGA3q9nps3b+6SJxkfHy8qLtnt9mMp+sjaSWeoDGq1+tBcIU/Dzs/PK3rShdrRsPPlUqtGhhxIeTwexsbG6OrqYmBgoOx9r1Wr0ag15ESRQobKCcKOmatajUqlIi+KSLBrlUutUiEhsbW1xZOhUaxWKz2dHcpmhkatxqTTMu8L4A3FMGjUtDltpANeOuvsbMUS/PXMMmoRgokUFoOO1WCE6S0fD8910Wy3shWKoVGr6XA7aHYWd5MLdSdluR+vP0Di+QzTyxtoEAknJaLJPD2tblw2E8tLGTwxD+FoikQiw+Z2hDuX27l9sb1ibnDYTLS3OHj8bJFQKIHFYsBhNxKKpBByIkOj63S2u3YFVYctaM/PeTEYtJhMr6UTGhptrK4Ed9Z/9ylol0IOpvv7+9HpdAfKkxxHcSkej58Vk6qAvKV22KZ+JpNhdHSUVCq1q6hTTh7kqFCr1cpmiN/v5/bt24qEWSHS+Z2GvqNcQz+1o5WtNhlJiyI5QdhV6JEnI+PpNH89PIaUTtHf16vcs812G4v+IB8srjK55aXZZkLM52lyOYj5thlZ3yaUyLIRipJ/lZw8X9rkSnsj93raWA9GyQsijQ4L7a7da8Cwc/0aGxpofFWsbenc5q+ez7DkCROKxPGGM7TW23Ca1Cys+llcD5DNiSQzWYZnNljxhHhn8ALtTZVPK3V3uBkeX2dichOrxYBGqyadydPZXockSUxMb9LYcL7s71Zb0E4ms2QyeVyuYu41m/VEIknSqdyBBe1yqK+vx+12K1t/e8mTOJ3OY9kgSSQSNDVVPyH/SUThdGQmkznUMeTNkJ1c4WJRUafW05HyMaPRKPPz81gslrLGa6FUCn8ySX1JLFxvNrMV32not9nt+JIpsoKoFLMBdBoNZr2OOX+Adoedqc0tcpEgdVYrrS0tqDUaiMUZ3vAwvx1kPRSly+1EFQtht5pY8IUQI1HWXkwTSO5cU5UKOl0OPn+5j0gyrWjUdtc7MexT5JY3sn68sQl7/TKTS1v4wjH84Rh6tYTBrmJuaYNNfxKr2YTZqMWkVzM+7yEYTvCzP3ELU4XPsEql4q1rnTz/aJmcIBCNp8llBMxGPa2Nth0t261IzQraKhVEwym29RHMFj1W244MVT4nYDQebnVfFEVMJpOiYZzL5ZQ8bHZ2tkie5Lg2SOSC0llBuzocdlOt0L9D3gwpxHEUtAVBUFQBzp8/T8erbQ0Z4VSauUCQRqsVs66goW+3sRAM4kskabCYmfUFyIoSbpNxZ6BIpaLdYWfW52chEMKq17PgD+JQiYRDIc53tmO12Vjwh3i8sML0lp9MLker3UoqrWXM6+U743P01Qd4bzWIOSxiMOipt5n57IVuLAY925EEOo2arnpnkT9aOahUKloa6/nSZ27z4fQ6nkCEQNqPWhXHpsmzurzCZiCH1WLEbNRhsxiJhzJ8MLSOWmXkcw8GaCozAFQORoOOq+damJjcIp8XCAUSIEpE8hK5VJ50Kkcymd2Tf6DyOlA4lCCwHWV60oPVpsdqN9HV7Uaj1WA26amvP9x0syiKaLXaosGswxrcHhaCIJxJjpwEDis5UjgdtJf4/nEkcyqVipcvXyrGa/t1eg1aLXfaWvnLuQXWI1FsBj3xbJZMXuAzvd1YNGoCoohOo+FqcyPfm1vEqNPiMBrJ5PPMbW2jjkcZuHKB1u4eVl6MEU2ncZpfP8yRV8Vxryhi1OqgIB5Vq1RkcgKzngAXWuqxGXceGrfVxNSmj3/73kusej0SIAH1VjNfuNaH3WhAlCTcNrMyyVSqJT0w4OfDiWVWtwOkkilMehUNDiPrm342AxnUajVa7U4g+2RkhXgiyxcHz1UcOHS01uFymPnB4zlMRh0mk45UOk9Lk41UMsvkzBZ3b3cX/U6hGUs18PniZDI5mppfBx9qtQqrzcDKSqDigrZ8DoVd4f3kSURR3FVcqoWG89mEduU4yqpbLpdjbGyMaDTKW2+9pWyGyFC/KhjXkoNUKhXpdJrx8XGuXbu2b9JeZzLRXedgzOPFpNWi02jIiyKb0RgD9W4aLBY21WrsBj31FhPeWILOuteFl+14Am06xebSIucHBoh5AkoxW7kGgoggisTSGSxatfJfJaDObOLF0iYuk4mLrfXKtd6OxvmzpxM7GykSoAKLQc/gQDtdDXVkc3lcNvOuQEuj0dDS1MjPfMHF3EaA6dVtJuc3UEtxjGKCmfk4/kgWu12PxWygud5GJpPnr57M4bAYGeiq3JTq5uV23n8yTzYnoM3kSSZzOKxGejrdbHujbGyF6e4o3so5bEE7m82jLSmOq1QqULFrffAgyPeazEEHyZMYjcaiyaVaFJfOJI+qx2Gb+uU2QwpxHNORoiiysbGB2WxmcHBwz3Vup9GIo0xDP5RKY9MbqDPtFC+MajVatYpULldkBBnPZHEbjbx8/hG5fJ6ujvaiBoz8lK0FI+g0GvQqkXQ+DyoVRo2aUCKNN7LJlbZGhUtS2Rw/mF7mo/mNnYYeOxr8F1vrudHVQjqbx2rS0+wsP0FzrrOJ+jobK9th1rbDvJhcxWXREg6FmVkJodVq0GpVGLVq1BKMz2wRjab4B1+8QXuzs6LrazLqONfbyMzsNqIE8UgajVqFlBNR6VRsbO2YZpcrwFfb1JckiWg4RTiQwOk0426wYTLrSSQymM16TObqi0qFMVDh1l85eRK56ONyuXC73TUrLp1paFcHWXpN9j+oFIWbIZcuXaKtrW3Xa46DgyRJYnx8nN7eXvr6+spve6k16DRqcoKIqaCeu7P6vyMtsnN+asrN4omvcrPljQ3WNre43N5CQ33DThWWnWEiTyRGQEzS4rTt5EoqFTqNBrdVz6PFBBldlEttTWjUanKCwLTHz+S6D6tejyhJqFUqOuod3OttI5sX0WvVdDWUL3DrtRo+fa2Xi52NBKNJPpxcIxBO0GDT83Jqg0w6TTaTIi/AtldErcmzvBokmczxxYcXGOiqTP7RZjXS1e5ChQq/L46QzpPKS8zMeEENsXh6378LVBYDebejjA2tsbEaZGMlgMVqoKnZQUOzHZVaTWfX7iZpJSiV+NPpdEUbJMlkUuGglZUVZbqylvIkqVSKfD5fJAF4hr1RmIdVyxWpVIqRkZFdmyGFqHVTTZIkcrkcS0tL3Llzh7q63RKoSkO/5H4yvNrQz7zKN2OZDHq1GkqkQTRqNclslngyTTAYAI2Krq4u5f40ajUMrW2Ry4kMNO48K6JOoN6oY9kfZtEbxqhW0eWyoTMaWAtE+eb3X+AwGRGlnWvhtpp5q6cN3SsObHPZadzD+6zFZeMn750nEE2yvh3hyfgKDosRbyCCKuQjk80SjaaJ+WOAhCipeDq8TDSW4os/cpGe9sqe5zqnhUa3lfW1IHqNBqvDgEoFgWCCRCJLLJY+ckE7lczy/b+cJB5NY3caSSayxGNhvJ4ovecaefD2AC7X4XKYUv5RqVS7JKUKDW6npqawWCw1lScRBIFsNvuJi4FOvKAN1ReT8vk8ExMTBAKBPeU+5OPWKpCSjddEUaSnp4eBgcqE7681N6FVqxne2iKSzuA2m7ne3MSVpkZ8Xq8SANxsayGayTDp8eGLJUgmEmiScf7u7RtcPbfzXpeaG3i6vE5OFLHo9UTTGZLZHJ/q7eS5z8dSMkchdYqSRDKbQwKlmC0jnsyyFYrzY1d6Mei0SJLE1LqPP/zOU5qdNtQqFQ0OCw8vdtHXvJuIelvr6W52k8zkeDy6xOjcFmTCrPtiRBMZ9DoNKrWWXCpNMi3y/SdzOC1G3rrWUZGum0Gvpa/TzdjYOhqNmlQqh8Woo6nejlqlYmHZv6ugfdgJbY1aRTaTJ5XMYjTplGMIorir0HQQ9tNLLpUnkSfefT4f8/Pz6PX6msiTnBWUqke1XCFvhlit1rJyH4c97n7IZDLMzs4iCAKf+tSnKvobP+zqIp7JshqJIEoSKlS0Oxz8aE836lcbJ1qVisHuTr47M8e8P4hRpyWRyZIKh7nhtPCpwUHigsRMOM5WNEazbedLMpTcKbQMNLjZ9EdIlKxoJV7x07kmd9FzKeRF1oIR6jvNdNU7AVgPRPjjvxmmyW5Fp1FjMxm43dvK3f4dE5DC6XGDXsuVniau9DSxfrGLv3g8hUGnYX0riCDGSGfSpFM5FuMJJDSkMgL/PpnjS5+/wvULrRVxhMmoo63ZidmgIxBIkkllieVElgU/Gp2GTHr399VhCtrBQJx4OMXY6DruegtNLQ4amx1kMnn0Oi3uKoOq0oJ2IUrlSfL5vDK5VChPUldXpxSXDrNBIvPPJ2nV7aiolif22ww5ynEPgs/nw+PxYLFYuHv37r73h9zQ/y9zC6xFItgMBuKZLBlR4LM9PYrhmkuvReV0sBCO0myzYNRqCSXTxJNJ3NEQDX09fKq+iY9WN2l4VQQCCCZTWA0G6kwm4pnsTqGp4BlMZLNoVJqixpgkwVYwTp3ZyP3+na2NcCLFX7yY5f2pVawGPSa9lr5mF/cG2jHotDgtxqKYxWUz47KZud7bgl6jYXrFh95swGDKgpQnlU7h3Q6zvRVCo9YwHkmiEiW++PASl/ormxp22EzYLAYioRRSXkSl0+D3J0hnwohig3INSlFNDOT1RPmbd6cIeKOEwyl0Og12u5G2DhcqrZorV3sxGKpPEfaLgUrlSQonl2q5QXJW0K4e1XKFvBmSTqd3bYaUHjeXy9XkHGXjtXw+z8DAAH19ew+buMwmuuucjG5tY9K9augLIpuxGOdfNfQBWm1WjGoVgUQS9yt5tmQuR1YQMCQTbIWCdDQ3o7falWI2QDSd3vEFSOfQyYM/r/5bJieQzIvUW00Kd2jVahLJLNvhBJ++0IXNZCCdzfNkepWnU6s0Oaw78kV2Mzd7WqizmHBYjDQUFJjUahXNLhvNLhtOi4l3P5zDF00gqLQYTBaQRLLhJGkph8EgkM0ITM2uEwhE+IW/e4+ezsqK2p3tdTx/vgwSNDTsxAHJZJZAMM7mRhhul/+9SmOgXDbPD74/TSSc5PyFJjyeKPFYmpnpLdKZHJ/9wmU6O/f3X9kLB3nWyMWlSgxuD7tBIvtWnHFQdai2FuTz+RgdHS27GVJ63FrFQYlEgvHxcURRZHBwcM/p2jqTEYfRSChV2tBP4XgVtwC02mxkRRGhIH/KiyKiJGHTaRmZmSSXz9PdN1B0L+ZFCUkQMZQOwwDRVAaDRkeDQbuT46nV6NRqlnwhLrc3cq7JjSCKjCx7eD67QbvLhk6jxaTX0t3gpKvegcmgo7fZhaUgftJq1DTVWWlwWMgLIiPzmwSiabICWC1mEHRIgoiaLKFIhqA/zJNgjPkFDz/3pdvcvFLeQLcQ9W4LJr0Ovy+O220hlciQyeZBlDDoNSwvB2gv46Emo5ItteUlP1ubYXr7G8nnRQKBOLFYmkgoSWuzgxs3Ovb9/f1wEP8cZHCbzWaPLE9yNqF9gqhmOknWjTUYDLz99tv7jurXisQKjdfkbm+lUKtUXGlq5GJDPem8gFGrUQKcQgdavVbDj53r41pzIx+NTxDPJvnsFz5LQ0Gx/mFfN3qtlvEtL6FUCpvBwGBvBzfaW/AuLuIXE2xGc7Rls6BS440maLRbSKWz5EVRmUjI5PIE4knsJr2yNp/J5QnFUviiSVrrbDgtRpa3Q0yv+ehvrKOpzsr5tgYG2l4Xp9RqFVaTnjsXOghEUgxN+Ejn1RjNFlRI5FM55pf8IIlk8hL/v//8glA4yhd/5HJFhRKDXovDZiIRy5BL5cgmc0RDKXR6NRcv7DYGOExB2++LMTm6wdpSgJUFH43Ndjq76zGa9SQTWW6XFM0PQqUGgKUT77WUJ0kmk2eBVJWolIMKN0PKGcGWolayR+FwWJFW0mq1FX9Rucwm/v6VSyyFwsQyGax6Pd11TmUSUp5cONfgxqrXM+3zsxEIog8HudfWyGfv3d15P+Az53p4NL/MvD8IgNVg4O3eTt7qbmdxO8DS6hrZ/M5nTWVz+JNp3BYTGlXxfeuNJFFLKqXQJIgi3nACXyRBvdVCd4MdTyjGv39vhL98MUez08qFjkZu97diMxfzfVuDnXuXOng5u0k4niGdF6k329BKWXLZHHotJMQs6+vb/Ml/jBOPXuCtG/0HrnjpdBocNiOjI+sgSZjNBlQqFV5fDNhJyEoh80+lHBTwx/nP/2kEz1YErUbNxnoYz1YEd72VxlYnl6+00dRc3YSPIAgVn4NWq6W+vp76+p0kt1CeZGNjA1EUleaay+WqWMborKFWHeTpSNmb4yCeL9wMKTWCLUWtJpMKjdfcbjdGo7Gi76MbLc2vGvoewukM9RYLN1qauNr8urCr1Wj4XF839i0vi4EQ4VQaMmmaM0k+e/smXZ2dNMWTbETizPsCmPV6svk8GrWaT/V2YjMYWA6EyYiCMmmZzgto1DoshuJGYyiRIpvPY3/1PANsh+JEEml0GjXXu5rxRxP8549meW94kY56Jw0OM/cvdNDX4i7S3larVTy83oNBp2VoZpNcXsRm0pNX59AbTdgsOvyBGMlklrHxFVZWPPyDH7/I+f6OA6dwWlscpFM5vL4oLS0OkCCfl8hk86QSWYKhZNlmV6VbapIk8eyDBfy+GNdvdLLtieD3xwmHkqhUIb70929z5cruadtKUI0Jsslkoq2tjba2NmWDJBAIKF4kh90gOeOg6lFNMSkYDDIyMrLnZkghahUDFWp0m0ymiuQcfqR7p6G/Eo7scIMEHQ4Hn+3rUZpCLTYrFxxWIvkcc34/SDt1a3smjVUPd3/kU5hXt/hwZYOcIGDW64ikMjubtgM9vFzeJBBP0eywgkqFxA7P6NQqLAVDKclMjmgqg1GvRfOKRwKxJPFUFo1aRZPTChJ8NLvBk4lVOuud2C0GOuud3Ohtxm034yrQw25tsPPjg+eZWvYSDqdIZbI4jEaysSwWs4ZMRkU2lSAhZJkOePh/ffO7vPMj3Vy50Inb7cZsNu/JFS6nBUmCdDpHai1ENptHo9XQ0GglEEiQTGYxl9neqLSgvbkRZtsTpaWtDp1OQ53LSiyWJhRM4KqzcP16+y4JvEpRDf+UGtwWypPIGySHkSeJx+MAZ9KPVaKaPOygzZBC1KoW5PV6lQJ6KpXaN48waLXcbW/lu3PzrIYj2A0G4tksWUFgsK8dyys964tNDTSYjKxGY2jMFiRJIpBM0mQ0EJib5VxzIzGzHX8yTZNt5zstkEyh1ajpqXcxteV7nXuwY7KdyYnUWyyQzyO9ioq8kThqlQrjK66Op7JEkxnSuTw2k4F6q5mhhS1ezm7Q4XZgMeoxaDVcbG+gxW2jt8VF/avmmlqt4u6ldrqanYzMbfLB8DI2k4GNdASz1cjWZop0SqTObkarho2tCP/v/+sHPLjZyK1rO/zjcrnKDu2pVCq6O128fLHM1lqIXEZApVFhMurI6Xa09feDKIoHTjj7tqPEIimitiR2p5nWV2bb3u0oKpXq0Nwjv381g0ClvlG1kCc5K2ifICrVbtvc3GRiYoKuri76+/sPvGlqkcyVGq89efLkUMfUqNVY9MXnW3p+6XSaxYlxXCr43Gd/dNfqk16r4WFfF7c7WknlclgNegyvyMll0vMjDgf/JRImmEyj1WjobajjTmcL359cYi0QocPtQKtWE09nyeYEOl0OJajzRZMk0lksRh0GvQ4kiVA0yWYgRjKVpSEY5/nMBuda63nrfBtdTXWKJrbbYeYnBy+QiXiY3syhVmsw63RsZaPUt9jJZHL4A3GSyQzf/qsREiEPF8+1Kmume023tjQ5CAUTBINJGuotaLUaslkBz3aUZDK76/XVFrQT8Qx/+Z0xPJsR2tqcbHkirC4F8WxG6Blo5NLlVi5caD74QAWolsxk1EqeJJvNksvlziRHqkQlyZy8GRIMBvfUjS133KNwUGEBvb+/H7fbzYcffljVMQxaLRcayk/mFEqitDpsaNJJhKV57l86T39/f9E9dq21ic46B+vhCKIo0eKw0WDd+cL8zPkepmZm2IzG2U5l0cWTXGttRKfSMLzm2WmeaTRIkkQwkcRk0OF4ZYIbTqQJxVKYDToMup0pKk8gTiCSJJ8TsBj0/KcnU7w3tMCdc230t9Uz0OZGo9mRdLl5vo2uljrqrAb+8lGUFpeNlUSQeredZDyLkM4g6bVseRL8f78zSsC7TktTncI/Dodj1zOrUqmwW02k0zmMBi3ZdA5RlFCrVWg1GoLBZNm/VTX8MzG6jnc7Sv+5JrKZHH5fHJ83RiqZ4+qVNu496Ks6sDos/8De8iRer1cxuHW73Yr5yV4bJGfTkdVDDsAPMpCtdDOk8LhHTeRk47V4PM69e/cUF/dKoFKpuNrcxOWmRtL5PAaNZteGlkqlwqrX8bcun8cfTzA+OUVaSHPvR39EWeWtt5r5e9cvMuXxsR6OYtHrOdfkpr/eRU4QudrWxJPpeVKpFElNiHhe5FZfE55oikQmqxS2U9k8koQyiZnO5vFGEpgNOjRqNXlBZMUTJpXKkdeJqFQwPL/F+yPLdDfVcamrkTvn2+hodAJgMen5zO0+rvY18x++N8aWN0gsGMds0hOLZ4iEs5iNOixmPf5gku+8t0goGMJiUinf5263e9f3uV6nwWYxoFWrWZ73IeRFNBo1Tc12dFo1295o2YJ2pRwUCibZ2gzjbrCh12vp6HTT1OIgEc+QiGVobXMqRbdqcVgOKtwgkeVJym2QFDb59/qsZ7Jr1UFuqh3EFfKm6sLCQlnd2HKohfSjLK3kdru5fPkyz549q+iYbrOZf3D1MkuhMNFMBltJQx928rDzNgu9166yGo6QSCYJrK7Q0+Tm1o0b6HQ6PnOuB6NOy8SWl3Aqjd1g4EcHerjR3oxereHdyXmW/SEimRzxUAyrxUyz2UAolcb+KkYSRJFUJk+Dw6L4BXhCcXQaNWrNTi644gmTzeYRAbNBx5YvyoupdX4wvEhXk5M2t523LrTT3ujEqNfSWGelsc5Kq9vOXz6ZYX0zjIhELJ4jGs1hs+hx2S34/XFiMZEPPvJhMuhYXFxEp9Mp/FP6fW4y6rAYdKQiKVKpHFqtGpUokYxmCIUS5HLl7xP5b7LfPSFJEuurQXxbEdSAo86MxWbEaNRh0GsR8gL5fPXbsYXncNgYaD95ktXVVVQqVUXyJLFYrOKm7xmqkxzJZDKMjIyQyWT23QwpxFGbaoUF9CtXruB0OtnY2Djw+/ZWaws6jYahzS3C6TQNFjO3Wlu4VtDQrzOb+HR7M3OxJElJRAX0WYxYYxGuXrlMR0cHjvUtfjC/zII/hISE3WjgR/q66K934Y8lWfSHabJbyGSzbKeytDpdOwOMsp4skMrk0arVijFkIJYklxcw6rUIksSaP0I8mUWv1aDTqUkmM0xth5la2qbNbQcRzrXXc7G7kYGOelx2M81uG4115zDqdDwdXSGeyJBKZ4nFsphNeixGPaFAAimnIpFQ8XwkSlNDgng8zsTEBHa7XSluF36fm016hKyA1WxA59Cg1WjQGTRsb0eJhPePPff7m0iSxNCHyzx9b5a1BR/B7RhWu5Hec004XRYy6VxVnkXlcBT+qZU8iazhX0mN4uOEEy9oV6LdJggCU1NTbG9vc+PGjYonpGvhmDs2NkZnZyfnzp171bmpndFkYTEpHA4zNDSkBGz7dZjMeh3mErdalUpFh9PGYJODSzcvYdDrcVlMqFUqPn9FzV+NL7AaiCBJoNeqGWhxo0GlPPypbI5MXqDOasJm1LO8FSKayOC0GHeKTDmBVU+I+VU/U8vbtLjt/OiNXi52NaBRq3FYjZxvs9PX7eLDSQ8eTxS9Vk0ykWXLE0WjUiFo9STTAlOrefp71ayvrzM1NYXNZlMCq8JJZJUKDDotGtXOeiyAVqehocFKPicQCiWpq3vdAa/WEGlxwYtnK0J7pwuNRk1jo51wJLlT0O6q5zOfvYhOVzvJkWpwkDzJXsGoPBlwVlCqDPIX30HJXOFmyH5rZqU4CgcJgsDk5CQ+n0+RVorH4zXX5JYkqShgu3r16i5TFRlOk3FH+7oE9VYz9xsddF0+z5NsjLevn6O3qYF4JkssnWE5EH71PtDosJLJvG4eZHMCOUFEp9uRB/CG44TjKVx2E0gQiiQJRpKsbYcJx1M8Glmis7GOz9zspb+9Hr1Og8tu5rO3+5iZnsMfipPK7BSg/b4YOq0Gp91ELJ4hHMnji1q5cb2NRDzCxMQEgiDsKi4BWMx6LAYd4VCSTDqHWqXC7jTR3GbDF4jtugbVavgvL/mx2Y2o1SqMJj3tnS7aO12sLPmxWY1Vc498DrXgn1J5EkEQCIVChEIhlpaWmJiYUHi7dIPkzBSyesjf9/l8vmyjoNrNEBlyvHJYOa5YLMbQ0BBms5kHDx6g1+vx+/1Vc5BapVKMkcqdoyiKpNNp5sZGMQD3P/WpXcWCOrOJwd7OXb+v12r48SsD2MQss+seurva8JHix64N8HTVy8jaNkQTO4be2Rz1NjOmV834bF5QfABcVhPBaJJwPI3LbiKezrHhjRCJpkjl8mwFYmz5ovyXp7Nc72/m3qVOrvQ2o9dpqHda+IlPXeA/vDvEXEZAiiSJR1KYjDocFhPxWBohLbK5mWS1sZ6f/+mbhMMh/H4/CwsL6PV6JbGrq6tDpVIjZEXETB6TQYfOunN/JGMZJJE9Zdsq+TvnsnnmprZYXfBhMulobHHsFLZ1WrDs6EuKJfJR1aBWHFS6QZJKpZTi0kHyJGcT2tXjoKZ+YWProM2Q0uMeNgaSJImVlRXm5uaKpJWq8SbZr6EPr+W52p12dJkUo3PT3OrtLjLbNmi1/OhAD3e72knlctgMBvSvCq63Oluw6HWMbngYCfrpcTv41MV+3s8mWBdFlv0hzHo94VQKs1GH3ajfMdyWJDK5PDlBxGnUIwgSoVgKu8VIPJ1lwxchlshgNOhIZfIsrQd5MbnB+8PL9Le6udjTyN1LHbgcZgY66xFFke/8zRSbWyGEnIDFtLOh4t2KkErnMBl1rKxGeWm38U9+/gGSlCEQCCjf54XFJavFQDKeRo2KBrcVJAm9UYffHyMWSWIylefyg/hHEER+8O4Uz58s4NsME/RGMVsNdPU10trpIhpJ0dXtPpTUkYxa8Q8cXp4kFovVxBPpk4aDOEjeDHG5XNy6davijZ2jNNWy2Syjo6Mkk0mlgC4PYB50v6tUKq69kpjN5PP8/9n77yi5zuvMF/6dWLm6OmcAjZwDARAExCSREhUtyrIVrZHltGb8eWY88oyv7WV71p079/p+nmVffR4H2deyLWskW7ailcUgkSAJkATQyGh0NxqdU3XlcPL7fn+c7gZAZBAiZZvPWlzEqj59qrrq1D57P3vv5zGv0dAHaI5F6WxI071yJecHBijmcuy6b99yQ39XTyermjJMFMtIKeluSNOSDLmPd2/fwPPDY0yXKvieT1fc5J17t/LChUkGLuaJWDbVQOBLQcTQaVzccvUDgRASw1CJ6TqTsyWiEQ0/UMmVLBzLoyUdp1xzyOZqVOsOYzMFjp2bwlBVtq3p4J5NPWzsa+X+XavoaWvgS/4JJmcKxEyNhrhJIVfHtn2ihoYmIDtT4akfTvILP/smduxoIJfLXXE/X6rBpAgI3IBa3YWlj00BI2ZgWy5BIK7bcL/RZ3Lh/BzPPT1ALGHS0paiXncpF+qcPz1N16omIlGDdRtub4jxlbiVCfFbxc3kSRzHIZPJXCVPsjSh/a+NB/qxaB/eKOGp1+u8+OKLVCoVDhw4cFtyH3eaSC055i4Zr23YsOEymQ11ea3q1WLpXJOTk7z88sv09fWxbdu2q74MS4TT5fCFYKJUYqJUwltcMxdCUPUD6p5H1NCXp6/bUgl+cs9m3nfPJt69Yz0f3reNTzy4i6ZkjAtzBaYLFYo1GyEkK1sa0DWVhXKdqKnjS4nrBEzMF4lHDXRdpVy1OXxyjD/8wrN85p9eZmB0fvl1bepr5d6tKxBSUqrYzGcrGJpKa1MSHRBuwNRUmZEph71793L//ffT29uLbducOnWKgwcPcurUKaampiiVqgSuD16wLDniWx4RRUEEItRVesX7dDsJxPxMGd8NlqcgY3GTzs4MnV0ZFOTrSihdjiV5kpUrV7Jr1y4eeOABNm7ciK7rXLx4kYMHD/Lyyy9z/Phxvv3tbwM3X3X7kz/5E1atWkU0GmXfvn03nfr9x3/8RzZu3Eg0GmXbtm3Lz7MEKSW/+7u/S2dnJ7FYjEcffZShoaErjsnn83z0ox8lnU6TyWT4+Z//+WUC/vXEkjHt9RKpqakpDh06RHt7O3v27LktR+I7bYAtxb1qtcqBAweWJ/eXErO7GYOCIKC/v5/p6Wnuu+++65LZN0Ko06bQ15xhZSpGTyYdNrpiUd63exPv3bWRhzas4u3b1vJLD+9m24p2RrMFZgoVipaN7Xk0xWM0JWKUqja6puL5AhlI5vJVkrEIsYhBqWQzm63ybP8If/H1l/jjf3ieM8OzCCGJRw129KXZs6UXQ9ewLZd4xKApFSOXrVLM1fBtn5eOjnF2qMjmzZt505vexO7du2loaGB+fp7Dhw9z6NAhBgcHmZyYp1yok05F6O1pors7g4rCxFgO8xqx4Vbjj1V3efHgEOdPTHK2f4KLg3PYVrhxIoREIWzc3Ql+FPEHwuuupaWFdevWsW/fPvbv309XVxeWZS3H7ZMnT/Lkk08yOjp6S2TSGzEoxBJBc718xfd9Tp48yYULF9i9e/c1DbCvh6Vc4k7ixfT0NIcPH6azs5Pdu3cvT4PfbYMlRVEol8scOnRoWZv7do25DE1jTXOGezoaeWj9KjoSUQxN462b1/D4ro3sWNHB1u42PnjfVt6xfR25qsVUvkzFdrBcD0PT6GpMhRPcSPxAokgoVWwSMZNk1CSbr1KrORQrFi+dmuDPv3SI3/urp3jp1Dh126WnPcPjD29k44o0MVMnETXJJKLkFqqUyxYqIH3JS0dGefHoBCtWrFi+ny/lmBcuXODgwYP09/dTzBexag46CtIPMPXQOMqquUTNa8eHm8Ugz/X5/jdOcvDJc9QqNpNjOQZOTjJ8bhYRCHILVZqak7S03FkhtHRv+lHEoFgsRldXF1u3buWBBx5g586dpFIp5ubmluP2+fPn+cpXvkKlUrmlyb03YtAl3KipXyqVeOGFFwA4cODAbZnd3WkOtBT3lozXVq5ceUUddrdi0BIBMDw8zMmTJ9m2bdvyANMrETcNmhPxZTJ76fc3drbygT3beM/abt62fgV9LY2saUzwji2r2djVSjJqsntVFx/Yt5VUNMLYQolc1SJYJLVXNDcgpMRbNIGWMpQEiEXC4aViqU615pCMGRSKNfrPTvK5bxzlf/zND/js115idDLP+pWt/Ozje9myphlDU4maekgoOT4aCjgCr+Zy8sQk3/jOKRobG6+4n3d0dCw3MA8ePIRVrVPKVZkeyzM7WWR8OIv0JRFDp1q5tjHkzb77g2dnOP7yKC2tKVauaUU3dGzLY+jsDEPnZohEdbbu6HlVRPCPKgdakifp6+tj9+7dPPDAA6xZswYpJUNDQxw8eJBjx45x+PBhjh49ekv3sDfiz5W4XgySUjIyMsLRo0dZs2YN27dvvy1t8zvlgpbyElVV2b9///I9Zen6utUYpCoKMcO4biNaVdVQSq6/H7tW48CBA1cZTTbGY2zvamdHd8cymQ2wsjnDh+7dzs8euIeP7dvOvtY023vbee+uDazKxJFSYmo6b9++jh0r2hnNllio1HEDQc3xaErGSEUj4XcXBV8IPMfD0DVMQ6NWd6nbLh3NSTzbJ5evMTVX4skXhviT/3WQ3/3Ud3ny+fOkExE+9hO72bCqHSEl+UKdet1Bk+BbPlbVQXoBExcX+OxnX6BSca+4n+/YsYN4PM7U1BSnT57CqtbxbA/f98O8IhAovsBz/Bs23G+UA508OoZdd2nvaGD12jbSmTiaqZHPVfEdnwce3kDPilc31fyjij9wSZ5k48aN7N+/n3379tHa2kqpVOLYsWM899xznDlzhoMHD1IoFG6J0P6XFINe9wltCIPYtcikubk5Tp06RXd3Nxs2bLjti+ROEinXdTl+/Diu63LfffdddUHczURKSonrupwbGKB13TqcdJKa55FcLBwLlsXBsTFOzc+jADs6OnjTihXMVap8Z3CYqVI4JdiZTtJq11nIlTkxm+eFl4/TGI+xqbUFzwsYzOZRFNjQ1kx3Os34RBEJbF3ZTqlmM5ErsWNVO22pBK4fYLseQkoqlkMqHsVzQ73KiKEzl63i1gNScZNK1eaF/oscOTXBQ7tX02x46JrKg7tXIwPB1584Q1nUiUcMCgtVHCcsFi0cnn5mkN3belnZ20xHRwcdHR3Lk8hLGoqjF+eZmsgiUWhqSmBGTHxfMDNVIp6M0JiJXfV+3koiVClbHHp2iMPPDjEzVaBWsujpa6FpsYhzHI/UDVx0b4QfZTBbwvXkSZ599ll+4zd+A4DHH3+cxx57jI997GNkMpkrfv+LX/win/zkJ/n0pz/Nvn37+NSnPsVjjz3G+fPnaWtru+r5XnjhBT784Q/ze7/3e7z73e/mC1/4Ao8//jjHjh1j69atAPz+7/8+f/RHf8RnP/tZ+vr6+J3f+R0ee+wxzp49u5zYffSjH2VmZoYnnngCz/P4xCc+wS/90i/xhS984Uf4bt0arpVI3elmyOW4k8mAhYUFTpw4QWdnJxs3brzielr6951OXL4Svu+TzWZJp9PLE5hLkFIyV6sxWS5jqCprm5pImCbZWp1jU9OMl0o0RKPs6GinwTDoL1Y4eegoc3N51IlpOjMZzs0tULYdutJJ1rY2katajBVKbO5tpbcpxbmpHKl4hIaISanmULbCyYeq7ZGMmZiahi29MLGqOqgotDcmsW2XubkyszMlzg3PsXdzL2/dv4aoqfGWA5sQvuSpg+eRGuQXqrhegIqCqWpUSzY/fGaQe7b10t6WJplMkkwmWblyJb7vX1oxvThFvVKjXrYwDY1YMoJu6nhesLwyfDlu5TNxHI/vfLWfoYFZTFOnkK9xcXCOUr7Gxh09lIoW6UyMnt7rm57cCHdzOuBGeKU8yVLc/tM//VP+7u/+jmQyyb/9t/+W97znPbzrXe+66vffiEFX41pFV6VS4fjx47e9GXL5OeHmUiaXY6mhPzU1xY4dO676PO42oS2E4OzZs6xfv/4K0up6CIRgvFii7nm0JZO0JuJUHZfT8zlmckUi2RyeEIzkilRFgYiu86a1vViez0K1zqaeFjozSU6Mz2J7AW/a0Mt0vkql7hAIgb3YKG+IRig5Fqahk83X8L2AhsYkbq5KsVQnFYtwZnCW8Yk83W0NvOfhLXS3RrhvaytnxwOOnpggW6ngOgFqIMEX2JaDRPLtb59m0/oOerqbrrqfW5bF2Ng0pXwNp+pQL9koatj0SKSidHQ14LrXzmtvFoOGzs0ycHqKts4GGhrjjAxnqdVsRkfmcT2fjt5G9t7Xh2HeWWmw1Dj5UedA1zO4nZqa4rd/+7eZmpriV3/1V3n/+9/PRz7yEdauXXvVOd6IQVfiWvFHSsn4+DiDg4OsXbuWVatW3XbecSdkUq1Wo7+/H8Mwrhn37oaMyRKEEHiex9TU1C1LGLwSgRDk6xY1P9yGEVKSs10yhsY7t61DVRWylRqqorKiKU3/2CzzpSo7VnUwW6hguT4Y4WvJVyxa0nFqZQdD1yiU6wRBqEdbLlvUai4tmQRexWFkZIHRizlePDLK9g1dvPWBjTy8p5dSyWJisobjeBgoSE8QKBLpC/y6xw+fOsfmdR3s2bsKCO/nS1r2QgheenEQtzaKKgWBDJBCRTd1pB+g3IC0vlH88f2Aoy9coFax6ehqYMWqZiJRg1y2Qn6hSixm8OhjW1i1+vbz7MvxWtRgcH2D2y9/+cv8wR/8AZ7n8aEPfYi3ve1t/MzP/MxV1/Ab8ecSbiQ54roup06duu3NkMtxJ1zQ1NQUZ8+eZfXq1VcNEdwuoX0zuK5LNpulvb39phv614KqKLQk49i6ujzc2NGQZH9XIyv6VtPY1AiEBthHR6YZmS/S1ZwiaRpYjkexboEC2VKd7uY0Tt1FCKjWXYQvSaWi2LaP4/gkGkwUT6VQrKP6JqV8nf81WeBr3zrJgXv6eGB3H3Ozc4yNVYlHNaQdxkTb8tAUBV9KRgbn+NxnX+BX/sMjGEZoXLmkZb969WpK+SjCnkYJAkQgEApEYya2JfBd/4bDhteKQZWSxQtPneP5J87h2C6VQo2eVS1s2tJFveowNZ5nz77VbNh8tTfb7UIIcUdGsreLG8mTfP7zn+fZZ5/l/PnzFItF3v/+93P//fdfdY5/aTFIkXdr1O8OEQQBU1NTXLhwgQMHDgDhBTE4OMjk5CRbt269o4lBgLGxMXK5HPfcc88tHb9kvJbJZNi6des1L8oXX3yRnp6em5oQvBJuEFBwLBK6SdI0cV2XI0eOMJrPM93UwGS9hi8EjdEob17Rx+6OTj7T389QLkdDJIIEyo5DTzpN3faouh6dqZCAnalUGZ6eJROJkvA9VvX2kKs7DMxmaYhGWdvciJCSczMLeF5Ad0MaTVUoVC1UqdCajGNoGqqESt3B9QJsy6NWd9m+sp3JuVAz13Y88oU6Xc0pXCcgm6sSN3VkEHb2MnGFD7xjNw/t24jr+XzuK0c4eHgY1/LDSWgp0VDRNZUAwdvftoWPfXDfdROgg8+e53999nkqJRsZCDRDxYwboKhs29bNr/6nx6743f7+ftrb2+nq6rru5+B5AV/9wotcOD9PLG4wPpajXnNJJCNs3NaDFwSoisK7f3IXPb2336kbGRnBcRw2bdp02797N3D48GE++MEP8hu/8Rs88cQTfOELX7iKiN23bx979+7lj//4j4Hw+9bb28u///f/fpkQvxwf/OAHqdVqfPOb31x+7L777mPnzp18+tOfRkpJV1cXv/Zrv8Z//s//GQgnetrb2/mbv/kbPvShD3Hu3Dk2b97Myy+/zJ49ewD47ne/yzvf+U4mJydv+Jn9qOG6LqdPn8YwDNavXw+EE9L9/f2oqsrOnTuvWGe+HRw5coT29nZ6e2/umrw0hTAyMnJdoxPP83jqqad49NFHX/VNM5vNcuzYMcqGjt7dhR34rEg3sKOtg5iu863BQZ6fmKDquiiKQnsiwf29K3hhbJLpcpmIrofbIShIIZmbnae3vY3ZbBZhRkEqNMfjRHSNQs2mXLdpjMWIGTo120MEguZ4DF1TMRSVSt2hZnsEnqBUtuhqThNFZSZfQVMVsgs1WtJxFAlz8xXiUYOIolKpOJi6RiYZZUO3zi///HuwbJ9Pf+45Tp6ewrN91AAUESY6vhcQieq8/bGt/MyH913zvRFC8n/97//EhcF5PN8n8ENZAjOi09iS4J3v3sKjb91+hTxEqVTi1KlT10wcljBweopvfukY7Z0NqJrK6EiWXLZKtWLT3p1h1bo27n9oPRs23VlitbCwwMjICPfee+8d/f7dwC//8i9Tr9dZsWIFUko+9alPXXXMGzHoEpYIlWeffZYtW7YsE5tLBdWqVauu0rO/VUgp+d73vsfDD1/tyXEtOI7D8ePH8X2fXbt2XXPTZ3JykpmZGfbu3Xvbr+dyCCEYGBhgfHycFWvW0NHTQ0MksjzFNFoscmhigovFIo3RKHu7u+lJpfnymXOM5PI4QUA6EmFVJsN8qcpodgHbtsk0pFnI5mnOZFDUULe/ZrskDBNtcdXf9wVJw8TQVHRVxbY9ClUbEQhKZZuortHdmGZ8pkjE1Mjl6yQjBsmoydRMCdNQSeom+UKdqKEReIJkzGRVdwM7NyTZf99u/uyzzzE0OIcSSHw7nJJ0HG/ZWPJN96/j//PLb77m5zo2usDv/7dv4tg+qgKBDEAD3w1obI3zwY/sYvOWVVfpSJ84cYLm5mZ6enquOmcxX+Mr/+swYyMLrNnYQTRmUqs55BeqTE8WWLe5k8c/sIeORYOkO4HneRw8eJCHHnroNWmsXQtSStra2vit3/otTp8+zc/93M/x9re//arj3ohBl+D7PpVKhWeffZbHHgvzat/3OX36NIVCgR07dtyxHueSB8Ob3vSmWz7+5MmTNxxkOnbsGM3NzaxcufKOXtMSarUaR44cwbZt3vzmN1/R0BdSMlYsUnIcMtEoKxsaqLouh8YnOT07j6LA9o520qbJ8xcnmKlUKeRz9DQ2YkaiDIxOkEqliEUiqEIhWNy0lYFEV1Q0BTRFxfMC8hUL1/WpWx7Cl7SmE+TyVQIRktBKAO1NSSanikgkjbEo+VwdTYOoqmPVXHRNJRmPsHFVhi0bG3npVIHB83PgCoQf4Fk+ipRoqoIQkr7VrfzW77ybhoarY/wPnzzL3/zpM/iej6YqoIBuqrgCWjtj/Owv7l5uwl1+X1lqwD7wwANXnG98JMsPv32a/hcvYlkumaYEvatbaOvKIIRk9EKWBx7ZyIGHN7yqzxPg0KFDbNiw4XXVj/2f//N/8pnPfIaPf/zjHDp0iG9+85tXxcM34s+VcBznqtyiVCrR399POp1m27Zt1/VtuRnOnDmDruts2HDz60sIwblz55idnWXHjh3LkleX43bzqhthcnKSM2fO0NDQwL591+dDIIxJFwsFstU6yYjJuqYmLuaLHJ+epWTZdCZiDJ47h9bSQd6yqRfytGSasAV4QYChaiAW5UYWt9Dy1Tqlmk3gSVwnlEWRvqBSC/W0cQMyqRh2zaFccehoSlHKW3i+TypiUik7RHQN4QUoAlKJCJ1tEZxAZXKyjGd5SDdAEQJDUfEcH1VVMAydD/zMPt7z+K6r/s6/++vn+faXj4XNKUVF0RQ8z0czVNZsbuTt7117hUTb5d+tU6dOkclklmtuzwv46t8e4sLALPW6Sz5XwzBUdE1jw44ekg0xZqYKvPv997B+86u//s+ePUssFqOvr+9Vn+tOMTw8zC/+4i9yzz33oCgKfX1914wp/9Ji0I/FhPbl6/6XO1nv37//Veng3c5kwMTEBAMDAzedQrjd6SQpJc9PT/D0+AgF2yai62xJN9KaK5KIJzhYKyF16EmlMVSVrFXn60MDXCwUuJDPs7ZpUdwfaI3HeXFyCgONfT3dy6+xMRKh6Hm0xOLENQ1TDacXbC8gFZU0xmPkaxb+olZtMmoi/IBS1cYXgkw8ylSuQr5SJx0z0aRKzXJRJRwdmcF3AoIgIGmaxCOhuVu2VA1X41Gx7FDTyCoJ/uYfjzA7V+en3r2T979jOyOjWS5eWMBAQfgCRRHYtoemqRx5aZS3P7KZttar3cqllJw4Oo5bD0in4jiuj+v4ePWAhmaDeq3IoUOHrtCRvpUJybELWcZGFujqacSM6ERiBuOjOXLZKoPnptm6awV796++IzIbXrsJyevBtm0ymQz/5b/8F37913/9qp+7rsvRo0f5zd/8zeXHVFXl0Ucf5dChQ9c856FDh/jkJz95xWOPPfYYX/va1wC4ePEis7OzPProo8s/X7o5Hzp0iA996EMcOnSITCazHMAAHn30UVRV5cUXX+R973vfq/mzXxVeKTkyOzvL6dOn73gz5HLcagzyPI9Tp05RqVTYt28f6fTV3wm4s8kAKSXjlRKjpSK6qrIu00RtPtRiH9dVDhdy6E4dVQkdsjc0T7GjpZ0nR0bChlhTE4GUjJdK/MXRoyQ1k83tbcuSRi9PTDJTqrLe0OhMJXFKBcYdD9sPWN/aTDoaYaZQoVC3ScciNMVjTGZLVGwHTVFwnYCZQoWYqRPXdMo1BwUYmS3guX5IPpkGhq5haCr5Qh1FAV0q1KoOMpAoSOZmy8zPCuruU/zch/bzgXfvYnqqSHamhAwkCIHnBqgK+JbkpUMjvPsd28hkri7opicLLMyUEa5PKm6i6ipG1MCqOchAUK3mee6555ZNypqbm2+ooR0EgvGRLAefOMfCbIlMYzw0I1nbRktbiqmxPB2dDbz/g3vINN75Pe+1mk66EVzXZfv27fzX//pfr/vzN2LQJbxyOulubIZcfu6llfqbYcl4rampia1bt173PnY3JrSXNuGKlsURu873LwyijI/QkUjyyKrVJHWDz544Qc6ySJkmM5UKZ7JZVKng+4LedJqoobNQq/Pl0+doikTZ2JCirimUA8F4zSaW8NjR08KFuTyT+TKpWITdPZ2cHp8jW6nTmoyT0A0mc2V0VaEhGqVQtlCAuuMxk6viewE6ClFNw/HCHMT3A9KxCLVKGKekJ/Adn7ITcCpf58KQhuOmeOdbNvGZySK52TL4AtcNQtkRTSJ8yYkjYwwNzrH+GpqNp4+NUy/WcW0fTVdRVRUzqiNVg4huEk8onDhxAmBZP7G5ufmaK/9SSo4+f4FDPzzPxcE5KmWbWsmid00rHT2NJFY2I4Rkw8bOV0Vmw6X70usZg5b0I3/2Z3+WFSuu1lyHN2LQtbDUIBdCUK/XOX78ONFo9I42Qy7HreZAl/t4bNmy5YaF7d2IQUubcNFMA4OlAsb0FB3JJOubmqm6Ll88fZpz2SyW7xMzDNY1NVG3PS7kC4t+AJL+6VmqlkNXMkl7OkleKvxwdIqoYbDS0DA1lZMTc0gJO7rbyJZqTOTKpKImbYkE4wtFAFrjCRZKNaSQGIrKwGRoBKsskt8Ekrrl4To+qahBpeIgpUAJNBzHCzcjPEF+vsKL81UGBubZt3cNc8kSCzNl8ASalChCEjgBmqYyMZzlO984yYd+5r6r3puTL48R2B6qIgkCBUVXsGs+kbjJ2jVdpNNpZmdnGRwcJBaLLZNLmqZdlQMV8zW+86VjlAp12roamBrPY1suIwOzRKIG0biJYWi0tl87571dvN41GIR1WGtrK7/7u797zZ+/EX+uxuWya3djM+Ry3OpGh23b9Pf3I6Vk//7915XuvF0d/2thaRNuenqa9vZ2dF1f/huFlByfneXo9DRF22ZNYyM7Ojr4wcgop2fnsX0fbbEp5nki3D7VNJ4slpgvFFkXaLQm4pzKlXEXKqxtacKQCkOzeUxNoyeTZmqhjOsHtCbjVGounh8Q0w3y5TquF6AEEssChKRUdVCERJWQzddwLY+IrlGvuYBEeAHCE+Gx+TrF+QrJRISEqVESElUBRYDjhLwSgGP7fOtLR9m5awW9K5sve18kQ6enELaHqioEgQ+KQixhgqayccNq1q5dSz6fZ3BwENd1aWhoWI5Bl9dhvhfwwhNnOfnSKO3dGZrbUziOj+f62LbL6NAcjW1pVq5pYeWaV7cZcvnn+nrHnyAI8H2fBx54gI997GPXPOZfYgz6sSC0l9b9lxKM9vZ2Nm3a9KoviltZM1kqHufn55eN1252zlcGMV8Ihks5qp5LRzxFdyK1/IU6NDPB3w2cQlMUGiMx8tUyX54Y40DXCu5tbiI7dI57M43LpHVXMsVIscCh6QkSqrn8OIQ6kZ4QCK4kTpwgQJHgy0uPl20XU9PwAoEvBMWahZBg6Cply6ZSdYgYOroUTOfK+L6gORmnVLXQUVEVJVxrDSS266MEEte2UCTYtovreCRME6fuIYVA8SXCF5RyFl//1kmmpov88ice4P49qxm/kMOx3XBSyQ9dfBUDFmbLnDs3c01Ce2Isz+jgPEHdxfMC4skIzU0JrLoLvsL9D+xkw4ZWcrkcFy5cwLKssOgzzWUJgcvfI9tyOX9qiuefPs/MWJ54zKSxJUkmkyC1Lcb0RB7dDDuGsZh51eu5VbzehNKSGdL1bv4LCwsEQUB7e/sVj7e3tzMwMHDN35mdnb3m8bOzs8s/X3rsRse8coVF13WampqWj3k9oes69Xqdc+fOMTU19ao2Qy7HrcSgaxmv3eh8cOuEdiAEXx0e4LmpMaqei5SgWja7InHetmsPX3npBVRg/WLc84KAc7ksF/MFNFWleTGh0xWF7lSK03PzNDRGl8lsINS6BiwpQ0khXxIEAkNVqTguUoQTko2xGGXbYSooEQhJQzzKfKmGIqA1naBQsag4LlFDDxtqItRzE56g7CxOT1ZslEASMzRsywsnmLwA1w8LusAPOPLyGLNTJT7x0f3s39PHV79yDGH7SF+gQpgkeT75uTIvHh7hsbdvvep9e+b7ZygvVAjcgLLloWoKZsQAUycdifCudz+Iqkry+Ty5XG7Z1EQIwczMDM3Nzcufo+8HPPH1E5w6Mkp2tkx+oYpTc+nua6anr4VMJk61ZLFydeurIrOXnv/1JrTr9foNG9FvxKBrQ9M0arUaQ0NDaJrGgQMH7ngz5JXnvVG8uLx4vNx47Xq43fVdx/c5PDvJ8flZnMBndTxJdHaBzsYmhpNR+icrdEcMMobJaKnI354+QYMeoWDbrGtqWn4tw7k85xayPNCzYtkUW1EUvCDAI/TCkFKQr3uYqkLJcbG9gPlKnYZoBFcIxnMl6q5HWzpOxXap1z0ak1HKdYdCxSIZM6nUHJQgNM+WvkD4korjUPEJ1+2lQqlsITyBKiS+VFBkSGxLIajUfb7ylWNs2dzFrs1d/HC+ShAEaAC+wHdCz5PyQpVnnh64itB2HZ+XnhnEq7vouooIBAGSWiUgljJZt76LHTu2I6VcXjGdnp7m/Pnzy9/9aDRKJpNBVVXGRxY4+P0zqJrKijWtjAzO4Xs+Y4NzJBZllDRVpXfVjXPfW0Gw6OfyepqhLWkx3kg64o0YdDWW6q3JyUkGBwdf1WbI5biVeHEt47WbnfN2yaRsvUbN82iOxViYmmZ4eBi9u4t/mp5ksJTn5LlTGKrK9tZ2EArHZmboTqXoMQyqrssPRkdxXJ/7e1dgLr5XuZrFglVndXMjqUiEQAhUBVDAReJZTkhIq5L5Sp1y3aUlFadqu8wUKiQjEVzfZ65YIR2NYrsejuXTlIhRqdoIIQgCQeAIPOGjSCiXxWIuo+BLgYZEOoskSiARQUB+zuOHTwzQ3BzH0FQ820e4QTjtLWXYhEPyzPfP8vZ3bSfTeIm4m50sMHhiAt92l7dJCFQSqXBTuK+vnVWrVi1L/eTzefL5PAMDA7hu6AUyMTFBY2MjlYLLD75xkgtnp+lb104kaVIt21TKNnbd5sLALE3taTZu7WbV2qtX3O8EPy450I18jN6IP9eGrut4nseJEycoFArs2bPnKi3pO4GmactGjtdDPp/n+PHjtLa2snnz5pvyT3fqDQCXGvqW4yBW9vLFoUFKjs29wufBFSs5N5/lO8PD+EIQ0TTO53J89dwACFjb2EwyYlJ2bJ4dGSNlmjy0ahVCSMZyBXwh8ReH+4SEqKFRsh1UD1LRCG4QDhAZmkrU0Jgv1kiaJtGoRqFk0ZCI4rs+9ZpH1NSoVh2kkCBA+JK640AAwg0JbFWCLyQ6KrgCXVEQbkDVsVBRQk8Sf3FDP5DIQBAEIcldnCnzj589xH/6nXct32cWZktMj2QRixK1mqmjaQpe3cNMmHR2ZZalfqSUWJa1bC45MjIChBtH1aLL4e8Pc/7kFPMzJcq5KpmWJCv6msnOVSgsVKlVHB5+xwrufWAdkcidTf+/Ej8O8ScIAur1+g01tP8lxqDXndBWFAVVVXFdl/7+/uuu2t8JblbIWZZFf38/iqJw4MCBW1odeWUiNV0r87mBE4yUC7giIGmY7G3r5oPrtqIpKs9MjKEAvakG8vk8slJjXVsHU9JnrBZqYOuvuPiThknRsonoV792U1MJfHnFNHJE05BKSDohJSCJaBpuENCkx9BVFQmgXNIXcv0AU9eouwFV26MhGkXXFOq2R2M8iqFqlMs2jfEoih8al6hC4jmCivRRBdQDDyUIiSRdKuBJpBDYjuDQ88PYVYdf/oWH+O63TzOdq0EAKhKVcOVF1VROn5jkoQevXAMKAsF3vnqMhekiChLbcrHrLtWShZEwSSSjbNjYSXNzwxW6k/39/ViWxbFjx9A0bXlyKRpJ8J0v9TMyMEu14lDKVRk4PkHniiZWrW9H01RUTaW7t/FVkdnw2uknXQ9LhPYbuD0IIchms0Sj0Ve9GXI5bhaDZmZmOH369C0Xj9eaDKh5LseyM4xVikQ1ne0t7axraEZRFI7Oz/Dk+AiZSJTWSJT5uXlygcdgWqOrUqTq+XSZl6avDE2jIRJlcGGBTY1XdqxVRUEhlE+64m9UVUASBhjCqcXLficQEilBUSQShZrthav+mkrZdYhpOoam4jg+EV0jZhrkixaJiEFKN6k4NlHToFZ1kUGA9KFuh008VYIuQRUS4QaoQoIImBpZ4H/+z6f46ffvJpOIkq+UUHyJFBJfCFBVXF/Qf2T0KkJ7eiLH0eeGcKsOhqkjNQWpqdiWSzKis3pNG/FFp/AlHWkhBJOTk4yOjjI5Ocm5c+dIJpM0NzczP2Fx/PAIja1JUg1xPH8a1/OZHFkgnYmjaqHu3doNVyYBd4Ifh2TqjRh0ZwiCgKGhIXp7e1/1ZsjluNGEZBAEnDlzhlwud8vF4/XIpEAIAikwtUv3P18I/te5kxyamcBQNVzH4bnSeTa1tPH+9jbOnjlJq2nSHI2SiERIRyIM5Ba4mC+wrbntiniYMAzcIMAO/CvOrykQCIkvJHLxMV1RCITA9QP8IMDQNVxXYLkuCmDqWritIRUiepTAt/D8gDYzQaFogZS0JOLM1yoko2Hj3pU+SqAgfYEtBAgWCW1CAhyQrkAJBK4TcOKlUTo6GkhGDQolC1wBgUSREkVVED70Hx7B+bk3XVFMHXziLBPD8wgnXNMFBU1qJNJRhGSZAL9cd7Kvrw/P8zh69OiyJrlVd6lkAwaOZsnOVlm7pYdkQ5SWtjS5bIVKyWLo7AztPY1s3dVL37pXTyj9uMQf4JYMkd5ACGVRigfCdeVdu3Zdc9X+TnCzHKhcLtPf308ymWT//v23JCtwO4R20bH58uBZTi7MYfsesm6zXjX5wH37+X/PnSFvW7TrBqsbm6l5Ls9PTuD5gnWZpmU/o1QkgioVqp6LL8QyoV13PXRVpWQ79KTBE3K52e8IgXB8dF1FQaFsOfhBQCJqIAKB6wky8RieF+C4AbEGnXrdxfEDGjSVwA99D5K6ScVzMDQFzwqlz7QApBAEgpAckmD7Pqon0CTgBjiOzUzZRtc1gsWfKYFEEYtyA6pKYabEwSfO8p4PXJqWe/a7pynNlVA8gS8DtIgGikK9bJNqTrLissaXruu0tbXR1taGlJLZ2VmGhoZYWFjge199kYunChRzDvWKi1Wxae9uZPX6dnLZClNjOTRN5S3v2MqWHb031MW9Hfy4xKA3cqDbh+M41Ov1u7IZcjluFC+klIyOjjI8PMzGjRvp6bk1U9LbiUFVz+VkdpYFy8IMBHJyhvZMhql4lB8MDuDaFqqUPDsxytHZaVzHpyESpXXxGnKCgCeHR2iKxUgsNvMt10dXVDwhKNo2KgqOHxDTVIqWRVI3QEJc16l5HqorSUVMJJJS1aa9IQEilOTQYwpSgOv7CBn6iLgiwFQ1pAqKpqB6IXGtCUAAUqL4gJAIIfFEgEJIequeAAkikItkuEQqksCXKIFAEQIpQSoKJw9dYOT8HGs2hnnNiz84TzVbBT8ARcH1XFRNQYsamIbGqssmqS/Xke7t7SUIAo4ePYprB3z7b58hN1clkY5hRDV0QyU3W8KM6GzY0sX4SJauFU289T07bukzvFX8OMSfIAiwLOtfXQ70uhPajuNw9uxZpJQ3XLW/E9yokFuaBu/o6GDTpk23fAFenpy5QcDfDhznfGGBFakGIppO0bX5weRFmiIx7u9ayYJdJ22YzM7O4vs+XV2d6LrBUCmPXIyZbhAsJ0gAZddhY3ML+ZrFQr1O8+KU1kK9TlsigY7GSKFIRzKJAhRsmybTxPV8alJiewGKFk4ixhfNy0xDo+qFmkiKCjXh4VgWQSARgOPUkXWBhY/qOwSuwFcEFcfB9wUSgYaKqoaBTXgCL/BDXdpF9kq6AkMCQRis+l8c5bOmwcquDNND8+ALpIBAStAUhCYYvZAlCASadun9f+nZIY4/fwGvFhJK0YiG1DQ82yOiqqxd10ZLy5Vf1FgshmEYrFy5kpaWFkqlUmjsNj7OyZcmON+fp7O3kabWJnxfUClbzIznaWpJLsVmtuy8uc7xzfB6B7NqtXrDRKqlpQVN05ibm7vi8bm5uetOJHd0dNzw+KX/z83N0dnZecUxO3fuXD5mfn7+inMsTXfcjUnoV4NsNsvY2Bi6rnPffffd1XWh68Wgmxmv3QiXJ1JFx+bPT7/MuUI2TCak5OmpEd67aiOPrVzH0blpkJI4IXkej8fZ2tTFUDHHxVJxucl1xfkVSJoRSrYdxpjF5C6QkoZI2OH3hQgbZVKiayqaqmIoCo7rENNUQCCkJBOLoKKgawoly6G3OY1l+5QtF+lKfEXgCQe7FlDDwxMCq+xh4SNcgfRBIhCuD6pEEYtNu4CwmSbDgi4QoAtJ4AXoASAk5dkKX/zci3T3NpKfKMDixokCoEqkojA+PI/nBcvFlOf6fPH/fY6FySJSCNzF77MZNYino4hAsPOeq9fYVVUlkUgQiUTYu3cvruty9sQIz37zLMcPjWFbAYFopqmtgc6eBuamy5TyNS4MzNK9qoV77lvN2o2v/nvwescfCIu5GyVSb8SgKyGl5Ny5c1SrVTo7O++6/8L1YtCST4Cu6+zfv/+WtSBfWcjVPJcnJi5weHYSJ/BZ29DE21asZV2mmbO5LC/PTtGRSOJVa1Qsm20d3Ux7Ngenx/BEQFzTFxvxIRojUSaKpasaZ6auoSoKzmUG4inTRBI22gxNBQlJQ2cuELQbBgnTIGrolC0HXdeImyb5qk3FdvEUiZQBWatOxXeRhLJKdemhSqiXSkgFXMcOizctjI1IBSWQqIFE8cMYRCBxCQluzROoQfi5zl7MEU2YSE+iegEEIREukaAqlOYqDJyZZsc9oRZwMVflO3/3EnapjqKo+J5EjeoIRyBKkqaONOs3XrvxZRgGhmHQ3d1NPJLiH/7yGUbOzbAwV6Fec6mWa3SuaKSrr5WGxjgTIwu0d2V490/vZs1iY//V4scl/kSj0Rvex9+IQVeiWq1y9OhRgOvqxt4pblSH3ch47Ua4Fpk0W68yV6+SNEz60o3LEmqfO3uCI3PTtESiUKlREwFnkwbfnZ5krlajJ5VmtlIFJAnDJKrrTJULbGu5MieLGjrBInEDIakUNwzmFnWpAQxNCU3MNImhaCi6Rtn2UFTIRKNUPIEfBHgIhCLJOxZV18FWA8bLZSzfQ6owVSkTKCH5XHM9UMAXoJgKih9uoij+Yg4UhNOTUoJQFKQQaEKGdVgg8aUHgAgEqh8gl2u2AOGrHHp6gHf91G5UVSE/X+aZfzqOX3NQNC3cZrM8VFOiRjRaW5LXNW1UFIVIJIIiVdx8lKkzFolkEt0wmHIKuJ7D+IVZVEPQubKFwAu498F17L5v9S195reKH5cY9EYddntYigWKorBnz567uuVzvRi05BNQLBbZu3cvmUzmls95q4T2dLXCX546ykipgOM4VKs1VjU28aG2tRw+d4amWAxN1XBch5bGZo7OTlOxXN6y4tJwgZASQ1OwfA9fijC2wHKM84UgrhuhPj7hcMHSoGQgJZqioC0OF/mBQKpQdV1c38fSAmbtGoEv8HXJnFUnEBJ0cF0HtFAuRNEW5fFUBU2TKLXF5vxiHQaEJDYhv6PUAzQhUIRE+sHirGVIaBOI8GBFwSoGfO8rx/jl33onruPzzD/149ftZfk0TddQFB28gHQqSu+q69+bpIDzL81w4cQCUxfymFEDYUp0Q6FcqqFqMD2eRY8oqJrB7v1rbvnzvlUEfvC6bqhBeF3fjND+lxiDXt+oTzhZu1RI3e2O5vVcu0dGRujv72fDhg1s2bLlujc/ISUvzk/wR6cP8X8c/QF/N3ySBd9ZDmLDpRwjpQIrUhmiuoGyKCuSMk1emB1HV1RMFMZnZ1CUcJrPMEzswMdUNba1tNJhGIwUCxRtm5rnMlYqEtN1Hl+/gbetWYMbBAzl8wzl8/hS8vjGjfy7e/fQ15ghX7fI1S1WNWZ4vKuNlYZGIfA4NjlG1arSkokwbpf5yvAAh+enqake877Fy/MzZH2LnOdQli41PIqeQ8X1CCRUbA/LC/ADSc3xcQKBJyR1EeAj8TSAMJCpXvifcMKIJrwAnAAcH1n3OPSDQepVO+zYOQE4HooXoLgBuIJqoY7rXipQx4bm+dJnDlLJV1EVBc/1casuuhAkUhGEH7D73j50/epiZWn6XFVVUqk0hamA088WOH1wAbvsY9UcCqU8sZTAjCpUKxYXBmeRwJvevJ7N2682UrpdBEHwukuO3CiImabJ7t27eeqpp5YfE0Lw1FNPsX///mv+zv79+684HuCJJ55YPr6vr4+Ojo4rjimXy7z44ovLx+zfv59isbhcNAE8/fTTCCHYt+/axnyvFQqFAp2dncTj8buufXWttTTHcXj55ZfJ5XLs37//pmS2lJKsVSNv15dv8ksx6OnJEc7k51mVyrAu08yGxhYMReVbY4NM18pUXQffcZibnaMx00hLSyuqGk4EZ6JRkrpB0XOXnysQgqLl8OCKlbQmEgzn8+Qti/lajdFikQMretnW1sZILs9wLs/gQo6udIo39fRQ8wNOTU4z7zgkNIgYCsfnZnl5doa5oE4em7OFHKO1EvN+naxvUcGjGLjMOXVcVVKTPpXAR0hwfIHnh+tprh/gS/BVCCIKwgBFgrIYf1RfIgVIFKQnUJwA7IDqfJXR83NINwDbR3F9cH1wfPACavk6uWx5+X3+xudf5OTzw/iWi+ILpCuQQmJVHayqQ0MmzvZrENpLv7+UyIwOzPP0l88yfr6M9DU8SzA1XGB2IocvazS26aQaTFata+InP7qXh9666V8UofRGDLp1BEGAbdu0tbXdcE35TnGtGJTNZnnhhRdoampi7969t2VsdHlT3xeCvz7Xz5cvnKXsOkgJL85N8qenXmK4lOdiuYAd+NTyBeq1Op2dnaSTSRK6wXStioJCgLycz8YVAZ2pFEXbXiavhZSUlkyxXZ9srU7VccnbFs2JGAnDYDxfYqFWp1yrYKgKtm0zsbCATUDOtci7FhdrReb8OiP1EhVcisJlxq5hqQJbkZQCD18FTwEPkEE4cSQDEBICBQJdQUTCPRRFXEZqL/0vkOAGKI4PlouTq4HjIZzFuON4KJ6P4gZ4dZeBE5Ph3ygEf/0/vsfsyDzS81EWp8+xfXRNRQW27uilrTNz3c/G93wmhxf46l89x/DJaVasaWf1xi5SDXEipkl2qsz87AKVWg7NDNi8s4Wu3hSqencKsB+H+LPU1L9RUflGDLoS1Wp1WSbrbudAS/Hi8sb50hbBwMAAO3fuZM2aNbdFAlyeA7mBz+cGTvDfXvoBf9D/PP/30YP8Yf/zzNdrjJQKnM1laTUjWLkCyWiULb0riBoGx+anlxvzcKmnljRMNFWhYFlXPKe56OHhepdiaSIaGs0iQ2kxQwrcwKdet9CFxJQB9cCl4rkEiiQvbM6XC5SESwmHaatKWXq4qqQaePgKCBU8RSJUkGqY1yiLvJlUQGggI2pIMMlFcloB1OUwFJJKTpjvKI6HYrlhzeUtxiXHA9cDx2N6JMv8TBEhBF/8kx+Qn8oj/YDAdggcD01TwA9QJazf3EUidf17xYUz0zz992f5hz/9AaPnplkYy5OIxmlqbkDXTEBhfqrEuVNjWG4FM+UyOzu7LFXyauF7AfWKi+/emRTE3cLNCO034s+VkDKU79u8eTPAXScEr8UF1Wo1Dh8+jOu67N+//7bIbLgyBgkpOZ2b4x+HT/P3Q6foz87gL8a8Lw2eZbiYJyMg7fps6eykosLfDZyi4jpkIlFQlMUtVoV0JEo98HDFpdcb0TRMTccNgsX2PTTEo2hqSFLHdZ1ExCRhGNQDge55eJUSGpJ83SZm6CgmjFfLzLl1aprHlFMj6zt4SsjtOITDja4iCRbffqkuDjxpoCBDxlABoSlgqOhq+GqURZmlJUhAEWG8YVGyVvEDFF+A54f/LcYfabucev4CtuXy1JeOMDs0h3Q8FN9H+D6B6yMcF6Rk865eNP3a+UW1ZPH1vzrIkScu4NQ9NF1D01UKsxVSsSgt7Y1oqoFj+VRrdRo7BTVvlgsXLlAsFl+1J8PMWI6v/80LfP3Pj/GFTz3Ls986iV2/O3HtdiGEuCmh/S8xBr3uE9qNjY1s3759eYL5biZTryzkfN/n1KlTlEol7r33XhoaGm74+18bPcs3x84jpMTUNAZKWeKe4MPaetYBFdfFW9Q4uhwx3aDue8xm52gsVhgzDPR0GhSFmucyWS2zpbmNjU2tPJjKUO7sZLCQp+oJOpJJ3rpqDVta29jS2haSR4UCAGuamuhcnJhc09zEYC7Hmewc89NTTDs1inGVehDgqhozToUECqpQqPkehqrRmIxSqYcdvgBBXAkDZKCEK2vLqgEiTJwULXxMFRIlCJMqCaCCH1HRhUB3wukACAkmKYHlVVkI3IDTR8eR9ZAgWurKoaqgS3zLw/cCiMHkSJZP/x/fZG40RyAkurG4mmuo1Eo2ZjLCynVt7Nl3bffYJbJPSsn3v3SMl58ZRDc1Al9Qq9jMj6qs29FNa6tBc0udkfNztPXobNodp61Ho1gsLOtO3ile74LuZvq1AJ/85Cf5+Mc/zp49e7j33nv51Kc+Ra1W4xOf+AQA/+bf/Bu6u7v5vd/7PQD+43/8jzz00EP8wR/8Ae9617v4+7//e44cOcJf/MVfAOFN+Fd/9Vf57//9v7Nu3Tr6+vr4nd/5Hbq6unj88ccB2LRpE29/+9v5xV/8RT796U/jeR6/8iu/woc+9KHX1VkbYMOGDUxPT1Mqle76uV+p3VYsFunv76epqYndu3ffVJ7mfHGBr42e5WKlgILCxkwLndJbLhCPZqdJm5ErNjzaYgkGS3nO5bPEazYLlTI7u3uJx0KyzFk0FNnS3IpWtXhifJThfB5dVXGCgNWNjbx/4ybKtsPTFy8yWixiahpvX7uWt/T1gYSTs3PMVCqkIhF6Y1GGz52llo5QjsWYLxQQWmh0OV2r4klJUjfQpYqzmKRpqoKCEkoPEcYbNAjcMDQoGgSE/1YDlo1ElqST0ENS27CXglL4Q2WJTPLCaWwgbJgJERJJS8dqKlJo+LZPYaFGe2eGJ/7xCN/+3CGcig1aOImgAmogMGMGmq7y6Du3kUhcew1SCEFxvs5z3z7FD795AsfxWbWxAzOiM3Yhi6Io1As+q9atolqpY9cCWrpUhi+eZqGQWTY1icfjd5zQv97xR0p5U+02eCMGXQ7DMLjnnns4c+bMHWsy3giXE9BSSi5cuMDFixdvary2BCElQ6UcWbtGgxmlSzGXzzdQyNKfnaEnkSZhhOv5zdEYQ6UcP5gcoVk1KRWLNMZTdHZ1LcoThVNDnYkkjhlwolAg7vskpCRvW9i+z09v2syFhTznczmEDKVE2hMJfm7nTkbzJfpnZig5Dm2JJO/bvJHpyWl+MHSBugZbenoYnZ1lzvd4LjcT6jzqKnURoLoKKBJVDfVn5aJZkdTCGCNl+G8ARQVVk0h/sVZb+kqqIKVCEFHRXQGKXD6PEkgUT4SEtRfmO8qiDBN+gOL74ZMoajjuLSQz43mklHz5z5+h/+lz+K6Homv4noNq6KimjnB9Ek0J7r1/3XXJ53KhxjNfHqC64DE7XkQISeD6rNjQQTIdo1Ky8D0QtgGGSu+qRjLtBkeOHMEwjCsMtm9F9uF6r6GUtamWLZLpV6//fieo1Wq31Bh6IwZdQmdnJy0tLWSz2bsegy73/dA0Ddu2OX78OEEQ3NB47Wbn9Lxw8vjbY0N8f2KIpmic1fEm6r7H8YVZgoFjPNiximK1ivR8mhqbSKVDbe60GSFnWUR0jfJyQz9srFU9ly0traH/R6VC0jSpOA66ovDgypWU6g6DCzkgnNB+bN0aSlWL/pFRkIIt7c24qsZ4PkfNEXhKgCMkxZKDIpSQpGYxDBCSRhogfEBbJK3l4jaIy6X8aDHGoIaNtsBUMF0VuZgcSbFYxAUC1Q1CAkmEP1MlyCAAx4Wlz3exDnPKFmPD8wy8NMLhbx1H2h4gUXUdqQh820U1DdLpGA89tvman0c5X6X/4BDf+/vDWK5NOt1AtWLjWC4TQ7Os3NhFMWKQnSmiKBrb71nHtr3dJBtVxsfHOXv27BUG26lU6rbyGCklJ164wOEnz3JhcJzzz5XZeWAt9799K2b07mjj3g4sy6Kn58YDUm/En0tQFIXt27dTr9cRQtz1PPaVhPbc3BynTp2it7eXdevW3dFzLRHaQkq+MHiSpydHsHx/cVtM400dvbxz5XoGcvPotosrJR0dHRiGSZcR4UIpjyaUcGOdS5uycd0gbhjMVmusbGhAUUIvobhpENN0JkolMtEodc+jIRYFAdPlKp6bx7ZqZEyNVCpNTvjYuqQeBAyX8mFoUMKYoyzSMAJQdZBeGIdUM+R/Ql3YsPZa2j6RqhJunqmE8o2GguIoaLqKpql4XrDcFVS80FctXCsJJUtQFKTthzHIX4pBgKZSXihx7ugY3/zMM7jV+tIbjFQFmgEIiJo6u/Zdvc0hpeTQd07x3LdOMHRiAtf1EE0yNKhVVaJxk1qxzuZ7VzMXM0lnYnz8Pz1KsiGyrP9/6tQphBDLMrVNTU235V8zO5HnH/7sh+TnK/gioFq0eeorx5gZy/FTv/TQdUn4HxU8z/tXyQW97oQ2XNKFvduJ1OWFXLVapb+/f1mb6UbGaxBqYz85eYGkYdISDS8KISUnZyd4rjDNW7iHjkSSuGFQ9hwazEtd66JtkxFw4cw5Prx3P6sqeV6cneJCqUBE09jW0s6HNm7F1HXSms77tmyn5IUduZZY/ApyqjudpntRhqXueRzLzuCJANv1+fL5M1zMzhMAC65LTNVYqZvMAWgqQtfBhxQKgfCZr9doUAwimkYpEDQkohRqFoEagKbgB0uJ0VJxtkgmGWBYoLphEJRiMRdaPF5RF+NYINBqHqrtowaLBbSiIGwPxfZAiLCTp6ohoSQ1ZCAxDJ2zR0f5zO99m5nRBVRNRdW0cOIxkMSTEbxAkE5HefdP7sI0r33Z1qsOx5+7wMLkCY4+P0xzZ4aWjvCGMHZhHrvuMjuWZ/2OXlwroLu3nfd/5D6SGY1cLse5c+fwPI/GxsYryKXbwetNKFWr1ZuSSR/84AfJZrP87u/+LrOzs+zcuZPvfve7y0L+4+PjV/wNBw4c4Atf+AK//du/zW/91m+xbt06vva1r7F16yXt4V//9V+nVqvxS7/0SxSLRe6//36++93vXjH59/nPf55f+ZVf4ZFHHkFVVd7//vfzR3/0R3f5HbgzLBnT3m1cPp00MTHB+fPnWbduHStXrrwpaTlRLfFnZ19kwarTGksgpeTF+UkiNZvdVo2GhgYCIbnWWaQQDJw/T5+ZYGv3CsatKo1SEAhJxXXY0drO9tYO2j1B1HHxW5qpui6rGxvZ3dFJYzRGazzB6sZG6p6HoWlXxKV9K7o5ODnOk4PnGM3OY+sGFbtGk6Ew4VloQg/j42KsqLthh71R08j7AVFTI64aLFh1dEPD9QUBIZkkJQgDCEDzJaoL1Am127g0SaX4oQmusjRF4EtUO0B1/EvNMxRYJJjw/OWH0HUUXYCnoSgK3/7cC3zlz5+hXnPC+CTCaR8tZhJ44Qpd54om7r1/7TU/KyklLz4xwPPfOQOBztxUkUhUR1MVOla1UMjVKOVrlPJ1Ji8soBsau+/bwHt+ei+u5yybS164cAHDMGhubl4ml25Vk18Iyex4gUq5TldbaIDyeuBmE9rwRgy6FjRNw79MTuNunjcIAjzP4+TJk9RqtVsyXgMouzZ/OXCU0/k57MBHV1VWxFLsWJxSnKqV8WSwTGbDorazGeXE7BT7HI1MPIGaTi5ry9Y8F08E7O3spi/dyML8PPNWnbwISEcivG31Gt62eg1i1WrOZrPM1WokDIMtbW00xWLc09XF29atoew45K0a5wYHOb0wj5uJkC9XGJ2bAN8nZcbQA7FoAhvQIFXqfkCgSZq0CAXHRTNVCCSOEPiLl5siCCWNdPA00DQw6ovk0xI5LSVSJZxcUtRQx1uG+tmKtziZJJdWdEFxPLCdkEySLOdAAJWFKt/4q4N88y+fwam7KKqCDARaxET4AVJTUVWVHXtWsm331dshxWyF8/1jHPzWSUbPz9G3sZtK2sGxPUoLVaa0efo2dTE3VWR6PIeiKux7eAP33r+OxpZk2IgrFsnn81y8eJEzZ85cRS7d7F7lWB5Pf+0YR587TzFf4ezBHDv2r+Hhn9iBcZ187UeFpfhzs9f8Rgy6Gj+KGLQ0pBQEAaVSiePHj9PS0sKWLVtuaYBJSsnZQpb+3DSW77Em3UyLDHVYbd/nuZkxkkaE5miYqycNk55kA4OFHE01D8+2SLe1k0peincV16UzkWRduplnxkcp+R6xWo2y69IUi/GJbTuZKpV5fmKCquuSiUZ5z4YNvGnFCsaLJS7kCyjA2uYmmlSFLz//PEpbijm7zoxno0qdPD5Cg3jERHMFQkhs3yeladieQGgKUV2j7vv4Ggh9kWharL/EYqhQAjBcLjXuWazBVAUhBbquomsanhcgvGDZ14ggZMVVLRzykXUHbAe5WJuhKSiqhlDg5MFBXv7WcaxCFUVVQNMQIpxyxNRRpWTTzl56+q5e9z/6gwF+8OUjTFyYp5CtYMY0InoMVVWIxE3qFYdaqcbqDZ2oChx42ybe+r57ljfS1qxZg+M4y+TSyZMnkVIuE0vNzc031VI+/vww3/r8i6GHkaniWB4/+PpxKkWLn/j4/tdcAuBWmvpvxJ8roSjKcq57tzedl8hnKSVDQ0OMjY2xbdu225Y48ESApqioirJc253KzfHUxAgNkQgrUuGQZNV1OTgzTlrVyebzNJpROjraUdUw3umqSkzXSagmE5USTUr4uOV51HyXt69ey2y5ylA+H9Y4wH09Pezu6OL49Cyz1SqNsSjv2rCOVZkGnjl5hvMz02xYv5JzExPMqzZZy0LRQr1/IcH1BTEUFF9gIYlrGrYfIJa2PpYGEoPF4UTCxzVBKG8UKkmGBLWyFI5CORNVVck0mFh1D88KG2IsxhlFVVAUFVVT8J0a0nYXg9siq65r+MAX/+DbZC/OhfJJqoKiqSiaiiD0aerpa2HLojQbhFzLUP8Yz3z1KCefHyaSiKLpKhFNx67aqJpGIMywvrQ8pkZzpBrjPPLenTS1hveCjo4OOjo6kFJSrVbJ5XLMzs4yODhILBZb5oEymcwN71VHnxkkN1+md00b8/PzZDJppFAYPDnJxYEZ1m69O76At4p6PWwK3CzH/5cWgxT5SgHV1xhSSlzX5cknn2Tfvn23VGTdKizL4plnnmHHjh2cPn2alStXsm7dulu6uR2cGeUvzh1hbbrpiuNHs3MIKfizt/40UU3nr84d4+D0GJlIlJhukLNqVMtVHopl+PD+B5c1wefqVeZqoZvsqnQGVVHwfZ8nn3ySRx555KYTMcezM3zu3Alm61VcETBdLqN5AVsbWqiqKuey86iqQiMqNhoxwwgNTDxJgxFBUWC2UiOjGfhBQN53w0KPxeQo3FMLJ7GlsjyRrXghca15YNRCgjs8ThAtChQRmlFKIaHmYeat5akAIJyMtBzw/XBVRgHUMElC12jva+Ftb9vENz/7HOVCHUXXwmIPBXQVuaihpCdM7n1wPT//ybde0412bjLPn/63f8StSuy6T36+QqoxTt+WbpKZOCPn58jNl1EUhRXr2zBMgz33r+Ut796+PPEkpaRWqy2TS8VikWg0upxUZTKZG5JLdt3lu1//IQ3pJrbuWktrV+am19ndxic/+UlSqRR/+Id/+Jo/9z9XBEHAwsIC/f39vPnNb76r5x4fH2d+fh7TNFlYWGDnzp00NTXd0u9+cfgkXx8bYF26+TIda0H/xEV+dsM9/NSW3Xxx6BTfHB1kXUPT8ursdLnIfD7Pz6/cxKP37GXOqvPDyYucXphHV1X2tnfzcO8qUmaEyclJpqenuffee2/4WqSUnC/mODI3RcmxuVgsMjg3i3B9fENn3rKISehJZRgrFElEItQCH91XaYrFmK1WkQLaI3GmyxWEEk4TLS9kLTXRlmKPBNUDhERzQfXBqC5OF4jwcbMUYPphsqoqCr7loeVtNNu7bA1OQdZtqFlhLFqcSlJ0HQwdPRVl965uTjw7iGN7KFpooKuZBmgqmqGDrpNqSfLxX32EfQ9daWBbzlc5fXiEgWNjHD80hJnU6V3VxcDJydDfO5Cs2dFLqjHBzHiBhbkSW/f1sef+dWzbs5LIK6aHgiBYJpdyuRyWZdHQ0LAcg65H1CzMlvjm5w5x/tQYvhvQ3JZh1/3reOR996DfJbOlW4GUkq6uLg4dOsS2bdtes+f95w7XdRkeHqZWq7F9+/a7eu6jR4+SSqWYmZkhmUyyffv2W57A/auBo3x/cpiuRJqkYWL7HqPlPE11nz9978d4bmaMz5w9xpp00zJhLZGcn5sm6vj8t/2PcsKp8Z2LQ1Q9FwUljEEdXXxs0w4ius7hl1/CjsdoaGmhK5miPXF9IsATAbbvM12t8LnTxzk9NUnBc3EUhc5InEq1Tg2FIAhHjtJ6FIEkb1l0RBOhfr/rkNR0yp4bkthLuY9ULsWhxSJODUD1JYYFunvZsb5EFZJIWWCqIeGMlHhFG71gowYBiqouVn4SmS8hbWe5iFO0Rabc1GltS1GZKWA7XiiZZmhIRUVRVdSIiaKpNPc08Wu//1OsXHtJnspzfAaOjvLdLxwmN1tibrJAEPg0tTeQbE6TnSkRieoEvmDLvjWh+Zzt8eFffpje6+jgAti2vUwu5RcL6ssnl65FLn3jc4d46ekBzJhGIF1ikSS1ssWD79rOo+/ffUvX2t3Cl7/8Zf7kT/6El19++TV93n/OEELgeR4vvfQS3d3ddHffvQJcSsn3vvc91qxZw+joKBs2bKC3t/eW6jApJV8fPcfXxwaw/PD7gZR0axHem+5m85Yt/Pbhp0gYJunLzK193+fE1Dg/kekin0pwurBAZyJJTDcoOBYV1+XDG7byUO8qnhkd5R8Pv0Cmo531zS08vGIVaxrDHM3xfWqeR9I0r2joCyk5lZ3jhZFhXr44Qk5VMHST8UKBQEoSRgTHcklHIixYDlFFJ6WbZOt1UrqBbbvYilj271FQLtVfhPkOAjQvjEPx+mJuJMPGteqFDfxoWaCrCrqhEY+a2JaLnbfQC/VQ49/Qlhtw/sxCOB25RCRpKoqhg6IS08GqWIuxSQVFRTX1sP4yTZq6G/mNP/4IPX1h3PAcn2M/PMehb59g4Mgo0WQUIx6hsFABBLpuEG+IY9k+nuuTbIjR3NVEz+oW3v/z95POXH9QSEpJpVIhl8uRy+WoVCrE4/EryKXLSRbfC/jL/+tbLMyWaelMMzs7S3d3N5WShWO5/Nz/9g7aexqv+3w/CjzyyCO8733v4zd/8zdf0+f95wzf9/F9n+9973s8/PDDtyWDdjNks1kGBgaIRqPYts2uXbtuyzDvQjnPt8bPc66QJaLp3N++gqbZAptWr+Xp8jzfGhtkfab5it85l52j05UQiVPVFValL12DU9UyKdPkp9Zu5quDA4zncziOQ3Omka2tbXxi+y4qjsPp+XnqnkdHMsn29nZihoGQEsvziegaddflyaMv89TUJDlNZaJSxXdcIrqJH0hsz0NKhc5ogrlaDRWVlGpQsCykCv5SLJAs111Lw4yKCPMf3YNooBHXwlwipmrYdQ/TlygVQeCEptuxmE4sGkFXYfbCAkqujiIlmqGjaiFH5I7PhY19udhUU1XQtUVt7SBstqnqYlNNB01FNQ0iqRg//7vv5aH37EBKyfSFeb77twcZPDZGPlvBtX0MU8fzBUbCIJ6K49Q8mnsaqdVcHMtj5wPreeCd29h8z4qb3nt836dQKCzHIM/zyGQyNDU1US8ETJ5fwHU8eta0sfGelfzF//ktahWb5vYw/jQ1NmJGIkxcmOet79/D/e/YesPnu9v4xje+wUc/+lHq9fptTZr/c8frPqG9dGHpun7XJwOWzn3mzBm2b9++3HW4FeiqtriSIdEum4EUSFRAW5wq//D67TRFYhyem6Rs2+gVi7dm2vnI/gevSPzb40na41cG0MtX8V6JC+U8T04MM1BcIKJqXCwV0aVGbzrNZD5PzXWIGQZBLIJr2eiqgqoolIMAU9GQMuwCBmqAGwQYmorQJAuqQ6BKAp2QeJaLnX4/NAEIvU5C91rNU9ACQC6uyUUUlPoiWR0IsMPVWEXX0A2NwHUW3WwX33shkIUyOM5lMiMairbY2wt86mNzfPEPR/E9EU4sSYlEwYhHkVJixExEIFizoYOP/NJDV5DZ9arN8WcHGTw+zuCJCRayRTbuXoVjCWpVG9fxGD8/w5b9a1m9ITQ9CvyAew6sYd3mbtZs6rhifVdRFJLJJMlkkhUrVhAEAYVCgXw+z9DQELZtLwe15ubmK3Qah09P8c3PHWL0wjSmYfLCt8+z+8H1vPX9u1/TdZN6vX6FGP8buDX8KOIPXLoxplIpDhw4cFtJ2mi1SFTTr7j5Lk0HzNo1AN7Ss5qBwgLD5TxRVadq1bFqNd6+Yh1v3X0vqqrSlUzxkY3bCUQ40axedr4liZ5rQUjJVK1MIAUD+QX+YfAMVc/F9T1GS0Viisq97b2cLxZImSY1xybrhLqThqoifYknBZLQsK0e+JRxsaMi1HiUiyRSQKjLpoYmIxigeqGmnOYqoY6bRmjk4YcxWPoSxXbABiUVRdNUtLiByIZJFGoYb4TjQK64uGarhFNJuh7GXN/Dr1Q4Mp0N1/4UBQIVLWoSuB5q1CTwA8yIwe4Dq7nnwKXp7MJ8mfHBWZ7+0hEWZkrh9HWuSiSh09LSRDIVoVK0kEJQmC/T2OtydQkAAQAASURBVJZG0xR237+Oj//qI6jX0cvWNG15OnvdunVYlrVMLI2NjaGq6nJh19TUhGma+F7AVz/zHKPnZ4klTcyIDkLhue+cJpmO8aa3v3bJlBDilqaT3sCVUBYnfn4UWyKO47CwsMCaNWtuS6u26NgcyU7RHI2TXJzAjuoGXfEUI5UZRsp5tja10xpLMFYtsiLRAEjG52ep2BYf2H4vXV1ddErJ+sZmzucX8KSgL51hc3PbcgPO1HQ6k2lWtl//vuWJgO+NDfP0xEXytsVYsUDgeKyKpykB+B7zroUvA5JmFFcGVBanj8zFqSgnEKBJHD3AVQXiMjIbdVEuRAtrLTUANVAWXWYUMCAiNSK6hucHoUlj0UYtWMiIgdIQJxY18YTEy1sglbAoQ0HUashSNWyoAagKUteQqgbVGtlcEamEsVjR9dAk2zRCckkIzJjJOz907zKZXa/YHPz6Ufp/OMCF05NomkbXmnYiMRM/UKjk68STMVINMSrFOp4bMDm6QDoTZ9+bN15zyvJyRKNRurq66OrqQgixTC5NTU1x7tw5ksnkcgxqaGiguFDj7JExGpoSGFGFWk3Q2JICCcdfuMB9b938msqP3MqGyBu4Eksx4UcRg5bONzExwZ49e2hsvHVycbxa4lvj54moGj0N4XCQGwQMLMzyEib7jAhN0RjzVm2Z0HYdh9G5WeKGycN79tIYjfP3509zLpclb1mkIxHeu2YDD/f2oasqb1nVhz84xMMHHrwqP4voOpHFIRYhJUPFHPP1Gi9MTfDS2ChFq05p0TujcbE2TBom5cAjQKArKpqq4AifBjWCgqQsXfyouOSLJkEsxh5FCwlsqYImleUJSaFBUjMwdY1U1ET4krgPxdwsbtWFhjhEDdpaktRNlXLJWjbAVlUFUa5D3QrrNgV0Q+A7KsJ1kZ5PVcpwIlLVQhFvQ0d4AaqpoGkKD75rOz19rZRzVU6/MMSzX3mZmUVpSKtm47kearGOUBUiCYPAlUSiBs1dGSaG58m0pnjwndvYuX/1DclsCK/FdDpNOp2mr68Pz/OWyaWjLx7n4qk5KgsejU0N7Lp/AyvXd1PM1Ug2xEKz3cXbWzIdpbhQJTdbes0Jbdu2l4fZ3sCtY8kD627XYrZtL+el+/fvv+WtR4CRcp4/PPk881aVjBnDDmy+OHKaHl9hjb8KT4grtmSlDHWD69UqTV0rece6LXz2zHGGizkShknd8zA1jXf0rePerh7WNTXzzMA5JufmeGjXPWxsacFQNZKmSec1BjxVRSFr1fjywGkOjgwz7djEDJOEMBBC4CsSx3dpNmNIP6AmA5xFI0lbeFSROOYiTyMJ9Y1EuJG2NImtLWmTsDi97UkCBImoSWsyzrrtzTyyaw39z57n2AtDFMs2kVQDmXSUzo4Gdm/P8NyXh6gWrMXemQqeg2vboSSSASs31IjFPWZGTXJTOqAsm04qhg74qJqBIgUr17ez/22bmRic4Xt//SxDx8eYHsmi6RpBIIhlkkQTEYrZMnZVYsYi4WCSqpJpSrBp90p++t+9+ZZ9inRdp7W1ldbW1mUZxVwux7P/1M+xp4bxHIGu65gRk433rMQ0NIqLXnBLXkpikV975dDSa4FarYZhGDfdbPmXhted0F7C3U6kHMfhxIkTAOzZs+e2Bf83ZVppjsSZqpXpTYSyFW4QUAk87k00Y2rhWxfXDd63ZjN7k00cOXGCteu2s3njpltal1lKIpcIpUAumU3m+X9OPs+CVSdlRJitV5irV1mTaqZaKlOp1YgZJqqqMluv0GTEwy1WBYQCSdOg5LpIBRqjUebsKrXARUaWVkoWn1cLpyEFAmIsirUREky6QqBJkArqkjeKAnFDQx2ah5EFlJqPousoXU0ovS1oyiIhhRLqtc0tLHbjCCclVRVpLGZsQQBBQFlTQ1Jc0yAQ6IkoQSAIPA+pqii2S0tPEx/8hQfINCcQQjA5NEd2usAL3z7F9OgCiqIwM5bD930mB+fp29xDJGbi2C52zaFaqBFJRDAMlbf95E4efveOW7oGNE2jpaVl2fG9Xq8vk0ujo6PL5JOhxvjqZw5TLlo0tMRoyKRx64Lnv3ua1s4Gdj+4/pae727gVvUj38CVWIo/lxv7vVpks1kuXLiApmnce++9t71C1xpNcDKYveIxKUPjjpQW3iRbYwn+/fb7ODw7waEL52nyFR7b9SYeWrvxCuIaWNavvRzhjffqhtpQKcfnB48zUi7gBgEztQqtkQRrU02cm5lGlwrS0JhyqoubFwo6CrbwkchQA19VUTSFkmNTVzycSEBdeKFg5OJEEoFEaotFyOLamyIVAkMivJBYkiIkvaWUxCImkZJNcHISMV8JNdriUZQ1XcTaG6gbCrhhYiR9H2YWwPNpaHZp63Golg2mx6OhcVsgEApIQwc1nEgSgURxfVRTRwMUTWXTrl4+8stvRlUVcrMlnvy7QwweG2NqJIttuazc2EmqMU69ZiN8ydTQHKu2duO5AaVclUK2wuTFBZrbUjzy+I7rktnXQiwWW56YE0JQKpVYyC4wenGUs2fPkkqlqOclo4OztPdkqNt1NE0jlUriOT5HDw6x75FNr9mUdr0eGpe+QSjdPu52U00IwcDAAJVKhc7OTtauvbZczvVQ9R1cEVwhpwahR4gvQ+mitQ3NfGzDDj5//gRDxQUqlQoxTee9m3bw9rWXDJ7WZJpYk7n2Zsr1YlDNc+lfmKHoWJxamOfY3Awx3aBUr5Gza8R0Ay+qIxyblGlSdV08QlklHRVFFdi+RywSRVEhJ+p4qkREACGXN0IkEqlIiFyalAyCULdWtwgJaCXUqFUVhZZkjPjMPIzmKGWruIFAaUxh7uijqStNrmDhFOylDwGZLUHgs3prlfW7KmgKjA9FOfNiAt9WEIvrtVIzkHiouokIAlRNRVFg5/1rect7d3D28DCnnh3gyNNnqZYsEpkEnhsgVMHU8CyKoSOFwIiYlHNVNu5dzdToAo7tsftNa9l2bx9rt3bftvleQ0MDDQ0N9PX1cfz5QQ5/+xTZ6RMkGg1Wbmsh3ZCmVKjQubKZIPCXzx9PRSktVCnna685of1GDnRnuNuSI7Vajf7+/mWN3NshswHOFuepeC5r05dih6lpJHWDM/UCpqbxaM9qPnf+BJPVMhE/YK5QIIiaPNq3ntUN4Ybtv9u+h+lahZrn0R5P0BC5FNNeWYddC0XH5i9OvczJ3Dx5q85MpUwclZWZFuxymYiuUXBsAiRJRcFUNSqKjy8kEU2nGjjU8MJmvrw0SIQITWeJhCQ2sKhdq6BVl0zuQddUNBSiuk5XS5rVhkHh2fPM5UsUCzW8OYX0xm427FhBd3eEwdZJTjw/hpQhoe0VyhAIdjxQ4MHH52jpcCjN6xx5spHnv92E7+vg+7SvqtPWG1CrRpgYawQJfZs72blvFV//4+/z4rePUylZFLIVdF1D0cIJ7kRDnGqhjlQVnLqCpmo4dYdoIsKmXSv48H94lLbuOyOVDcOgra0NnShPffYME8M5pCKZOJflxPNDrN/The3aeJ6HEUktm+aFU5sa8RuYWP6o8EZT/85xt+UfJycnOXfuHKqqsnPnztuu756cHGbeqrH2sk3Zuu9xITvLuXKODc0tPDU5guV7RFSdXC5H3bGJp1Lct3I1ezu6SRgmByfHmKiW2NTUypu6e9nZGsqdNEZj7GvvpMN22dZ2/aHL+XqN52fGOZOb58XJcSo1C1PTEYqCLQKqnktCM9H8gDKCeuBhqCqIAFf4qKaC4wscVYQeQSLU4kcFqctl/kcLFFRVojkKhgpxTac3kSBmmHQ0prlnfRe7VnfwzF8/w+Cz5zDqLs1CEvMdHn7rZvY/to2Bc6fZvK6Xz//R85TyNQxTwy3YIASrt1f4yK+N0NJlI32V4qzBkR808r0vdKMosO+t8+y8v0wsJRk+08CJI3289ad28/n/9hWOfv8Uhfkymq4iVY14OkFxvkw1VyGWihJNRHAcj8AXeI6HVCTb96/hsQ/uvWUyewlSSmolC93USSQSlLMWo8cLNDU3EW+I4LoOtYrF0WfP0rupjWrFoZgzFnXVIT9dJN2YYM2W11abfklp4NV4Mf1zxY8Fob2knXS3Eqkl47Wl5OlOVlcykSgfWLONLwyfYKgcGoCoisK6ZCP3JS6ta0opGR0dZXh4mL1btt7Wqt7SxTZbL/PU2Glezk4C4TpJyXbYmGlFURRs32ehXmeikieiJehuaaWQD6cKbeHTmohzMadRcB0aVZ32eIyC51BTXErSwjODMLEJwuJN0RWUIOwgCUOAseROEjLiikJI+OgKIko4BUk4ra2encEYzmLGTfSmBFa+hrg4G5q8ZVKIkhN2yfMFenoWeORDs6zaVCWwNc6+mOH5bzUyczEKS+aQphGSiEikquHVbbQl53BNpbWjgY/9h0doSEc4f/QiB79+jPGBGfJzZcqFGi1djXSt7SA/XwFHUspWqRbr9K5uZXxonkqpzuxkgVRjgk07V7DvzRtv+1pYQjweJxqJkoplWLtax3ZDgvvFp04xfnGGlq50+J4GgoamBFbVof+5odec0H4jkbo9LE1HQjhNdDvd+2vhcuO1np4e8vn8HenB3dfey+H5CaZqZdpjSSThxHSDZrI1dWm9LalqtMwXeSzSyD37H7mtYv7yCe2sXWPeqiIl/PmZl5mpV2iPJ8jZFmXPwRcCrWZjGgam8DE1jZxt0R1LUy46SEAXkqiqUnYdNE3FjKnMejWEXDJvXCKyAVUJm2kml5ppguWfKyiIGJgB6CrENY2o7aEfHSPhBKzc3ks+Xyc7mYML02S6M6TXpMmfLxEISZCv0LumwE/9+1FWb6miANWFCOePpvjKn3VSmDdRVIVEvE5zt6RUjFCtJ5FBqIUrhWDVujZ+8hP7+eE/HObEMwOMnZ3G8wPaV7US+AGqqjA1PEdTZ2N4HZkqtuUifMHqjR1cHJhl/a4V3PPgejZs7yHTfOffzXKuxvPfOsOZly4ihWTtjh7a9zcwlZugUqlgFMMJfMMwCIKAWCJCvWLh2N5rRmjXauHmwBsx6PZxN5v6lxuvtbe331EO1BpN0BSJkXOsKzSyi65DTNHoiIXeIjtaOkh7gu/0v0yqZy37N25hTUPTLSfT19oSuVDK88enDzNZLeGJgMlqhYRusp4UrmUT0yMYusqcVUVTFDwRTkP6gOOFa/UxTceUKpNOBSfih6S1IGzoL5HUvkBGF4s5WG7oK2qYK5lSJ66ptMY0WjIR4rEoseE8uYs5WtozrFvfycJ8mYXJAl2WxYMfuYfy3la+9/nzVEoWwqqRbqnwb35rmC335VE18CydWtbg1AsZvvCHvUQSKtv2zbN+Zx3NUBk6neHY4Xa8wKBnVRNdLVH+75/5E2YvLqDoGuV8DVVTcS0XRdWIp2PUyxYRQ0cIcB0fKSSFbJlo3OQdH76XB9+z87Y//1fiuW+e4IkvvozvB0RiBgsjFpX5WXY/mkQqAVPjM8RTERRFwXFsrKpHJGaQuslE5t3GGznQneNukknz8/OcPHmSnp4ePM+7Jb3sV+J6JLOihPrRAA919+ELwVfO9DNdrdDa1MgDvat57+pNyzFIURS6k9eemF3ycHrlc83Vqzw9NcL54gLDxRzZWp2+ZIYFywYJvqEx41SRUmCoYc3iKeGav6qqqIQGk0KFICKYp3Zp40MSNvNVeWmYCBb19QljUEqjxTdpi0R5sC2N53g0NaTpSKV55o9/SHmhSueqVnrWdlCYK2EvlNi/toV0X4x1axpJJZOceukiTtUmUD1++jeHeOgnZzHMAM9Tae7R6OqzaF/lMHA8zds+NEP3KgtFqtiWwdhwiqe/eQ+9XSn+9nf+gYnBWTzHQzd1VE0nkYlRXqgiHJ9EJoYR0ZFIjJRJveSgGTp9mzp58D07b5vMllKSnSzguT6tPY2YEYPD3zvD5Mg8PavbQm1voJirMjtcoXtjCwP9U9TtKmZMI5crUF6wWbO5i941bTd5trsLKSW2bd9V+dR/DbjbWyJCCM6ePcvc3BybNm3i/Pnzd0TwnS0ukDYiV/xuXDcIpGTSqvDm1q3sbu3ixdlx6tUamqISScTZ0dLBgY5eADY3t7K5+foyX9dr6kspKbkOo5UCf3nqKFO1Cvl6jZxtkdRNdEPFFBoJw2S+XsOSHnFVQQ0klu9joqEpChXhYqsB0iSkXsRizqMQxiAtfBwJgQaqrpA0o/TGkvzE5hWsjusUCoVwiK9B8OLXDvHyd47T2N5AS08TgS+YG81y9CuHue/Nm5BSsnJtC//b//gpvvePR5gczTFdLNF3X5F/+/tnSDR4+J5K4EOT6fHQ+zx6N9dYvb1CS4eDU9OpLkToWmXz4E/oPPmlZzj9fJV61SYSN3EtF7fm4qdjJBriVAo1KoUqmqahmyrpxjidO1r4wH94lO6+1tv+3AePhdrcM2ML6LrGlv1riDfEqVdtuleH54tGo6TTDagiB55C35YWhk5M47kBlQWXprYGHvnJnTS1vbZxQAiBbds3NYT8l4gfC0Ib7k4Qu5bx2vz8/B2fd397LyuSDRzPzVD3PLoTaZotn2q+AITk15kzZ8jlcuzdu/e2p8AB6gj+fwOHGa2VaDCjBFJytjhPQjfxZICp6ERUFRn4eIqC0ZiiKZ6g1apzsVwgoZuUHYeYrhEEGindZKy6gBXx8BWBFBBBC9diNAXVV1Ckgo9EMQOkLi4jsyXoEjQZGgD4QN0gJeKsjaboteH8U4MYmSitXY00NSTwAxgbnEXULFY8sJKsYbAwtsAD7x3mJ37hIulGL9xo8VU6V1dZv6PE3/yfK7DqKis32PSuddCjKiPnUgwNtBH4YWIZeB4N6Sh77lvBoa8cZuZCltmxBTw3oHdTN3pER9VUCvNlzJhJLBHBsmwUVVIu1Fi1qYvWjhSZlgRv+ak99K5upW9jB7p+Z8SOlJITzw9z8BvHyc2WMCMG29+0lre8fzc9XTVSqTmSyQSlcolKpUKlUsH1BfMzeRzHec1WP94o5u4Ml5uRvBpCe8l4rVqtsm/fPjzPI5vN3tG5NmVa+cjaHXx99Cxj1SKKAh2xJNv1DG1mOPFWqVQ4duwY6XSae+6557Zfu6Io2IHPX55/medmR6kHHjXPpey47GnuJqLp1DwPXSpYro0Vj7C2sYWFuRmswCOmh+aPuXqdGc/BDARRzcAWDnXDoyAD0MNJSBUFfIlccryWEhkTl8jsRUJ7caFj0ZJbZW2qjXdu7GNtwuSHX3iBAdumc00rZlRlZV8zfWvaGD0zye6eNO33pBg56nDkmUG6t07z8d88Q2uPTeApSKnQEPXZmXZJNdscO9jIvW8t0tljIwMNu25w6qUmvvMPfbiBTkNMg0KR//HRP8X3A1ItDdTKFiCZH80iNY1IzMRzfOqlOvFUhEqxDkKhmKuiFFU23RNOJ71aUqdesfn8//N9xs/PEk9HURSFl548x+TwPI/89F5OtEwRj5pYbg3f85ifm6dacGjracSyq0Tjxh0RCreLf62rbq8WS021u9HULxQKHD9+nObmZrZs2cLg4OAd5UARTedtvev43OBxxqtF0kaUuu9S9zw26olwpVVKxsbGGB4a4ie276anp+e2n2eJTJqslTiem8EJfJ6YuMB8vcrKVCMV12G6WqXiWFz0fDobmymVChhKmNe0x5PMVCp4QtAUi+FaHqUgQFcCakY4kSQlKCKUAZGqRBMqnghQ4mG+A4TSaoJlRyShqGiKylt61vBz9+8Ex2J6fIbPf+0YqD7SCPB8j7bODOlUjHqxSnNEJb06w7/77Xfx9b89RHbgDB/+lfNsvreI7yk4topu+kRaAna/a56Vewu0tHskUwFeXaOWj7L13hJb95X59j/ci2ZZPP+Vl1mYLiClRNM1FF0n2ZigWqghCfDjEfSIjhQBTR1xSnM2kXiElq4Mex7eyD0PrLutz0NKydxYjvxciVRjgp517VSKdZ771kk0Q6Wtt3H5uNmxHJMDBfbcv4X+5wYJXFB0wfTEPLWyw7b9KyiUF1CN5tdsYuiNHOj2cTmZ9GpjkJSS4eFhRkdH2bp1K52dnXdch23ItJLQTQquTVMkzHl8IagFPnvMkCjwPY/MXIEPJNpZufchWtMNpMzbu/+8klCaqJb4//Y/y2S1jKoojJYLqCgoOQdVM4ggiRkGTuCjaiq276GpCkkzQuAG2J5HUtWwpUfNCMIhHxQUjVCWMVBAXySTLk/ZgvC1BFLia4L2dJp/d/9edq/sXN4QPfiVw0wMT9HU20jdrhOJRmjsbGBmeI7+J0/x4C/sxTA0fuE/v42zx8Y5+sMB/MLL3P/4LJouqBRMFE1gJF0iMY83/2KZt0iFqAGBq+JUdcplg027KqzaOM1f/u8RNCOCoqmkmpLUSnW8ep1EJk4sFaNWqlMrhiZkelTHNDVW37uax3/pIfo2d932MMfceI5v/fVBxgZmCAJBpjXFm9+/h3NHLpJIRZfJbICGpgTVosXGratpa2/j5IvDFObKWNGAZJNB52aDwaHzyxJtt+od8WogpVz2PnkDt4+7EYMsy+L48eNIKTlw4EDIKdwhD5QyTBYWJR6XIBbdoSNKaEL4012rEVOzzDdEaWhsZFdrJ2/qXEHyFuPQtZr6o5UCfz90irOFecYqRVw/YHUkTc71iWsGiqZS8hxUoaIQyjoGvkTqBiYgvYBy4OGaAn9pC1YsDhRpCoqUCHUxBiksS0DKQOID0pQ8unk17967FV1Tl82js/NZDn/zCJZbJy4iUINIJELHqlZmL84z+PIILPavulc284lfexvlQp3v/fU32Xzvd4infaoFM1RgM330Notkh8WujSUUCZ6jo0U9Uh2C4mwHvT0WXT39zPbcRylXRTM0dEPHtUvUC1UyXU04dRdd03Bsj0RLjO0HVvOujz1IU/vNZX+CQFDKVjCjRui3dnqSL37qe9TKFummJL4X8Pw/HSfZGEeKqze4NV0nEonyi7/+k4wPzfLUdw/S1t5KskUnb0/w8svFZRnJVCp1V81Or/33BG8Q2q83Xi2hHQQBZ8+eJZvNsnv37mXjtVd73u5Emu7EpS/F5OQkZSGwLIv+/n5UVWX//v23NQE1XitwqjCLkIIX/TwjlYA1DS3oqoqQkrFKkZrvMm9XadVjBOUqKSNCUXjUfI+Sa2NoKqsaGmk3Y1TLZTZH4rxt9718bX6Q0/l5AkeiSQVHDVCkRJEqKDJcawtARnwU4zLtJwFSk+hGwKLhLtIATEFHcwu/feAR7Is5/vJrZ2nsSOMLn2q1iu/7tLTHcKs+29enWPGu7bz49F9x/zsmUdMB+ZoWauiaAWqjzYp9Nr/+dwU0RSGZFAhHxy5GcCydky8W+eJfrEM4Al2RaDX47p89AYpCx5qOcL02CJi9MEu0IYGma2iaQmGuxIrN3ZSKFTzLp1a2mLwwTyRm8s6P3cveVzGVvYRThy7w5U//AN8LSGXiuI7PM1/vpzBf5p6HN4bGlaqBqqg0NTUhpGAiP09ilc7zzz9PMplc1t5uaGj4kQW1er3+rzKQvVqoqoqyaNR6p2RcpVKhv7+fRCLBgQMHMAyDQqFwzc77rUBRFB7u6uOelk5GygVURWFtQzPnTpxECMHs7CynTp2ir6/vtrRxX/kcz9TmODluk4nE6IylOO9kqfg2w5Ucm9JtqI6HKiRS0/FUiOk6qxoynMrNIwVMVEpEgI1mnF09KxiXVY7kp/D9IDR1lAp+IJCL+miaVPEUD6JiUX6EMMmSCkpEoGqhS60iFWRCY3dPBz+9eweqojD87SHmmmZIJBM4jkOtVgsnrDRJaXaBHrOBn/3VR1m9NUIi/k9E2nwKjo4fgKIFmEkfNeWwqafK5sfmMVUFPBWrbODNJHnTY/NohsYTX9yAIX3q5Tr1ioUCFGfyoIVkUr1soUXAtT0MU8NzfVasbyPwA6RUaO5sYNu+1ex9y6bbJrMXpouMnJlEQWHNth6aOho4+cIwE0NzdKxsXp62bmhKMD26QHaqyNotXZw9OgZaQCIVQ3qSaFRl4+4uzg+ex/M8Ghsbl2NQLBb7kZBL/1pX3e4GXu105BK5PDQ0xPr161mxYsUyUe553h2d85Gu1RiqyhOTw+Rsi8ZIjMdXbUI5exHP8xgYGHhVDX0IY+8PcxM8M3mUsutgBz5Zq0pHNB16BgAyCNBQsHWFTCxGol6j6NiYmkZrLE7Zdig5FtL16G1oYEVC43xtAc/zUUUoZSRVGRJGQkEoAkyBNC4Vc0gZNtI0EfpSS4WYHuXx+zbS1pACUmCrxMw4jc0R0EJtxVKphKaFk9PZ6RwNKxNs37uKNRs7ePnpc3RsrlMSGo5QUKIBihFgJAU6ks42C22xiFOikkjGYWYww4YddY485ZHP6qSakhSyFWLJCNV8Dd+2+f+z999xkp1XnT/+fp7nhsrVOUyenpw0kkaaJNlWsuW4xjYOhAW8XhsvGFjgt4FlYRdYFtgFjPFvvV4wYcEGszYYY2xLsoLlII0saXLOqadzqq54732e5/vHrarp1qTu0YAM1vHLL0ndXbeqbt37qXM+55zPx7Zl6rJqIWEQEdZCEmmfoBLRt6GXd3zoAVbfvngW+TOXqBSrfPEPvs7h75ymWgrwEg7LNy5i872rmZ4o07P0svSDEIJ8e4aRixO89cfuQUrBnmePUZmMaO9s4a7XLOD21y1hfHyc06dP47ruLP3/l7sJda14VXLk5sNxHGq12k0/PggC9u/fT7lcZvv27c0pVaXUTeVBfdlWHlzYx1cvnmCiVsERkprRLE/nuVPmZjX0X7Nz501fU0IIzhcn2XXpKCcLY5wrTDBcLrOhpZuKjugvTBHpiElH0JdtZWJykrpyCJ2pNMPFIuUoottPUQk1Cd/DT3tMh4VY3ohYskhogZHgIAjR4NnZDX0JSIsUoHDYvKqbO5b2IIQgnU6TTqfpbDlDNpejpSVPrVajMFWITT1NSP+ZAaIoQimF6zls3t7H6o1tnNr/ewSupKAVOmsQnsZRFkdorIiXdAMjiCKJmzR0LC3hqfV43gAL+jqZmsjV9bglqVySyeECJiqweKVgckQQqTSFsRLZ1jR9W3r5/g+8ke7FNzY/r1UCLp4YRErJotU9hLWIv/ydR+g/NUxrdw7HVYwPTfHFP/g60nOvgWcWz3N4xwfuZf22Rex78TB3b7uTxSs6mS4WmhKRDYm2meTSP0Se0iCUXtXQvrl4uXnQ2NgY+/bto6uri3Xr1qGUolqtxnKNxsy79r63ZyknpsaYCqrkXB+L5WKpQIvjsTqZ5+zZs5w4cYL3bL77phr6MLuhNh3WGChN83v7n+FisUDe86mEIbUo4mQ0TmsqQ1CrkVQu06aGVFAMakgELQmf6WqINoZW32PSizBGxz16E09iSymwkUVLG+NP4xawdf8QFSuSdLekeOdd63DqUh1SxtxGNp0l6aXxuhIkEh61Wo1icRopJZVKlaH+ITpa8rPeW74tzbY3gnRDprRDKQ34GikNrhQ4da86D8DVmMDB92DJOkt1wmfp6jGO7PNxPZcwCGjrAde13Pnai2y57yhSGs6fWcLw6FY6Ni3mta/fQUvLje+/A986zlOf3cXwxTGUo1i/fSXF6RrFqQoL+i5PdiezCQbPjiA9j2Kh0pRQ09pQKVbZ+tA6pBQsXtnF8k0d3HvvPXhefG4aMrX79+/HWktra2szD7qVxqeN0FpTq9Vmebx9r8R3BaH9ciVHyuUye/fuRQhxhfGalPKmCaWrhZSSIAh49tln6erqYv369XMGSGstf3v+IH9z/iDFqAoIBvUkCZmIJTaIZU26kmlOFmoMFQvIqEw+l6OqA1JRQN7zqWnNpo5u3tC7lNq5i5DpZLArxR+ce5HTxXh63ChDSvroIBb/R9lYLwmBcUNUUl+eRKqT3coxOI5GyjgBM1agMEwkL/L7l75AWjiUN0ryQ5ZcPodOB4QqYPJkESsNcsEJhtu/SN+/PMcllWIIn2QmICkDfGFICHB9QyJdi0mumkK5GhIhhQGf23eOs39XgVP78nQsaAFgcmQagWX47DBGOaRySSrTVby0risYCEykSSQ98h1JgqJhyeoe+tYv4LYdK1ixcX5u7YXxEod2nWJ6okTHghbWb1uBl3D41pf3EwWanqWx1EMa8JMux/acZ/vDG1m+tocTB/sJdQ3fqVIs1OjobuX7fvgBFixvY3x8nLGxMQ4dOoTW+gpy6VZEQzvp1emk+cVMY9qbTaQuXbrEoUOHWLZsGStXrryl63M5L8HtHZcN06SUDA0NMTU1NW+zW4CJWpmvD57i4OQgQbXGd2qj9OTbafdjEqDFTzJaLTMWlLg0NoxjYHlrG8cLE5TDiLOFSUKjuburl7s6FjA5NEzey7Bj80Y+cWY3L472U7ERvnKoEGGI5UOkEbEhbRhCIgKvvmlrwUqBwKJcjVQGIRqmkfB08QS3jeZREoIlKtbSTiZJpVJYawmCgMJACZGwWFXiuf7fxt22lzKWIyKHLyJ8GZLE4kpIYtHC4mMJLURViZ/WJFuqFEaydPVAJivpWtzN+OAUylEkMwmKEyVMZLA2hXIVSoBKuBQny3hJl/HhArm2JN//4ddz1wPr5v05W2v5+l+/wNf/+gXKhSoWSyaf4sH3bmWofxJglnSIVBLHdTh3bJB3/+QDpHNJvvP0AcrTNbp629j+0Hruvn8NEJM84+PjjI6OcvLkSXzfbyZVra2tt4xcKhaLrzbUbjJezmRSFEUcOnSI8fHxK4zXGgXdzYQQgtf1Luee7qWUooCU4+JKxSNHzrJnzx4cx5l3Q78R2hpKUcC52jRfGTtLIplgebaV8WqF0UqJ0aBEf3EcpxSQdVwKNkLbWMd6Wb6Fw2MjpJRLKQzoS8ZbZFvXrePxiQt89dIJyjbESotQItaltSI2njVglEb4M6az6wZt0rGIOqEtgAkxze+d/DYfzb8FTynSbWlS+TgH6VjYRjabxRjDxMgkTkJRDKeR04YXj36JsOV59PbvcJIMCo3nhfgiIikgQpBAYwAfwNHogkcipelcIonKPUyNTtDe20uxPv0ohCCZTWDtJOtvP0smB4MXshQqPYxcKtC1pJ3W5Une8gP3sea2ZTc8/9PjJU7sOYuONEvXL6RrcTuPfuZZXnjyCC0dGVo7c1TKNY585zSFsSJCgo7MLA8ArQ1SCXItKd7xgXtZuinP1FiRzVs2zlq11VozOTnZJLcPHTpELpdrYtCtJJdKpdK8pP9ejTherjFtoVBgz549ZLNZduzYMWsa9maPK4TgfStvY1W+nRdGLlGKAta2dLDGSdN/4hS7du16WQ39RvSbGp8+8m3Gwyq+UvEAAYLB6jTpSIDRuHW9WiEFHckUA6VpBAJHQEsiQZeFrshy26rVnFMVHr90mkhpZH0D1jS0+iOIiOKGfn3tvyHHJqRBOgYhIBKavxs5iDpm+Yk125vvr3NRLOekpEM+n8BaSxiGnB/uJ9udYmBgIP4+FwZajzMhvsZ0X8igyOAKjSsikiLEQ+ChsdZgEPjWIpMRYSFBrl2RTCYZPROQb9OEYYK23ohl64ZJpCQtLZNs3jFNKhsRhYr+C0voH3wzt73+DgJTnROZveepwzzyp99kcqiAkNCxqJ3VW5YxcHaUnmUdzVyne3E7l06PkPIcStNVcm1pXC/OVyZHi6QyCfrWL0AIQeeCHMvKHfSti/PlRvNs5cqV1Go1xsbGGB8f58KFC7GR5wxy6VZtlUVR9CqhfRPxcrdEZsq/rl27lsWLFzd/19hOvBlC+/4FfZybnuDbQxcYrZawQIef4t5UF+H4JGeGRl5WQx/imm4iqvGxg9/mhdF+hitFJmpV1uU6SUoXqw0eAqMk0pHIQFKLQqQQ9KazDE5PY6wlrVzaXFjT08M+PcVAcQIrbKwrb+ueaaae97j1f84gtIW0CBVPbp9hmH/7wpf5mXX3sC5/WS7F8RwWrurh6HMnae3Ok0rHddjUeAHHq1IVZQoFwblz5wjDkFybxyTP0d/9t1R0CiUiHBHiCkWC2DzXFxqwBIBjLSplSLh5pFvBSaSwbsSi9cdZeccQHV0Xaeup0t5dxZWS4lgGx/XYsHUQJ3WCZw8uuupnfO5wP4e+fZxaucai1b0kMj7/73ceoVqukWuPJ7Gf+8o+ysUq3St7Zn2f+AkXx3XoXtLGxFiJ6fESypHUKiEL+zrZ+lDsF9OYsm88v+/79Pb20tvbi7W2abA9MDDAsWPHSKVSTfxpaWm5JYOODUL7e5EH+q4gtOHmE57R0VH27dtHb28va9euveKCuNVmk+Pj40xPT7N+/XoWL148ryTq8NQQnzu3HyUEy9LxF/5YYYqpqMJYUKLDjy/ARekc5wsTTAdVMqkWyjqgPZnk3629l3X5TmpRCJUqBw4cIN2aZ0+iwv87tYuqjpCAL10KukrVBjhSERiNoxTWCiIRoFIRUpr6UJJAWI0VAtfVOE5ErAhgsVbgKg1uibPVAkJo7PssEwfKrHCGsSuLkKzhmIgO12Uqf5IWv4ArI8ASojDWo+4TGXf4raWGIGnBKkNUckhmQ7ykwfUd2js9Jrqy9C7v4sKxAaSUJDI+5akyKmFJJCGqxcdq7cwycnEcqSTD/RMYbXjg3Vt4xwfvn5fxWiNOH7zIZ3/3UcYGp2h8rItWdvOun3yQ0UuTpPOziedk2mdieJqJ4Wne/eOv4xt/v5+nH30BrQ2rNi7k3jdvZOnqmGzs7u6mu7sbay3FYpHx8XGGh4c5ceIEyWSymXi1tra+LGmAYrH4qnbbTcbNYIUxhmPHjtHf38/mzZvp6pqt13er8ScMQyYnJzHGsGPHjnl/aY1Ui/zmgSc5OT2GIySlsMqQLeOGPh2JuKPb7qe4KKcoBFWKjs/S9i6CapkV+VZub1uALx1W5Fq5vaWdS8dPonJtqKU9/Mbxb3N4chhjLTp2XKvr9hMbj1iQCKxnUEnTvMewYIxAyHhDRMk6oY1AUGNCXeD/nB9GCYNdbRA/LrD/b4CO9SmCtRPUWgq0SuhcphlzvkI2M4ZkEiEsGkllJgbZGjXhkLCxhJOwJi7iih6ZNk2+ZRGXzggEGi/p4XjQs7SEl4pwfbht6xBr7z5NrSo5fWQh/YNrkQIWremld3U7i9a2zYnMHhuY5OC3j1OertK7vJP121dy9vAlvvaXu1COomdZBxaYHC7w6KefZdWWZVxNTlRHmkwuQSaf5Pvefw/tyyVtLe2sWrscb4a7diaTIZPJsGTJErTWTExMMD4+zsmTJ6lWq+Tz+WZilclkbpoceLWhdvNxsw21hvGa67rs3LnzisJcSvmyMciRsmkOOTERN83T6TSbN2+edxJureWJgRN8uf8II9USo9NTFCPNlpbYdCnjeSSUSyms0V8YZ1NLL3nfY/fwANZa+ovTJJTiLctW8ubFK+g/ex4/CFi+fi2/f+p5vjF0ltBqHCkJG2oi0iLrkiNIW5+UbuQ5xNsjCKSjUY5BinhKEjT7C2f4reN/R8kWiWxA6keSlP7PBHJggnRbilL7JJXuSZZt6KF3Z47SWD9T2acJTD9CBiAEGqeOcXUOS4SExN4hEeAIi0wYlOvRvcxn8IRm0boJcp3nkUJw10Mn6VhQQiBZuLBCMi2wxmKMw4VzBQZHf4A3/uhDPPPst1l0Fc3YWl3XP5GJtUD3PHmYL/2fJ5kancZaSyqb5K43bGTfs6fJ5lNk8nFzM5VJQHe8NZJpzzLSP0nPsjaklEShZmqkyG33rCRf9wbItSXJtPhX6EY2DLTb29tZtWoVlUqlObl07ty55vRXA4M8z7viPcw1XsWgm4+bJZP6+/s5fPgwfX199PX1XbmW/TLyICkEd3ct4u6uePrRWsv+/fupVqvccccd827oN0Jbw/GpEQphlSeqw4wbwcqW+Ht3sFSiokNOF0bpE2kW59u4UCwQGk2gI/J+gpqO6ElmWJVrp9cKustVNm/axMfP7eVr/ScJjYl1+iVgbH24qv5PJ0K4FiEbX+rx/SwdjVQgpYm1bynyVxf2srVjIa6rGQkKJDe4LNjUy8U9F8l35XFcxeTIJK1r09z/wR0k/AS1ao1x9QST5W9gnUmksoBCW1WvxQSKGiENEsASxQt0+G2KyNGUojOIfIXb3vg8qdweUokipmpIZTTZXEh5KsVYfxttPQnuWTeBSp3mzMh2wqnZE/5hLeQ7X93H3icPUSsHrL67j0Vrevmbjz1GrRrS2p3DGsvgmWEuHh9AJrwrPD+SaR/XUfSs7+Lc0YGmTJWf9Hjd2++ge0lcT1+PsPR9nwULFrBgwQKMMU1yqb+/nyNHjpDJZJr483K2aEulEsaYVyVHbjJuJg+KooiDBw8yOTnJ1q1brzj3L8cjyVOKD667m/sW9HFmegJfOaxOt3D0xT2Ewtx0Q39mVE3E56YvMBEKWrwkodHUTMTxwgi92iPtuJSsRggwwrA0n+fkxHjcJMOyvrOTDek82clpNm9eye9fOsSp0bF4CrveMLPagpLxHKOy4JpYWrYuh4QFoSzCiesvrSx7py7wC7u/wp/e8x5a6hJzBss979zK+cP9XDoxSLY9NqAvF8rccd8m3vZDb+HFF18gk8kwMt7P4fJfYdNnEW4REITWwbESZA2Eh7IValbGPJQElERLQZEiJrKIVIHMCsnWxV8jnQswgUN5xCedC7FI8gmHbG4TSlmkPUtn7iBCvGbW+f3G557jq596inKhClikkmhjUb7LolWXyetk2ufYi2cpjEzT3tPSfLzRsTTvzjdvwk8lOPz8GSqlGn0bFnDna9fQ0hnnO43h2athhxCCXC5HLpdj+fLlhGHIxMQEY2NjHDlypLlF28Cgm90y01oTBMH35GDRdxWhPZ9EylrL6dOnOX36NOvXr7/mRMatNBg4cuQIg4ODJJNJlixZMqfHTQRlDk0OALB/fJByFNA3w9CtXfkUTYXzpQnavTTGGC6MjdCpXN699k6yiRQpx+XOjgV0JdNorZkaGeHIkSO0L1nIXxVP8sy5c5SiAIEglAZPKhyhCK0m5TjoMJYyUVKQSBusvHyeLQJrYl1J14nwVFzMCREDocTgSY2rApSwCEfD3TCgQ3pUES8RkfAipJxmWkZUjUPCpkmIAE+GuEBgFdK4SGFQQuFhCLC40oJjsErQvjhBR2eeXNc0C9dkSCTLbHmwHx2OUprOkPQqbH/9FOl8wPSEw77n+zh2eBO6O0/fpsWsvGMpk7VB3vSDO29IZg+eHWH3E4cZvTRBx4JW7nxwPe29rXzhfz/J+OAUPUvakUoSBRHnjw3y+F99h0TaozhVmXWcKIxN4dK5BNmWFG/6wa04HdPcvWUrrR25q5JCQgiy2SzZbJalS5cSRVGTXDp+/DhBEDTJpfb2+etOvuquffMx3y2RWq3G3r17iaKInTt3XvULqLEhYu2V2lvzjWKxyJ49ewBYuHDhTX3OX+0/yonCKEvSrThSUqlVGa2UGKpN05vMk3eTKGPJGAilg0omGK6W6UqmefeKjdzTs6Q5bXfgwAHa2tqY6krxGwcfYyQoYYQhqXxMGGKwSAeiCBACKWKjNZWKEI5uDgYYE2tqK2lxnAhH2joGxb93lSawRXxpwImwayzD/wGi6hi5TJlEWuN5Ef3qW7hETGqDZ9KkpMITIY4woJ1YSgAXQ6yp6wmDQSGVxc1ZpCdw1TDL7gp4e/clEolj5PPTKFlASksmq3GFQ1jxsNZw+85JTh4JmQ5/jAfes53zF85TqczGCB1p+k8OYSLNgpU9eAmX/d84xl9/7BEKY7Eun5SC5bctorW3jaAasqAvnq4VQFtPnkunhzFBRDLlMT5UoLVOFk2NlXA9hw3b+prPl0g7dC1snUVmvzSUUnR0dNDR0QHQ1OZsrOYqpWaRS/PRnWxIHn2vrbq93GhMRxpj5jVF1DBeW7hwIWvWrLnq42523f9qceHCBY4ePYqUkr6+vpsq+h+5dIw/OvEcFsg6PmWjmbY1zpXH6ct04EuHFulQMGVqjqKqJIVykeX5Fh5auJIl6TydfpKlyQwHDxygXSmW3nE7v3rwSZ4bu9D0ntUixhirZVy4Ndb6HYvy46JNiLociRJYC45jcByDEAYVc9wIDLunj5FxQRNCp0b9gsA8W6WaGUKuqpBp10wnJvlGtB+3JSShIxLSxbcpErKGIyIMAmnjJpvVEEiFZw2u0DgSnBRoUaNkLuKvsLzxJ32UOkw6G2LKHuVRh67FFaQQjJ7voFbO070kwbYVU5AqYVwHY8yse29icIrH/u83OPDNoxhtWb5pMXc8tIG/+99PUq0EdC/tQEhBYbTI0597HusoepbPJsQTKY/J0WnufmAdu795nEunR+PnEIJFK7t4w3u3Nv92rtduMplk4cKFLFy4EGMMhUKBsbExLly40JQGaGBQLpeb13VWLpdfberfZMyXTJpZF91xxx3N75SXxq3alG14lBQKBTzPu2ky+0Jpko8f+Rani2NUopABW6DNpmPVDyFo8RIUixWMELj5NL1+hpIOmQpqeELR6vt83/LVvHHxCo4fPcr09DSrttzJb5/YxZODpwmFRtSHpIWRGBmbxQshQRiEr+NtkDqhbS0YIZDKopRBSYuq/y4k5DdOfoGOpEPVVIhsiP8jDku2dqH/pkTQPk36h6r4fYbHE3+GMVXSOUXCncIX4ODXjbUjBBajPbQIiGQCn4iqsKj6lKQUFkUNT2uk6EekJfmFSXK5MkJAcTSF6xgsklRrRKa1hUx2EdgSgsN48ixCXK5vtTZ89je/xO6vHUAIgXQUZw9ejCk012HJ2gVNvOpZ1smpfech0OjIoJzL93y1HLBkbQ/v+7k3cnDX6aak5No7l9K34fIxtNZzwgopJfl8nnw+T19fH0EQNMmlmVu0jRxoPlu0xWIReNUY+2ZjvpxNoy5KJBLs3Lnzqs3QhvHrzXJBQghWt3SwuqWDiYkJ9ry4B8/zXpZshLWWQ5ND7Ju4xP7hfs7qIhtSi/CUw3RQY7JaoRwFFD2PVdkujk2OMlmrUJURVSL6WlrZ3rWQOzp7SU2XKAwOse6uu/j1U99h70R/XbYxbtYb4s0qa2zctVIW6cQrsEIQa/xb4g0RZVHSQF2OaCAa47cOfo2t3Z08XzhFWVfpac2z6T9tYfzz/QycGiaZS7Dm/QtI3F3jL4c+QTlboDvdhZccpxSOIJAI7SKFxUETCYk1EKAJhMQVmrKwKGPwhEZZgyQigY0HLNM+yrEYLbFKk+muoRwP6SYRlBGqDCKLtS651LlZOdDQuVEe+eOnscayYGUXQgiCWsjhZ0/S0tMy62+9hFuXbgsojBfJtqbRkWGkf5y2rhzrt64g15bmjteuvupn2ri+5lL/uK5LV1cXXV1dze368fFxRkZGOHHiRHOLtr29nZaWljk3Yl6d0H6FoyE5MlfttjAMOXDgANPT02zbtu26qz23IpFqEFdaa9atW8epU6fm9LhHLh3hs2d3MxnEJEdFhzF5MyPS0qFFJYis5uTUKKVymazj8mMbtvP9K25r3hgNU4PTp09z7tw5Vq9fyx+P7ueFiXOAxpMOrpAUTJWKrZJ2UxRCE5uWCEWHn2ZZLsvB2slYP7IeWgsM8RSlpzSuY+IJSWxzEy7WOdIoEU9POkIjPcsUCbpUCUcaEjJECkNKBDhSo4h1sEVdcMAg4klJIgJhcIjXet2sIZKgksOM2UFe+8MpapXDZHMGEbjUSoZUJiKZNFQnckxP+LR1B7zpPcfpfSGNk/uX7Hzr7UgpeOqpp1AzyOyp0WmOv3Aaoy0rb19K+8JWjj1/ms/8xpeYGp1GKonRhl1f3strv38rwxfHaV/Q0iTEHc8h357h9MGL3P3wJr719/spTpVJ55JEgWa4f4Lepe2sum1x8zNyPUW2Ze4ktOM4dHZ20tnZ2TQTaazFNXQnG4Vda2vrdcmlBih+L3bmXk7cjDxIw3itra2NjRs3XnOqfuaq28uZvG8QV4sXLyaKojlfX6HRfGfsXL2pJvjG4BmSysWpJ/2OVLTiMmoi+stTWBUxWphE+S7vXbyRNy9ag7GWvlwbXn3Sc3BwkCNHjtDX18dxv8b/Pvo0w0ERJSRGGMpUcZVDLbIYYXClQ2QsvnJY2prmTFhPtrCxrFFdL1tJg6sMSlgcaZDNYk9grUGKCFdGSKGRrqWWgaL06fSqJJRBCo0vQpTQJGSAEDEx7ojYK0DWpwO0NdSEg7KGpAiR0uKiSdiIkj5HernLglSCfHs/UgimLrbhqRq59ipB1WVytJVEKk9bl8u9S6cwqQxGqSuaFqf2nuMLH3uEgdMjWGto723lvh/YweN/uYtSoUL38k6kFATVkJN7zpM5N35VjUgpJa7v8NB77uapL+zm0plRsJDM+LzmX9zOuruWNf/2ZlYqU6kUqVSKRYsWYYxhamqKsbExzp0715QGmEkuXe/ae1Vy5OZjpjHtjT7DmcZrGzZsYMGCBdf821vR1J9JXG3ZsoV9+/ZdYWI0l6jpiL87fwiJoDcV520dboJpHTBULdDr56hOl8gZQXsyTYefQQrBpvZu3rBoFVvae4BY3mD3iy/GhMPyRfzSgcfYM9mPFrH5tTISrS1CCoQFrQEBSeWQSlumRaXZMLPETTVrG2SSwVFxDtTAoNBqjLW4KkSgkU5E6X6oCUuX6+I4EQkZgAhwRYiSGis0UmgiBC4ghSGyCoMgROGbiLBevCVFiMTiWEgSooXAa5OoagAY8GuohINEgpB0Lq+S8Dbguh7CDGL1Nwicd87CoMp0lT/+xb/i7MGLZPIppJLsf/oI+54+AkqxdP3C5t/mO7OUChWqpSrlQoVE6jIpUCpUSKZ9Nt+7irseXM+RF84yPVmmozfPuruWkUxf3ggwxsx7Ak5KSUtLCy0tLaxYsYIgCJoSbQcOHJi37mSxWHxVQ/smYr7GtNVqlT179mCtZceOHdc957cCgxrEVTKZ5LbbbmPfvn03dZzAaD56+BscL4zQncjS5iUZKE0xEZW5VJmk20mTrIWkpEsJzVClxHQQ0p5I8RMbtnF3xwLSjoM0ln179yKlZOvWrfzPo9/km6On6/d9nLcgY2FagYyJJA1JzyH0avHWSH1DJJYbscg69ihpUBKEiCcDJ8IQ3wErI6QIqaI5tX6Clk0JWpwI3zcgCmgCHFUhQCNtiMXgY5FSYKyDxBIJRWQVCRMQCgefEFcYQitJEmIEaKtIAQgPvy1CGkVQkaTaqviOh++lgQApCvWzmgI7gpKjCHG5qXHihdPse+owuY4sqexl3dkju06SzM328RBCkEj7WCEYPDdKe28e5SimRos4ruTuhzaQyiTY+tD65or/S+Nm8h+g2RyZuUU7NjbG0NAQx48fb27RNsil6+XyhUIhloe6RVKS3ysxU/pxrhg0NDTEgQMHWLx4MatWrbrmZy+EuCVcUKOhv3r1aqrV6k1LxBlr+aMTz/FI/zGqOmQyqFAUNS5UJliebidpQBiLkJKK0KRch85UCl8pNrf2sDrfwY6eRazOt3H48GEKhQJ33rWF3z/1PM+Mno05HhVLiEij0MZiMIDEEYBvwdGzciBrQYg63+PUhxqJ8eeZ6cOcDV2UExES0l+7wD4PFr6/nTfmdhK5Qxyt7CUIC2iKCD+gZA+jynEtpoRB4COFi8SQkjUiFC4RmogQhwQBjhBoK0kRIISiai1pkUBKg0gGODaJsBLpVJHIemZVxtqY0AZNpL1ZuHLsO6coTZVZsKKr+XPPd/F8l8JIYVbOpLUhlU2w4valjAwWuHR6BCkF7QtaePsH7yPXdv3apoE/8x3oEUJcc4v2xIkTVKtVWlpamhh0vaGhmRra32vxXUFoQwxipVLphn/XMF5LpVLs2LHjhquJLzeRmpqaYs+ePbS2trJx40ampqbmBIqHJgf4v6e/g7GWRal4/eVUcYzxsMR4rUSbH19s1kLadXigo49ocJL23sW8fsMdLM60NI/V0Ik9fPgwk5OT9G1ezyf6d/Gt0dMYG6+cRMLiiTRJ6VIxIRUToIQg5yfZ3NLLT6zfzsdOPgphFPuwCYsxgub3sgBHWZTUuNLgyBmkt5Vg4595MkKK+lSRMExbBx1alBuRkiGO1GAtvoqnAVwRd9zA4godywYQTyOApSYkwhoQAZEViFSKjDuOmwoI8Cn2t9PSNhZrbfsBiHZyHW1kWyq8/p1TRKkVIOQVnbFn/243X/rE15ieKMXnOJ/kvvdu58CzJ5meKNFbF/y31jJ0boxvfP47RKHGeQmhpBxJUAu583WrCaohB549xdRYCaUkC5d38q5/c19zGrLxGm52VU0I0SSXFi9eHE/j18mlM2fOXEEuvVR3slqtorV+dTrpJmMuxZy1lvPnz3P8+PFZxmvXOybE18bNENozN1E2btxIb28vR48enRMGhUbz0aNfZ9fIGUITJyaj1RIJ6dGdzCLrUwtt0iNwFVEQ0B8GtGVz3LOgjx9ZdQcZ18dai7WWKIo4e/Ys586dY+PGjYz6mv+17zEmwzJSaVzhY61LzYQYqUkqj6qJQMDKXDs/s2EHf37x2zjTdcFaQGExFmwk46kkYfEcjRTxpogSsQdAYAQ5IpTQOHWMkhikNExGkqrx6HCDuvN4PGkk65hjsCRFhMTUJ7BAEE9KVq1DipBQCBTgojBCkW6XCCuJtMXLFUkrhTUuibRg8VqPRGoBAhDmLNYcArV5VmI0dmmC//vLn2diaIrWnjxSCkYujvGX//3vsFKyaO0CpKwnVwmXVC7J9HgRlfQx+rJOrY4MRhsWrerm3rduZu2dSzl1qB9rLMvW9dK9uG3W9XezBV0jpJS0trY2NZgbpiZjY2NcvHgRuKxL2d7efoW8xasNtZuPmVhxvcbltYzXrnfcl5MDzWzo79y5k2QyOS8Zk0vlKb548QAvjJ0nsob+UoFFycsa3znHJyddCjrk+NgAGelhEy4bMu38p83305XMxL5p9ab+6Ogohw4doq+vj55FC/nF/V/lUGEAgcURktBqhLJIGxdyQliUVCzwc3xgzR18/OwTSGORdbLI2ngU21qBUjGh5DRJ7RhnLRCaCFdFeCqWVPNkhCstU9ZQjSRZFCkhcZx4AyQpGzlQnCtZBFLo+vgABNbBIQIhCaxDUkRESEIUHmlwKrgZEEEK5dTIdhm8hA8iAdRQTgXwsMIDW8ba+Lurcf/vf/oI549contJB05dczbTmub4i2cQ6sqiy0u6eAmXWjVgbHCKdC5BtRRQKlTY9vAmOhfGn9mON2685mf9cvEHYnKpp6eHnp6ea+pOzjTYfun36qsT2jcfc53QHh8fZ+/evXR2drJ+/fob5jYvF4NGRkbYt28fixcvZvXq1RSLxXmTU1UdcrY4zvHCCKenR1mQzOGr+L7ICo8pGzJQnkTpGvl0hsj6WOC+7j46Emnu6ljAylwbxhiKxSL79u2jra2NdevW8Yenn+NLA4cI0LFOv4xzGmklVllsFOcGfblWti3s4fOXXqwTRvWmPSCsiPMWaXCVjbdE5GWcmgwteTdAqEaNpqmKKmPGUKhZkhLyLjjY+PfCIOq1mLUCIyzxjlqERhKhkEQE1sWjihEylgPAwYiACIVPEiMLoARpL4ulhBQKIUwdN4P62Y2xKNL5Wbhy5sAFwiBqktnxtSBJpH3Kk+VZOZMx8b/f8y/uZOjSJANnRtFak2vL8Lp33MnGHStv+BnfCvyZuUW7bNmyWVu0x44dIwiCWeTSS7doi8XiP5jp9vdCzAUrrLUcP36cCxcusHHjRnp6em7Jca8VL23ot7W1cfLkyZs20H1h7AJf6T9CUnl0JTK4SIpBjeHaNE6gSWvFipYOThbHCbXhXHGKVi/Jv1pzJ29YuAKI88AXX3yx2VD76uAJHhk8ipYRUoDRcX1npUbY+J5wpeTeBUvYNX2K0MZYI+pykPH9DE5d8jFuqtWNjIDxqEpGRrhC4ymNFYbR6CKfnbyIIwwtjsRXNRJK4ssIrMFVEULYehYV63gjBFXjkZZVQuHgorFYAuviUsMIQWiTOMLBUCSyFk94GMogDUr4WAKMAEWNWEDJBVsAIRkrrCS/4PK9F4WXt4FnRqY1zeRwganRafLtWaJIM3JxnI4FLfzIf3475ekqF08N4Sc8VmxaRCJ9Y439W4E/MLct2pkG2zPrhYYp7bW2pf45x3cNoT0XsBkYGODgwYNXGK+93ONeKxpGbytXrmTZsmWz1oJvFN8eOUM5CliavmyOsTzTzlRQ4XRplKi+GjpsqywSOZaM1Ni2adsVLrnGGCqVSnMaYdu2bXzi7Dc5WhhEInGkQCIo6iplU8KXKRwUrlT0+Hl+cs127u1ZxnRY4VR5AE+ZJkAhITL12UUrUdLgqZh0bkxJNqa0q1qR8WqAxZcRSlgk8WS2IyxF42OsQABZVUVi0VAHq3g60m0Uddj6/+M58ACBaxXWOuBO4jqWsOqi3JB0WwUvoRDSI9du6ejuxnFSYJMIO4o2/ViVb06LCSE4f6SfL3zsEcIgomtJrMs5NTrNl//gSZCKrqUdzWtHCEFrV47J0Wm8TJKpsSKtXfHkWGx0UGLB8g56lnTwrn9zPzvffBtD58dJZnxWbFzYNCdpfFZw84T2S6Ox+t/WFl9D1Wq1SS6dP3/+Ct3JRkNovqsm4+Pj/NRP/RRf+tKXkFLyrne9i4997GPXPU61WuXnf/7n+exnP0utVuPhhx/mE5/4RHMFdN++ffzmb/4m3/rWtxgdHWXZsmV8+MMf5md+5meax/j617/O/ffff8WxBwYG5pSg3MpobIlcDyu01hw6dIixsbErjNeuFY1r4WYwaKYu3MxNFCklYRje8PHfGD7FsyNnaPVSpJy48WeMZag6zUhtmu5EfLyy1eSN4vtSi7hz/SYW5NvoSsaffYNEiqKIo0ePMjk5yd13383JaJL/cfgxRoMCSkgQmpqt4DsJbKgIrMbYiLTj8S8Wrucn1m3DU4pfOT6IkhpVxyBjQRsJysQGS8qghMFVdVK6TkwjIbASX4R40gCGhArrK7LxY4rap2qdmDCyloyKz5FAoERsfOTUN0+AOkZJwEdgCKxGGg9sBKpEQrigFU7ekFIJXKWxxJPis795ZPNcNXBlzxOHmBicpLuvs3kNdC5p58z+C2htm2R2I5SrSGZ8WnpbGTgzQqY1DdZSnCyzoK+TO1+3FoCOBS1Nw9yrxa1KqBrxUlOThjTApUuXOHr0KJlMZha5VCwWb2rV7XsdgxorsVLK6zbVGsZrmUzmCuO1a8XL0dB+aUO/QVzNddppuDrNrx14lAvlCdKOR2g0U2GZ0Gg2ugtxhEQJQYeTIAoMrV6StmyeLR0LecvitSxI55oYpLXm/PnznD17lo0bN9LW0cHvH3+K70zUt86UxcVFRyKWWFMWrMARis1tC/mVLQ9QNQHh2aA5gQ1gRXw/6kgisShhcOr448r4nwDaxtmQEDGZHW9+WBIyRAlLYARIB61T8QSSECghcOuNtDptXs+B4rV9g4tCE+KQtCmgTIhGRhFCGbQ0pBIKi48UDhKBIaofLa5EhS2g1XZsPKrQxKBLp4awxjbJ7MbvkhmfwniZKIxw3LqCrrXUygH3vP1O2ha28Z1HD1KaquAlPF73zi28/ge2z+l6udX4M1fdyZkG2zezJfK9jj+NuFG9NNN4bc2aNXP2EbrZOmxmQ3/mJsp8py0fHzjGZ8/tZqxWohyFFIIabX4Kv14CdyiPSqQpRgFTXpKyqdHiJfnQ2q3c2720iUHW2lkNtaVLl/LtkTN84eI+DBG+UFRtfH9Kx2CjWMrIlZItbYv4ja2v53+d+CZSmvr/G+8TtJYgLI6MyWzXifMkUW/sIyxVK8kQN/Vj7ImQ0qJsLBFQ1IKySJK2NTSQlkE8kICIjeEAayVCGCLrkBAhBokWCRQhERJjXJABoY1w0CAF8WJx3XeJLNgSsbVtBmwRYUcw6jYq4VKEuPz9pVwV6/e+ZHstlfGJgoihs6O01DW0J4amaOvNc/97t9HalePiqWHCWkjvsk5S2bnJOtxq/IG5bdHOJJemp6dvitB+FYPiUEpdlygOgoB9+/ZRrVbZvn37nPPNm8Wgl0pLNibv54tB2hr2T1zi5PQo3x4+QyUK6U3Gw44tXgIPRRBFTIoaC9sXMRVWWZTO86ZFq7mttZfVuTbybkyqNnxT2traWL9+PSeKo3z8xDep2KApIyKFwWgZ3/cSHKt417INvHvlWnY9cxxVz4FE/XYxJvZNs4KYzFbxhr1bl6EFqBrw3Phx3gweyBERFWupRZaasVSkjy9CHBE37JWIPZMaNZhG1jHJElmFKwwGiSWDoEJowQ0twoll3oxwiOlKjaVKbKXdAQwg8VB2EkQSox5gZHIZK2bce323LcZLeZQmy3FdRayJLaVgzbYVhKHh0pkRlJJ0L+ngXf/2YTItKTItKbrmYG47M/4h8Aeu3KJtGGzP3KJtYFAURTclOfLPAX/+SRDaNzJeu17cTDFnjOH48eNcvHiR22+/nc7Oyw6v1wIxay1nS2McmIqn2M4UR2OiZ0Y4QtKZyJB3U6Skj7aGO2UrW0wr99+1vUlcNo5nrWVqaop9+/aRz+dZv349T44d5dHh/UQ2QioItSCpEqSsT5WQ0IQ4QvFg90o+tGobi9IxYO6ZPEdENQaW+vS1NgJHxqTytvwKjlQPowT1SWwLwqCor8UhiIwkqeLiDWtIObHMiLCWpIzJpbL1ibQisA4JGZBRtWYBJ4gBTQqHuLOfrGvaFrHCrXfkqighUcrH2ArJtnjNBREbKonm5HgNK1wQl4k3iAugPU8colSoNKewAVq6ckyPl6jVqiBe0rkS8dTAHfetZffXjzF4bhQ/6VEp1UhmfB58z9amScmCZR0sWHb1zldDv/IfqjOfSCRmmZrM1J388pe/zMc+9jEAnn/+ee699945a9/+0A/9EAMDA3zta18jDEPe//7386EPfYi/+Iu/uOZjfvZnf5Yvf/nLfO5znyOfz/ORj3yEd77znXz7298G4MUXX6Srq4tPf/rTLF68mGeeeYYPfehDKKX4yEc+MutYx44dmyUbNJ/7+1bG9Sa0y+Uye/bswXGceZmANEiq+WLQzOd7qS7cXBOp58fOY6xtktkAi9MtTARl+iuTVKKISEdEGF6b6uWHd75+1vNYazHGUK3GBrQAW7duRbkuf7bvEQpRGSXAlQppJBUbULNVpPRwjKQ7lePHV23jbUtik8RDU5filfzGPWwtUgiU1ISRYmGijUk7gCNjgtqRBlfWV9+sxQKNs+hJ3Zy0Tqkwlhex8TZIYF0iG2NQWtVIyBBtRfz39VtT4NVbayEIH0GApYKjGl+JMZFu6oVkGKVQcjzGIVHv1NspEAmM3NQ8XzMntKl/9o0QQpDKJpgaL1GcLJNtTTcfNz1eZMOOVbztww/w9b95gWMvnkMg2PbwJu5/993k2ueWnPxDJVSN1z9TdzIMw2aD7dChQ/zJn/wJu3btoqenh9OnT9PX13fjg9bjVQyK43pNtRsZr10rblZD+2oN/UZIKeckOfLYpaNcKE+wKNXSzIfKUchItchgZYpFqVYqYcB4UOGO1l5+7953ocTl6eGGpnijoTYxMcHdd99NNpvlL889z2NDhzHW4AqFtiERAb5yCbUksgZfebxz8SZ+cv120o7H14ePI6TGFRopL8uqxU212PxSyVj+w1O6vgUSb5oJEVM4jrE4Kp46Squo3nQzTRwSNp6EnDJplNBEVpFUQTypjY6/E3DRGAQpBFUsEUI4gIqLSNdF2xBrJNqW67IoOSJXIcUIkhTCBgjOYUUL2nnLrBwIIJWLC++XkkmO65DvyDJ4dpRsSxrpSApjRVq6cux46x0sXNnNzrfcztToNNnW1KzpyhvFPyT+wLV1J0dHRzl27Bj/7t/9OwYGBti7dy+ve93r5jyp/Sr+XG7qXysHajTYG/dgS0vLnI99M+v+12rozzzeXLxJXhy7wCdPfJvIaFq9FEoIRmsljheH2JiLm2quFeSEIp9p4f7eNbT7KbZ3LWFZpqVJZDe2886cOcPGjRvp6upisFrgd48/zrQuIqTFEOFJSRDF/kRCWhyruL97Bb9+10MkHJeyruI4MTXc8AqJ1/0t2iiktPUcKJ6g9OoTk8LGEkiRFbgWEvWmm7AGv45DShiSMkQIQc24CIinrkWELyNcESGQSAwIicADNIJEfRtFo2S8peYIDTbCWomJJFoVAAdkDiNCpJA4QgAltNpC5P5rrC3Muv/XblvJk595hqmRafKd8UZprRIb5d7/gzsZuTTJaP8EQsCyDYt464fuo723BYAlq+dPpv5D48/Vtmgb5NKZM2f4oz/6I/7yL/+SIAh44YUX2LJly5xfz/c6Bs2UHLlWDtRosOfzeXbs2DEveaubqcMaz9fS0sJdd901axNlrjkQQDkK+N0jT/HC2HlCa5gMKtS0piVI0ualURY6hccgNWoKLpSnyLk+7+nbxA/0bcbO8FYZGRnh4MGDLF++nGXLlgHwv058i6Iu4yqDMYLQ1GtPZTFRzPO8c/EG/tPtr+F8eRLlxJKPSs3AZBVzQraOMwKD1/QTaQw4WqpGkFJ1jf/6Boisy8smZDyR3fAxKZkEjojzLVdqJBpVb61pqxBoEF59cjtCCBeoxfWf62BwEGiMKYJxMNJBqiquSCCFD/JOpNqKlu0YuRYj1mJ5etY9t3TDIu5+02ae/eJupifLOK4iqIR0L+vgX//WD6AcRf+pIdKZCivWDeO4BzAmwIq+ywXjHOMfGn+A5iBjgy+s1WrNBtuFCxf4nd/5HQ4dOoQQgoGBAXp7e+d03H8O+PNdQWhfL5FqdMfCMGTHjh3znryYbzHX6P7VarWrPp8Q4orjWWv5zLnn+PKl/ZR1PBUY6IhaZOk1OVT9Ajd18HvLwnW8Y8FG9uzdy5QzyZo1a64gs7XWTeBaunQpfX19fGP0GH9y7pvUbICDjIkeGVHRBmU9BNDiJ3lLz0Z+YvXO2atf5SFUXX+2sebmypiklsLhJ1bdx2+dHGAkHMCTl8GpMRkQv6565oWNCSVi/be0ioltWwc3V8QTR9pKdKRIypCktDh2Gk/Ei/0QIoSqfyFIJLresXPjrqGKkDikcj2gxxCMosMEE4UKvlcl5U9ina1YcVm/uvH5FCdjA5OXJrqJtIc2hsnhabqWtDUlR+L/buedP/EgKzcv4fnHDzM+OMXKzYvZ+ebNrL5z6ZyunX8MMGvES3Unly9fTn9/P7/3e7/H+973vqa+4Y1IpSNHjvDII4/w/PPPc9dddwHw8Y9/nDe/+c389m//9lW1WaempvijP/oj/uIv/oIHHngAgD/5kz9h3bp17Nq1i+3bt/Ov/tW/mvWYvr4+nn32Wf7mb/7mCiDr6uqaV3H0DxXXaqo11l2vZ7x2o+POB4PGxsbYu3cvvb29rF279ornu1ZxGBnN08PHeWb0FFUTMlCers/UXA5HKtr9FMszHSxSOcYGh1jmtPHBe982KzlsYFChUGD//v3k83k2bNgAUvCHp7/OvukzQGzqGpgQXyVJC5+qCUFYlqZb+bXb3sS6lstfSufKIwipcTAoWXfstjEGCUfyEytey++c+TyyPvEYE9/xyr6rLjfEIgspUV/rr6+0Nf5ditj3261PgdesR2gUYX0ayReChCiTEE5d3R+wGiMsLg5Qi/0EZBuCaZSsImnFRu1oM4kkIgqmQZ1AKh+8N2Pl+uY5a3xWrT35eDLJxDq+jd9bC0vWLqA8VaYyXcH1XSrFKrm2DA/8wHZ6lnbwvp99I0E1/h65nrnj1eIfE4Nc152lO5lOpzl16hSXLl1i7dq1vOlNb+KLX/ziDY/zKgZdjqs11YwxHD16lIGBgSsa7HM95nyN3q7V0G/EjYrDYlSjEgXsm+jHk86s5v6SdCuFsMpYrUSpUkOHIUsTOf79ltfjyLhgbBBIDcf2/fv3Y61l27Zt+L7PWLXI317aExMr0uAIBw+HwGi0iEA4ZJTHj6/YyQ/13X650VSbxlG62SSTsmGGZJFCcntuMUcqJ2MNf+JNEacuDXC5qJNEVuDXp7ethYSqb21YW8ekGIccYTBCUq4XdiEKT2oUEkcEWAxhnVaytgpC4ggPQxEpFL7TjbSDYA3KGqo1wLbh0IbxNNLdAv7bQa3H1q+bxnvd9Nq1PP1Xuxi9OE77gtbY/HGsiHIV7/i3r2f44gSHnz2J0YYNO1fx0A/uZOHKeLImkfJILLls7jbXmKsp262Il+pO1mo1fvEXf5EPf/jD/OEf/iG/+qu/yqc//Wne8573XPc4r+LP5WhgxUuJ4mKxyN69e/E8j507d14hNTWX485nPf+lAwQvfb7GNTYXQvuRS4ep6pBFqRYAPJVhslZlIihzvjRGMhBMmxrJRIIPrdvBwwvWNI+ttW4S50ePHmV8fJy77rqLXC6HsZaPH3+K0aCIRCGEJbIahMF3HAINSgke6lzFr9z5erw6tom6jIirZq/CGwTSuFgksi5X1NhGc6XGETRlSrSVda5F4M7Q4k6qsI5D8Qabqq/7N4aSQutiRUPyzVA0Dq6wRKaGFhIfixElsA5SuCDKuMLHE3mwNYgSlAJLqbwFzWtpzbeRzS9CuStACKydmvV5LF7TywM/tJMnPv1tBk4NYbEopVi/YyXv/rk34yZcBs8OkU4corPzBEJ8ARNtRKuddWml+cU/Zv4DNFf/29tjrOzt7eXYsWM8+uijPPTQQ6RSKU6fPn1DPe1XMehyXCtfaehXX63BPtfjzqcOazT0G/X1S59vPk26v71wgGdHztDmx9uyvnA4Wx7nXHkUV0O1WCYhJN3JLA/0rGJrxxJW5zvpSWaaGCSE4Ny5c035yQbh97kLu9k9eQYhTew1pASuFISRjKVkpeC+7j7+w+Z7UVKSdxOx0WK9UTZzE18KidYSAU0C25Uap05eq3qzzQKBkbGsmog3bVN1KTasiXGo0WyTUROfXBkPBkggqjfvwzqe+UiqpgrCISU0oS2BcDDCRxDhO20EUYaJ6V5K44txnQX4qbtobRdkMilcuYjL/YURomgQKdoQcjnv/Jk3snxDDyPn/57WjpO09bTQ3beDXHcLQjh0dx/ADf8QYSchAEsCre4j9H4cxNxp0n9s/IF4i7Yx6GitZWRkhF/+5V9m7969LFq0iJ/+6Z/mox/96HWP8c8Ff74rCG24OojNNF7bsmXLvM1mrnXca8X09DS7d+8mm82yffv2qz5fAxRnJlIvjJ/ji/17cYViQSKeiB4LSkxHU5wsDdHjt8TvJyzTm8yzNbuQ5557jlQqRTabnTVJ20iizp49y5kzZ1i/fj09PT1ERvPFgd1Ya0kqj0BrEspFEMVGSAYywudDK3bwtoUbrwDf8WACR8bGRo01Nm0FjrLkHZ+V2U7et+g1fPLc5xEiiosuEetze8LgyqgOerHWZMOA2qnLAhgr8IWJZUXq0wYJQpQwhFahjSYwmaZEiUeatAxj3VqRw9opEFVc2Y0UEmMvofBiiQDlIkiTcvKkvSJRJJgoLuTAqY14iReaetIQFzmNokxHummyZo0lDDR3PriRi6eGGTg9gus5hEFEpiXFWz7wOlzfZcsD69nywNUNR24UrwSYNaKjo4OHH36YT3/601y8eJF9+/Y1u7fXi2effbbZfW7EQw89hJSS5557jne84x1XPObFF18kDEMeeuih5s/Wrl3LkiVLePbZZ9m+/erryVNTU7MaN424/fbbqdVqbNy4kf/6X/8r99xzzxze8a2Nq0mOWGs5deoUZ86cuaHx2vVirhhkreXcuXOcOHGCdevWXSE/1IirJVLaGj5+4kmeHj7elPiZjqpUI01HmCLtxsVBVYcoIbkn2UvbQIkVa3dy/PjxWddtYypyeHiYQ4cONRtqQgi+NnSQx0cOg7U4QqGEpCpCarYCJm6qrcx28Msb38SK7GxCpKSrMY5IDTZe+Ff1SSQrHe5qX8bri7fz5Piuuoa/Jani9VprQQmD39gusfEamyPiNTlPxLrbpk40OUI31SkTdcO1wCoMGo1HQLxG5+LhUMW1IGWKwE7jInCExJJC4uCLDMqvgbgTKTYT1qYplDSXRhYyOrWE1tYDtLe3E4Zhc3J/y0Ob+NZfP8/Q2VFae3IIKZkcLpDMJvjhX/o+xgameOFrB5meKLL19b1sfeNtLFy9uHmu5ktkz/zsXgkMEkJwxx13cNttt9HZ2ckv//Ivc+HChTk99lUMuvZ0UrVabepX38h47VoxnxzoRg39RlyrmCuEFT599jmeGT1JYDTFMCAyAmsv+z04QtLqJ1ltcyw1SZb0dLPQeCxJxxJOM9f7G1q1jYaaUoqaDvmdE48wFIzH5I00BEQo6ZIUDjUTkXY93t+3nR9advvsXEjGU4xKRnGRJmJC21iBMZKfXPkQv3D4EqGYQgpwBFhiktoRlpm6t8YKsMSTlHXiKCFjstxYQUJGTRwSGHwR1ldsJaIuW1RBx2a1eFgb4GIJcfBRZEUSYx20WIvnLCPhL0Wobiq12xmdmmZ8sMj4eIjnTdHefoyWljxS1qCuWLlgRTfv/Nk38cWPP0ZYO0u2tUo638rOt7+W171nG1JKaqURXP33JN0ngccxwVYi519g5fyaJo14JXMg3/d517vexYc//GEeffRRPM+7rmF8I17Fn8uh6ubGM+ubhvHaokWLWL169U19vvPBoBs19OEyoX2t6y0ymn2TFxkPShwpDODLGbI7wLJsG5XJgGKljHJTtLoJ3ta7njf0rgZmk9lRFLF//36MMWzdurX5Hf+d8TPsnjqDVCFGGBwchFGERmNFhCNc7ulYzi/d/mCTzAZo9RJxg74+Ud1Y5zdW4kjNhuxSDpROomQ8RdnYVLO23tyvE1HGCnRDvsgKHKGb5FKy3mwzNsYkp+5dJDH4IkDUvUtE3W+kSmOsqC7XJKBqFAm5nBZnOWU7jcHF9zaSyT0IJcF06VEGpp7j1KUWhNlJW+sSrN1PJn2IWjWDVBtxnNfy+h95DRt3VIjKf0W25QLSaSPVthonKRFIli/9O5zoUTBBfV3mcbR8isD/BRDz+757uebrLzeWLFnC3XffzalTp3j++ec5ePDgnMwhX8WgOK5mTKu15siRIwwNDXHnnXc2mwfzjfnUYceOHbtuQx/mPvFtreXJoeN4ymluy7b5KSaCMpNhhbPFUVr8DIVKlTvyC/jgmm3k3UTTt6gRR44cacpdNr7XRmtF/vrCbiwaR0giKzE2zkc8ZYmMZF1LF7925+vxGn4Brk/KlVSsiYeGBLF0WV1qJOVmKBtdl0OKsSAeVoyJ7RiHTF3GEUzsP9k0wvVn4FOykQ9BPR9q4JDGq+dD2tqmN1uAQGGpWoERHsp6BDi4IktapDDuNKLlDLmWSVTgYcL/SaF6mkLVgl2EJ36QhQu+RhicIKQKwkOpzXjeR9hy399D9Azxnu954AjU9oP7PtzwkwhbwtJNTLdP4+jHMHo52nnzDT/jRryS+Q/E98/mzZvp6enhAx/4AN///d/P5OTkDR/3zwV/vqsI7cbNa63lwoULHDt2jFWrVrF06dKblnGYK+gMDg5y4MABli9fzooVK675fFebDHhm9CSB1nSmLq83dvgZSlGNvJOsq0hbtncs440tfZzee7A57fn88883p4uttYRh2ASuLVu2kM/HBPmLk2c4VbpIZCOsiHWPqtoQqz4a8p7HexZt5fsW3XbV113SZZS0+CKqF2UAAm0EC/x4nf2Bjtt5bOTbXKyewxUNQimKySUba03GP4fIShxR13hDIITEkyFYkMLBF7W6Tq7AIEgQ4koTa9Za0EJgrMETBmkrlKxPVjokrKKMRrCCtOxGyAjkJlCvRwsX7Dgi2UUuv5G7O8wVhmWHDx9m0eYuepZ3MnBqmExrGiEF02NF2he08o6feZigGvLCYweZHL7E2s1lVt+1nI5li688afOMVxrMGoZsUkruvPPOOT1mcHDwitUOx3Foa2tjcHDwmo/xPO+Kblp3d/c1H/PMM8/wV3/1V3z5y19u/qy3t5dPfvKT3HXXXdRqNT71qU9x33338dxzz8359d/KUEpRrVYBCMOQ/fv3UyqV5mS8dr2YCwbNR5/7amTS/smLfGvkJDknQdqJp5ladYoTxWHOlUdpcbNYLMZalosMucEiW7bcRSaT4fjx480itpFEXbhwgdOnTzcbahDj06NDB7A2IuFIajrCkx5pIamaECUF3V4r//P2t9OVvPJ8WaJ4TQ2Lo+oNMxtjicLgS4cPLn8Dh0onKESDKBGT2Ka+XtvQjQSa09XGEv+dZAYOGbACIRS+qNYVruNH+s1ETKBQWCICK9FCEhiNFK2kZSdYl8BOIkUHWec28u59GFqo6hewyTSpzEbW9d5OuVxhdLSfQuFrBLUxisVYb7O9vZ0f/i/v4Ouf+RwtHQdwvIjC+CI23fd9rLk7NnW59y0ZnPBPUeZJ4G/QtVVE7o9i1NobX1RXiUaj9ZXEoGKxSF9fH5lMhnXr1s3pMa9i0OWYWXQ1jNc6OjqaZO7NxFwniebS0L/eMbU1/PbRx9g9cZ608vCkQlvNdFTlUtVlQSLGtNFqEVsN2ZHv5h13v5aBgQFGRkaA2UTS+Pg4Bw8eZMmSJbMkVp4YOczR4qW6h4jEsZaajdCEWAOuULxnye380LI7r8jjso6Pp0x9msmisFDf5nKkJu26/MzKt/CxM59DUo31suvyR9ZyeXW2nkNFSDxr60u0Aqc+6iSFxBMzcahSrxtj5xBfmvrUpMQhiSNKaASCBBaPyCo0FteEWEYRpkBBlWgRvdT4H3jZ8/RkHZasuIew8k5K0y8SBH/HurUDjI//L7APks78CFvesIRN2ybRtX0IEaLcNG6yHcRrwGpy6reQ4jBYDxDI8K+R+kVqif8GYn76kfDK50BhGBIEAdlsloULF87pMa/iz+Vo3PNRFOG6LidOnODcuXNs2rTpZenpzgWD5trQbxwPuOoxL5TH+Z9HHuVceQxtLNNRDWOg1Us2N0DCWoCv4fsXbuTNq7Zw8fAxlrctaW5tNjCoXC6zb98+crncLAyeCst86szXKZsySqg6aRMglMSzHhGGtS09/MrmN5ByZjenuxOZeNtDNTZgG78xCAsfXP5a/sfJCUbCIRAWV8ZeAAkV4Ugd4wumLrsWN8ik0KiGLxASV1DHnrp3ka3nRiJo4pAUFl/GNZpF4Yk8jhiJG3CiDSVyBAwxEX4bR+SQwqeqT1EKv0JSGRLZGskstHRYjN5NWFpKS/45pAwplyVS/S2OcwdJ7x30LvxErLstUmALYP4YahcQzoM40aNYEiA66+RaDWX24kSPErlXEinXi1cafyDOgVKpFK7rcscdd8zpMa9i0OWY2dSvVCrs2bMHIcQs/eqbibnUYTP1uW+kCHAjTLtQHuepoWNcrExwsTJKUl7eMpECuoRPjYCOdI7eZAstQZKf3fgAeTfRHCqCy7Wo1npWQw3gS5f2MRyOo1SEARwlsFrVJUcMXX6O/37nG0nPkJ10pWJJuo1T5VK9YaabzTOLQFFjS245B4onmlshCppk9uVaLEaO+qIItl6UqQb2EBPkti732MAhiCUj439TKAyeEMR0pCIpcwgGMQhc0YEvslgOUzURnlyKFEmMGcZ1/xTXS6FEF9pYtD6Htr9KW7ulUskiVRbX1WCfJdBn8e0YQrZebpLZIkRPIIkQtoBlwQyJkRzYMk705D8pQhsum0Jms9lZ2yPXi38u+PNdQWjPnI5sEDujo6NNN9mXE0opgiC45u+ttZw8eZKzZ89y2223NcXMrxVXmwwoRjXkVQhwTzpsbO3lJ1bej8VSGBjh+JHjs5K1RgLV0Krdv38/URSxbdu2JnBdrIzxx+cep2Zqsf6ZECihkSrCaA9XOryt9zbeu2TLNV930nHwZPQSAQKLI8FzdPO1/Nu+9/Ffj38cQ4CsTwfYuvt2qq6V1JhQ0qgmGe/Uk7q4qEvgiEp9fTaFtRU8JRE4seyKTuGJAtIJ0NpHijxWGkq2TGSqSCGBEkU7QFa+jbRYQKX2KbQZRMpuUt73kZS34TgF2tqeIJ8/yJIlCY4d7SCVWsLY2Dh3vLuTbeVDdHV9B2MUE6ObWHn3O+hZFndbl688iBt8DcFkfCaqf0nofgDtvO66n//14pWeDiiVSk3H7f/4H/8jv/Vbv3Xdvz9y5Mg/yus6ePAgb3/72/kv/+W/8IY3vKH58zVr1rBmzZrmf+/cuZNTp07x0Y9+lD//8z//R3ltM6OBQQ1iZz7Ga9eLG626NeRhgDnpc18tkTo42U9oNOkZq7m+cuj0MyihWJPpBgtdRct6cuzceTepVKppLtmYiNRac+zYsSb+NhpqAIemL3K0eJaoYXokYyNFrIPFkncT/NyaB69KZgOkHBdHxGR23CGLMSfeBokoRlXa/Cz/v7538xunPoVhGiHAqa+9NewcEzJC1Se4QxxU0yRN4AinnmAJXOnjUgahcEQKbCnWfLRJLBodpEh4E3EyZtN4cilWTBCa0xStjyPbMHaE8dqjVKM9KDuOtWXiw7v4zmvIJN5MV+fvYswAYVjD2gTlyg4OHXoDbbkX+Jf/6QkEFaSUOO4wwk1g7RqkncAL/hvCjGBFPG2h9F6kvUjN/02snBsZMzNutSntzUSlUmlOEb+KQfMPpRRhGHL27FlOnDgxL+O16x3zRnqzQ0ND7N+/f86G21fDtIOT/Ryc7KfNS5NUMWam0j4npocYD6eJDFhjsLWIN7at4F1334dSqinjNtP8sb+/n5MnT7J+/forNACfGjlMZGt4jiY0IUp4pIRH1YQ4juDe9tX8+MqdV30PPYkcjopzmIbxbCOMsVwsD/O6jg0M1Ub5m8GvQcOAzQpcafBVnCtZaE5LQtyUc+sEtRAGR7ggKjG5JBM4lBHCwZEJpC0ihcQaF0uEsRLl6rpqv48nl4I9j7HDaNrx1EIsNYJoD1PRt1EihxQ5IKQafRnf30OHP4m1FcplgeuWsOZzDAwcJutCa/4YbiKPUm0IUYHoS/XJpeVIcxRLZ6xjGb8TpD1bJ5N+4LrXwNXilS7oisUiAOl0+lX8mWc0/D4gzklmEjs3Y/Q7M240Ham15vDhw4yOjs7JcPtahLa2ht89+jVOFUdo9zJ4UuHWigxUC5wqDbE83UWpVGakVmJhto33bthJu59mRDpNEqnxOicmJjhw4ACLFy++Ysjp6ZGjjAQFHBQSgaM8aibCWAMyot3J8isbHybnXpnLrcl14ypinVoLjmg0t+JG/bHSRf77hh/il4/8X0bD4Vg+0Zr61prAlRq/ud4fywBIYdFQ355VQIPM9kBUEagZOOSi8FCiWFcI8EAaMBWkNBgcNCEJmQRbwVoNwseRXVijUXY/kRV4ch1CKKTVaHEeL3cKqVswug1QBEEZ5ewiLB8l7VYRaiFKOPEApJ2G6BuxljdBTGY3QvhgJUo/c1OE9s1sct/KKJfLr+ZALyMaWNHY1Ojp6WHdunUv+3vlRnXY9PT0LMPtG11H1yO0d4+f57ePPspkGDeyS7rKZFgioRwyKkGhME2AoSOV5Zc2P8ymbDdPPPEELW6iWYvBZUI/m83OMuUGGKpO8eWhPWgiHOEQ2giLQSiLikXN+Miae1iavhJL72hdyNnKeVwVm8o2ni+WKKpwT+dyUq5kT+EIEPscAbiSZi0m0SScqDlkpJE4GIyVIDSu9BHUQAh8WdfGlg5KuCiqCFywDo4s1qVCPBAR1k7G094oIjtNQgLWxFr+NsCRLfU6LsRakDKLVODIFJE5QBj5JFVsjlisgZI+ycQxlEjjiN7LnLXIgJ3E6mPUNWpfcpa8WIJkHvFK5z8Qf5c26rDvNfz5riC04fKE9q5du1BKsXPnzjkbr93ouNcCnSiK2Ldv37ymMKWUWCwvjp/hucnTTEcVqkYTmQhtTVMrUluDwbI220PO8Tl69CiDg4NXJGtCiKZW7b59+8hkMtx5552zgOux4b0Uogo5J00hqiCFRCEJiUi6kpXphfzIsp1XmFDOjLRykUI0O3KNQk5bQWBLzb/rTXTw4SXv5VMX/gREpf4iaRoeWUDWp7M9IZHSp74nhrVOLGtCDHISBXUdyRj0XIQI8T03tkSyLlZAWEshqOAmp4iswhOrkFJh7TSl4E+JhEXgI0SSSJ+mUPkoWp9Hme9gzNmY6LKGZcs02axi2bL3Ytf9IVYfJYrAGI2U36YSFhka+gU6W0ZJ6k8CIZZ2wCLsGF7wcapyAVauuuF1cLV4pcGsVCo1C4+f//mf58d+7Meu+/d9fX309PQwPDw86+dRFDE+Pn7NiZyenh6CIGBycnJWd25oaOiKxxw+fJgHH3yQD33oQ/zn//yfb/getm7dyre+9a0b/t2tjsaqW7FYZNeuXTfc1JhPXK+Ya8gqdXR0sH79+jk1RGYmUtoaSlGtqZX9UtJKCEFvMscvrLqf3bt3k0wmuf3225vJWuN6jaIIay0HDx4kDMNZDTWIpQQ+eeZRTH022hUOUmi0NThIwOX9y3ZyV9u19eZ7Eq34Tjwlbok7/kKYen8sYjgYp83Psjq7mA8ueQd/1v//0LaEKy+fu5QKm3psUtQnIoWsJ1GxqZG1EkdatI1AgERhralLBghi8zVDKmmRNsahyNYolqdJJSbB0RhrkLTWG46TGL0XIdpwxMKYgLMlquETKP103dikA60DlKrQkn+GrXctQgZPYYymVmsjCgxuFOLrpwhrS8kmFMKMYkUPDZtxSwphBnGixwi999/wOnhpfDcQ2sVi8VUMuolo3LNKKS5cuEAQBPM2XrtWNK4HrfUVRdp8G/ozj/nSvOp8eZzImiaZDXGN0JvMU9EhD2X6mBga5YFVm9i5auMVx9JaE0URJ06cYGRkhC1btlzx/g8WznOseI6qDZHEpJCxFSITP2dPIs9HVt13TdzuTbTgS4Wl1mzA14XUcKRm//Rxtrev490LXouUmr8bfBxJSKxjW98gRJBSEUrEM9UWMEJiMGjjxMZMRFirUBKMrZtaI2ONSxFjl1AO2hpcEWOvsRJLhUpQJOlPEs9hxrrDkgSSEEsVwSJk3QxbkARzBCtSwBK0nsb3WrC2SE/XSVxr0VGWIJRYU8FxHDzPRdnHkO7dxEB6eXoL4cT6uXof/BMktEulOJdNp9Ov4s9NRIPUfvHFF2lpaZm38dq14no50Hwb+o3XeTU/oyNTA5wpjdLmpfHrK/btiQw1qykEVS5OjSKsYEP7An5i3eto99PN4zWaaQAXL17kxIkTV22oAXxr7BiBLaOcWMbRWoUnXUJjcRzFv16xkyWZqw9jbcgtIqUkgbX4TkPPn/qktuH5yYN834Id/Mb69/ObJz7DpeBcnCsRyx95DRyyoinJ1ogQBVYTCUVCWDQR1IegLuOQAGFjHJIy1qm1AcLW0PUpS21DIjuFo+LHG1upb56UkNZgUSA0oBBCIaxEUwWTRCqHZCIBJNG6hrCDhGEPtXIxJtldF9f1cdQU1g5z9RDA1c1JrxevNP7A5cEieDUHmm806rBarcbu3btvuKkxn7geBs23oQ/X9zL6w1PfZCqs0JPIIYQg6yQ4WxrjbHmEfJRAKgdcxfb2JWxuXRCvmhJPYzuOg5SS8fFx9u/ff9WGGsA3Ro9R00F9ilqTwCE0BmMNjoJtLct568INV33tr+1YzZeHdsV6/lg85zInZK3gm2O7+e2N/4Y/OvsoXxvd1ZRIc+o5D1iSTtSYS8JXdSkk4touwkHYEGMdXGkIrcGpY4+xGoSIBxdFvM3WwEBjLdYEGBErAlgMxlZp7J7YBibYanwsZgyrisZna/A8D9/360MSETBIqENKpSmUcuoY5MRyKiINjIMNLjf2rQUqaHl12YxrxSs91Ahxnl8ul8lms99z+PNdQ2hPTU0B0NLScku6cY24FoiVSiV2795NIpGY1xSmlJJdcoCDJ44S1XcsrDUEaC6WLVk3XokpRwFL0+3c27aCF198kVqtxvbt22dpYDbIp0uXLnH8+HEWLVrEqlWrrgCuo4V+BJqkIwmAmo7XzjSWpOPy4b77ceX1b6KFyTacSYGSQXO1BOLpgLKZoBxVSDnxa7+jZT3vCN/KV0f+DkOEK2PtSGtjbd6ECup6bYI4WcqRVRmUKKHtEGAQIgOU0DbAkz5xchKfr7i7ZhBCgpBkszmsKYAVGAvl8jRCuDiOIuMVMLi4cjHxVGgOY8YJw88AEiF7kcLBaI0xQ4TR36AoozgBqgfluFgsWpdJq0OMXPoydvo4izqm0HThOKKuG9iFYAAnepLQ+6dJaM8kkzo7O+dkHrZjxw4mJyd58cUX2bIlnvB/8sknMcawbdu2qz5my5YtuK7LE088wbve9S4gdqg9f/48O3bsaP7doUOHeOCBB/jRH/1Rfv3Xf31O76GhnfiPHcYYhoaGKJVK3HnnnfM2Xrte3MjkZPXq1SxZsmTO5LmUkjCK+MrAXv7+0m7GgiKOUEQ2YCqs0OLFGBOYiNBoNid72LVrV1Pm6GrPc+bMGUZGRshms7MI70a8MHmS8WCaLj/HcG2aCIMSCmMtmoDNuZW8oWfjFcedGavSvThCEAG+nCl9BGDZXzjK2mxMiO9sux1HwGcufRZLPEXui8vmR0ooPFnDretGKhRC5EhIB1dUsUwgMEiRBsoYLErEOGTrRZ4jXCBOrAQOqUwWYS9gbVz8lSpFHNcl4ZRAGqxVIGMCS4o00g5h7SRCrkEIhSXEkgWmCMO/JSlClLsA1xMYE0u5GFOlWvkytckOOvJRrLXpxs3GmNhWCHN6TtfBS+O7gdAulUrNxvCrGDS/KJVKjI+P47ruTRmvXSsaCfZLi6+GNmyxWJy3rNLMYm6oOsWRQj8DlXGsNURGN1f7AWomIqklq8Zgy91vmLUC2ZgMKpfLnD9/nuHhYaIoYuvWrVesF2tr+PPzT9d3McCVLo61hES4yuCJND/e91o6/GtPk7a6GTr9NKNBvGnhNrS0iWuYo8UTQFxYf3/vA+SdBF8Y/BKactNYzRMGJXR9GtJFiSq+jKeqlHCADK6wKOkDBUAjRBoo1Q3aUsA0hhApFK7y4/VXBNImUcZgbXw8g6YW1XCcWMbN1ou6Bv8lcJBExCqWjTMDkAYxghCQSCwkkZBoownDiCBUiHCCqYkBuvMhRsZFtGg81moQN7fa/UoXdA0ySSn1Kv7cRFy8eBFjDF1dXaxfv/6WNPTh2uv+N9PQn3nMl2LaVFghMvolmtmCVieJCSK+L72Ce9ffwdrWXpyXyEcODg7iOA7j4+PNDbWrNRQPFS5wvHS+Phmp0NQbWBgEDhtyvbxtwdWlHwHyboqFyTb6axeaOZCSti7RCBdrFxipTdLpt/Ara/8Vf3zhb3lxag8Q4dYHCa0FT16e2naEixQ1PNGYmFSERpKQMUZAEYtGiCxQrONQGpjGihApXFyZAoJYW9skCIIAmTBYBMJKjDBIGt4kLw1RF9a0zLxihIhxJZl0SSTzRFFEGIZUKiVcJ2C6lGZRq0WoEkKm48faCAjR6u5rnsNrxStdg8HswaJXMWh+EYYhJ06caHqGzNwQfblxtTpsZkN/vrJK1yK0TxVHGKhO0uKlmviZdn16vAwjtSKO59CdbuWBntW8Y/FtKCHRxK/r1KlTdHd3UyqVOHnyJGvXrr2md9OLkyepUUKpxpCQQEmFNYKEdPjginuv+do35hfRncgyEtTw1cymWqyZfanWz7Hps3xo+ZtYl1vIn138MmUzGWMPdRkk4ockVcNAkljIUUS4ItbE1jhIq1HxGACWMiARIoulGE96iyxCFLAidg9xZAprx2L5y9ClKjQJz8ZSu9bHmng4sp6NNd9TjHOiKYECjQZJiDUZfNcl4aYII4iikKA2jecGjJduY2GLJOGcBtKAQlDAiha089Y5Xw/w3YE/DcmRTCbzPYc/3xWE9uTkJAcPHgRg1apVt/SCuFoiNTIywr59+1i8eDGrV6+eV9J2vjzGbjVMkiRtibgA1NYwXJ2ix88Qmfi1v7Z3NW9sW8PRF+Op65dqUjbWa33fZ2RkBCklAwMDRFFER0cH7e3tKKWYDIsMBIMUTRFp6iv3SpKUGWpG85aezazM3HiqakV6EQlFfS1N1gtCS0MJct/0EXa0XtarebDjtbhS8NWRvwbiSW1pFb4K48kk4SCQgMEREWUzSK/fR4uzESgyFZ5Bm34cIVAihaUIBLi0okQaY8Fi8EQeISQCjRWghEMm14rWBh1NAZowcgijMo4Tk9xCpJH2Eoh2BJcTYG3SYEvo6GkUDoi4SSEQOCoNcopVfUVcrZDapRYYqrUiAoHrOvguWHF17Z+5xCsNZuVy+bqaX1eLdevW8cY3vpEPfvCDfPKTnyQMQz7ykY/wvve9r/lF2t/fz4MPPsif/dmfsXXrVvL5PB/4wAf4uZ/7Odra2sjlcvzUT/0UO3bsaBoBHDx4kAceeICHH36Yn/u5n2tqKjUKTYDf+73fY/ny5WzYsIFqtcqnPvUpnnzySR577LFbeFbmFocPH26ev1tJZsOViY8xhqNHjzIwMHBTJidSSnZFF/j26QGwloTyqOqQkBrjoaakg5h0BZa7LXRerLJm/aYrJh0aa/6LFy/m4sWLTf3l06dP09HRQUtLS/N6HqlNEdgKodZ4SqOtQJv43ksoh3+78g2zisirRVolaXOzTEbD9W2POAWSAMKyp7Cfdy14CCXi425tvZ2Mk+AvLv05ZTOOFPGarRQOntQ4IkKImMixSJSIiGyNLn8FabkJKFKM+tFmAEeAFAkMJQQhvugk1qsdwhLhy464saXjrRJFGieRIIwiorCK8iDSBquDmPwRAoWIi9j666Uhhyn8WCcSv7nGJqXA81wwKTzfwZpVSHuacq1GuVxBOQrXcfDdCKs65nU9zPw8pZS3jIS4mXgVg24uoijiueeeI5lM0t7efsvIbJg9od2ImQ397du343netR5+zWNGWvPps9/iSwO7KUfxpEzZhvRXQhYk23GEpBjVKFbL3KkWcs+OnbOujYbUWltbG11dXZw8eRJjDLlcjoGBATo7O8lkMs3r+Xx5lIHqOC1ekvFAE5qgnjsINIY12S62ta+47ut2pGJNZgHjEyN1DVpDY/ZRCpiIhjlePM3qTB8Ar+/cSW+ijU9f/Cw1O4LA4NQngaRQOCLEESFxkSaRwkGKuNnX4a3GFy7WFqiYMawdRNaLMEMRWceduDiLj51w2nHdTCxHYmtIm0OHcYHipOLXaFCxEZwQcHk3B7Aztmbr05M4QBlEBqVUTBjaMta2ocVDGHuaoDpKSSdwHQ/PDXAdgVY3Zwj2SudADR+R+WDgq/gTx8DAAMeOHcP3fbq7u2/p98jVNmUvXrzIkSNHbtonqVHbGWt5fvwUz46dYKxWxBJRCCvk6439KIoYK03R4qb4ke2vJ+VextZGHdbX10d/fz+HDx/GGENLSwuFQgHf969orH1laPeMzEXgSTc2j0ST8Xx+YPG2627LAjzUdRufuXi+Od0o695E8Rko83eDj/OBpd9P2knwkWXv5emxPr4w9EVCMx2/d0TsFQJInDoOBSgRI4wrfJTQJFSSNqcLVwqMKRDaImCRGAQ+hjKSEE/ksfV6TgpF0utEeQ7WDCFshA58CtE0jrLkkrHggDUOCEv8v1hwQHD5M7ZWAwFKbgR7CSHSuK6P6yiwU2jbS1h9D+PTJbKJA/F2gHJwpMU4q4icN83reoBXHn8gzoE6OuaXw72KQXHs3bu3iRNzMfSdT7y0Dms09Kenp2/KJ+lqmBaZ2DPENH01AAuVagWCiFY/za9vfju3tSycJTdrrWXz5s0MDw83z0FbWxtCCIIguCI/O1kc5ESpH7C4OGhh0BgEGl+63NOxktXZ2ZrIs167kDzYuZG/GXiKhtG1p0y9uR+3yz838Ai/lP0wr2m/jY3ZZfzB+c9zunwCKCOsbh7HEfUtMuGgRIgngrpsrMQRDlIo8k6ehEzUPUam4yElG+tqC5HAUEES4EqfCFGX1RUkUjm0DuMcx0KlHBKqKVzXkFT1zRMTghBYO44gG2+ymYlYUoQq1k6hnG1IGyHsEXzXwXfj6e9Q30k1vJfdJ1bQnfsavW0ncF2NVbdhEz+IVWuucvauHd8N+NOY0J6PTNg/F/z5riC0W1pa2LlzJ9/61reIomjexdX1YmZXzlrLmTNnOHXqFBs2bLhm5+t6sWfyLBGGjLqcFCkhSTk+NVvjj7f+OEpIxsfG2Ltn71VJ84b54/HjxxkaGuKuu+4in88zMTHB6Ogox48fp1ar0dbWxhPO0bp2dmzqIS1EaMpmmjang3va52a8tSHbhy8VZSNwpcWRYTP5EEiendjF9pY7mq9TCMHr2l9L1knw9wN/RWgnEBKUjBAIlFBoG5GQIZYKFsNw7QQT4QXavaU82PFrQMTFypOMBQfjAspeQgBVU8RBIjG4Mh+b0dXpIUUOKRTSUTgyibASz0lhhUsYhtSqVZQK8JPUXbpjHTlrZ04GxInZlRFPLgh3JUocIO2kQMRfbGEUonXI6Yuascruppj+fIqjVxrMGsXcfOMzn/kMH/nIR3jwwQeRUvKud72L3//932/+PgxDjh07Rrlcbv7sox/9aPNva7UaDz/8MJ/4xCeav//85z/PyMgIn/70p/n0pz/d/PnSpUs5e/YsEBtw/PzP/zz9/f2kUiluu+02Hn/8ce6///6bePcvL1auXElbWxvHjh275ceeiUG1Wo29e/cSRRE7duyYtbEx1wjQPKf7kY6itT6NmMbHEZKaibi3fSVKKPJFS88kbL/rrlleBA3zx4ZWbX9/P+vXr6erq4uxsTFGR0c5cOAAxhg6OjrIt7fw3MRBAluJcQiBFAbXAWWTbMovozd5fc1LiMmk2/Mr+ebEMAKFBJQMkUIDgmk9ypHiCTZmL5sirs+u5aeX/jT/5/THKTOCRNbX1WICTeGgifBljRgZNYO1o7jCp9tbxUOd/w2BZbC2i4ngGNaWqOnjGFuNV4bxUWiEkERmGouDg8CVWVzHw3VdjHERVgI+QRBQqVRQSpL0IxzlYnQVMcPwBVtGyKUIOwK2CiLROPFABdRrcBIP49SeIefU0LYlNkS241SrgoPHW5H+oSYGzXV76JXGH2vtrOmk+cT3OgY5jsOOHTs4f/78nEys5xONNd7GcRsN/UWLFrF69eqbumaklLxQPs9fj+xHCUW7XzedrU5T0TWGawUwYMOI271ufmbb20knLhNDM43XpqenGRwcZPHixSxZsqSJQWfPnsV1XTo6Oujs7KTkVCjpaSJCpLR4Mm7OY30coXjv4u14N2iqAdzTtom9hYP1jYr4u92VxBsdWB4f+WaT0AbYmF3Lzyz9MH9+8k8Zcs7HxIuQSCRSxNejwkUT4YoKUoQEVjNYq+AKj4WJTTzU9rMo4TAa7KYQncHagFp0nKoZJLIRDu04IsDYIjVbRJLAFQZXSZSrMDZE6wSKKkGtRFlrHEfiepMo2YISoqnvb4wGhhFiAUr2gfkOce6TAMpgKwj3zeTS/wIZjpCJvooxZYyZJtKCcwPrOD+epq39FO3t7eRyuTlfI680Bs1c959PfK/jD8QrxNlslt27d99yDJqJPy+3od+IBqH9B6ef4JGB/WgbTw9XbUgpqBBajWMEU7USruvx3lU7rkpmN7YKJiYmaGtrY8WKFUxMTDAyMsLx48dJp9NNDMrn85yYvoQvBVYYQhMSWVkng2FFpoOtbddvqgHc27aBzw88hrEVlGg0perWssKwZ/oAQ7X76PY7EEJwX8dWVni9/NGpP6MgL8Wa1/HsNEpIVINUwkUT4sgqgioVU2A0msYRHsuTW9mceysKl2l9mkJ4FokkMgMUwn0YIpLyDqwdRttJNODIbjyqiFSEtVEsoRZ14NoaFc4iRAJHhUiZw1frMeYoUpQxxgcCpFyCm/hFCP4A9MF6DmRBtKISP8ei7Cawv4EIH8dUnqYaFBkaW8KF0Y1ksudpby/R3t4+ZzPAVxp/4Oaa+vAqBgFs2rQJiKdDryaR9nJiJga9dEP/ZjinmQR5aDSfv/gcjwzspxhVKZsK1VqVBX4b1Uo15hg8SU8qz9pczywyu3GM1tZWLl68SCKRYNWqVRQKBc6dO8ehQ4fI5/N0dnbS0dFBOp3m2fGjCEAhieqbIgqHkAhPSt6x4Np+ao14W882Hh/dRUVP40kTGzg23htwrnKWb4x/h/vat9Pq5fh3K36MZwZf5AuDXyRwinFTTAAixiGJwBVBjEl1HIrlkcpM62lCm8YRPmtS97M8dQeezBDaMaajCzgkEEwzGe7H2IC0ehBtzlHV53GUT9p5A8IOE8pBtCkRhGlK468hnz2H611CSomSbbjiRxkaPsDSJUexdgKEh+Pcj+f/dDx4FD4C0bMgFELtxHPfyIp8GthApXIPA2ODjF8aYmy8gusWaG8/Snt7O62trXO6Fr8b8CcIAqrV6rwx6J8D/gjb2Pl8BcNaSxAEPP7442zbtm3enbLrxeDgIGfOnGHr1q0cOHCAyclJ7rjjjpteZfnCxef5g2NfoyfdNusCL4RlPOnwx3f9OJcuXuT48eOsX7/+Cqd1YwxBELB//35qtRq33377FQm4tZZyuczZoQv8j5EvxNqS0lIlworLa11v676Hf73s4Tm/9t859SmOFU8iZZk4GYqniiyahPT50UU/zO25zbNex/Hjxzk5fIwTC3ZRtJN4sshlN1xNUtUQKAyGlMzhyzSBGaLVaSel8nR661mZeQMZp5tidIbR2rNEZhpPpJgOv0GgL9W7+y6+iEFSigwCibYFEpRisJa9COFiTECkh3CMi0OZWq0Vp+ngWyCR9PDVW3HMF4FWRJNMKgJlSPwKUvbiV38BYaewIr4OhJ3Eijam+G+MjHuMjY0xMTHRLKjb2tpuCGoXL15kfHyc22679rrhP2T84i/+IkEQ8MlPfvIVef5/yqG1ZnR0lD179tzyRO7AgQMkk0k6OzvZs2cPLS0tbNy48aaTtT2XTvCfj/41ben8rKloYw1jQZF/v/qteOcK1Go17rzzzitkjhp6tSdOnGBwcJDNmzdfYcJkraVQKDAyMsI3R/bzCAcIhSXC1LvvoNEkRJJ/v+o93N26ck6v/WDhOL935o/RNsJTl+WPYlNdy5LEYn6u76fx6wSx1poDBw4wXhljaskw+8tPY9GkVLVR/iEJSaoAgcJiSMo8vkwQmGFyKosvU3T5G1mTeQs5dxGRKTER7CWyJVKym0L4DBPBN7A2JKEW4YkyoT6Dra8BShKkpQd2FPBicxJdJAxzqNAlmRgC0kQafC9AOSk89z/gmq8izG5is5N4MhLRAYnfQKiVqOiruMGfIYjltix5AueHGC/fy9jYGGNjY5RKJXK5XJPcnjmx+tIoFArs37+fe++99qrhP2RYa1mxYgV///d/f801tVfj2hEEASdOnKBcLt/y75AnnniCLVu2MD4+/rIa+o04evQo/2vsW5y3U7T7l/M1ay2jtWm2ZvvIjkZs7FrK/RvumiUlMJNIakyFrl279qq5UmP9f2RkhMc4yH73EobYhBrAYJAoFvi9/M6m95NQN27+1EzIfzzyO4yHo/VJxyDW8od6s07xkWU/zrpM3Fir1Wrs2bMHx3UoLB7nucITVOwoIEjLClKoejkXzMKhlGrBxSGyI6RkAkd69PibWZf9PlrcpXGepy9gbJWkXMB0tJep4DksAWlnI9JOUgi+gjZTCOGTcV+DR4la+A20KWOMJQxyDF98I71du0mlTsbbJp6HEJ14/n/AUSsR4f8foueIzdeSoB4A/8fj3MhapDmENLsR1qDVZmp6PeMTk00MstbS1tbWxKDrFf9PPfUU27dvnzMBdavjK1/5Cr/6q7/KoUOHXpHn/6ccxhjCMOS5555j8eLFLwsfXhpTU1O8+OKL3HvvvezZs4coirjjjjtuqvnQiKeffhpneTu/c+FrOEKRduKcITARQ9UpHOsiQ0l3uoV3LLuLty64DVknkmaSSVNTU+zfv5/e3t4rho/CMGw22EZHR4kw/GHyWcq2Gh+rrhmrcJEkeP+SB3hb711zev0fP/VZni+8WBfrEHgqRNb9hgSSzbnNfGjJjyGFpFgssmfPHlpbW5nqneSpiUcIzBiIAAEkZRXVxKEaSRUi4j0OsqotNm5knKT0cYRHp7+Bjdl30+otB2Kdf4tGCZ/AjFEM9wOQcW/DmDEKtSeJ7Ai+WkbWfYhIH2ay+LcEwUXKpS7Gh7fgqrUk/G/S1X2CVAqUvAvHfTtK9SBEBPp5MKdB5EDdg5BXn2Ju1L+N8z41NdXcXGpvb5+1OfjS2L17NwsWLJiXdMStjre85S287nWv49d+7ddesdfwTzUakjSPPfYY99133y3xUWvEyZMnqVQq9PT0vOyGPsQmks899xwPPfQQnzj5Nb46sA8pJJ50mI4qlKMAaRS+9VGuQ9r1+alVD/DartXNHKhBvzVyjEQiwaZNm2YNsVSr1WYOND4+ju/7PJE4y+7oNIjY78cCxiiMVSxJdfIHd3x4Tu/hU+e+xOMjz+Cqy1rUnrR1HIIWp5VfWvXzZN0MY2Nj7N+/n54lPQzmh3lq/KtU9DQJFfuRSCwJWY231JBIUSMh4+01iyErO4AqMEVC+ijh0e6tYnPuh5s4NDOstUR2AoGDI3NYG1HVxzG2QkKtxOgUY+MXmJh6lkJhkkppCa7TVq97V+K6I0jZhuMsmvdnrLVmcvJyDlStVmlpaWliUCqVumoddurUKaIommVy+I8djz/+OO985zsZHR296WbxP9X4rpjQnmmIFEXzN4K4XiilCMOQXbt2NaegXs467+aWpThCUYqq5J14Ek1bQ0UH7GhbxfGjR5tT1zNJokYSVSwW2bdvH4lEgrvvvvuq03dCiFj6YGE3bsHDt2BMiKch1HV/WWnotRmiKJozMbaz7U7OVk6hEfX1MIFG4whQQvPMxLNNQltrzcGDBykWi9y/5SHude/hqfEvcqr0HJoiEo+UEkAN6lObjnCxdgxJkUJUIjBZJsLTXKg+y+va/xM5dzkZ5zJwGfs+iuE+QjNJ0lmGQ5Lx6mcohs8Alqx7P3nv/2PvvcMkuatz/8+3qvP05LhxNucwcYOySEIggUBgorExGBvLxgZjw733Z3zBvte+2MYG22CCSRYYE4xNFEGBlbSrDZPz7uQ809OTOnel3x89Vds9Ybdnpnd3EPs+j55HO91VXV1ddep8z3nP+76EUPRzqPoA5tyJ076LXM/7iEc+hd3ej6IEFlhJMpOTd2AY97O1qBeH3IJhLDC1hR1hewXIJzGETNz5IezxLyEZg4BAlw+h2N+FU97FVg9s3bo1Jah1d3dbQc2UhHG73SlB7VZ350Kh0HXd4W9jZdyI+GPud25ujr6+Pnbv3s3OnTvXNc6bY3cjI1B1NaWgregaEoKBjm72e8tWlDmKx+O0tbURjUY5ceLEsotKIQS5ubnk5ubynKMH26SdPOFiRgkR0xWMBWOzfJub6txdS7ZfCfu8O9nsKsEXH12Yr5WxLSy8BAZ+xU/TfAsn8mqIx+M0NDQgSRJ319yD3W7nQHA/T/v/i6A2hEEckHFZxTLTF8CGYfiQCBHWIuhGDn3hJxmL1nNv0f9Htm0T+Y4qbFKi6JLrPM4W47fQjRiyyAZUQspFImo7knDitd+BXSomGPsGkfjPMIwoHsc9ePPfgiCXmZlPoCrPIwmNYKiQUOjVOBy7yM9/P1mOHyHpTyOMKMinEI43IeRE8V+zPYgmn0LWWhL/lo+CyCfPkZha2r17N7FYzEqqBgYGkGXZSqoKClKbqrc6/gBrZmjfRuKes9lsGWdHQoJNdOXKFUKhkDUuuN79zWgRbIs0bxNGbRrBqWl+c/8DbNu2LeV1MwZpmkZPTw9jY2NUVlamTJAkf0ZRURFFRUWU7drKl1vP41GdhPU4qp7w8DAwMITGS4oPp1XMBnBKdu4rrOH7Ez9HiOhCMTtRyDZIMB+/Pfaf/MmuD6BFNerr68nPz+fQoUNIkkR1wQm+P/EVRmO9QBxjQVfWY916C/ksEobhQxAmpitIIofB8PP4Ym3cU/j/IYSKYShk23ciCwf58l3kO1ObUQXuN6Lqk8giF1lK/GaK2o2idSKEB6f9BNuKHXR0tDI+fgGPZwJV8yDLp8nNLSM/347D8SEkxziS8CPkrQgpSVJLCHT5CLp81f/ALkNpaSmlpaUYhkEgEMDv9zMyMkJHRwfZ2dlWDMrJybGeZWaOe6tzoNvxZ20wf0ebzZbxPMhkU589e5a8vDyqq6vXzb6UJImmwBCKrpHjuNpAsQsZpyHhNWT+X83b2JJXZHkMLWZFjo+P09nZyf79+5c1n7Pb7ZSVlVFWVoau6/x46AW08QVTRj1haGYI0FDIkj2cKtiX9vE/svklNAYbUQ0Fh6RYTO2EhJlOR7CdZ6bPUCGO0dTUxPbt29m1axdCCA7nHOb87Bka5p9CNeJIIo6BjoGBW7rKsxRoCwVzP4IYiq4jS3ZGIxeZjndzR8EfENUmEEKiyFGBLDtxSIUUOJNIHVIhLlvq93LYNuFxvtT6tz/fv0DSupsp/ynsdvsCCUgiNze2YHR3CmE7fd34YK5/s7Ky2L59u2VO5vf7aW9vR9M08vPzrRiUXPTcCDlQJBLJKCnvVw2SJK2oub/e/c7PzzM+Pr7uhj6YuY7OeGSWpybbcMg2vLbEtehEZlKZQ8iCw7lb2ZFVxMs3HeJgzqaUhr4kSczNzdHY2EhZWdmyBXaXy8XWrVutmsT09DT/3l+HThyhJ8hAhjCQ5ITsz4k0yUUAj2y6m4a5ZoLaNAgJpzUxm/h+Ad3PZwc/z+udr6Wvq4+DBw+yefNmDnKQE/k1PDv9FPVzZ4gZM8hCXiA7Jbw/nOZ+FohHQmhgzGCgoOoSsuRkItbCmam/4ljuI0S0EWThosx1mlx7wpjTLq7mhULYcNsOWf+WJSgr3UVZ6S50Xae9vZ2JiQncbjcXL3bh9XrJz49RUDCD15uQXDPNhK8XI5LXWYDVYPP7/fT29uJwOKzX8/PzU3xqbnX8MRnUv4p50IYoaJu4EYu5YDBIOBxm+/btHDhwYN0X286sYqpEGc3GFJPRuQX3aIMyZx77Z9zMarOcPn06haFiJlF+v5+WlpYVA9diFNhzcEgwrUwl/iCDJAtsuLHrDvTREL/o/QX5+fnWOMq1mDEn8yr4hf8XDET7FphNGi5ZQRIAMfojzTzj/ymnvffS1NQEQG1t7QIjx8Mjpb/FYOROfjb1BSJaAIgs8BM07MKNXQgUfR5IjL655DwMQyes+aif/SfcsoOYNkO+Yz/lnofIse8gx5HKZijz/im6ESeh5ZZ4OLgdtcSU51C1MWSpDJfjTiSRhU3azejIV1DUBgryy3E6X4JuHMTn83Op5WHyc3ZSUjiC0+XF7roTWdyJpBkIoaGL4+iuf0AYw4DAEFsWTNmu4lpBraenB4fDYRW38/Ly0DTtlgazSCSSMUfoX0WY8cc0CcoEDMNgdnaWQCCQMbPJElcu240cBrQQNsmGU7Kh6Boz8SCFipPKLbs5sMj80UyiQqEQzc3N12yoLYZDsoHQiIkgdoeCEwmb4SSiaTijCaZUYWEhxcXF12XwOSQ7ryy+l6+Nfi1hTETC5MwhKQn9NiPK0/4fUEohQ60j5OTkcOTIEeu+Ouitoty9j/q5n9M4/5MEq4g4+kISZRdO7EJH0UMkkig7TjkHw9CJ6H4uTP8lBgF0QyHXvoc93jdR7KxAEk4kYTY67Xgdd+B13JFy7Dnu95Djfk/K9REMBunoeBWlpY+yZ88WolEvQswuSCZM43QeJj//LgoK8snJyUXWZCRDtZJ2RD6a7Z4Vz5fT6WTz5s1s3rzZYpP5/X76+vqsUUQzRt3q+KNpGpFIZE3jtreRwI1oqkUikYRcVyy27oa+CUmS2GLLoV3zXb0fDINQJIKqatSUH0wpZiezIuPxuOVZsFJDbTFm1SAaOrmOLDyGnbAWQ9X1hFmZoTPfN077XDvFxcUUFBRc11zuroJqzk5fZF6LIISMtMAisonEyO6cOsYPh79Hfm8R27dtZ/fu3dY9n2vL482bH6M71EL9/M+YiHVgEw5sIoZOjIQVkh0ZFY0oCeNsGw7Ji114iOmTnJ3+YwQaBgYuqYD92e9gi/vepedZuHDI21P+ZrftwW7bY53X3t4u5uaCVFW9naysLGuyZnx8nCtXrpCdnU1+fj75+dvxer1IkmJp7adTXMrJySEnJ4edO3cSj8etHGh4eBghhMXeNg30bnVB+3b8WR9WMrFeD/x+v6VVbRZl1wtJktAWCtPm/nRdJxwJAwKvN4sdBVf9hZJZkYn7ppfh4eEVG2rLfV6XOopDtuPAQUhLaOUaC0SbXEVidnACW5FGbm7ude+Dbe4SanOPUj/fjCQSjGp5oSAkMLAJlScnf0JsNMKxA8dSJljy7Pk8UPxaKnKquDD7NFdC59AI4JQS6zAdNSkOxdFQSORDNuySB9lwoeijvDD94YSMGwKb5GG/99fZkfXqVf0OgUCA1tZWtmzZwt69e9F13ZJs6e3tJR6Pk5ubS35+PgUFBbhcLiv/SSdW2Gw2SkpKKCkpsUhhfr+f8fFxLl++jMfj2TA5EHA7B1oHksmNmYxBmqYxPj5OKBTi5MmTGTGbNDW0e0OTRDWFfEeigKgqCtFolFyHG0UYPLbvPnYv+JwZhmHld6ZvWkdHB/v27VvS/F/pM6NeCMhRZF1GN80cDYFh6Bgizu5YLsFgMC251CJHHg+V3sM3x76PEBqSSDTnTR8jMBiJDPOE76e8qeKNKYzfLDmLVxY/zEsLH+C5mR/TMv8CUUMh4ZXmxi70RD5k6MjChmSE0VFJxCEZu+RGNmxoxgAtc59CFol1Y2/ov9jnfQu7vW/AMDTi+jQ24UWWlq9tGYZBZ2cnMzMznDp1iqysLOLxuMVqb21tRZKkhRwo8Z/dbk87BwLweDx4PB62bduGpmnMzMzg9/u5fPky8XjcYm/H4/GMThWsBaFQCIfDkbZU5YsJG6agvVjncb0wDIPBwUGuXLmCzWbj0KFD198oDQgheIm8k9NbDtMSH2deibDHVUzhqEJpdg7Hjh1blhU5MjJCV1fXikyA5dAfGSWqBzCtG03zI40QNXlHeXjvKwiFQkxNTTExMUFXV5dlaldUVERubm5KQJOExF0FJ5iaGMeGjCpmFvYrYRg6khA87X+CiV4fB5xHOHLkyJKF4Xb3fl5f9sc0zT9FX/giUT2CQ/LglfPRjBkS2tUC+0LwEULCLmLMKBcJqVkIIREI9zMWPUtt/p+R71iqAS4Jx6J/u3E7Xp7yt0QQm2R6+iRVVe+1Egi3BzZt2oJhHGVu7iRTU1P0jfoIBoPk5LRZAS0rK2shodpiaWJeDysFta6uLuLxOE6nE4fDQSQSuSUjt+ZD7DZWDzP+AJam4nqhKApNTU1EIhFKSkoyZjYpSRL3a9s4nz3PleAE84aOrmnkqDYe2/lSDu46kPJ+MwZNT0+vqqFmIs/uRiOMumB0ogEKMYTs5FXld1Ll2s/U1NSKem+Lk6o7Cqo5M/00w9GEqYlTjiPEgtEQOtPKJF8e+jSvKX4zR/cdXbK9R/ZyV8EjbHPv4dLcj5mKdQNBnMKF11aIbkwvvFNgF+6k/w8S0mZwSrkIZKbjrdTN9FCb/2cUOo8S0/wo+hxuedOKyRNcTbrn5uZoaGhg27Zt1iI9KwuysnLYvn27dc59Ph/d3T0oikJeXp4Vg8yFXbqsgeSkbM+ePUQiEYu51NfXlzC1NAx8Pl/amm+ZRCgUArjNTloHMt3Un56epqGhAVmW2b17d8bMJiVJ4rRjO/3KPFOxAFk2J9FolIihUJ5dzAM7rhpMJ7MiI5EIzc3NOBwOTpw4kXbSXezIwyYZzGo+EhqsBjZZYMOFLDzUlB9FmtPp6uqy/EfMGLTcAqPQkc9ry17O10YfR8dIyCdJMWSRcHY1DLgQeobj22u5f9f9S2KQTdg44K1kf9ZxGud/TmPgSSKaDwA7DrJthRiGP3GsSNhN6TM0bASI6wZuuQiBRESbomXuH3FJBWTZSvDHzqEbcXIdx8i27V9xUarrOm1tbczNzVFbW2vlHOZkzZ49e6wJj5UWdgnmZPrFJYfDwaZNm9i0aZOlfz41NcXg4CDt7e0ADA0NUVRURHZ29k03qL1d0F4/MtlUM2ULh4aGANY9nZYMSZI46C7jybkuIlocBxLhcATJJiMkiVOFe1OOw2RFmveNOa2ymuvFMAwQOk5hwELxxyZcqDqUOQuJxWIWGSi5yb9SnHt16UvoDl8hpEdImFvrOBbikACiRGjY9hzHC48su32pcxsPl76DqPYoT/sfZzDahmpEF/yI7Ik4pC/EzAWzSABBBJkImiHhkhPFNsUI0hH4Ih65mKjWzXTsIpKwU+S8hzL3K5asywBmZmZobGxkx44d7NyZmL6VZdmarDHlQyYnJ608xe12W/EnJycHWZZX1WDLzs4mOzubHTt2oCiKlQO1traiKAoDAwPE4/GMmyuni0gkknFDw181ZDIGRSIRS+bIfDZmAua16pVdyEJC1TUMRUNR4rjdbmJoyBhk2xLPZTP2mASAnp4ehoaGqKioWJU0xFjUj2qoFNtzmNeDKLqCbkjIkj3RvgqFOX/+PA6Hg+LiYoqLi8nPz1/x3np58Wnq5hoZifWDEMjYAB1ZxLAvaPUP5LXSKnZzt/HSJbUSu+Tg/sLXciLvJfSFW7k09z1C2iwaMUBHCDvZtgIMfYKrU7SJWCKYR6Bg4MIp5y3IjIS4Evx3MIJMxZ4krk8hcFDiegm7vO/CJl1lHuu6TktLC6FQiNraWivXczgcS4hAPp+P4QU54OzsbEtG1uPxWDEo+XddCcvFN1MeyZSp1XX9uvJINwKmj9FqjbFfLNgwBW3I3KibmbD4fD4OHz5MR0dHBo7uKmyyTJV3O68sqbEMlrZvL2fv3r1LWJGqqnLlyhVGR0dXHbien24EIN+WTUiLohpaYqwD8NoTAcEczSovL7f03nw+Hw0NDQghLDOTwsJCbDYbFTkVPDt9Fr8yAgscyUSAlciSvITVEKPZ/fza/reueEPk28u4r/Ct3FPwJp6b/gK9kfOEtRkEYRL2KA6cC0HHMOIIQggETilvYbFoENNn6Qo8zv7sNzAS/i4htQ+3vIXN7ocpct15zfOyUhBLhhCCvLw88vLy2LNnj6VDNTU1xfDwMLIsWwEtLy/PCmjpLuyWC2qdnZ1Eo1FeeOGFtDXfMonb47brg1kAVFV13QXtQCBAQ0ODNTaZbKSwXkiSRJZu4/8ceRPNswPU9XWgz0d4XcW9lBZeLZonsyLNhlq6TAATuqFzYbYZm5BQjKumIQA2oVGRu4tcVyJJ3L17d4reW09PD06n0yosJSdV9xTexX9NfA9ZxFENAHmhcSdhU+3E7TGmCyeu+VAudx9hu+swIW2OczNfYiTaTESbQyK6YPDmxCmZi9UgwoiDsGFfiE2y4SKuz3Il+O+MR/6L6fg5DEPDJnnZ4nk92z1vXhj/XQq/309TUxN79uxh+/bty77HdHIuLi62Eg3z3PT29uJ2u60YlJ2dvaqFHYDb7WbLli1s2bIFTdPo7+9nbGyMnp4eIpFIWppvmYRZ0L4dg9aGTDb1zYb+5cuXOXDgACMjI5ZeYyYgSRLlch4f3PVq/q33DH3zE0hC4o6S/bx71/3k2N3WcZisSFOrtqSkhP3796/qmaijYRBd0LVPSJzpGMSJsMtVwtFN+2ATKffZ2NgYnZ2deL1eKwYlS2Scyq/i+ZlnGY2NYhMKhkg4gxhGwmjaKTu5rLcyEOllh2d5ozchJCpzX8Gh7LvxxQeon/sG/ng/MT2AIOERIGHDsRCHDOZJ5F0O5IXikkPKIa7P0RX4NJqe0NQGENgocb2EfTkfQBKpqbqmaTQ3NxONRqmtrV2xcLPchEfywi4nJ8cqLnk8Hiv/SbfBZhYIdu/ezfz8PJcuXSIUCjE0NIQkSSnySDeDMXQ7B1o7kiVHMhGDkhv6tbW1nDt3LqMj2ZIksd9Vyt3FB3h6vBVFVbDZ7AjJYJunkEe2JqY/k1mR8XicpqYmbDbbqhpqJso9xVyYqyecZEKvGEEQdk6WHOJI6REr1vl8Pvr6+mhtbSUvLy+lyW9im3sTryt7kP8Y+yaaoSekRyRjgXFpICRBmCD/MfYV/mDHh7GJ5ZfsLjmLVxa/B198kIlYL+3BHxDSplD0MAIVMJCwL4pDBhJOxEKByk42cX2ajrmPkdC6TWAm3oA//gKHc/83krBhGCph9TIzM1Ncbouyb++hFUlapnzIzp072blzJ6qqWmvUy5cvo2ma1eQvKCjA4XCsah1mt9tT5JGef/55PB4Po6OjVuwvLCxcEvtvFAzDuF3QzgAyFYPMhn5ZWRl5eXlWYy0TMK/P/d4ytroL6J4fw2PY8Hq8qEInrMQ4XbiXYme21UyDxDXS2tpKIBBYdUMNIM/uRQJCxjRCaNjlBe8PwCk8nDxaTbbktvxH2traUFXVug+Ki4tTpmhtko13bn8jf9/7z4T0uYRciBRHFpolF6Kj8fOpH6IbGvcXvnLZ48qSszmSfZq9WcfpCTfgi/UzEDmDYkRQjdiC9JGOjAuHlJjKMwgAIC/ENSEENrJQ9XEGQ19GEnYk4UQ34oxGvk9UG+No3l+hGfP4wj9iePIchtvD4b1vX5EZndzE37dvH5FIxKoFDQ4OYrfbrdfz8vKsJn+6DbZkeaSWlhYrh+/o6EBRFGuCraCg4IYTHU3SyK9qU39DFbQzsZiLRqM0NDQAcMcdd1gGaJmEJEmoqkp/fz9XrlxZVo/JMAxisRitra3WaO1qL7IZJSHf4bY5ccvOhR47BLQQs0pgyfsX672ZSVVPTw8tLS2WNMlbit/I13xfYkaNAInxErdwomrzOGxR5kQP3xn/F+7MfxWbXOUrnwchc2fBu9gSPsZApI6oNs280oJNOBbCK+hGEAwDWWSZzblE0BIu5pRGWmbq0FEQyES0UWbjDezSf5utnjeknEtzO1VVaWpqQlVVampq0nYnTtahMkfiTFZpZ2cnubm5VnHJ1MZebVDzer3k5uayY8cOa//X03zLJMLh8O3F3DpgMmXXGy8mJiZobm5mx44d7Nmzh4GBASuZyQTM61FXVfReP4diuVSdun9F88eenh5GRkZW3VADmFbmGItOkW3LQiAS+tkYOISNmBGnNzzMJtdVc5/l9N58Pl9KUlVcXExF4TH6svtpDDy3cH8vTHboNlwOUAlzae4JvDY7x7PvwiUvnwgIIfDa8nhJ0e9zJfQcg5F6oto0YfUysrAnxaFEQ8EuslK2lYSdgHKWqCojL8iOKHqA/uCXkbCxLetNAETUXkJKG7KURXR2N+2t3Rw6dIhNmzaldR6FEHi9XrxebwqzyOfz0dnZia7rKczJ5IUdpMcayMrKwuPxUFVVlbbmWyYRDodxOp2/kqNumUImmEmmnuDk5KTl5TE+Pp7xGKTrOruMXB6e24qn9CgH9u5bYhBpLuQmJydpb29n7969bNu2bdWFhUuz7QmjRclNVI+bVrLICAwU632L7zNTIsPn8zE4OIgkSVZhqbCwkFcWv5x/H/smcT2RT+kLnhsu2YlTlonpAX7u/xYPSr/GZufK7FKn5Gar6wAljg/RFXqa/vAlVH2eqNZv5UOGYVjFaoe0OA7pRNQWbMKDTWSTWERGmYj+jGz7PrZ4HmEudpap6H8TVUcIz+aDdC81Na9N+35Ld2FXUFBAbm4uNpvNyn/SLS4JITh69GiKPFJ/fz/t7e1pm9uuB7dzoPVDlmXi8fj133gNBINB6uvrycrK4tSpU9bzRtO0jE0OSZKEoes8oO9AVueZzDfQbFCRV84DZcfIt2elsCIDgQBNTU0UFxevWX5yIjaBBAtK++b1ayCjsdmdB6SSafbu3WvdZz6fjytXrlgG4UVFReTl5XEqv4bzsy8wGhsBEVmQEEjsxyW5cAkbM8oIZ/w/5K6CV+KQlm9eCSEocZZT4ixnT1YVbcGfMhiuRzM8qPpoghVpLPgOGDEAa5LW3F4mgmrEcUnFVjNfN+JMx84zFXsOl5TFUPDviCjD6LpG/qEiPLnvA9KbOrbZbEv0+X0+H5OTk3R3dy/o3uZbTf7VNNjMeLJlyxZycnKIx+MWezuZNW8WmNJdO64Guq4TjUZvF7TXiExJjixu6G/bto2JiYkbsg6LhiO8NLyZWTHHvE1hVg0jhGB/9mZ+Z9dLU8wf4/E4jY2NyLLMiRMn1nQN7nCXIIkYiq6CkBCAgYFGjBJXKXn2xPPPJNMcOHCAYDCIz+ezfDBycnKs4rbX62WLq4y3bH49j49+HRlAJKTSxIKJrltyAxrPz/yco9kVFDlWNl11Sh4Oee8E753MKy+jJfAjBqMNYEgYxlRiSsRIKG0bhgpCYBdX164CsBFJtOAWfEMQoBkxZuMN+KNPMxb6ZyLqCMJjIEs2ekMvsFX8IcXu11n7UfUZwsrzGIaKx16LXU5INrndbrZt25Yyae/z+ejv77d80swY5Ha7V9Vgg8SE6rZt2yxyhd/vZ2JiYok8UjqyVKuFpmnEYrHbDO1bjUywk2ZnZ2loaKCwsJDDhw8n9IaiUau4k6mLRwjB0NCQxRA2tQPhKisyFArR1NSE3W5fExMAYJu7lOb5K2i6gkI0IQuCDc3Q2e6+tovz4sVLOBzG5/Ph8/mYuTzDjvwdhLKmcUluJENCMaYQsrrAkZS4HGpkMHqZt25+P2XO5RmIkOis7c46ze6s0wC0zn+TzsD3iGozGMJAJopNSDikxYsMHZk5dMOJTbraOVf1AP3Bf6PU9QpAZSz0JWZiP8dAIUuuYbrvBDbK12Uqk8wc2r9/P+Fw2Eo4+/v7cTqd1rkzg046QU3Xdex2OzabLYWZeS3Nt0wGtdvjtmuHWcxeT0HJMAx6enro6+vj6NGjltN6pvXgzOvl/PnzeL3eFc0fVVWlra2NYDBIbW3tmhb6spARC1MVDsmGTTa9WQVxQ2BbgcEMSxnK5uJlaGiI9vZ29uTsxJ87yCgDyIYdSQObM5IYVTMMYnqQJ6e+TVvgAm/Z/Ee45ZWvbVnYOeC9nwPehJlRR+C7tAf+k6iekFWSULEJOaWgnUAUCQWbyLZGaiVhR9EDDIf/k83uhxkKfoLp2E8xUDB00OIe9h79MJtK0itmL4fFzKL5+XlLOipV9zZ/Qff2+gu75GdcuppvJns7EwgGgzeFCf5ixnqZSdFolMbGRgzD4I477rCapzciBoXDYerr6zl48OAShl5yMbuvr4+hoSGOHz9OUVHRCnu8NqaVeQQSOXYP2YYbzdCRhERcV5hTA+gL/16MxRIZs7OzFjswFouRn5/Pg/mv4Eexb6IYMSRDwmNzIYsIijGHwGAseoV/G/lbanNfwksKH73m9e2Q3BzNfhVHs18FQGfge7QFvr0QhwQyCbkSG6kNOmFEQIBNXC30yrjRjTjjkZ9gJ8Zw6J8xDBVNMxBZBracNsL6JnK5OtGmG2HCygV0I4bHXolNKlnxWFda2PX29hKLxVKYk+nIIyXHn8XySNFoNMXc1mazUVBQYE3uZKrIeVt2bX3IxDrMbOiXl6dOrWaCLJAMIQQDAwMA/Paph1N+98Xmjz6fj/b2dnbv3s327dvX9IwyDIO2QA9ZshsExLREI80h2dDR6Q4NcTRn75Ltku8z0+DQ5/PR0tKCrusUFRXxQP7L+L72A3zqXOK7SQKHsOEQcVRmERg8P/t9WoLP8drSd7HDfWDJ56R8ppxLTe4bqcl9IwBdge/TGvgWMWMWAJuwY8PAxlVyjWHoyMQRyCmTaZJwoBoh/NGniannULUAmmrDbvegM81A4P9il4rIdlQCEFYuMRP5GjGtE5tURp7rDWQ7XrXknCfr8+/evTul+dje3o4QIoU5aereXmsdlhyDHA6HRfAycyxT+98s6pk5UKbkkW4XtDOD9UzrL9fQhxu3Drt06RL7y7byhX33UTfXz1QswBZ3ARW55Uhg6boHAgEaGxspLCzk4MGDa173twZ7kESi9qJxVcJEQiKkBYjrCg7par0pWaZn165dxGIxq5Hd39+P3W6nqKiIrUWbOeQ+SHuwCcmWaNcZBtiEvOAPEkYxDD4/9FEOZFXyyuK3XXNNBpBjL+XOgndyJ+/EMAy6gt9LrMsW4pBDuJFRkMTV49WMCLLQkEXqukTCgUqE0dAXiarDCD0Lh8OZiPUEGQn+E7mOO3HIJcxF/4vJ0N9aRCYhHBS4f51C9++l3OeyLJObP4/Le5FtOwS6VsP0lDshVdvXh8vlsoiO6cgjJcefZHKFqaBgrsPa2trQNM1qrmVKHknTNKLR6K9sDrRhCtqwviBmPqT27t1LeXl5SqcPMuc+Go/HCQaD2Gy2Fc0fZ2ZmaG5uXhcTAODugiqemjpHQJsCsTAubIAkbBzLSd/JFhIFjvLycuvGGvYN0Td7maA+jx0dyaYmWE9Cwi17kLET1UKcm3mC15W9J+3POZz9RoqdhxgKv4BihMixbWIo/G00wkhG9kLHT0M3QkhCIEupBRBZeNCMELPxOnzhLxFRuxNdSEMwoz6NVHaRg0WfW1TAU4mozRhGBJftCLK0Oo0sj8fD9u3bl9G97bZ0b82g5nQ6V2RvL3eNXUvzLZNBzWyi3NavXR/WWlBSVZXm5mYCgQCnTp1K+R0ynUjNzCSKtGZ8Wc780dSqXQ8TACDfnsOerO20BS6j6PMLph6AIXBJORzOXn4UfzEWL15MaZLd/v2M24YSiynbAnNIAELCJXuQkZmIDdIwf4Y78h9M+7gPZr+OEudRRiIXUI0oObZSeoJfRTECOAyTARlDGApCyAhSG46ScKDoc4yGv4g/9mMk7OiaB01VkJ1hZqS/Y5NejV1KmElF1S5mI/9OVGvDJpWS63wdXsdL0lokCSFSRveTDU3a2tpSFnbX0r1d6Rl3Lc237u5uXC5XijzSWtnbt4tJ68N6i0nLNfRNSJKUsRik6zpjY2OEw2Fqa2tTDNWSZY4URaGzs9PSeF4Pc3aTswgDI6EXSQzVUBCGQDFgh2t7Wh4YkiRRUFBAQUEB+/fvJxQK4fP5UCdVNrOdEW8fbsmDJOJoJKbXEBIOyY2BzsW5J9npOcQuT/p+LAeyX8MmVyWj0UtohkK2XERX8PMo+jx2IwuQUI0QNgEStqVFH2QUbYrR8BcwDB1NcSJJEjbZhmYEGA79IzmOUwghE4w/w3jwL9D0GcBAEi7y3b9Boft3lo1Dmj6Opk8iS9uQ5fwlMcKMQeku7K6VY7tcLkseyWwsmObakUiE3NxcizW/nqZYKBRac9PkNhJYaw60UkPfRCZjUDgcZnZ2FofDwenTp1MIQ4vNHwcGBujv7+fo0aPr9jGRhQQC3JITpyRjoCMMmYgeTzJSWxmLDQ5NA9fJwUkqQsd4ftM4ik0hS85CiAjqQkEGIXAIJ0F1jv8c/yy/s/1jZMnp5/r7sx9mi/sEY9EGDDSy5SJa5j9FTJ/FprsBA82I4hT2BZPIpYhrfShaAF1x4nC4kCSBYdjRCOCL/hfZjkoCsacYC/7PhNSkkFC0CaJqM3H3AEWe30vZn6JeJhj7NxS1EUkU4nG+jrKyh63m4/z8PJOTk5ZcnimPVFBQYOneLm6wrRSDknMss6hnrsOGhoYQQmREHklV1dsF7QxgrcQis6Gv63pKQ9/cZybXYaOjowCUl5ezZ0+iHnNX0X7gagzSFq5H08Ni165dKfWptcAfn0tcr45s4oa2YLooLUi5xglr0ZSC9mI4nc4UqUJzmryzvZPt8S1o+VF67S1ISDhkFzai6CTkBAWAAR3BS0T1MG/e9IdpfxchBAeyX8t2951MxFoTk+1yPo2zf0Ncn0US9gXWtoZdOK3p2qtIFO+jSg9C2HE4nNZ+JSMLjSBz8bNk2/czEfprDENBEl4S3gQRpiNfwiHvJseZkEwxDIP5yKcIxb4CxsK1JuwUlr6b8vLfTakFLZZHMmtBi9dh18qB7Hb7EnPbqakpRkdHLf87Mwbl5OSsqW5oMrR/VafUNlRBey1BTNd1Ojs7GRsbo6qqaslIfSZH3YLBIHV1dciyTHl5+ZJitumk29HRsS4mgAmvzY1NUhC6sLRrJSEhCzgzfZajOfvWtF+73U552Q7u8T/AC/ozhNxjJAboZGyaDV03EJKGJAT94VZ6ww0U2DeRZ782KxwSwaXUeYRS51UTE6/NS8f8F4nrs9aosFsqRkYDUnU9jQVhlZDSTETtRhJuQEZR4gjJg2SLMBn9Bjsc/wuAsFLPePAjKNooiUWchwL3uyhwv3NN53453Vufz2cVf7KyslIMTZJHctMxE1zMzAwEAvj9/iWab2sJarf1I9ePtcSgUChEQ0MDTqeT06dPLykeZ2ohlzxGB0sNlswYZGrVrpcJYOKVxafoCLagG0nfQRggIkzFp/HaVs/wdblclJaWUjy2ib36Yfo9V9CYRSKhH2nHjqQnzJ0MoCN4np3ufRQ4NuGU0vu8QsceCh1XG38eOZuW+U8T1+eBhBFsvuMwMbUVAw1BcpNMQRIuZmI/AwM0PZEMO5wuBC5UY56Z2FOUuN9AWKljZP59C2wAQYxuwso5Cty/TZHnd5ccV1xtJ6r8HMOI4bSdxGm/M4URdT1Dk5V0b1VVXbXmm6qqFmugs7NzXZpvZvy5zdBeO8xiksm6SRcrNfRNZGoxpygKjY2N1jTQ4mK2yYqMxWI0NzcjSRInT55c93h3Ve5BCh1PMhUfSWnuI6DYubYmijmWOTIyQmXWSSK2ALPaNDY9hBCJnduEDbuwY2AQ0yO0zp+lwF5Ijq04rSI6QK59G7n2q74FblsurXOfIapPgWFgl7Ipc55gOvYUhqFZsSDBPFLx2IpR1BFUxY4sydjtNhJW3m5i2ihRrR9ZOBgL/C90I4wkPCQWcVGmI5/HIW8lx/mQ9fm6Psts+KNElWfA0BDCicfxKDmeDyCEIyVGlJeXp7BKr7WwSyf+QGpjwZRkyJQ80u0caP1YSw6kqiotLS3Mz88vaegn7zcTI/+mLq7T6WTTpk1LitnJMiMdHR3Mzs5SW1u7brKHEIKavEM8M3WRMKGF5r4ph+jgoHfHqvdnGtQNDw+zbfN2Trvv5bnYk4SUAE5bBMvMUbJjlxzYDBtRLUxr4AUqc+7GIaUvX+i1lbLXe1X/1iX/f3QGvsyc0gNAkbOCXFshE5EfoBuqpduvGbFEYy2iYsg6TqcrhXUvDEFU7cUwNKbCn8QwYkhigfEsElMjM5F/I9f5euxyYg0ZVxvxB34HwwiTsBrvJ67WE1fbyMv6n0iSZMm2ACneLENDQ9aER7LurRAibeKaee0kF8/N6ZH1yCMFAgEMw8iY8eCvKtbSVLtWQx8yuw67fPkyw8PDSJK0pHFnxh9d1xFC0N/fT19fH0eOHKGkZOWJqXRR6ixEIFB0BUQcnRi6YaAbMjly/qrWYybZxfRZ2rVjF3vkPXwzPMacNI2hKej2RFPNIGEA6ZCdqLrCQKSL8dggZc7V1bk8tiJ22u6z/n2y4C/oDf0X/ngjsnCzxX0fujbCePRHaEYMCQego+hzaDEPkjOOLC+u5SU+3zDizMd+gGHEr8YgQOBB0+eZi/63VdCOKk8Rin5pYduFnMGIEIh+DrvtKC77XUsK0KbKgVkLSvZAMq+vdElMJtFx586dlv+d3++npaUFwzBSiI7p5s+aphGPx39liUUbpqAthMBmsxGLxdLextQjisfjnD59etnRafPiWm8gM80fy8vLCQaDKa+ZpiO9vb0MDg5mhAkA0BroIqbHybGZRh4JhkBcV+gIdjOvBsmxrT55VxSF5uZmHIqL91V8mKfn/5P6+WdwL+g66pqOpscRcgDN0Pmvsb9bkBap5hXFv72qJAqg3PMqcm27GY2eIabPkWvfzWbnfbTOfYig2oPAhljoMGpGCKdUjGHMJb6xIRFX4siynHjIGQoBpQ4AVfcxGng/mj6HwA0IdCOKP/zP2OVScpyvTv3eaheB6GeJKecQwoPH8TBe97sXunhLkTwykhx0TN1bwzBSxnIVRbGKiulqvpms1Z07d6Zovq0lqN2WHFk71mqINDU1RVNTE5s3b17R6CwTCzld1+no6GBiYoKamhouXLiQYjJiLuTMhlommAAmesJ92ISMJGzoJAptdmwohsLT/ud5p+dNq96n6Tzudrt5x7Hfxq9O8t2JzzMZG8AlZYGeWCQbhopsDzITv8x/jH4Uh+SiKvdBTua9FpFmQcnEZvc9FDiOMBE7j6qHyXccINe2l7rp9xDWhrCRhcCGvmA+V+p8OcH4d9B1gaHpOB3Oq+fTkFB0P4Zh4Av93cLEydWFj24kGAG5ztdglxP+CoZhEIh+mmDk87Bgbhfiqzjtd1Lg/SRCLJ3OWI2hSSSSYJWahaV0FnaL5ZHWo/kWDoczJl/yq4rVNuB1Xaerq4vR0dFlG/rJ+11vDAqFQtTX1+PxeNi/fz89PT3Wa8msSFOrtqCggEOHDmVkMs4lO9jmzsOvjFpN74QXh0xboIPR6ASbXaWr2ufc3ByNjY2UlZWxb98+jmlHuTh3jhdm/hvViGE3nAhNIqZGkSQD2RbkSvhp+iLPkWMr4s6CX2Nf1olVf5cSZzX3Fn+amXgnBgp59gMIoGGmm5A6gGTYEUJCM2LYRBZevYYprQ5ZdmK3JYrZCSycB2zMx36AbkRSYlBiERdgNvotq6BtGAbToT8mrlwgkf47MIw4odjXAEFu1oeWHO9iVunihZ2pe2uyJRVFWbW5bbLvgsneXos80m0N7fXBXIetJgcypYdWauibyERTbWhoiM7OTg4cOMDc3FyK0W2yzJG5xgE4ceJERsa5AR4quZezM+eI64rlaYQACY0XZi+x17uy59BymJycpLW11TKXPmQconCukDP+Jwlq/QmzN8OGpNhQtDiSbGATIZ6f/grnZ77OVvdB7s5/E8XO1X0uQL7jIKcK/pqYPo1Awinno+gBQsplguplVMOwTOFs4aMoMRuOgoGUfZi5p0vejqIPouijSMKVkncKXOhGkIhah11OrMnmw3+PboQQeJGEWYyKEo5/iyzXG7HLqdIty3kgJeve5ubmWmsfU24vXf+R5OK5OT2YLI8ky3IKe/taz2WzNnB7HbY2rFVD+3oNfXOf682BTA+vUCjEqVOneOGFF6zjNO+F5ONub29nenqampqajLH2j2TvZqurlMFoD4KF72MAaCDChNUwOfb0m3eDg4N0d3dz9OhRq+D+7vjv8/WRf8UXG8VY+AzJkLHpCXklWRhozPMfYx/BKbk54L2DU3mvxy2v/tmbY99BRd4fpfxN1UPE9Elm4w2oRBLnNepls3gfkvM/CSqNCK6ux3SiSNjJdlQzE6kDlhJChJBQ9XHr35H49zDQkUTyufJgGAEise/jst+VtG2qbIspj2T6pAHk5uYSCoWsovJqzW2vJY+UnZ2dQnRcaV2frKH9q4gNU9CG1QWx+fl56uvrycvLo6qqasWHjDnGu9ZAZhgG/f39dHd3c+TIETZt2kRzc3NKMSkej9PW1sb8/DwnTpzIWEId0+MYRmLJkpogCHT0RIdulTBNM10uFzU1NdhsNqrFPbQEzhI3ojiEG0mWMeQgGBqSsCEbdjRdpSvwAsHZMPfl/gaFhYWrGsvKc+wnz7E/5W97s/+QtrmPENdnE2JNCGzCw76cPyKsnMMA4kocm2xDNn9fQ0deCEDzsR+i6fMIsqzilsCDbgSZifx7SkFbUbuYCrwD3QgikNCNAMHoF4iplyjK/iJCXL8DtlzQmZqaYnx8nCtXrgCJxdns7GzaurfJuJ7mmxnUioqKlmi+mcWo24u59SHdGJQcFw4dOsSWLVvWvc+VYDbuFEWxZI7MiYBk88f+/n4GBgYyxgQwMRIdBwxccmojS9EUhiKjq97f/Pw8DQ0NlJSUWJIpJfIm7sh/BT+Y+BIIA5vNnjhvxhygIZAxNIjqYc5N/yfxsMqdZa9ftTyGSy6g3JMqXXI4789pn/tLwuoQBhqScFDsupfyrHfSPH8Gwz6A3X51DN4wVEDHLe9G1SeJaVcsZqOJxCIuREh5gTz59QDE1QaCkc+RyD7dC/JLCjHleYLRx8l2v+u6x7+S7q0pj+T1ehkeHrZ0b1eSR1oO69V8CwaDt+PPOmFez6qqXregnU5DP3m/64lBfr+fxsZGtm7dyr59+/D7/Sk5kMlImpqaoq2tjZ07d7Jjx46MsfVVQ+NKqA+X5MAm2cAwEgxpA6JGjOb5jlUVtE0N2927d1NenigG5djyeGnhg2j6HJfmnsYpJ+4f3dAwjClAx9BlNHRm9HF+PPHPOMpc7PAcW/X3kYWDImfqdkfz/pq+4Bfxx57HQCPfUUme+lp6WgPkHczFECEMw4npaaATxSPvwylvZ1afYPlFnIyijVn/VrQ24solwJ6U89gwjAjh+HfIdv8ekrTyYnilhd3IyAgzMzNIkkRnZ6fVZEtH9zblvCQVj5LZ2+nKI91u6q8fq4kV6TT017LfxViucRcIBKwYlMyKDIfDNDY2kpeXx6FDhzJqgDyjziCEgUOyL9hYg12yoRs6F2YbeF3ZK/Ha0rv+hoaGuHLlCocPH6a0NBG7hBCczLubmtzTfGHoL5iKj+GWTXNLBcQMAiMRhySdgXALk7E+3rL5o+TaV5/zCSFwyVeboHYpm+P5f8NE9GdMxy8hDBvBsa0Y8wc5fLyY3lADmh5AJvGs0YwwkrBT5H4dAieJyZCrdpkJmI23RL6g6/PEtRYEjkXxyglGiJhybklBOxnJHkiQuOdHRkYYHBwEsJqppgfS9XRvF2MleaTe3l7a2trIzc21Pn+x+VogEECSpBSpi9tYPdKdEkmOC5WVldeUmzLjz2qn30wsbtyZzzZzHZZs/mgWvnVd5+TJkxlrqEFiSv9E/j6Gx7stPyME2LER1aM85T/LI2UPXHc/hmFw5coVRkdHqa6uTpkqKHaU8vs7PkR7oJHvT34OADtOdF1H1aLYbAEkDAxDENPDNM3/nNHoFd60+SPYxPpN4W1SFkfz/op5pY2xmUZGBmfZt+VVbNuyi4BSRM/cn6AZAYQhJWSfEBS6HsFt201Y3keAn2MYulUXSjQbdFy2q8oBmu5f/rxgrPiaiWRvFsMwLNNzIYR1PZoxKCsra1l5pJWwWB7JzLHMWpAQImUdllyH+1WXHMmsxeY6ka6G9tjYGOfPn2fbtm0cP378ugu/tSZSuq7T2tpKf38/tbW1bNqUMAEzRwvM5Kmuro5YLMbJkyczeiHtzdqBXZKJG4nCtWEY6IaKoscodhSSb1/dWFMgEODChQvk5uamnLcS51buK3wdEjIxI0zcmAdDQRIyTsmNTbbjtLmRJRsTtg4u97fzi1/8gkuXLjEwMEAoFFrT98t1HKaq4DPszPpNSl2voDzrbVQVfJpC5ykIV6GrINvURIHdMNCNOAgodCVGRhRthARTa/FlLKPoQ6nfPfovC4wAN0K4FqRM7MTVRqLK06s+djPo7N69m7KyMmRZZufOnWiaRmtrKxcuXODy5ctMTEwQjUaJx+OoqppiVJPO/nft2kVtbS133nknW7dutZL15557jvb2dsbHx1EUhXA4jGEYqx6rnJ6e5m1vexs5OTnk5eXxrne9a8kEwmJEo1Eee+wxaxzv0UcfZWJiYsnxL/7vG9/4Rsp7nnnmGaqqqnA6nezZs4cvf/nLqzr2TCNdU0hN02hubqa/v58TJ05cs5gN61vIBYNBXnjhBWw2GydPnrQkIMwYpGkaiqLQ3t7O6OgotbW1GS1mA+Tb8xaKr8aS1wrseava19TUFJcuXWL79u1L9L8PemvY5TmCaihEtCAxfQ5QEULGJXtw2F04ZBcGBk2hn/H0M0/R2NjIyMjIqiZ7FiPLtpOags9xLP//cSj3f1Fd8Bn2Zf0Pmhs70Odeik12ohNEN+JoRgTNCOOWd5LnvHtBHmC55NggIeN09dkUif8Y0IHkkd2EnEEk/v1VH7c5Lpibm4umaRw8eJDNmzczOztLXV0ddXV19Pb24vf7icfjKTEoHZiabwcPHuTOO++kqqqK7OxsxsbGOHv2LBcuXKCnp4fZ2Vl0XV9TMel2/LmKZPmq68WL+fl5zp07h91u59SpU9dlrq5n3HZwcJD6+nr279/P/v37U0gCyQa0g4ODtLW1cfjw4SVySOuGYSwws0FGSpjVJt13JosoHQwPD9Pc3MyhQ4esYnYyavNeSpYth5geIa5HUY0AkFgcuWxu7JIdCTuqrvLTvn+jtbWViYmJNfu/mHDJJRzM/TCni7/N6aJvUxr7IN3NcQ7ur2RH7geRhAONeVR9Do0ANpHLtuwPIITAIe8CBIZx9TwkFnEaTtvV4pCqDWCgAosXnXYMI4amr65B6XA4sNvtzM/Pc+jQIaqrq8nKymJ0dJTz58/T3NzMwMAAs7OzxGIxFEWxcufrQQhhGdtWVlZy9913s3fvXgzDoLOzk2effZampiaGh4et6ZRgMHg7B1on0lmHGYZBX18fDQ0NHDhwIC1ps7XGIEVRqK+vZ2pqitOnT1uFzOR1mFlMmp6e5uLFi2zZsoUjR45ktJgNMBWfRjcMnJITj+zCLbuwCRuykFENjRll7rr7MAtJPT09VFVVWcXsZMjCxl35DyELmagWQhcaSAkJEiEk7JILSZdAkwgrAZ7q/2ZKk3E9sElZbPE8woGsPyfS/Wrk0HFqqk+Q497Hjuw/xyGXoBNFJ4JNymOb94PkOGqwy5tx2Q5jGDErDiXWbWFkKReP/VTiA6z12tJ8EljiZ3I9qKrKyMgIu3fv5v7777eeUd3d3bzwwgu0t7czMjJCKBRadQ5kyiPt3buXU6dOcerUKUpKSpidneXSpUucPXuWzs7OhBeDqhIIBCzCyWpwOwalIp0pkXg8zqVLl/D7/Zw+ffq63glmLFhuHXM9zMzMcO7cOQoKCqiurraKiGZBO1liJBwOc+HCBZxOJzU1NRktZpsYiAxhEzJZsgePzYVX9uCyOTGAlkDHdbfXNI2WlhYmJyc5ceLEshI5spA5mlPN0exTgIEuVGSbjGyLwoJQkNBtGKrA0GAi2keT75k1nd/lIIQgNFXAaNtmju74NbZt2QVAtr2Cfbn/RKHzARzSJry2o2z3fpht3vcDkOt6DTapEN0IohtRdCOGbswjCTf57rdY+3fYji8YXyZP+SSK4w57+iSFSCTC5cuXKSsr47777uPuu+9m27ZthMNhWlpauHjxIl1dXVYtaDU5EFwtnh85coS77rqLo0eP4nK5GBwc5Nlnn+XSpUv09fURCAQsDf9f1XXYhmFop2OIZGoXDQ0Ncfz48bQLN2tJpOLxOA0NDWiaxunTp1M6rqZW1+zsLE1NTeTn52ecCQBQ5izhjvwanp2+QFgLIIsYBjqyBLIIMxobZatra1r78vv9lvP4covNE3kvZZfnEJ3BeiZi3QxELuIQCRkPE7KwoQuVPRXbCEenmJ4fZcwf4sqVK7jdboqKiiguLiYvLy/tB7pLLqHc++spfxsdHeVyh8r2I28lIH07yZBAkOe4h2L3GwCwy9sAI6UTl4CGQ9qRss+Y8sJSpruwYRgqMeUibsf1O5rLwZSZSdboM6+NqakphoaGLEMTs2NnJjyrYQ2spPk2ODjIM888wyc+8QkAuru7KS4uTruY8La3vY2xsTF+9rOfoSgK73znO3nPe97D17/+9RW3ef/7388Pf/hDvvWtb5Gbm8vv//7v8/rXv57nn38+5X1f+tKXeOUrr2r2mXp4AH19fbz61a/md3/3d/na177Gk08+ybvf/W42bdrEAw+s7bfIBK6XSJlSGZIkcccdd6SVrKx1IWfKHG3fvp29e/em/KamZmk0GqWlpQXI7GhtMu7Ir+b5mQtE9RgOScYghkYcSRJs85SkzXgYGRmhs7OTQ4cOWc3BZNiEjUfLfpfW4HkuhxqZU4YIqCM4patxSAgJm2THkBT2V5UzNNtCi78BLheS7ym1YtBqXeuFkMl3VAILiXL9Jex2O1UH3sWcuo2x0BeJ65MIJHKd97LN+0dIwokknLhsx4golzCwW9JJifF/D1mOO6zPMAhjYFgjttZnI9CNaycPK8E0TKqoqLAW+qvRvV0Na2CxuW2y5tt3vvMdzpw5Q15eHhMTE8su0pfD7fizFNdrqo2NjVkGQ7t27UrrOl/LlJrpTzI+Pk5NTQ35+fnWa+ZCzixmd3V1ZXy0Nhk2ycZB7x6aAwmpLwQYxFENBQnBQe/KjD4Tpmnd0NAQVVVVKd8nGfn2Yt6++YOcnfkR3eEWDEPBINHcFwiEJJCQEIaO4plDVee4MHYGtd9gs72CTUXbKCoqWrP8jiycDA0n2JvHjh1bkK/bhEsuxx/7EXFtHJdtF0Wuh3DKiWZqjvPVzES+iqr7E8xHJHQjihB28l1X8ytZKkMgw5KitgrCjiStTirP5/PR3NzM4cOHLS3RvLw89u7da+neTk1NMTw8jCzLKczJlcxtV4LNZrOMK/ft22fJI01OTnL58mU++tGP0tfXx5UrV4jH42nrTt6OQVeRzjrMJG1MT0+vWAxZDmuJQabMkdvt5tSpUylsNCGE1dQ3DIPh4WF6eno4dOjQEl3bTKHEWYgsJDRDw7agMW2goxkKNmGn0LF8TDGh6zptbW2WUe61Cg+Hs2tRjTjPTn+foDaHjJJoqkmeRDNv4Z6J61GmtQEu9PyYsDxOrruEfbl3UVa8dc3eBbFYzDrvR48etda2ec67yHGcIKQkfEey7EeQxVWfjdKs/8Hw/GOout+aupWEi9Ks/4UsJchekvDitN25oOGvWzkThEE4cNrvTfs4Td1kU2IPuK7ubbIH0mrXYSvJI3V3d3Px4kX+7d/+DYCuri6rsJ4ObsegBNKVHDGnPHNycq45oZ8M8/fVNG1VDQdzQnr//v1s3759yT7NAqUkSVY+vG3bNnbv3p3Zpn4S7GLBR2MZ2UXHdRjSpg+KYRicOHHiujHi5UVvJqqH6Qm3EtMjOISCEAKn5EFK8LQxdAPFiNEyepbhoSs4cjRKs3ZyuOQlONfgsQQwMDBAT08PFRUVKV4tAB77fnbYP7LsdjapmK05/8xk6O+IqI2Ajst2gCLPH+KyXTX0znK+mUj8++j6DIbhINFgU5CkQjyON6R1jKFQiLq6OkpLS9m3b19i4mWZCQ+fz8fg4CBdXV3k5uZaMcjtdlsTJOn6jyTLI8ViMWsdNjg4yOc//3nq6uqoqalhbm4u7WfziyX+CCNT7ZR1QtM0hoeH6evr4/Tp00teVxSFpqYmIpEIlZWVq2JCP/vssxw4cCBtXetAIEB9fT25ubkpD3PAYoeMj48Tj8eXLTZlEpqh8b3xH/Pk9BMLo1wCCRmEgUfy8KHdHyLffu0kanR0lI6ODovBdz2Mx3r5j9GPJT5JXH1QqEYcm9DJlmVi+vyCpreNg1mvZLf6IFNTidFQXdcpLCykuLiYoqKiVUmTmEHs+PHjFBYWEla7mY39AsOIk+2oIdtebRWvVd1P/+wb0PTZpHG3GEIINnn/imznK65+p9mXoOmTC8zsBBKXfhSv67fI8Xwg7WM0t+3p6WFkZITq6uprXo+m7q3P52NmZga73b7sSFy6QW0xJiYm+PSnP83f//3fk52djdfr5dlnn2X37t3X3K6jo4NDhw5x8eJFampqAHjiiSd41atexfDw8LLXytzcHMXFxXz961/nDW9IBP3Ozk4OHjzIuXPnOHUqwcIQQvDd736XRx55ZNnP/tCHPsQPf/hDWltbrb+9+c1vZnZ2lieeeGLV5yATiMfjtLS04HA42LdvqeHq9PQ0jY2NlJSUrEobNhwO8+yzz6YdoA3DYGBgwBpHXfw7GIbBs88+i81mIxwOk5+fvyROZRrnZur4xuh3UYxZWBgpFUJCEoKXF76ch0sfvub3MRs/x48fX5KcrISu4Av82PdpZBwpiZtixHBJ4BBxVCMOgCzs7BcPkT19FL/fbxU/iouLKSgoSPvcRKNR6urqyM7O5siRI9ZvbBgqMX0cWWRhl1LjbVTtZHj+99D0GazxWmGjJOtPyHP9mvW+UOw7zIb+HIGLZOM3CON2vJZ87/9J6xhNmCPLlZWVKxbnzM8wF3ZTU1PMzc0ta2iymoXd4v1fuHCBD33oQwwMDDAzM8Ojjz7KN7/5zWtudzv+pMLUfv3FL37B0aNHl9wnJrNvcHCQY8eOrWoSo7+/n+npaaqqqtJ6v7noicViVFVVpRRnzevp7NmzFBcXEwwGkSSJysrKGzpqPRwZ4+/7Pk9ICyKJMCbDTxKCzc7NvLf8vSvmQrqu097ezszMzKrzxxdmvssLs9/FtmhEXjGieCUZg+ACe9xAxsH2+VchJjbj8XisHOh6+vMmTObrwMAAFRUV17yvFyOqdjEZ/D9EtQ7AwCaVUOR5n2WClNi/jm/+zahaB+AAZEABVNyO16wqBk1MTNDa2sqRI0eu28AydW/NAnckEll2YZdug20xYrEY3/zmN/ngBz+Ix+MhFovxpS99yYoRK+F2DEqFqqrMz8/z3HPPLZuvJDf0KysrV9VAv3TpEqWlpWzbtu36b+aqzNGWLVuWFAfNnKKvr4+SkhJisRjz8/NUVlbeUEM+wzD4297P0h3qRxYgRBSDxARtlpzF27e8jeM5x5fd1lzDappGRUVF2udOMzRmlSmenX6c/kgT9kVeG4oRJUcWaEYIc0pD1l2UjL6SUscBKwala25oSiuYki2rvRdVfZr52PeJaz3Iophc10M45J2p79H6mQq8C12fXJAMkEDYyHG/H6/rHWl9zszMDI2NjezZsyetayrZA8nvT/ifmPFnLfJIi9HX18dHP/pRfvjDHwKwdetWmpqarsuWvB2DUhGLxRgcHGRyctI6H8lYS0MfEvfuT37yE+6777608hTDMOjq6mJkZCSFMGJC13UuXLhANBq1GijDw8McPnx4WcJOJnFxtokvDH4dWcjIkoRBDMOIo2NQk1vNb2x5W0KabRHM+O3xeFa9ZpyMjeBXxjnj/xJhbS7FS80wDDQieGUNzYjDghSITfVyMPjrbCtMxKF0z3tPTw/Dw8PrjueqPoVhqNik0mWvE0XtYD7ySWLqRUDgtJ0kx/NH15Q8MhEMBqmrq2Pz5s3s2bMn7dhq5kDT09M4nc51ySMlQ9d1vv3tb/PRj36UWCzG9PQ073//+/n4xz9+ze1eTPHnl0JyJBgMcu7cOYQQnDp1atWyHqthBkxOTnL+/Hm2bNnC8ePHlxSzVVVFCEE8Hsfj8TA4OMj58+fp6emxHI4zCVnIBPUZZCHjFE6ckhO7ZMOGjYge4ezM2RW3NZM+k8GXTjEboNSxk82uveioaIaCbuioRhwDFYeIENMDCGQkbOiGRlvwB/g9TRw+fJh77rnHWgAPDAzwi1/8gosXL9Lf308wGFzx/BiGQXd3N319fVRXV1sPD49tD5uz3sUW73vJcdSmMLFtUiFbsj+VGLcVCgYxZCmbYs8fpxSzATyO1yyMl6jW50EMkHE5Ut97PZjHmk4xG67q3lZVVXHfffdZbP7e3l7Onz9PW1sbIyMjBINB4vH4qkdSSktLecMb3kBOTg4+n4/HH3982VHqxTh37hx5eXkpScPLXvYyJEni/Pnzy25TV1eHoii87GUvs/524MABtm/fzrlz51Le+9hjj1FUVMSJEyf44he/mPLbnzt3LmUfAA888MCSfdxMrMROMgyDwcFB6urq2LNnT0qhMx3IpmROGr+nyeDp6+ujtrZ2yT1rsiK3bdtGIBBAlmWmpqaor6+nv79/zfI/18Pp/Gp2ZZUgC4FN2HBIDhxSolH1c//PGY+NL7udWUgy5VDSLWYD7PJU4ZUL0Igv6NgaqEYcCQWJwML/25BImMV26P9FwT6d++67j8OHDyNJEl1dXTzzzDM0NDQwPDxMNBpd8fNCoRAXL160GgTJv7EQNlzy1iXFbACX7QDluV+n0PMeshz3kut6lG05X0gpZgO4HQ9il/cBMQwjjGFEMQgjRA5e92+lfV4g0fjr7u6+JtP06rELS/P2xIkT3HvvvZbJbXt7O+fPn6ezs5OxsTEikciqx3KFEJw8eZKTJ0/y5je/mbGxMf7kT/7kutvdjj+puBY7yRy7Hx8ft8aeV4PVyB6Z+ZYsy0vkTEyJEZfLxaFDh5ieniYWixEKhWhvb2doaOia99h6sNW9iT/d9Xvk2CWEWDCnlWzIyIzHx/nqyFeX3U5RFBoaGggGg2vyODngvRObsKOQGKVPxCEFGQWdeQCkhXxIQ2Eg9wdU3rXfYtA0NTVx5swZWlpaLImw5ZA8gbiYEZ8OXLb9bMv9CjvyvkN57r+zM+97KcVsSDQhC7z/gN12mARLOwzCwGW/n9ys/5H2Z42Pj9Pa2sqxY8fSmsYwdW/379/PnXfeyR133EFpaSlzc3M0NDRQV1dHd3c3U1NTa8qBnE4nb3/723E4HDzxxBM8++yz3HHHHdfd7nYMWgqbzbZsvjI9Pc25c+fIyclZ0zTYamJQsszRYmkyMwZt2bKFQ4cO4ff7mZ6eRtd1+vv7GR0dXfEeWy+EEPzO9rdxyLsHRAgDBUGiqRbVI/zr8L/SFmhbsl0kEuHixYvIsrxqGQJZyBQ6SjmW8xIEIrEWWzCgU404dhFFNUIIJARSwrxbjjFd/iSlm4uYm5vjwoULPPfcc3R2djI1NbXi7xAIBLh48SLFxcVWDrVa2KQCCty/QZn3YxRn/cGSYjaATd5Bcc43yXb/IW7HK/A4f42i7C+mXcyenp6moaGBvXv3pt0gMT2Qjh49yr333ktVVRVer9eSMG1qalqzPBLAzp07uffeeykvL8fv9/P5z38+rdH/2zEoFSsZ05rPx7a2No4fP75qBrRZJEwnBqmqSn19PT6fj1OnTqUUs5N9iyoqKti7dy9+v5+hoSFkWbZM1dcrQXYtVOUeoTr3GJqhohmz6EYYAxVJaDTOX+JzQ59DM1K/5/z8PBcuXCA/P39JbSsdlDi3cNBbnYhDQqAl1VJUYjhEBM1QkLAhSzKykNHtYYbyfsjExATPPfcc586do7u7e4mhrwmTMGquF9fbnLRJRdjlshWvE7vtIIXZ/0JZ3i8oy3uGwux/TquYHQgEuHTpElu3bk27mA3g8XjYvn07VVVV3H///dazzZRHamtrY3h42KoFrVYeqba2lvLycj784Q/T3d3Nr//6r193uxdT/NkwkiOwfMIzOTlJc3PzupjQ6SRSy5k/Ln5dURQ6OjqsUbucnBzi8bjFvh0YGMBut1NcXExxcTH5+flrSggWoz/Snxjrl5LlMhKyJ0ORoWW3MceFp6amqKmpWZWuoBCCV5f8AT/1fY7BSCsacWRho8yxjVnlCgL5qgbsQjGpNfADDmU/kCJov2fPHqLRqMUM7Onpwel0WowB8/yYQczn81FTU7OqBafbfpQded8ipnWiGxFctgNIYmkS4XW/i5h6kbjaBIZCQsJAItv9XhxJRgHXg/lQnZiYoKamZtVaRabubVFREYZhEA6HrfPT29uL2+1ediTueqwB05DN4XDwkpe8JK1jGR8fX1IYsdlsFBQUMD6+fIFyfHwch8ORMjYCiaJ68jYf+9jHeMlLXoLH4+GnP/0pv/d7v0cwGOR973uftZ/FC+HS0lLm5+eJRCKWVvTNhs1mS9FjNguyk5OTVFdXr6oga8JMHHRdv+ZvmCxzdOrUqZRzkJxEDQ0N0dvby5EjRygrK7PuMXOs0mQGFhcXk5ubm5HpkagWpS/ciyQS+rXWd0NGQ6Mt0EaZM3XMV1VVmpubicVi1NbWrpq9aZccvLbsj/nR5D8yq0wkHKmxUWgvIKyNp8QhybBhoNER/Cnb3JWWYYZplurz+RgbG6OzsxOv12vFINMx2iysbN26dU2jgna5jCLPe6/5Hkl4KMz+AsHo54jEf4RhRHHZ7yTb9V7s8rWnKZLR19dHf38/VVVVa0r4FhuazM3NMTU1xdjYGJcvXyYnJ8eKQVlZWWmzt0OhEJs2bbJGfq+H2/FneSyWHAkGg9TX15OVlWWZEa1ln+kkxlNTUzQ2NrJt2zZrhNJEsvnjzMwMXV1d1mit+RwbHx+nq6uL7OxsKwalywxMB2E9QFQLY8N2dWpDgG7o9IR7mIxNUuK8ek2ZJtimnmU6o8mLkWcv4ZXF7+WnU58npoeBRAHbK9tRFrxGTEiGjGHo9EbPUFv6NkpLS617zOfz0dfXR2trK3l5eVYMysrKsp4zs7Oz1NbWrlmuJKGnvf2a77HJmynK/ncUrRlNn8Am715V/BkdHaWzs5Pjx49fV7d0JZgLu+3bt6NpmiWPZJrbJssjuVyulPznejEoJydn2Qmr5XA7BqXCbOpD4vltjqOb49LLjd2nC1Om6Fow1y1jY2PL5lvJerWxWIzu7m5ycnI4fPgw0WiUyclJBgcHaW9vt+6x4uLiNd9PyyHHns3JgiN0R5oSxJ4U4zGDn0z9hMPZh633BwIBGhoaKCoq4sCBA2teE+50V1CT+xB1cz9EJTGZJhDYhb4gp5i0X0MmpgdQikap2HpXioF0R0cHiqJQUFBgxSCn02nJd6wkS5lpyFIh2e53r3q7qakpmpubOXDgQNokrcVYvE6NxWJL5JHM+JOXl5e2PFIwGMTj8ZCVlcX999+f1rHcjkFLsbhmoygKzc3NhEKhNZEaTaQTg8wJBZfLtUTmaLH5IySeh0II7rzzTuLxuPUca21tte6x4uLijMpBykLm3dvfghiK0RSox1igGEpCQjd0OoIdNMw3UJObKFKa94wpzbOee7sm99WMRi8zFG1HXyiaSxjIgoQUm+UPJGEYGvNimD3HN5HFceseq6+vR5KklClaSZJobW0lEAhQW1t7U689SaR/PZlrRTNOrhWyLFvXRvI6NbkWlDxFmw57W9M0IpEIXq83LVIjvLjiz4YpaJtdOXMhZ7KLe3t7OXr06Lo00a7XlTNZkVNTU8tqwum6TjQatVxrT5w4YRVnHA4HmzdvZvPmzVbSMDk5SWtrK7quWzfsYjfS1SDPlsdUbCrlb4ZhIAmJ3GWMIVVVpaWlhWg0mnKsq4FHzuGRsg8yq0wQVKfJs5fRMPdN5pTuJcFQIAiqV11hNUMhqI7ikLy4XYVs27aNbdu2oWma5Vhvnp+CggJLKH+tQSxh1nTomu+RRDZF2V8iqjxJTKlDCDduxwOrLmabTYJMBFwhBFlZWWRlZbFjxw5UVbVG4kzd2+SROIfDYQWzxUEtHA5bSfuHP/xh/t//+3/X/OyOjusbR6wHf/Znf2b9f2VlJaFQiL/5m7+xAtlGhc1ms1jOsViMhoYGdF3n9OnTa/69k7XbViqomONLOTk5HD16NOV9ZhKlaRpdXV1MTU2luFK7XC7rHku+hszRYPOhuRrpjfUiGo3S2NiI3W6ntrZ2TYUkgGLHNn59y18zGrtMVAtS7NjOL/yfJKSNpWhRCyHQDYOg6rP+NhPvJaCOkO3YzM6du9m5c6flGG1qmkmSRE5ODtPT0+zatWtdCUo6kKUCcj0fJtfz4TVtb0q3rLZJuRKEEJYmm9mANM9Psu6t+Z5rLezC4TBZWVm34886kcxOykRDH67f1DenUC5fvsyhQ4eWGN2aMUjXdUZGRrhy5UqKFn7yc8xs8k9OTtLX12c1sVfrr7Ec5tX5hA79ouHChA69zrw6bxW0zUJSYWFhWqZ118KerBq2uQ/RF25CMWJsde3nv8f/FLGIZJQwz4WwNgNAVJtjKHKGmBSgaNsB9uw5STQas0gQpv+IWQyrrq7OaPFtJQghcNiWl0a4FkzNflMSLhNYbmFnnp+enh48Ho+1sLuW7q3JaPJ6vbdj0Dpg5gjm/b7ehn7yfq8Vg5Jljk6fPr1kMsSMQZDQTm5ubk5hyNntdrKzs9m9e3dKk//KlSt4PB5KSkooLi62mtjrwVBkCElIKca0iRxEZzAyaP3N9C7asWMHO3bsWNfnCiG4s+CNHPTeSV+kEYBi+1Z+4vsYyxlTCwQRbRbd0BiNn2dYOgulBuXlp8hTq5iammZkZISOjg7cbjeRSOSmFbPXiuU0+zMBp9O5rO5tsgdSfn4+BQUF15RHCoVCt9dhGUByLchs6Hs8njU39E1cLwaZzP/Nmzezf//+lN82OQeSJIlIJEJjYyNut9ta43g8HstDYjGRJjs724pBWVlZ677HJCExFhtGILAlN9UXNP6b55upya25rnfRamGXnLyu7E8ZiDQzHO3ELpx4ZAcvzPwri+OQQGCgE9XmkW0w5PoOk8XNOEpyKBN3Y5st5cqVK0QiEWttUVFRcUsJJdfCcpr9mYAQAq/Xi9frtaZnzSZ/Z2cnuq4vqQUttw7TNI1oNPormwNtmII2XA02iqLQ2trK/Pw8J0+eXLfJ0LWCmFm0MgxjifmjyUian5+nubnZ0lVdqSi0mH07Pz+fwsrJz8+npKSEoqKiVd2wd+bfSXe4G9VQkVlgTxgqkpA4lXdq2e9jt9upqalZV/AHyLOXkmdPdFDy7VsSWpHLmMDl2xML4K7gf9My91XiCyZnpc5KTuV/gCxbCbIspxh2zM7O0tbWRiwWQ9d1WltbrQZAJgL+YgjhwO14ELfjwVVvaxiGpcFZU1NzQwKuzWajtLTUYnUFAgGmpqaYmJjgypUreL1eK6CZpndmQAuFQtY5++M//mN+8zd/85qftWvXLsrKypicnEz5u2kmt1KyWFZWRjweZ3Z2NqU7NzExcc0E8+TJk/zFX/wFsVgMp9NJWVnZEkfciYkJcnJybtnDLFlyZG5ujvr6egoKCq55z6cDc/G9UgwyzR/Ly8uXjC+ZMSgWi9Ha2oqiKJw8eXLFJlXyNZScmHd1dRGLxSxt++Li4lUZBrlkF3s8e7gcvpxiAqmhIRApjKRgMEhDQ4NllrveKRVJSGx1HbD+XejYyUSsK+U4DCPhL1Bo30lUm+M5/18yGW+2tilyHOLuwo/gduSnmKv29fXR19eH3W6nt7eX2dlZKwbdSD3g1SJZs3+1UyyrwWJDE1P3NtnQxCxwLza3DYVCeL1efvd3f/d2/FkDkiVHFEWhp6fHmsRY70LkWk19Xdfp6Oiwpo4WS12YjEhVVenu7mZiYoLq6uol7AwTi5v8ZmLe0tJiNflLSkooLCxcdaNri2uLxUIycyEAHR2bsFlTItPT01ZMzVSBxil5OOC96u9S5NjJWLRtSRwCg0L7DoYjZ3nO/3/RURFIGGgUOQ5xf9FfWg3IaDRKfX29JZFw/vz5NfuP3Gikq9m/HiQv7JLNZ6empq67sAsGEzmn1+u9nQOtA2YeFIlELBLPehr6Jq61DjPNHz0eD6dOnVq2oW+yIkdHR+nq6uLAgQNLGm8mkpv8ydrJJjNwvU3+bFv2wlqIJbHFK3ut41yNd1G6KHBspsCR2J9mqLjl3IUGWlLxbcHLo9C+g2f9H2Mk+kJCpxroC/+cTc4a7tn5v9m1a5dVtM3OzmZoaIixsTEr/txMEsT1sBrN/vVAkiQKCgqs5k2yB9Lg4OASDySzEGfmQGZB+3YMWhuS12FmQ3+5ibG14FoxaGhoiM7OTg4cOLBExmZxMXt2dpampiY2bdq04nEtbvKbDbbe3t6MNvlXgkFizTA4OEhlZeW6mpGLIQmJnZ4KdnoqAAiqPi7MfhnD0BdMpxPQ0bELJ5LQ+fHE76EZCgYaIJiijZ1Fr+DEzvdx6dIlNE3D6XRy4cIFsrKyrHVYpqaM14vVavavB3a7PaUWZNYSx8fHU2pBBQUFeL1eq8GmqiqRSISsrKxfyfizoQrapnbb+fPncTgcnD59es0uzclYadw2EAhQV1dHXl7esuaPmqZZbOLVutYuHmkyR3InJibo6uqyxt6Li4ut4uRKqMypZCQ6wpP+J1FRwQCbZOOR0kfY6bnKKDSTwkwVkhZjb9Z9NMx/h6gWwDBEghW1UNA6nvM6ekI/oW720ynbTMaa+LnvT3io7PPI4upvqaoqV65cscZ6VFW1kgYz4JsBLVPSLWuFYRiWM3lNTc1NKXQJIcjJySEnJ4ddu3alMEvb29sRQliLOiEEg4ODxOOJMUTzuroeTp8+zezsLHV1dVRXVwPw1FNPoes6J0+eXHab6upq7HY7Tz75JI8++iiQcPQeHBxc1szVRGNjI/n5+dbY1enTp/nRj36U8p6f/exn19zHzYAsy4RCIS5cuMCePXvWzapJ3u9ymnCm+eNKMkeaphEMBmlubiYrK4uKioq0i0DJifm+ffsIhUJMTk5art25ubnWtZKOdM4jZY/wqf5PEdMTDSjzvLy08KVLCknbt29flWHLanA4+0G6gk+hGTEMw4wLOrKwcyTnVZyd/n/44q0p2/jjXTzn/0teXvJ31t/GxsYYGBjg2LFjFBcXL5FNyMrKss5PJlhda4VpBmiOYd+oYvZimLq3pvZtsqGJybwtKCiwDDgHBgbQNO12/FknJEliZGQETdMy0tCHlRdy8XicxsZGFEVZUrRKZkWaJIN4PM7JkyfTTjYXs29N6Y2enh5aWlpSRnLTea4WOYqozqnm0twlNENbyEESI/d35d+F15bQRG1vb894IWkxKnIeZTzakciBDAnTpNIt57PNXcmPJ96DzsLEIYlz74930jD3r5zIf5917l0uFydPnkSSJGvh0t/fT1tbW0qM9ng8tywGDQwM0NvbS1VV1YqNjBsBU/e2rKwsZWFnNvmzs7PJz8+3ZMKEELjdbnJycm7HoDXAkvCSJBobGyksLFx3Q9/ESk2165k/moUkIYT1HEzHO8JE8jVkNmlN5puiKCkNpHTXmzW5NTzhewINDWkhBzFINNXvyL+D3t5ey9g1U5MMy0EWNipzH+Xs9L+iGcpC0TpRzN7kOkREG2Ek+sLC8V1dA4/FLtEbegLXTAVXrlyhoqKCoqKiJecnHo9TWFhoEbVuVZN/fHyc9vZ2K1e7mTA9kMwp4+npaUsWIB6PW+v8SCTC4OCgFYtu50FrhyRJxONxmpqaMtLQT97v4hik6zpdXV2Mjo5SVVW1rPmj+Z8kSYyNjdHR0cH+/fvZunVrWp/rcDgsoog5qW42+Q3DSJnkX02T/1jOMZ6aeiqlqa4bifs8fz6f0emEFvWNXjN4bcXsz3opncGfoRmqxcwGwbGc19I6/29oRjwpBiVypb7wT4n1lZPn3mPV4JKb2I2NjQBrPj+ZwvT0NI2Njezbty/t3zxTWE4eybx+WltbkSSJ/Px8VFVldnYWv9+PzWb7lYw/wsi0i+EaYTrE1tfXs3Xr1owWZFtbW3E6nezde1XsfXJykqamJnbu3LmkUG2yIk3jrUyNaphQFMUayfX7/WnrbvvjfjqCHchC5pD3UIrcyMzMDE1NTWvWgE0X/ng/v/D/E/54PwBOKYuavLdw0PsA3xv/DULaxLLb3VHwIXZ4EtrOsViM+vp63G73sk67yayuqakpVFVdU9KZCZjM8WAwSHV1dUZ1sNZzTObCrr29nbe//e3WdMCPf/xjjh07lvbv/+CDDzIxMcG//Mu/oCgK73znO6mpqeHrX/86kBgxfulLX8pXv/pVTpw4AcB73/tefvSjH/HlL3+ZnJwc/uAP/gCAs2cTBqXf//73mZiY4NSpU7hcLn72s5/xwQ9+kA9+8IN89KMfBRI6wEeOHOGxxx7jt37rt3jqqad43/vexw9/+EMeeOCBTJ+ytBCPx7l06ZKl5b5WfdDl8NRTT6XIhJijvD6fj8rKyiVFAjOBMhtqqzWfuB6i0agVg6anp9PW3fbH/ZyZPkNvuJdsWzan8k5xNPsoQgjGx8dpa2u7JnMqUxiNtvHc9GeZU0YByLGVcWfBu8m1F/P98ZUNFl9V+lny7Dvo7++nr6+P48ePL8tcMGO0+d9ivbeblVSZTuvmyPdqNftvFJJj9Gc/+1m+8pWvoKoqjz76KH/3d3+Xts7q7fiTitnZWc6ePYssy9xxxx0Ze9bNzc1RV1eX4q9gjvJ6vV6OHTu2IisyHA7T1NSEx+NZIoe0HpgjuT6fj7m5ubR1txVd4XuT3+PczDniRhyn5OTegnt5ZdErGRoYor+/n2PHjt3QQpKJ3vA5Lsx8lcCC1NEm12HuLvgdxqMXqJv7F8yFWzIk7Dxc8O80Nlyd+lsu50v2H5menr4prK7lsF7N/huF5IXdO97xDvr7+xFC8IUvfIHXvOY1aRfeb8egqzCNFVtaWti2bRuHDh3KWM7R3d1NJBLh6NGj1t/MyZ+DBw8uKRQkF7PNPDwSiVBRUZERWR7DMAgGg0xOTuLz+QgGg+Tm5lqyANf7jLq5Or42+jUUXbGkR45kH+F04DQz/hkqKyszIguWzvfoCP6EhrlvE9ZmkYWdvVn3cjL/N3jO/1HGY40sjUOCbH0X3p43Lpt/mvtNjtHz8/OrImJlCqZm/7FjxzKak68XyfJIdXV1vPOd70TXdcrLy/niF7/IXXfdlfaEze0YdBWRSIT6+nqmpqY4ffp0Rp85586dY+fOnRaLVFEUmpqaiEQiS+S+FsscAfT09DA8PJyx/CK5ye/z+QiHwxQUFFiT/NdrIAXUAJ/o+wT+uN9q7AOU6qXcF7yPmsqbQ8AD0A2Nxvn/pHX+h8T0IB45n2M5r+Wg9+V8c/Q1y29kSJTGXsr9uz6wbD5jTvKbZMdwOEx+fr5VC7oZ8myZ0Oy/UdB13bp+PvGJT/D4448D8Ju/+Zt84AMf4MiR9CR1XyzxZ8MwtAOBAE1NTQDs3r07o8l6clfOMAz6+vro6elZVpvbNH/s6urC5/Ndc7R2rbDb7Slj72ZhoK2tDU3TKCwstEZykx+IhY5C7iq4a8n+JiYmaGtruyndo0LHDl5X9jfMqaMoeoR8+zZskhNVj65YzBbIzMR72eF5iWW4kJeXt2LTYjGry5TeGBoaor293WLfFBUVZdRwajF0XaelpYVwOExNTc1NLaRfC5IkWZq2OTk5lJeXU1RUxObNm7nzzjt58sknV+ysLcbXvvY1fv/3f5+XvvSlSJLEo48+yqc+9SnrdfNeCIfD1t/+/u//3npvLBbjgQce4NOfvsrMt9vt/PM//zPvf//7MQyDPXv28IlPfILf/u3ftt6zc+dOfvjDH/L+97+fT37yk2zdupUvfOELt7SYdOXKFQKBAC6XK+OJczJDMtn8cTmZIzOJGhkZ4fLlyzeEaehyudi6dStbt25N0d1ubGxECJHSEU9uOBU6Cnld2etS9mUa6vb29q7LKGw12Ow6zBs3fZJ5dQwDg1zbJoSQGIvWXXO7gDKKr19hZGSE6urqFdmvi2O0mVSZem/Jhko3ajQz05r9mURyjL7nnnt4/PHHeetb30pfXx8vf/nL6ezsTCsu344/V6FpGufPn8ftdpObm5vR581ihrYpc7ScNndyIWlubo7m5uZrjtauFcvpbpvsZLPJX1JSsqR4a5fsPFr2KA+VPERADZBjy8GGzWr8ZEpfPh3s8pxmp/skAdWHTXLikfMAGAjPWTIji6GjcLHuBUqLtlou98shWTYh2X/ElG5JZk7eqNwk05r9mYTT6WTz5s0UFxdz8OBBNE3joYce4uMf/zjd3d187GMfS2s/t2PQVUxMTNDZ2Ynb7aa4uDij93tyDDLNH8fHx68pc2TKrTU1NeFwOKitrc2YDI8Qguzs7Gvqbl+ryV+dW83+rP00BZqIaBF2Oncye2WWYCy4Zu+itX6PQ9mv5ID35US0ORxSFnYpQbxRjRjLNdXAIKoEue8a9/ViXVczRk9NTTEwMGBNZt1If5bh4WEuX75MRUVFRiUTMoHk8zM5OYnX6+WOO+6grKyMt771rZw5cyaFRHct3I5BV9HS0mLpZ2eawJEcg8LhMHV1dbjd7mXNH834A1d91gKBACdOnMjYcSV72Kyku32tJn+2LZs/3vnHPDv9LK3BViRDonC2kIMcpLq2+qaymSUhU5X7RipyXo9qxLALF0JIaIZCQlt7ee5scXHJivW+5En0vXv3WlOips+YGaOLiorIzc3NeJPfZNEfOnQoo5r9mYLJzp6bm8PpdOL1ennsscdobW3lD//wD3nyySfT2s+LJf5sKIb23Nwczz//PCdPnsxo8tzV1YWmaezfv5+2tjamp6epqqpaUswwk6fm5mYURbnp4vTJI5U+n49QKGR1o4qLi5c9loGBAas4f7NHsZJhGDrfHn0UxQgv86qgOu+9bDZeQn19PWVlZWteHJtu1D6fD7/fj8PhSJEmyVRSpes6TU1NxGIxqqqqNkwxOxk+n49Xv/rVHDlyhMcffxybzUYsFsNut99SiZZfVkQiEaanp2lpaUnboTxdPPfcc+zfvx+Xy0V9fT25ubkryhzpus6VK1cYHx/n+PHjN0yvdDkk6277fL7r6m6bDOKJiQkqKyszIo+wHoTUCf57/B0rvn4g+D8I+WSqqqrWnJQmm5bNzs7eEL23ZM3+6urqDVXMTsYPfvADfuu3fovHH3+cRx55BEgkPxtJ+/eXCXNzcwwPDy9hMq4X4XCYM2fO8IpXvILBwUGuXLnC4cOHlzTKkmPQ+Pg4nZ2dqxqtzQSS2f8+ny/FXLuoqGjJIk3TNJqbm4lEIlRWVm6Ie2U48gJn/H++7GtyPI8q/S/Zs3ttEzdmnmjGIJNZmkn/kWTN/pspc7RaqKrKu9/9btrb23nqqacoKUkYgmqatmG0f3+ZoGkagUDA0q3NZCN9YGCAqakpjh07Zpk/VlVVXZMVaTbUSkpKlpi03UgkSyCaE1rX0t02vYtsNhvHjx/fMM+/lvnHaZ3/WorcCACGYJ/79dQUvWdN+0321zDzxOQmfyaK+TdDsz8TqK+v57WvfS1vetOb+Kd/+ickSbLkKW5j9QgGgwgh+PnPf87999+f0anouro66xmZrsyRKQ1ms9k4duzYTasFJJtr+/3+605oZdq7KJN4ZuojjEUvLo1DwIMlnybfsXvV+0wmYk1NTQFYDf7FZNC14GZp9q8XAwMDfOpTn+Lf//3f+clPfmKRGZNlaH5VsGEK2pBICp5++ukVR6DWiu7uboLBINFoFMMwqKysXJYVabLEMz1au1aY3ajJyUlmZ2dTxr28Xq9V9KqoqNgQo6CNc1+kPfBNUjtxAlk4uN/zz7Q1dmfUpEnTNEvvbWpqCkVRUpKqtT4INU2jqakJRVGoqqraMMlpMqanp3nVq17Fnj17+I//+I8NeYy/bDCvp/Pnz/Oyl70so/s+e/YshYWFDA0NsWPHjhVljmKxGG1tbUSj0YyN1q4VySOnk5OTBAKBFE1Xl8tlTTBslEISwLP+jzEcOZeSPAkksuL7KBp/E1VVVRljTyXrvSUnVevRezPlaObm5qiurt5Q5pTJeOKJJ3jHO97Bl770Jd74xjfe6sN5UcA0g5ydnaWysjJj+zVzqy1btjA1NXVNmSNN0+jt7WVkZGRFSZ6bBbN4a8oCmCO5ZgwSQtDY2IgsyxuqkKQbGj+Z/ANmlb4li7h9+ruo2f5rGfssUz7K5/NZ0iTr8R9J1uyvqanZMDJHi6FpGu9973upq6vj6aef3pAMql82GIZhSa+VlpZm1PxqeHiY4eFh4vH4ijJHyazIiYkJOjo62LNnT9oSVjcCZpPfjEHxeDylwaYoijV1evjw4Q1VSIpp8/x48jEi2tTVOGQIXHI+ryr9DK6FiZL1IFl6w5SP8nq91jlai/+Iqdmf6VpAptHS0sLDDz/Mww8/zOc///kN9dv/skJVVTRN4yc/+Ql33313RtdADQ0NCCHw+XzXlTkyPS0aGxspKiri4MGDt+z3Xa7Jb+ZAhYWFBAIBGhsbV+31drMwrwzzU98fEddDgE7CwFbngPdRqvLW1lRLhkmINWNQKBQiLy/PitGrzWFMnfRbTRS9HoaGhvinf/onvvKVr/CjH/2Iu+5aquDwq4QNV9A+c+YMhw4dyujYent7O8PDw5SWli4xODED2PT0NM3NzWzevDnjo7WZgKnpahZvDcNAkiT2799PWVnZhniQakacs9MfZyjyrPU3u8jimO19jLTp7N2794a5w5p6eOb5mZ+fT1uTM+U7aBqNjY1omkZVVdUtb2osh9nZWR5++GE2b97Md77znQ3JHv9lhDlif+bMGR544IGMxQDDMDhz5gyxWIxjx44tK3OkaRqhUIjm5mZcLhdHjx7dMMUZE8mFE7/fjxACu93OoUOHKCws3DAxU9HDnJ/5ewYjz2I217KihyiefoSaiswYDS8H8/pZTu9tpQmb5fax0TT7l8NTTz3Fm9/8Zj772c/y1re+dcP89r/sUBSFgYEBJiYmqKmpydh+TYZ2dnY2VVVVK5o/qqpKe3s7oVCIioqKDVfMNI1bzSa/EIKsrCwOHTp0S41bl0NMn6d+9rP0h5/GQEOK57Df+WYqtzx6wz5zvf4j5sSNKbd3Kxuq14Kmabzvfe/jueee4+mnn77pRk0vVpgF7YaGBvLy8ti5c+f1N0oTly9fpq+vjx07dixZYyUXkiChrTk0NMTRo0c3nG6yuc4wdaVN2YCDBw9uuHgJENGmaZ59nP7gMwDs8N7L0by34ZFvzHlNXqv6/f4U/5HFEnbLoa+vj4GBgWWnqDcS2tvbeeihh3jFK17Bl7/85Q2xBn8xwMxDnnzySWprazN2Dei6zvPPP080GqW6unpJo35xMXtycpK2tjZ27dpFeXn5hsktltPdNgyDsrIy9u7du2EJMP2j7TT5vom9aBqvs4hdWa9gi+vkDTmvkUgkpclvSmgVFRVd13/E1Ow/fvz4TfFhWSuGh4f59Kc/zRe+8AV+8IMfcN99993qQ7rl2FAF7Xg8zvPPP8/u3bszRvGfmJigqakJl8vF3XffvSwrcmhoiMuXL98UM7P1wkw2VVUlLy8Pv99v6W6bN+ytLoTNKv1MxdpxSNlIs9vp6ujm8OHDN5VBY0qTTE1Npbi+FhUVraj3pqqq1cGtqKjYkMXs+fl5Xvva15Kfn89//dd/bdiH1y8jdF0nFArx1FNP8fKXvzwjI8um9trY2Ji1kFv8uqmj39LSYsnxbOTk2NSeczqduN1u/H4/QApjYCOMe4dVHzPRQfq7/Lgo5Pjx4zf1nk7We5uZmUnRe8vLy1uSyCVr9ldXV2/YRtWZM2d44xvfyD/+4z/yG7/xGxsm0X8xQFEUhoeHGRoaStsH4XoIBoPU1dURiUS4++67U4ouZg6kaZqlVWu32zcU23k5zM7OWkU3IQTT09Npm2vfbAwM93Klu52jB2tv6uiqOXVoFrcDgcA1/UcMw6CjowO/309NTc2GmbhZDF3X+cAHPsDPf/5znn76acqHuxrVAACaMUlEQVTLy2/1Ib1oYBa0W1pacLvd7NmzJyP7NM0fHQ7HkoV3ciHJlNqan5+noqJiw0rdQGJt2dLSQklJCaqqrspc+2bClENxOp0cO3bspuZmyRJ2U1NTRKPRFFO3xY3V3t5ehoaGqK6u3nCa/cm4cuUKDz74IPfccw9f//rXN8yz5sUAs6D9zDPPZExyUVEUGhsbmZubY9OmTRw+fNh6zWzom2sxIQT9/f309/dz5MgRS8Zqo8EwDEtytqysjHA4vCpz7ZuJwcFBuru7b0mR2IzNZgwyJezM/5Lz3I2s2Z+MkZERPvvZz/KZz3yG//7v/874RPkvKzZcxW6xedFaYT4ce3t72bp1K6FQaEnyrqoqly9fZnx8nMrKyg19AUOiQNLQ0IDX67WY5sm62/39/bS1ta2aFZhp5Nl3kGffkWgUXLly04zikuF0OtmyZQtbtmyx9N58Ph+dnZ3E4/Elem+KotDQ0IAsy1RUVGyIgtxiBINB3vCGN+D1evnud797u5h9A2D+7pnQ4DQXEoZhUFBQkFKgTGZFmgYg+/btu2ETDJnC3NwcDQ0NKSZxyYuWy5cvX1d3+2ZBUrMZaI7hzVo6mXMz4PF42L59O9u3b0/RezPNj5P13iRJorm5mVgsRk1NzYYtJp49e5Zf+7Vf42//9m9vF7NvAIQQ2Gw2yxRpvTCvt/Lycnp6elJeSy4kzc/P09zcTHFxMQcOHNjQC/TJyUlaW1tTJr6Smcmtra0putuZ0FNcK/r7++nrG6Dq+B03Pb8UQpCTk0NOTg67d+9O8R/p7e1N8R/Jy8ujq6uLmZkZamtrN2xuoes6H/7wh3niiSd45plnbhezMwwznsuynJEYpOs6HR0dTExMsG/fPoaGhlJeT45BiqLQ1NSEJEmcOHFiwzZ04ap30fHjx62R9ORnfENDw3V1t28GIpEIdXV15Obm3hI5FEmSKCgooKCggP3791vSJBMTE3R1dZGVlWWtwyYnJy2Zo43cyOjt7eWhhx7i1KlTfO1rX9vQz8pfZmQqBoVCIerr6/F4PGzatCnl91oscwRY3jW1tbUbtqmS7F2UzGJPNtfu6+vD4XCsaK59s44zuUl1K6RxbTYbJSUllJSUpNTLBgYGaGtrs2Q0VVVlcHBww2v2j4+P88UvfpHPfOYzfOtb37pdzE7ChitoZ2Ixp2kara2tzMzMcPLkSYLBIPPz89bruq4Tj8dpbW0lHA5z4sSJDTtaaWJubo7GxsYlhopCCHJzc8nNzWXPnj1EIhFrFOXy5ctkZWVRUlJCcXEx2dnZN6UAYRhGytjYrdZAkySJwsJCCgsLraTK5/NZoyVZWVnE43HcbjfHjx/fkMXscDjMG9/4RmRZ5r//+783LHvqlx2SJCGEQFXVdS2oAoEAdXV15OXlcfToUVpbW61GXfIizjTeqqio2NDjTXC1kLRY0zJ50bJv3z7r/hoZGaGjo4OcnBwrBt2skVwziS0oKLil2ncmbDYbpaWllJaWpowM9vX10draiizLlunMRi1mX7x4kTe84Q383//7f3nPe95zu5h9g5CJpr7J3rly5QpHjhxh06ZNDAwMWAu35Bg0OTlJR0cHu3fvZvv27Rv6dzWZPouZU7IsW8Wj5EWLeX/l5+dbMehmFGsNw6C7u9syVdwIo/PJTf5k/5H29nbi8TiSJLFr164N+/vrus5HPvIRvvvd7/LMM8+wa9euW31IL1pkophkmqkpisLp06eJRqP09/cDS80fg8EgTU1NFBQUbDhDs2QYhsHly5cZGxtbUqBJfsYnN/m7urqsJn9JSUla0j+ZQDAYpL6+3jLU3Aj3dVZWFllZWZSXl1v+Iz6fj7q6OksXOBQK4XK5NuSEbH9/Pw899BAVFRV885vf3JBrxV92mNepzWZbdx7k9/tTzB+vXLmCoijA1RzIFClQVZXGxkYMw+DEiRMbVu7PrG8Fg0FOnDiRUgtwOBxs3ryZzZs3pzT5W1parmuunWmYRffJyckN06RaXC+LRqP4fD6GhoYIhUI4nU4mJycxDOOWNACuh4mJCb74xS/yyU9+km984xu86lWvutWHtKGwoZ4YQoh1L+ZisRj19fUIITh9+jROp5NIJGIFLlMDrbm5GYfDwYkTJzZsAcGEGZB27959XUaK2+22WIHJWmYDAwOW7EZJSckNG8k1E77x8XFqamo2XIdTCIHX68Xr9bJz507LGRgSCeDZs2etoH+rWBWLEY1Gectb3oKiKDzxxBMb4sHwYoQQIiMxaHJykqamJnbu3GkZdMiybI3UapqGoii0t7cTDAapra3d8L+p6Th/+PDha47NL76/YrGY1WDr6enB5XKlOHXfiEVWIBCgvr6eTZs2sXfv3g2xkEuGqbmZl5fHrl27uHTpEoqi4HK5uHjxoqX3Zo4tb4SkqqGhgUceeYSPfOQjPPbYYxvunL6YsN5ikmkq6vP5qK2ttRrKZlwzY5CmaQwMDDAwMLDhzW9Mo8LR0dHrMn0WL1pM3W2TFWiaa5eUlNyQkdxk6Y7a2toNqasry7IlvxaPxwkEApSWljI5OUl3d/eGG1s2DIP/83/+D1//+td5+umn2bt37y09nhczzCmRWCy25n2YxVSv12t50SiKYsWfZFakz+ejra2NnTt3smPHjlt+ra2ExYWka5GgFjf5Td3toaEh2tvbU8y1b0R8MCfptm3btmGbVHa7ndLSUmZnZ7Hb7ezdu5dAIEBPTw8tLS23fNJ4MYaHh3n44YfZv38/3/nOdzZkwf3FhPWuw0yZo2TzR1mWiUajKcVsIQShUIiGhgZrkmEjrPuXg9kkFEJQW1t7zcbYck3+yclJent7aW1tTTHXznST35TanJ+fp7a2dkPcv8vB5XKhqirxeJyamhqrZmY2AAoLC61J2ls9MTQ5OcmXv/xlPvGJT/DVr36V17zmNbf0eDYiNlxEXg9De35+3mLlJQcls5ikaRqzs7M0NTVRWlrK/v37N0Sx4FowNX2uV0haDna7nU2bNrFp0yZLp9dMHlVVTenWZaKoby6kZ2dnqa2t3fCsd1MrMCcnh6NHjwIwMzPD1NSUxaooKCiwztOtGMONxWK8/e1vZ25ujp/+9Kcbgun1YsdaC0rmZEJPTw9Hjx5N0Yw3kzNN04hEIjQ3NyPL8oYfrU1mGq5l2sLpdLJ161a2bt1qaZmZBX/IvO72zMwMjY2N7NixI6OGVjcCpma/LMtUV1dbzz6/38/U1BTNzc3X1Hu7WWhpaeE1r3kNH/rQh3j/+9+/IRfHLxaYxaS1LuRMjw1N0zh9+nTKM0uSJFRVRVVVNE2jo6ODubm5DT1aC4lCkrk4Wss0ncfjoby8nPLy8pSR3IGBgYzrbps6+KFQaENLd0DiWJubm4lGoynPoWT/kf7+/rT8R24kDMPg4x//OF/4whd46qmnOHjw4E39/F9FrKepZsocbd++PaWhLEmStQ4zyUVDQ0P09vZuaK1aSMTVpqYmDMO4biFpMYQQZGdnk52dza5duyxzbbN5lGndbb/fT1NT05JJuo0Gs/E3PT1tFb1MKTuzCWlOGt9qbfKxsTEeeughysvL+d73vrehc/YXC9Yag3Rdp7Oz0yLVJctHJK/DzGK23++npaWF7du3b9jmDywvOZsukpv8e/fute6v8fHxjDf5NU1LkU/cqEz3lTT7TWkS039kcHDQakKataCsrKybep1MTU3x1a9+lb/927/lX//1X3nDG95w0z77lwkbyhRSURTa2toQQnDgwIFVbTs+Pm6xmHfu3JlysU1PT9PY2MjOnTvp7u7e8A96SNxsPT09DA8PZ8wYIXnfgUCAyclJfD4foVBo3d1wM4hFo1Gqqqo2bBAzEYvFqKurIzs7e1ltOcMwLL03n8/H3NwcXq/XCmg5OTk3PKDF43He8Y53MDQ0xJNPPrnhNd5/2WEaIj377LMcPHhwVbrvZtFlenp6WXf2rq4ugsEgW7dupb29ncLCwg0hhXEt6LpOa2sr8/PzVFZWZpRJpOu6JbsxOTlpNY/Mkdy1xA9zkmXfvn0WI2OjIh3N/mTpBDNO5+XlpSRVNxrt7e286lWv4rHHHuMjH/nIhk32XyzQNI1AIMAvfvELHnjggVWdb3MyITc3l6NHj6ZcU4Zh8Pzzz1NWVkZJSQmtra0IITh+/PiGflabZk6GYVBRUZHRQkKy7IbP57PMtUtKStaku62qKk1NTaiqSmVl5YYuepj5Wjwep6qqasXvmuw/4vP5lvUfuZEwDINPfvKT/O3f/i0///nPqaqquqGfdxuJvHNoaIixsTFqa2vT3i5Z5ujw4cNs3rw55fVwOMyZM2eoqKggLy+Py5cv4/f7qaio2NBEjUgkYrHNM+3Fkay7PTU1hRAiRft/tZ81MTFBa2srhw4dYtOmTRk7zkzDMAza2tqYm5ujurr6mnFEUZQUUzcgZYr2Rjf5JycnefDBBykuLuanP/3phm5SvhiQrKdvNoHShZkvxGIxqqqqUprfpjnt4OAg+/btIy8vj9HRUbq7uzl48OCGvl9WkpzNBJKb/H6/f11NfvP8A1RUVGxY9QOTqGVO/F1vQtpsQvp8Pqanp3E6nVYMutEG5H6/n8cff5y//Mu/5DOf+Qy//uu/fnsdtgI2VEFbVVU6OjqIx+McOXIkrW3Mwm9fXx/Hjh1bwmI2DINIJMILL7xAPB4nOzubrVu3UlxcvGEXcibTeWZmhqqqqhteuEjW3Z6ZmbGMOkpKStLS3f5lCWImotFoilFKOsEhHo9biaff70eSpHUlnteDoii8613voquri6eeempDj4O/mBCLxTh79iy7du1KYVhfbxvT/LGysjIl4TWZSCYLIB6PWxqCJSUlG/ZeMRNKTdOoqKi4obHSbB6ZMWh+fp6cnJyUkdzr3aNjY2O0t7dz5MiRVU+y3GwoikJdXR1Op5Njx46lHTsikYiVVM3MzOByuVJM3TKdVHV1dfHggw/yrne9i7/8y7+8nUTdBJgTHE8++SQve9nL0h5rnpycpLm5mR07dlgyRybM8drh4WF6e3uJx+O4XC52795NSUnJhh2djkQiNDQ04PF4lhToM43lmkerafKbzHibzcbx48c37DmFxDXW2NiIpmlUVlam/QxaLk6bzK4b4dFiGAaf/vSn+au/+iueeOIJTpw4kbF938bKUBSFkZER+vv7OX36dFrbJMscVVZWLpnkMgwDVVW5cuUK4+PjKIqCLMvs3buXTZs2bdgRf7OQZE703shnYLLuts/nW7W5tjnNu9Hlo0w5gkAgQHV19apyy2T/EZ/PRzgcJj8/38qDMj0V7Pf7efDBB8nOzubJJ5/c8FPHLwaYxKLW1lYcDgf79u1La7tkmaNjx46lPINNmaNoNEpPT4/VwAbYvXs327Zt27AxaDWSs+tFsu62z+dble62KffrcrlWta652TBlcScmJqiurl51fc08R+ZaTFVVK05nWppkenqar33ta/zFX/wF//AP/8C73vWu2+uwa2DDFbSvXLlCIBDg+PHj132/pmm0tLQwOzubMjJgwuz0mQ9P0xBwcnKS+fl5S8espKRkwzyoFEWhubkZRVGorKy86UX3ZN3tqakpa9zU7IYvLpqYxTyHw7FhDRWTYbp+m2ZxawkOyyWe5uK3qKho3XpRqqryO7/zOzQ1NfH0009v+ALdiwnxeJwXXniBrVu3smXLluu+35Q5ys/PX8LeMZMoTdPo7++nv7+fvXv3oqoqk5OTBINB67opKSnZMMwPs5DkdrtvSWKSrLs9PT19Xd1t0yju+PHjG95YMx6PU1dXZ53btRahNU1LYXaZem9mg229SVVPTw+vfOUrectb3sLHP/7xDT1J8GKCruvEYjF++tOfcv/991/3+W8YBv39/XR3dy+ROTJfN80fzaba5s2bsdvtVuHWnIzYSE3++fl5GhoabkohaTkkj7zPzs5es3AbjUapr68nKyuLo0ePbuh7Jdn4qrKycl2Fd5PZZf5nanYWFRWtu8lvGAZf+MIX+MhHPsKPf/xj7rjjjjXv6zZWB0VRLL35u+6667rvN5s5qqpSVVWVkv+aDX1TMzs5t8jOzmZqaopoNHrTDRPTgVlI2rVrF+Xl5Tc1BiU3jyYnJwkEAivqbpvPgP7+fioqKjI6zZtpmJJM4XCY6urqdf/Wi8lYHo/HKsCt139kZmaGV7/61djtdp5++ukN73PzYoFZ0O7o6ABIS2JqamqKxsZGtm3btoTBvNj8UdM0mpqaiEaj5OfnMzMzQzweT4lBG4VotB7J2fUiuck/OTlpNY+WM9c26yp5eXkb3tS3s7OTqakpqqur1133Mz35zBgUCAQsMlZRUdG65FtmZmb4xje+wf/+3/+bv/7rv+b3fu/3bhezr4MNV9Du7e3F7/dfd7QwGo3S0NCAEGJJ4ddMosLhME1NTciyzPHjx1MenmbRZHJykunpabKysigpKblhRkHpwPxOLpeLo0eP3nKWjzluakqTLNbdVlWV+vp6cnJylpXt2GgIh8PU1dVRVFTEgQMHMvYbm4nn1NQUs7OzFsO9qKho1Xpvmqbx+7//+5w7d45nnnlmydjmbdxYxONxLl26RHFx8XVliSYmJmhubmbXrl1LtNfMJEpVVTo7O5mdnaWioiKl6WYm45OTk8zOzpKdnW3FoFtlJGbKFpSUlGwIj4Hkwq3P5wNIabANDAwwNDREZWXlNY3iNgJMmSNzdDlT59ZMPM1GZDAYtBa/RUVFq9Z76+/v58EHH+S1r30t//AP/3DLr4FfJZhN+J/85Cfcdddd14wDJtNtamqKqqqqJdd/svmjyc5evDAKh8NMTk5uqCa/qR9/KwpJy2Fxkz95JNfhcNDY2GhJSN3qY70WTM1+SZJWlDlaK8xc0TxP6/EfMQyDr3zlK3z4wx/mBz/4Affcc0/GjvM2ro9kY6x77733mu8NBoPU1dVZPjTLsSJN88fp6WlaWlrYtm2bNUViFm7NGBQMBsnLy7PyoFvV5B8eHqarq4vDhw+nPal3I7F45N3lclnFt8nJScbHx6mqqtrQXgi6rtPU1GTJQWS6cZHsP+Lz+TAMI2WKdjVFyrm5OR5++GE0TeMXv/jFhpbEebHBLGhfuXKFWCx2zWl9U0bk8uXLHDp0aAkJKZlUJEkSkUiExsZG3G63Fa/MoqQZgzZCkz/ZuyjTkrNrxUpN/qysLDo7Oy39+42aAxmGYSkfVFdX3xCjStN/xJzkdzgc1josPz8/7ZxrdnaWb37zm/z5n/85H/3oR/nDP/zDDXteNxI2VEFb0zQGBgYYGRm55njh3Nwc9fX1FBYWLikMmAFsdnaW5uZmCgoKrtsxMhO4yclJpqamcDqd1qJuOUbgjUAgEKChocEqtm60IkKySL5ZNAEs2Y6NwnBfCaFQiLq6OkpLS29o0DWvJfM/IUQKa+laTQpd1/mjP/ojnn76aZ5++ukNr/P+YoTJNsrJyVlRu800k+jt7V1R5kjTNKLRKC0tLQDX1aqNx+MpDTa3223FoJuh1w6J8UpTtmDHjh0b7gFqGEbKZEQkEkEIwY4dO9i6deuGYZcuh2SZoxvNYFhO7y05qbrWZw8PD/PAAw/wwAMP8OlPf3rDPYde7DAL2k8++SS1tbUrLqTTkTnSdR1VVbl8+TJTU1NUVFRcs+kTi8Ws5vWtavKPjIzQ2dm5YQpJi5Fsrj0xMYGiKHg8Hnbt2rWhmF2LoSgK9fX12O32Gz5Jtx7/EcMw+PrXv84HPvABvve973H//fffsOO8jeVhmjdfunSJl770pSu+zzR/LC8vZ8+ePddkRY6MjFhFp2tp1a7U5C8uLr4pDFlTwnJoaGjDsp3Nwu3k5CQTExMYhkFJSQmbNm26IfKHmYDJilUU5Zqa/ZmCKU1ixiDTfyS5yb8SgsEgr3nNawiFQpw5c2ZDXgMvdsRiMfr6+pibm6OiomLZ9+i6TkdHBxMTE1RWVi75nZKn0yRJYmZmhubm5usWXs0mv/nsysnJsfKgm1HnuNmSs2uBOZ01OjrKzMwMNpvN8me50ZrSa4F5TtPR7M8UTI8WMwYpipLiP7LSenV+fp5vfetb/Nmf/Rn/83/+T/7kT/5kw63FNyo2XEF7eHiYvr6+FbXbTPPHPXv2LCm6mAFsfHycjo6ONTF8TH0cM6CZBcmSkpJlJTcyAbOQVF5evsTQciPCbCjk5uZiGEaK7vbNMkxcDUwWyebNm5ck3jcSycZ3U1NThMPhFNZScodQ13X+9E//lB/96Ec8/fTT7Ny586Yc422kIh6P09LSgtPpZO/evUte1zSN1tZWK9lYXHAyY9D8/DzNzc1Ww2c1i4zkBYs5ym0mVDdCKxlgdHSUjo6ODW8mBFfNKufm5igrK2NmZmZNuts3C+Y4Xn5+PocOHbqpx5WsiTc1NXVNvbexsTFe+cpXcs899/C5z31uQy6MX+wwC9rPPPPMisycQCBgjXcuZ/5osiJN+TJTB381SfzNbvKbTcLBwUGOHz++4Q2QTaPxzZs3Y7PZMmaufSMQj8epr6/H6XRy/Pjxm77YTGa4L/YfKSgosJr8hmHw7W9/m8cee4zvfOc7PPDAAzf1OG8jAVVVmZ+f5/nnn+cVr3jFkteTzR+PHDmyJF9ILiQBlm62aQaZLhY3+U1W8o1q8icXkiorKze0xIQptxkKhdizZ8//3957h0dVre/f96T33iCEFkpoqYQAioIgSUiZgCKg0lX0AL8DeEQUkKOiHEU92LEczVdARUjoEEpI6CKkkUYPCSWZmfSeaev9g3dvJ5CEJEzZE57PdXFdMsxk1ozZ917rKffDJ/o76rutr7VmZmZCrVY/tM1RZ2nv/JH6+nrExcWhrKwMJ0+eFLyFXVdFLpejsLAQMpkMISEhLf57ZmYmnyC5917L7YG4YPadO3dw8eJFDBw4sEMD4/XdyW9oy9mOwHXS+fr6wtbWlo+ZcfaHnR2urW2482JtbW2HPfu1BdcFwGlQdXU17O3teZ3mfpdqamqQkJCAVatWYdmyZVi5cqVgzrHGgOAC2sXFxS16t3GZ8xs3bsDf3x8eHh73/btSqURBQQEKCwsxdOjQ+57TUbhKb03LDU2fJW3cmLlA0qBBg4zCXqKsrAxZWVno168fX0F874GF81JszXdbn3CHfx8fn/tsIfQN17JTWlrK+701NDRAqVTi6NGj2LFjB1JTU9GvXz+DrfFRh/PcB+73buOGXrRlc6RWqyGVSpGbm4tevXo99O8cVxHIaRDXRsltFh426GhsgSSu0kculzf7f3Cv77alpSVf2aWvLpuWaGhowPnz57Vuc9QZNLtsSktLeb+3S5cuwcPDAytWrMCIESMQHx9PwWwDwbXbnjx5EgMHDrxvuJdUKkVWVhb69OnT6vBHrkI2KysLdnZ2Dz1Q8V7bH20n+blKq/LycsEHkoC7/w9ycnIwcODAZi3OLQ3X5jRI2wMT2wvn2c8N1jR05ZTm/BHOP9ne3h7Hjh2DnZ0d1qxZg99//x3R0dEGXeejjFKpRF1dHVJTUzFx4sRmvzPtGf7IBbM5v+TGxkYEBQU9VIKntSS/u7u7VioCjSmQxPngcwFiLmDU1nBtQ9nYcTZHIpEIgYGBBrfR5NakmeRXq9V80HLXrl2QyWQ4efLkQ8cPiM4jl8tx69Yt3Lp1C2FhYc3+rT3DH7lkGoBm1h0Pc75pyXpMs9DoYe/vQrOcbYuSkhLk5ube10n3sMO1tY22Pfu1BVfhzsXMzMzMcOLECVRWVuL333/HP/7xD7z33nsUzO4gggpoc8GgrKwsjB07ln+cy0ZXVVW16BPGGINCoWiWXde2lxgXDOB8lhoaGpr5LHX0QtEc5OHv728UmWCJRIKcnJw2qzg5L0VO0BQKRTPfbX1m67iBfT179mzVPsJQKBQKlJWVYcuWLVi7di0UCgViYmLw4osvYsqUKRRQMhAKhQKXLl26z7uN+11ycXG5r+Ja06ft5s2buH79OgYPHqz1lnmujZLToKamJj643ZlriwsklZWV6UQztY1CoUBmZiYAIDAwsNXP25LvtjaTAO2F8+x3d3c3yGC7B8ElAZYsWYKkpCRYW1tjzpw5eOGFF2gIm4HgAtpnzpxBnz59eA1hjKGgoADXrl174PDHiooKZGdno0ePHlrvSNJ2kl+pVOLChQuQy+UdriI3BFyl14MKJlobrq3PllzOs9/e3l6wM07q6uqQl5eHuXPnoqCgAL169cKLL76IBQsWwMfHx9DLeyTh7NKOHDmC8ePH8/dZzo5NpVIhODj4vmtVsyqysbERWVlZsLKyui/o9LBozvaRSqVQq9X8tdWZ+zsXSLK0tNT6WrUN121hYWHxQOugjg7X1jYKhQIZGRkwNTXVume/tuACcL///jveeecd1NbWIiwsDM888wxef/11QWrmo4BcLkdJSQmuXbvWbC/K2Rz17NkT/fv3b9PmiKvMraurQ2BgoFYTOvd28gNopkEd/b0RuuWsJjdv3sSVK1fg7+8PNze3Np/bkeHa2kalUvF7S33YHHUWtVqN4uJi/POf/8TBgwdhYmKCiIgILFiwgBL7HURwd25TU1OoVCr+79wEeVNTU4waNapZ4JiriuQ2T4wxhIWF6SS7LhKJ4ODgAAcHB/Tr148fZHL79m3k5+fD0dGRz9Y9KAulVqv5SavDhw8XfCAJ+Hvarr+//31VY5qYmJjA1dUVrq6uGDhwIF8RWFhYiNzcXN7HrD3f08PA2aL06dMHvXv31tn7dBZzc3N4enqiqakJDg4O+PTTT5GXl4f//e9/ePbZZw29vEcaU1NTKJVK/u+czZGvr+99lkCag9cuXbrET0/WxYBCkUgEJycnODk5oX///vwgkxs3biA3N7fVCdQtwQWSmpqaMGLECMEHkrjqeO6A3NbhSNOiRdN3+8qVK8jOzuZ9zHQ58KWurg7nz59Ht27d7tt4CwVLS0vY2Njg9u3biI6Oxssvv4wDBw7gzz//pIC2gdHUIJVKhdzcXJSVlWHEiBGtDn9kjOHOnTu4fPmyzjq+TExM4OLiAhcXF/7+LpVKcf36deTm5nYoya8ZSBo+fLigA0kAUFhYiGvXriEwMPCBlV7m5ubo1q0bunXr1sx3Ozc3977h2ro4aGl69g8ZMkSQ+gMAtra2fGDgf//7H2xsbLBnzx7U1NQYemmPNNz9VaVSwdzcnB8W7ejo2KbNEXB378151fbv31/rwRnNM4afnx+f5L98+TKf5Ofu7w+6trhqT26oq5ADSQ0NDUhPT4e9vX27hkpbWlqiR48e6NGjB1+VzBWMAX8P19ZFkl+hUCAtLY1PEggxmA3c3VNbW1vj0KFDcHFxwZEjR5CRkYHs7GxB/y50dUQiUbNYkKbN0ZAhQ+7b22hqkImJCT9jxNzcHCNGjND6PVazC12z6+jixYt8EV97k/zGYjnLFVUUFhYiODi4XfZRNjY26NWrF3r16tUsyV9YWNhsuLa2k/yczRGXfBVqMBu4q+unTp1CRkYGFi1ahPnz52P//v2orq429NKMDsFVaFdVVeHEiRMIDw/ng5Jubm73VZhwAlZdXY2srKxOedVqi8bGRr5lqaKiAnZ2dnxA5V4vV6VS2awNT+iBJAAoKCjAjRs3HnpISkstubrw3a6srERGRgZ8fX0FO1iRMYZPP/0UX3zxBZKTkxEQEGDoJRG4e31ev34dpaWlCA4OxrVr11BQUNDm8Mempibk5OTw7aqGuKYbGhr4iiXNQSacn7Qmmps9f39/Qd/sgb89qJ2cnB56oCLXkiuVSnXmu8159nt7e99nCyEkKisrERMTg27duiExMVEw7XiPOlzyxtXVFV5eXq0OfwT+ropUKpW4du0aSkpKWvXe1jVckp9rd28ryV9bW4uMjAy4uLgIPpDE2d3dunULQUFBD5Ws1Oz001VLLqeX3HcrVP0BgJSUFEybNg0bN27ECy+8IOi1PiqoVCoolUocPnwYo0aNQn19PR9wedDwR25+UUe9arUBZ7nB7YNqa2vbTPKXl5fz1Z6GtiN8ENxQezc3t4e+pjVn+3CdftpM8nM2R9bW1vD39xe0tiuVSrz44otIT0/HiRMnaHaRQOA6mDMzM/Hkk08iLy8PUqm0xUDqvcMfq6urkZmZCXd3d71XO7d0f9dM8t97bRUXFyMvL0/wlrOMMVy+fBklJSUtuiR0FM0kv0wmg0qlajbb52HOpJwlE7dnFnKhRENDA/bv348VK1ZALBbjq6++ErReCh3BBbRra2uRkpKCYcOGIS8vr83hjzKZDDk5OVrxqtUWCoWCv0i5YUrcoc7KygqZmZlGE0hijOHKlSsoLi5GUFDQfQPwHgbuhiWVSrXqu11RUYGMjAz0799fsC2rjDF88cUXWL9+PQ4dOoThw4fr/D2PHz+O9evXIy0tDcXFxdixYwfi4uLafE1qaiqWLVuG3Nxc+Pj4YNWqVZgzZ47O12pIlEolioqKcOvWLVhaWqKyshIhISEt2hwplUrU19cjKysLtra2GDp0qCBunpqtpmVlZbCxseE1SCQSITMzkx9QKPSbJ1cZ5uXl1eZk8s7Q1NTUzMdMc/Cdo6Njp74bzrNfiDZHmlRXVyMuLg6Ojo7YtWuXzpMwpD/thxt4ZG5uDqlUCmdnZwwdOrTVqkilUomcnBw0NjYiMDAQNjY2Blz9XdpK8jc1NeHChQtGEUhijOHixYv8cCpt+9BqO8kvdJsjTU6cOIFnn30Wn3/+OebOnavztZIGtQ9uoGxycjK6d++OW7dutTr8kbNaE4lEfNJHKBaKLSX5uft7dXU18vLy4Ofn18wHX4hUVVUhIyMDPXr00HqCvC3f7c4k+TmbIzs7u3ZVkRsSpVKJuXPn4syZMzh27FiLQ+C1DWlQ+1AoFKiqqsKff/4JBwcHKJXKdg1/lEgkyMvL44vZDH3/u7eAhkvyu7u7QyKRGIXlLDc3obKyEsHBwVrfX2rTd5vz7DcxMRGszRFHQ0MDDh48iBUrVmDixIn4/vvvda6XXV1/DB990YBrMwGAvLw8BAYG3mdvwQWSioqKdOZV+zCYm5uje/fu6N69O+/lKpVKkZGRAaVSCWtra/j6+gr6QgOaD2oaPny41g9y5ubm8PLygpeXVzPf7fz8fCgUimaTutsb+OcGVt47rElIMMbw3Xff4aOPPkJSUpJegtnA3RtrQEAA5s2bhylTpjzw+QUFBYiKisKrr76KLVu2IDk5GS+99BK6deuG8PBwPazYcHAVLA4ODhg1alSrwx/LysqQk5OjE6/ah+HeVtPS0lJIpVKcO3cOarUaDg4O6N69u2DW2xpcp4WuWvEsLS3h7e0Nb2/vZr7bXEsu17rs6urarkQF11HUu3dvQVf61NXVYerUqbCxscHOnTv10lFA+tMxOA/Jfv363Rf01ayKbGho4L1qQ0NDBZMkt7Kygo+PD3x8fJol+a9fvw7GGG8ZIGQ4D86amhqEhobqxCLN2toaPXv2RM+ePZu15HI2ex1J8nNVnJ6enlpP/mmbM2fOYOrUqVi/fr1egtkAaVBH4IJEd+7cadPmSK1WgzHGXycjRowwyPDBlrC2tubb3eVyOR9YunbtGhhj8PT0hJ2dHRhjgr1WysvLkZmZCV9fX/Tq1UvrP18kEsHOzg52dnbo06dPs2KI69evd8h3W9PmSOjFEkqlEq+++ipOnjypt2A2QBrUERobG3nLo5CQkPuGP3IaBNz9PeY6yYcNG9amLao+sbW1ha2tLXr37o2mpiY+wXb58mWIRCJ4e3vDwsJCsBrE+VA3NjYiNDRUZ3a+jo6OcHR0RL9+/Zol+S9fvtzu4doKhQLp6ekwNzd/4HwBQ8PNqFi5ciXGjh2L7777Ti962dX1R1AV2pzvlkQiwfDhw+8znOcGJnFetYGBgTrxqtU2XGDG1dUV5ubmfIuFps+SkC4+lUrFD1NoafiLLmGM8d7AMpkMtbW1vO+2u7t7q9nB0tJSXLhwAX5+foJt3WGM4eeff8bKlSuxb98+PP744wZZh0gkemBm7s0338S+ffuQk5PDPzZ9+nRUVlYiKSlJD6s0DGVlZTh79iwYY3jqqadatDlSq9W4ffu2Tr1qtU1JSQkffOeG7wJ/DzJxcXERlAZx17MhOi00h2/KZDI0NjY+sCWX0/i+ffvq5OCpLerr6zF16lSo1Wrs27cPdnZ2el8D6U/rcBXBV65cgZubG0JCQu77d64qkrNb47oXhBxA4Dwwr127hl69evEV3CYmJnzltr6GJbYHlUqFrKwsfqCQvu14NJP8Uqn0gb7bnM1R9+7dBZVcbYnz588jNjYW77//PhYtWmSQtZIGtU5DQwPOnTuHqqoqDB48+D7rEM2qSLlcjqysLJiZmcHf31/QtlVqtRqXLl2CRCJBr169UFNTg9LSUt7L1cPDA05OToLRIKlUiuzsbIPtMTsyXJuzOeI6/4SsPyqVCosWLcK+fftw7NgxDBkyxCDrIA1qnTt37vBFgBMmTLgvmH3v8Mf8/HxUVlYiMDBQ0DPJuABxfX09fHx8UFFRcV8nv6OjoyCuH4VCgczMTABAYGCgQYolWhuufW+SnxuWa2lpiYCAAMFoeEs0NTXhyJEjWLFiBUJDQ7F582aDdHZ3Rf0RVIW2UqmEiYkJTExMmgVRuWwc16qqUCgQFhZmFP7TEokEubm5GDBgAL8x9PPzQ3V1NaRSKa5evYqcnBy4urrywW1DbgqVSiWysrKgUqkwfPhwva9FJBLB3t4e9vb28PX1bda6fOXKlRZbcmUyGS5cuIAhQ4YIqlpfE8YYNm3ahLfeegt79uwxWDC7vZw5cwYTJkxo9lh4eDiWLFlimAXpidraWnh5eUEqld4XzOYqkq5cucJ7iRnCq7YjcIGk69evIyAggK9cGDRoECorKyGVSpsNMtHloLL2UlJSgtzcXAwePPi+Nmd9oDl8c8CAAXzbYHFxMS5evAh7e/tm/uRcMFvINkfA3aqAGTNmoKmpCUlJSQYJZreXR1V/uBZwb29v3FtroKlBEokE+fn5GDBggKB/54C76+YCSaGhobx1mWbQNjc3VzBJfoVCwbetGmpYZXuGa3MapFQqkZaWBh8fH8FbuGRmZkIsFmP16tUGC2a3l0dVg+RyOWxsbKBWq++zOdKsiqytrTWYV21H4QJJDQ0NCAsL47stOC9XLnjMGNPpsMT2cvv2bVy6dAnDhg2Dh4eHQdbQ3uHadnZ2yM7OhpubG/z8/AR9TavVaixbtgx79uzB0aNHDRbMbi+PqgZVV1fDz88POTk5/LBZ4P7hj1xCDQBGjBihsyHv2qCpqQmZmZkwNTXlB1X27NmzWeIoMzMTIpGoWaGRIXSVCxBbWFgYtNq5teHaeXl5fJLf2dkZN2/ehK2tLYYNGybo+5BcLkdKSgpWrlyJwMBAbNq0SRA2pa1hbPojqG/S2toaAQEBSElJgVKpBPC3gHGbJzs7OwQGBgr6l4CDq0i6twVGs8Wif//+qK2thUwmw82bN5GXl8cfVjjfbX0hl8uRkZEBMzMzBAcHC+I7vrd1mRP+9PR0mJiYwM7ODhUVFYIPZm/duhX/+te/kJiYiLFjxxp6SQ+kpKTkviGInp6eqK6uRkNDg07ar4VAjx49YGtri+LiYv4xToPkcjlyc3PR2NiIESNGCMKrti00A0khISHNullEIhGcnZ3h7OyMAQMG8F0RN27cQG5ubpuDTHTJzZs3ceXKFQQEBNzXoWMoNNsGudZlriXX3NwccrkcPj4+grU5Au5upl988UVUVVXh0KFDWp2HoAseVf0xMTFBQEAArl27hqqqKv5x7hCnUqlQUFCAW7duITAwUPC2HSqVCtnZ2aivr8eIESOa/X+7N2grhCR/Y2MjMjIyYG1tjWHDhgmia0UkEsHBwQEODg7w9fW9ryWXMQZnZ2fB6GVr5OTkICYmBsuXL8eyZcsEHfgCHl0NcnBwwLBhw3Du3Llm5zDNqkipVCoor9q24M41JiYm99kymZiYwM3NDW5ubs06sy5fvgy5XN5Mg/SV5L9x4wYKCgoQGBgIFxcXvbzng7h3v8gN37x16xZqampgYWEBS0tL1NXVaW24trZRq9VYvnw5tm3bhiNHjiAwMNDQS3ogj6oG9evXj58NolQqeVsOzeGPXEyIGxYvhHt1a9TV1SEjIwOOjo4YMmRIs6CrZuJIrVbzhUb5+flQKpXNNEgfMZmGhgakp6fDwcHhvrUaEk2t9vPzQ01NDYqLi3H58mWo1WpYWFjg1q1bWhuurW3kcjmOHTuGVatWwc/PD7/99ptgLAJbw9j0x/ARy3vgfLS5zROXvcrOzhacV21raE6EvTeQ1BKaHmaNjY3NfJY0qwF1WVHX2NiI9PR0QWe57vXdvn79OgoKCmBubo78/HxIpVK+wlRIrY87duzA4sWL8ccff2DixImGXg7RBvfqD3A3KFNXV4cLFy4Izqu2NTjboNra2vsCSfdyb1dEfX09pFIp7ty5g4sXL8LR0ZGvGNBVEJ8xhoKCAhQWFrY4yVwoWFhY8L7bXFWXo6MjiouLUVxc3GHfbX2gUCgwZ84cFBcXIzk5WbDfLfE3pqamUCqVzaoiVSoVcnNz+WtaKF61rcENtxSJRA/UTCEk+bmBii4uLhg0aJAg90DA377bDg4OSE9Ph7u7OxhjnfLd1hf5+fmIjo7G4sWLsWLFCsHv4QnAzMyM3wdxCTWRSIQbN24Izqu2NbhAkoODwwOHFGp2ZnEadG+Sn9sH6SLJzxjD1atXcfv2bYSEhAg66cx1yhYVFcHHxwd2dnYoLS1FQUGBVoZraxu1Wo3Vq1dj8+bNOHTokN5mFxGdQyQSQSQS8Rp07/DH0tJS5OTkGMVg6crKSmRmZsLb2/uB8SsTExO4uLjAxcWFT/JzxTP3FhrpIsZRW1uL9PR0eHh4CHqotEgkgoWFBWQyGby8vNCnTx/emoTz3X6Y4draRqFQ4OTJk1i5ciV69eqFbdu2CSpG1VUQxon7HszMzKBUKqFWq/mKPWPxqtUMJIWGhnY4AGRlZcUPCZLL5fxAN25AB3eo0+ZFWldXh/T0dLi6umLQoEEGv/jbQ0lJCYqKihAUFARXV1d+81lUVMQfgB/ku60P9uzZgwULFmDLli2Iiooy2Do6ipeXFyQSSbPHJBIJHBwcBJeV0zampqb88FmRSITy8nJkZ2cbhVctcH8gqaM3ThsbG/Tu3ZsfZMJZ/ly9epUf0OHh4QE7OzutaIVmAnD48OGC9sDjkMlkyMnJ4TtDuOoumUyGa9eu8S25XGWFoeyxlEol5s+fj+vXr+Po0aOCqfh6EI+y/gB/B5O4gFJjYyMuXLjAt6sKfTNcX1/frMqno9VTbSX57ezsmmmQNqipqUF6ejqv8ULfA1VUVCAzMxP9+vVDz549ATS3cNEcrq3vCtN7uXz5MqKjozF//nysWbNG8N8tx6OuQVxSTXP4Y15eHiorKxEaGir4+zQXSOrevTv69+/fod+7lpL8MpkMJSUluHTpEhwcHHgN0sb5gjGG/Px8lJWVITQ0VPDJypqaGqSlpaFHjx7w9fWFSCRCjx49tDJcW9uo1Wq89957+PHHH7F//36MHDlS72voLKRBplAoFM2GPxYVFeHatWsYPHiwYLuyOaRSKXJycjplR3jvsESuK+L27dvIz8+Ho6Mjr0Ha+F2oqqpCRkaGUViXcZ79XPGBSCTS2nBtbaNQKHDq1CmsXLkSXl5eSExMFLQ1jibGpj+CDGibmpqiqakJ+fn5kEgkRuFVC4D3c2KMdSqQdC8WFhbo3r07unfvDpVKxQe3uYuUy9Q9zDCl6upqpKentyt7KBQ4f7mAgAC+5bol323O783Gxob/rvSZrTtw4ADmzZuH+Pj4No33hcioUaOwf//+Zo8dPnwYo0aNMtCK9AcXfGlqakJ5eTkuXrxoFF61wN1AUkZGBuzs7DB06NCHbsOztLREjx490KNHD36jIJVKUVhYCAsLi2bDlDpzXanV6maHZKHbuAB/D2saOnQo3451b3VXS77b3Helr5ZclUqFV199FXl5eTh69Kjgq+k0eZT1RyQS8f6QSqUS9fX1yMzMhJubm6Arhzm4g1FnAkkt0VqSv6CgQCtJfi44zCXxhL4HKi8vR2ZmZrO5LED7fLf1neS/fv06oqOj8fzzz+ODDz4Q/HeryaOqQdz/I1NTU9TW1kKhUIAxZjRetcDfgSTNhM/DYGNjg169eqFXr14tJvm5e7u9vX2Hf8fVajWys7NRV1eH0NBQwc+G4s6MXHWsJvf6bnMWLpyN1IOGa2sbtVqN//znP/j666+xZ88ejBkzRufvqU0eVQ0C7iZ5TE1NUV5eDhsbG5iYmODSpUuQyWTt6nw3NEVFRbh69SqGDh2qFR98W1tb9OnTh0/ya84W00zyd+Z8UVZWhqysLK3ppS7hOunc3d1brCK/13ebS/Jr+m7ra1aUUqnEmTNnsGrVKjg5OWHnzp2CDAS3hrHpj4jdO3nIgDDGIJfLcebMGdy6dQtOTk7w9fWFt7e3YNq3W4PzHdJWIKktuIuUq1pSq9X8hqojg0zKy8uRlZWFPn36oHfv3jpbrzbhKvaDgoLaleTQ9N0uLS2FiYlJs2ydrv4/JScnY8aMGfj+++8xY8YMgx/kamtrcfXqVQBAUFAQPvvsM4wbNw4uLi7o2bMn3nrrLdy+fRu//PILAKCgoABDhw7FwoULMW/ePBw9ehT/7//9P+zbtw/h4eGG/Cg6RaVSoaGhAX/++ScqKipgaWmJ3r17o0+fPoL2aAP+DiR169ZN51WGKpWKH6Ykk8n4QSZcJU57gm6cv25DQwOCg4MFf0gG7naG5OXldajdWtN3u6ysjG/JdXd3h5OTk04ClCqVCosXL8bp06eRmppq8O4m0p/209TUxFfANTU1AbhbKeHn5yf4fZC2A0ltoZnkLy0t5StxPDw82p3kl8lkyM7Ovi84LFS4g6efn1+HrumGhgb+u6qoqNBLS25hYSEiIiIQExODL774wuCJGNKg9sHNC5FIJPzAaMYYHBwcEBAQIPjuEG0HktpCqVQ20yBzc3M+sNSeJL9SqURWVhaUSiWCgoIE/91WVVUhPT29U2dGLskvk8lQVVV133BtbWsQYwyffPIJPvroI+zYsUMQ1yxpUPtQKpVoamrCzZs3UVRUBLlcDlNTU5iYmCAoKEjQA80ZY7hy5Qru3LmDoKAgnQfeFQoFf12VlpbC0tKS1yBHR8cHXlcSiQQ5OTkYPHgwunXrptO1Pix1dXU4f/48unXr1uFiCcYYn+SXyWSora1tNlxb24FmlUrFB7PNzMxw8OBBg3c1dXX9EVRA+8SJE5g9ezbKy8vx2GOPYe3atSgrK0NDQwNcXV3h6elp0NbJ1qiqqkJmZqZB2lU1s+BSqRRNTU18Bsrd3b3V74o7eA4cOFDQw8w04VqNgoKCOuUDqzlwQSaT8S252vbdPn78OKZOnYqvvvoKs2bNMngwGwBSU1Mxbty4+x6fPXs24uPjMWfOHNy4cQOpqanNXrN06VLk5eWhR48eWL16NebMmaO/RRuABQsW8D6GPj4+WLduHSoqKtDY2Ag3Nzf+5ie0wBIXmPH19UWvXr30+t4tXVfcd9XaIBOFQoGsrCyo1WoEBQUJTtNbgvMU9/f37/QANs1EQGlpKZ+M1GZLrlqtxpIlS5CSkoKUlBRBVFyQ/rSP+vp6DB06FOPGjUN5eTlqamrw/vvvo7a2ltcgbh8kNA3iks36CCTdS2eS/MXFxcjLy2vWaSFkOI0fNGjQQx089ZHkv337NiZOnIiJEyfi22+/NXgwGyANai/x8fH48ssvIRaLYWFhgTNnzmDZsmWQy+WC1iDNQFJgYKDeZ0Xcm+QHwGtQS9cVN6zSzMwMAQEBgvouW6KyshIZGRn8INCHQddJfsYYvvjiC7z//vvYunUrYmJiHurnaQvSoPYRGRkJKysriMVi9OzZE7/99huee+45ABD0WYybc1JdXY3g4GC9d5xylj+cBpmYmPDB7ZaS/Ldu3cLly5eNYh5CbW0t0tLS4O3tzdscPQyaw7W1neRXqVT466+/sGrVKqhUKhw+fFgQHQVdXX8EFdA+fPgwnnnmGbi5uaGkpATdunWDWCxGREQEvLy8UFpaitraWri4uMDT01NnxvgdwZCBpHthjPE+S1KpFLW1tXB2duaFn2tlu3PnDvLz8zFs2DC9Hzw7Czf5Ozg4WCvCwBjjB09x3xXnSfUwLbmnTp3CM888g08//RQvvfSSIILZRPs5deoUnnvuOVRVVaGxsRFjxoyBWCzG+PHjAdxNBNXX1zfTIEMHY2/evInLly8LIjDDZcE5Daqvr+eTRh4eHrCwsIBcLkd6ejosLCwQEBAg+Mp3oGWbo4dF03dbJpPxv1fcpqozrcdqtRrLly/Hvn37kJqaij59+mhlrYR+UKlUSEpKwpIlS3D9+nXY2dlh8uTJiI2NRWhoKCorKyGRSPgkP3e/MqQGaQ4zM0QgqaX1cNeVVCpFY2Pjfd8VV8WpzetZl7Rkc6QNNFtytZXkLykpQXh4OMaMGYMffvjBKPSd+JuysjIkJCTgs88+w6VLl+Dt7Y158+ZBLBajR48ekEqlgtMgtVqNnJwcVFdXIygoyOAe1IwxPskvlUrvS/IrlUqkp6fD1tYWw4YNE0TCpy1asznSBpq+21wi4GF9t7/99lusWrUKW7ZswZQpU7S6XkL3ZGVl4Y8//sCmTZtw8+ZN+Pj4YNWqVYiKioKZmRl/XdXV1fHFjobWIIVCgczMTDDGEBgYaPDYlOa9XSqVQqVS8Rrk4uKCW7du4caNGwgMDBS8pW9bNkfagEvyS6VSlJWVPZTvtkqlwvnz5/HOO++gtrYWycnJRjO7yNgRVEB71apV6N69O/7xj3+gtrYWBw4cQGJiIvbt2wcXFxfExMQgIiICPXv2RGlpKWpqaviAra4mT7cFl90aMmSIwQNJLdHQ0MALf1VVFRwcHGBubo7y8nIEBQUZzUV2/fp1FBUVITg4WGeTvzV9tznPLk7Q2tO2AwBnz55FXFwcPvjgAyxcuJCC2UbIihUrIJPJ8M033+DOnTtISEhAYmIi/vrrL4waNQpisRhPP/00TE1N+UQIN/yPC9jqC81AUkBAgCA3JVyCTSaTobq6Gvb29mhoaICjoyMCAgIEf5AD/q48DQwM1KlmttSSy2lQewZwqtVqrFq1Ctu3b0dKSgr69++vs7USumPt2rXYs2cPEhIScPXqVWzfvh07d+5EbW0toqKiIBaLMXLkSFRXVzfTIEMk+dVqNXJzc1FVVSWIQNK9tJTkt7KyQlNTk9Ek9EtKSpCbm6vz9XJJfk6vuZbcjvhuS6VSREZGIiQkBP/3f/9HwWwj5bvvvsOaNWvwyy+/8Pugw4cPo2/fvhCLxYiLi0Pv3r2bFYQYah/EBZK4bi9DB5LuRTPJL5PJUFdXxw+d9Pf3F7xnNmdzpI9u3taS/B0Zrv3jjz/izTffRHx8PKZNm6bT9RK6Y9++fXjuuefw5ptvQq1WIzExEZcuXcK4ceMgFosRHR0NS0tLyGQySCQSg2pQQ0MDMjIyYGNjg2HDhgnuvscY4/eLUqkUDQ0NAIA+ffrAx8dHcJqpycPYHHWGtpL8D0qaqNVqpKWl4d///jfKyspw9OjRTnfzEh1HUAHt1mhoaMDBgweRmJiIPXv2wMbGBrGxsYiMjETfvn1RVlaGqqoqODo6wtPTEx4eHjrdJDDGcO3aNdy8edMoslvAXV/OvLw8lJWVAQA/KLGzg0z0Afc937p1CyEhIXrzH1IqlXy2rr0tuenp6YiJicE777yDJUuWCPL7JB6MSqWCiYlJs/9/jDHcunULiYmJSExMxKlTpzB8+HCIxWKEh4fDysoKUqkU1dXVcHJy4jVIlwk2LpBUWVmJ4OBgwQWSWqKsrAwXLlyAqakp5HI57Ozs+Mrt9gRsDcHD2hx1Fs3hd+1pyWWM4b333sMvv/yClJQU+Pn56W2thHZpbGwEY6yZpx/nx5eQkIAdO3agvLwcEREREIvFePzxx/mgbXV1td6S/JxtkEqlEmQg6V4YY8jNzYVUKoWtrS1qamp4H1dumJLQKC4uRn5+/kPZHHWW1pL8rQ3gLC0tRVRUFAYNGoRff/1VUK3gRMeoqalBZWVls0HYVVVV2Lt3LxISEnDw4EF0794dsbGxmDx5MgYMGMDfr/SpQVwgydraGv7+/oILJN1LdXU10tLSYG9vD7Vajerqajg6OvLXldCGYmvL5qiztJbkb2343S+//IIlS5bghx9+wMyZM/W+XkJ7lJeXIy8vD48//jiAu/fvy5cv80VGWVlZGDNmDOLi4hATEwN7e3s+YKt5Futst2N7qa6uRkZGBjw8PODn5yfIcwyHWq1Gfn4+SktL4eXlhcrKStTU1OjUS/ph0KbNUWfoSJJfrVYjIyMD7777Lu7cuYPU1FSjKJjoShhFQFuTxsZGJCcnIzExEbt27YKpqSmio6MRHR2N/v37o7y8HJWVlXBwcICHhwc8PT21eoGq1Wrk5eWhoqLCaAJJjDFcvHiRnw5saWl53yATbpOgqyFlnVnz1atXcefOHYSEhBhsCATnD8xVosjl8mZTci0sLJCVlYWoqCi8+eabWL58uaBvaMTDwRhDSUkJduzYgYSEBBw/fhz+/v68NRK3qeISbNyhTpsaxAWSuEFCxjBMkRtY2aNHD/j6+kKpVD7UIBN9oG2bo87CeXNy35dareZbB52dnWFubo7//Oc/+O6773D06FEMHTrUYGsldI9arcb58+exfft27NixA3fu3MHEiRMhFosxbtw4NDQ0QCKR6DTJb2yBJM1K8pCQEFhbW/M+rlKpFOXl5bC2tuYPdboalNgRdGFz1Fna8t22tbVFU1MToqOj0bt3b2zdulXwyQ3i4aitrcX+/fuRkJCAAwcOwNXVFTExMZg8eTKGDRuG0tLSZhrEncW0qUE1NTVIT0+Hh4cHBg4cKIhzS1tUVFQgMzOzWaVhU1NTMw2ytbXl90GGTvLryuaos7Tmu819ZwkJCVi0aBG+/vprzJs3z9DLJXQIYwzXr1/nE/znz5/nO2hjY2Ph4uLCX1dcPIjbB2nzLFZaWooLFy6gb9++6NWrl8H3DG2hUqmQnZ2N+vp6BAcH81rc2NjIJwIqKythZ2fXLMlvqM/E2Rz179+/WWLVkHBJ/nuHayuVStTW1uLDDz9EQUEBUlNTBT9gsytidAFtTRQKBY4dO8a35CoUCj64PWjQIFRWVqK8vBx2dna8mD1MAFqhUODChQtQKBRGE0jivOVqamoQHBx8n5ir1epmg0wYY20OMtEHXCZWIpEgJCREMEkDTd9tmUyGX3/9FSdOnEBRURFefvllbNiwQdA3NEK7MMZQWlqKnTt3IiEhASkpKRg4cCDEYjGioqLg7OzM3/js7e15DXqYKpzGxkakp6fD2toaw4YNM4oqOK5ltV+/fi1m2VsaZKKpQYY4qOrD5qgz3NuS+89//hM1NTUoKyvDjh07MHHiREMvkdAjarUaWVlZfHC7oKAA48eP562RmpqaeA3ikvwPq0E1NTXIyMiAu7u7UQSSVCoVLly4gMbGRgQHB7e4b7u3K8vMzMygSX592Rx1Bs2W3OzsbCxYsACWlpbo3bs3Dhw4gO7duxt6iYQeqa+v5zto9+7dC1tbW8TGxiIuLg7BwcH8daXNfRAXSOKCw0Lfd3PXSlu2HQqFolmhERew5TRIn59RIpEgJydHsLZMmkn+7777Dlu2bEFTUxPmzZuHTz/9VFB7NkK3MMZw8+ZNvoP29OnTCA0NhVgshlgshqenJ59g4zSIS7A9jAbdvn0bFy9exODBgwUfvFQqlc1smVqzzbi3M9TKyorfM+ozya9Pm6POoum7PX/+fFy7dg0WFhb48ssvMW3aNMFbSXVFjDqgrYlSqcTJkyeb+U1OmjQJ0dHR8Pf3R1VVFcrKyvhsrqenZ4eyT42NjcjIyICVlZXRBJJUKhWysrIgl8sRHBz8wKoZzUEmMpkMcrmcH/ri5uaml4ELXDV5aWkpQkJCBNeCp8nRo0cxffp0eHp64tatWxg0aBDOnz9vFL8bhHZhjKGiogK7d+9GYmIiDh8+jN69e/Neb+7u7nzrNpcB5zSovXCBJDc3N/j5+Qk+kAT8fTAaNGhQuwIdbQ0y6eyAoI7A2Rzdvn0bwcHBerM56gyMMaxatQobN26En58fsrOz8c9//hOffvqpoZdGGADGGPLy8rB9+3YkJiYiPz8f48aNQ1xcHCZOnAiVSsVXAnZWgzjboN69extFIInz1wWAwMDAdu1hWkvyc0PKdJ3kN5TNUWeoqqrC008/jfr6ejg7OyMrKwv79++nxNojSmNjI44cOcJ30JqbmyMmJgZxcXEYMWIEP9T2YTTImAJJAHDnzh3k5+d3qNKZC9hyGiQSifSW5OdsjoYNGwZ3d3edvY+2SExMxEsvvYTHHnsMxcXFuH37NqRSqVEUnBHahTGG4uJivoP2xIkTCAgI4IPbPj4+zQK2tra2fIKtvV3gXHV4UVERAgICBJdwvhe5XI709HRYWFggICCg3fsXlUqF0tJSvniGG5TIdYbqSoMMbXPUERhjyMnJwQcffIA///wTUVFRSElJwahRo/Dbb78ZenmPHF0moK2JSqXCn3/+yQe3S0tLERERgejoaISEhKCmpgalpaWwsrLixawtH2ljDCQpFApkZGTAxMQEgYGBHQ4EaXoHcdOEXVxceEHTxWaBMYb8/HyUl5fzbcFC5erVq4iIiMALL7yAjz76CLW1tUhPT8fYsWMNvTRCAHB+k4mJiUhKSkK3bt344HaPHj34tklra+tmG6rWNIgLJPXq1Qt9+vQRfCAJ+LtlvrMHo3sHmTQ2NvJDX3Qx/E4oNkftgTGG77//Hu+++y4OHDiAUaNGobS0FBUVFTQMkgBjDFeuXOGD25zfpFgsRmRkJEQiUYc1iAvMGEsgqampCenp6bCysuq0LQrXEcFpkK6T/EKxOWoPdXV1eOaZZ2BqaspX5t66dQvOzs6C6aojDIdCoUBqaip/DlOpVIiOjkZcXBwee+wx/rpqrwYZWyAJAAoLC3Ht2rWHsg3ibA+54LZCoeCT/G5ublpN8gvJ5qg97N+/H7Nnz8aaNWvwxhtvQCQSobi42CjuT4Ru4TpoueB2SkoKBg0axA+19fX15Su3OQ3iEmytaRDnQV1eXo6goCBBnxGAuwlGzrN/6NChnY5dcYVG3D5IrVbzsSBtJvk5m6MhQ4bAy8tLKz9TV3AFJB999BH+/PNPpKamol+/fnzsTMjFUF2VLhnQ1qQlv8mnn34aMTExCA0NRX19PUpLS2FhYcGLmWZrhTEGkrhqcs6WQBtiU19fz2+oqqqqtNa+zMENbOI8LoXcrlFQUIDIyEhMnjwZ//3vf/WW4Pj666+xfv16lJSUICAgAF9++SVGjBjR4nPj4+Mxd+7cZo9ZWlqisbFRH0slNOD8JhMTE7F//364uLggNjYWMTEx6N27N+9NamlpyR/qNDWICyS1t8pZCHCBGW0OzeXsfqRSqdYHmQjV5qglGGOIj4/HW2+9hX379mHMmDF6e2/SIOODMYaCggJ+mNK5c+cwevRoxMbGIioqChYWFnybO9di6unpySf5udcXFhYaTSCpoaEBaWlpcHJywuDBg7Vyj9Z1kl+oNkct0dDQgGeffRZKpRIHDhzQ28Ge9Mc44Tpot23bhp07d6K+vh6TJk2CWCzG2LFjUVtbC4lE0qoGcYGksrIyBAcHCz6QpDnQPigoSGvJKcYYampqeA1qaGjQWpJfyDZHLXH48GG88MILWLFiBVauXKm3szlpkPHBddDu2rULCQkJOHLkCPr27QuxWMwPta2oqOA1yMLC4r6zmFKpxIULF9DU1ISgoCBBxyiAuwnn9PR0uLq6YtCgQVq7PjRtD7lCIy7J7+7u3ukkv9BtjjThii8//fRTpKamIjU1FQMHDtTb+5MGtUyXD2hrwvlNcge769evY8KECYiOjsbo0aN5w3czMzN4eHjAxMQEhYWFGDx4sNEEkurr65Geng5nZ2cMGjRIJ8FWbQ8y4Xy+a2tr+aGVQqWoqAgRERGIjIzE119/rbdg9tatWzFr1ixs3LgRYWFh2LBhA7Zt24ZLly61KP7x8fH45z//iUuXLvGPiUQiQQx3eZSpr6/HoUOHkJCQwFe1xcTEIDY2Fv379+eD2+bm5vDw8IBKpeJvWsZQMaNZ5RwUFKSzwIw2B5lo2hwNHz5c0J0hjDFs3rwZ//rXv7B7926MGzdOb+9NGmT83Os3eebMGYSEhEAsFiMmJga2trZ84prToPr6elRXVwvegoejtrYWaWlp8PT0xMCBA3UW6Kivr+f3QQ+T5DcmmyPgrvZOnz4dNTU1SEpK0lslOelP10ClUuHMmTN85XZFRQXCw8MRFxeH8ePHNyue4QbWV1VVQaVSNRtmJlS4/YRMJtN58L2uro7/rqqrqzs9iNyYbI4AIDU1FdOmTcPSpUvx7rvv6i2YTRrUNaiqqsKePXv4Dlpvb28+uD106FC+GpmLB7m6uqK8vBxWVlad6njXN1VVVcjIyECPHj3g6+urs+uDMcZrkFQqRW1tLZydnfngdnu12phsjrjip88++wwHDx5ESkoKhgwZorf3Jw1qnUcqoK1JS36TY8eORWxsLB577DH88ssvGD58OJycnODl5QVPT0+DDAfqCNzUby8vLwwYMEAvN3lukIlMJkNpaSl/CG7vIBO1Ws1P3g0JCdG6jYA2uXPnDiIiIjB27Fh89913eh2YGRYWhtDQUHz11VcA7n5vPj4+WLx4MVasWHHf8+Pj47FkyRJUVlbqbY1Ex2hsbERycjISEhKwe/dumJmZITo6GmKxGP369cP//vc/PP7447CwsICXlxfvXSbULhEua81VUemryvlhBplw94GKigrB2xwxxvDHH39g8eLFSExM1LtPLWlQ10LTbzIxMRHHjx+Hv78/4uLiEBMTAxMTE+zatQv+/v58xRK3DxKqBlVWViIjI0PvHXUtJfm5yu227OyMyeYIuPs5X3zxRUgkEhw+fFhr3TftgfSn66FWq3Hu3Dm+g7akpARPP/007/t/48YNpKenw8fHB+bm5nzVpFD3QVxxTk1NDYKDg/W6n+AKsrgBnFyS393dvc1CI2OyOQKAkydPYurUqXjttdewbt06vf4ekAZ1PWpqapp10Lq5ufFDbUNCQnDq1ClUV1fD2tqaj28IOR5UXl6OrKws9O3bF7169dLrezc0NPAaVFlZyQ/g5AqNWsKYbI44K78vvvgCu3fvxtGjR+Hv76/XNZAGtc4jG9DWRNNvMiEhARkZGTAzM8PixYvx/PPPA7jr7cMY4y9OXQ/m6CjcQc6Qw5ruHWQCoJnP0r3fF1cx39TU1K6hlYakpKQEkZGRCAsLw88//6zXYLZcLoeNjQ22b9+OuLg4/vHZs2ejsrISu3btuu818fHxeOmll+Dt7Q21Wo3g4GB8+OGHes0kEu1H029yx44dqKyshKWlJTZs2ICxY8fyFQPccCBPT0+dDuboKFxiqq6uzqBVVNwgE85Coa1BJsZkcwTcHX706quvYuvWrYiKitLre5MGdW00/SYTExORnJzMXzt//PEHvL29+SocoWpQaWkpLly4gP79+8PHx8dg61Aqlc00qLUkvzHZHAF371GzZs1CYWEhkpOT9Xr4JP3p+qjVamRmZjbroBWJRAgODsbvv/8OAILWIJVKhaysLMjlcoOfZxQKBT/MrbS0FJaWlrwGOTo68hpkTDZHAHD27FlMmTIFc+bMwWeffabXcy5pUNenvr4eBw8e5Dtozc3NUVVVhdmzZ2P9+vXN7H6EGA+SSqXIycmBn5+fwV0F5HJ5syS/tbU1fxbjCo1u3bqFy5cvG43N0dWrV/Hll18iISEBhw8fRkhIiF7fnzSobSigrYFCocDkyZNx+fJlPPvss0hNTcVff/2FUaNGQSwW48knn4SpqSmkUilUKpVOTPE7AzcVdsCAAejRo4fB1qEJN8iEE7R7B5mIRCJkZWVBoVAgODhY68OVtIlMJsOkSZMwbNgwbN68We/tRnfu3IG3tzdOnz6NUaNG8Y8vX74cx44dw9mzZ+97zZkzZ3DlyhX4+/ujqqoKn3zyCY4fP47c3FzB/I4Q9yOTyRAREQHGGIKDg3HgwAHU1dUhKioKYrEYwcHBqK6uhkQiAWOszYSRvlAqlcjKyoJSqURQUJBgElNtDTJxdnZGfn6+UdgcAcDevXsxd+5cbNmypdlGRl+QBj065OfnIzw8HD169ICTkxOOHj3K+03GxsbC29ubH6YkFA0qKSlBbm6u4AZWtpXk54ZyCt3mCLir8fPnz0d+fj5SUlL03hZM+vNocfz4ccTExMDf3x+VlZW4fPkyxo0bB7FYjKioKH6orVA0SKFQICMjAyYmJoKzJFCpVCgrK+M1yMTEBO7u7lAqlbz+CN3mCADS0tIQFxeH6dOn46uvvtJ70RZp0KPF5s2b8dJLLyEwMBBXrlyBhYUFoqOjMXnyZIwePRp1dXWQSCTN4kGenp5wcXExSDyIq3QeOnSo4DyoOa3RLDSytrbmrez02enVWa5du4ZvvvkGv/76Kw4dOoSwsDC9r4E0qG2Ec9cVAObm5oiNjcVzzz0HJyenZn6TO3bswIoVKzB8+HDExsZi/PjxsLCwwOXLlyGXy+Hm5gZPT0+4ubnpVcyKi4uRl5cnuKmwJiYmcHFxgYuLCwYMGMBnNq9fv46cnByYmZnBzMwMQUFBgg5ml5WVISYmBn5+fti0aZOgNqptMWrUqGaCN3r0aAwaNAjfffcd3n//fQOujGgLOzs7TJ48GcuXL4eFhQXvN5mQkIDly5ejvLwcERERiI2NxciRI1FTU4OLFy9CqVTyGqTPBJtcLuc7WkJCQgR1fZiYmMDV1RWurq7w8/PjB5lcvnwZDQ0NMDU1Rb9+/QRRWdEWSUlJmDdvHuLj4w0SzO4spEHGiZmZGRYsWIC3334bIpGomd/khAkT0L17d74lt0+fPpDJZLwGGSLJzw0z8/f3F5z/Ilfl7u7uDsYYKisrIZVKkZ2dDZVKBTc3N1RVVcHc3FxQ2qmJSqXCa6+9hpycHIMEszsL6Y/xIpPJ8Mknn+Dll1/mOxkSEhLw448/4v/9v/+HMWPG8NZI3FBbQ+2DGhsbkZGRAWtrawwbNsygxU0tYWpqyleSckn+K1euoKamBqamprhx4wav2ULVoKysLEyZMgVTpkzBl19+KUi7mZYgDTJecnJykJiYiEmTJkGhUCAlJQXbt2/H3LlzoVarERUVhcmTJ+OJJ55AQ0MDr0EKhYLfB+krHsTZBgm10tnMzIy3rOMG/BYXF8PMzAxZWVl8saOhi0Nbo6CgAN9//z22bNmCAwcOGCSY3VkeJQ2iCu120prfZGxsLJ5++ml+mFJjYyN/cbq7u+t0g6B5kHNzc9PZ+2gTpVKJtLQ0yOVyWFhYoKamptODTHRNZWUloqOj4e3tjYSEBINVnnamzaQlpk6dCjMzM/z22286WimhSzi/yYSEBOzYsQN37tzBxIkTERsbizFjxvAVA1yCjdtQ6UqDGhsbkZ6eDltbWwwbNkzwgWHg77bmhoYGeHh4oKysjB9kwm1ChWQ9kpycjBkzZuD777/HjBkzDHaQIw0igLsDF/fv34+EhATebzImJgZxcXEYOHAgX7mtDw1ijKGgoACFhYUIDAw0iioftVqNvLw8VFZW8kk2qVSKuro6uLi48PtGoXSMqFQqLF68GKdOnUJqaiq8vb0Nsg7SHwK4e81fv36dtyVJS0vjO2hjYmJgZ2fHV27rQ4Pq6+uRnp4OZ2dnDBo0SPB7IMYYLl26BKlUiuDgYKhUKr5yu6GhoZkGCaXTLjc3FzExMQgPD8fPP/9ssO+YNIgA7sYwTpw4gW3btmHXrl2or6/nO2ifeuopKBQKvnJb1/EgbgYHN1DaGGyDNG2O7O3t+T2QVCpFU1NTM80WQrFjYWEhvv/+e/zwww/Yu3cvxo4da7C1kAa1DQW0OwHnN7lz504kJCTg6NGj8PPzg1gsxsSJE+Hk5ASpVIr6+nq4uLjA09MT7u7uWrs4uU1dUVGR0UylBv5uyzM1NUVgYCBMTU35QSYymYwfpsQFt9saZKJrqqurERsbCxcXF+zcudPgQa6wsDCMGDECX375JYC7B+OePXti0aJFLQ4CuBeVSoUhQ4Zg0qRJ+Oyzz3S9XELHcP7z3FDbGzduYPz48bw1UmNjI6RSKRoaGuDq6sp3j2hLg+rq6pCeng5XV1cMGjTIKCpmOI9LzhqF+y46M8hEHxw/fhxTp07Fl19+idmzZxv8OyYNIjTR9Jvct28fbG1t+crtoUOH8j7SutAgrmqzpKSEPxgJHW5gXEs2R/X19fyhrrq6Go6OjnyCzcbGxmDrXbp0KZKTk5GSkqL3AVP3QvpDaMJ10HIJ/tOnTyM0NJS3RnJxceGvKV1oUE1NDdLT0+Hl5YUBAwYY/P78IDSHdrdkc1RXV8d/XzU1NXBycuIDcYYqNLp06RKioqLwxBNP4NdffzV4woA0iNBEpVLh9OnTvAZVVlYiIiICcXFxmDBhAhhjfHBb2/Egzes5ODhY8DM4GGO4du0aH3y/d8/GGENtbS2fYOMKjTgNMkQMpqioCP/73//wzTffYNeuXZgwYYLe13AvpEGtQwHth4QxhoqKCuzevZs3iu/Tpw/EYjEiIiLg6urKX5xc9tvDw6PT2W8uw84NErKzs9PyJ9INCoUC6enpMDc3R0BAQIttJQqFotkwpdYGmeia2tpaTJ48GVZWVti7d68gqsa3bt2K2bNn47vvvsOIESOwYcMG/PHHH7h48SI8PT0xa9YseHt7Y926dQCA9957DyNHjkS/fv1QWVmJ9evXY+fOnUhLS8PgwYMN/GkIbcINN+SC2xcvXsS4ceMQFxeHcePGQaFQ8FWArq6uD12BU11djfT0dHh7e6Nfv36CP8gBd2/imZmZUKvVCAoKarVSoj2DTPTB6dOnMWXKFL7tWgjfMWkQ0RqNjY04cuQIEhISsHv3bpibm/OV24GBgaioqIBEItGKBmlWOQcHBxss4NsRuKG59fX1CAkJafNzNzU1NdMgQyT51Wo1VqxYgd27dyM1NRV9+/bV+Xs+CNIfojUYY7hz5w7fQXvixAkEBAQgLi4OYrEYnp6ekEqlWtOgiooKZGZmonfv3ujdu7cg7s9twRhDXl4eKioqEBIS8sAzDVcQIZPJUFFRATs7u2ZJfn183mvXrmHSpEkYMWIE/vjjD0FYEZAGEa2hVqvx119/8cHtkpISTJw4kY8FmZiY8Br0sPEgbj9RV1eH4OBggxfcPQjGGK5cuYLi4uJ2x604GxepVIqqqio4ODjwZzF9BO9v3bqFn376CV9++SW2bduGSZMm6fw92wNpUOtQQFvLVFVVYe/evUhISMDBgwfRrVs3iMViREZGolu3bpDJZKiuroaTkxM8PT3h4eHR7vZSzYNcezYlQkEulyM9PR2WlpYICAhoV5adG2TCVW9zU811PVG4vr4ezzzzDABg3759gkoYfPXVV1i/fj1KSkoQGBiIL774gvdyGjt2LHr37o34+HgAwNKlS5GYmIiSkhI4OzsjJCQEa9euRVBQkAE/AaFrNP0mExMTkZWVhTFjxkAsFuPpp58GY4yvwOGy3x3RoPLycmRlZaFPnz7o3bu3bj+MllAqlcjIyIBIJOrQwKaWBplw35eTk5PONOivv/5CXFwc1q5di4ULFwrqsEwaRDwITb/JXbt2QaVSITo6GnFxcRgxYgQ/qJXTIK5iqT0apFKpkJ2djYaGBgQFBQn+IAfcXfOFCxfQ1NSEkJCQDlVmaSb5y8rKYGFhwe+DnJycdKINarUaq1evxh9//IHU1FT0799f6+/RWUh/iAfBGINMJuOD2ykpKRg0aBAf3Pbx8eFtSTqzD5LJZMjOzsaAAQOMYqiWWq1Gbm4uqqurERIS0mHNlMvlzTTIysqK/750leS/ceMGJk2ahGHDhmHHjh2C8vYmDSIehFqtRkZGBn8OKywsxIQJEyAWizFp0iSYm5vzSeuOxoOUSmWzTlOhWAO1hqbNUUhISKeC0XK5nE+wlZWVwcbGhtcge3t7rWvQnTt3EB8fj88++wy///47YmNjtfrzHxbSoJahgLYO0fSbPHDgAFxcXBAbG4tJkybBx8cHpaWlqKqqapeHNHcoamxsRHBwsGA8Fh+EXC5HWloabGxsOu2zq1ar+WFK3ERhzSEC2trsNDQ0YNq0aaivr0dSUpJR+FERRGto+k3u2LED586dw+jRoxEbG4vw8HCYmppCJpPxGsRtqFo78EilUuTk5GDgwIEG81LtKC3ZHHUGtVqN8vJyflPFGNPJIJP09HTExMRg9erVWLp0qaCC2QTRUTi/ye3bt2Pnzp2or6/HpEmTIBaL8dhjj6G6uhoSiYQ/1HH7oJY0SKlUNuuyEIK/4oNozeaosz9LU4N0keRnjOH9999HfHw8HwgkCGOF66DdtWsXEhIScOTIEfj6+iI2NhaTJ09Gnz59+GBte/ZBxcXFyMvLw9ChQ+Hp6WmAT9Qx2rI56gwqlQqlpaV8oRE39NbDwwPOzs5a0aBbt24hMjIS/fv3x+7duwUfsCOItmCMIScnh++gvXz5Mt9BGxUVBRsbGz7B9qB4kFwuR0ZGBszMzBAQECCoRE9LPMjmqDMolcpmnfzm5ubNkvwPq0HFxcXYtGkTPv74Y2zatIkvcCSEDwW09QTnN5mYmIi9e/fC1tYWMTExiIqKQt++fVFWVoaKigrY29vzGyqulVahUCAzMxMAEBgYaBQHOeBu62xaWhrs7OwwdOhQrR24qqurtT7IpKmpCc8//zzKyspw6NAho/ElJ4j2wPlNJiYmIjExkfeb5BJslpaWvIe0g4MDPDw84OnpyW9A7ty5g4sXL2Lo0KHw8PAw8KdpH5zNkYWFBfz9/bUWdGaM6WSQyYULFxAVFYU33ngDb775JgWziS5FS36T4eHhiIuLw5NPPona2lpIJJIWNYjr8rKwsGjVskxoqFQqZGRkgDHWps1RZ9BM8stkMiiVSt5GobMD8Bhj+Oijj/Dtt9/i6NGjGDZsmNbWSxBCoKqqCnv27OE7aL29vREXF4e4uDj4+fnxQ21b0qCioiJcvXoVAQEBcHV1NfRHeSBqtRoXLlxAQ0PDA22OOvvzuW4bqVQKtVrNB5Y6m+QvLi5GZGQkfHx8sH//fqMp3CKI9sBVK3OV29nZ2RgzZgzi4uIQExMDBwcHvnL73niQiYkJ0tPTYWtr2+niQH3SUZujztBSoZFmkr+jGiSRSLBp0yZ89NFH+PHHHzFjxgytr5nQHRTQNgCc32RiYiJ27doFMzMzxMTEIDo6GgMGDEB5eTnKy8thZ2cHV1dXSKVS2NjYaDUoo2saGxuRlpYGR0dHDBkyRGfBGW0MMpHL5Zg5cyZu376NI0eOwMXFRSdrJQghwBhDcXExduzYgYSEBJw4cQL+/v6Ii4vDpEmTYG9vz/u32tnZwdLSEuXl5QgKCjKaa4MLgFlZWcHf319nmz/NQSacT3lnBpnk5eUhMjISixcvxurVqymYTXRp1Go1zp07h+3bt/N+k08//TTi4uLw1FNP8f6JnId0U1MTHBwcEBgYKPiDHNDc5igoKEin+zbGGGpqapoNwOtokp8xhg0bNuCzzz5DcnIyAgMDdbZeghACNTU1zTpo3dzc+KG2AQEBfBVgeXk5zM3NoVQqMWTIEHh5eRl66Q+E6+iVy+UIDg7WeREUl+TngnGNjY3NfMrb8/5SqRSRkZFwd3fHoUOHjMJOiiA6C9dBy+2B0tLSMGrUKMTFxSE2Nhaurq58gq28vBwA+OJAIVmhtgRnc1RTU6M3j2/GWLMkv1wub5bkf5AGSaVSbNmyBR9++CG+/fZbzJw5k85hRgYFtA2MQqFAamoq35LL+U1GRUXB1tYWu3btwqRJk2Bra8tn6vQ1GKizNDQ0IC0tDc7Ozhg8eLDe1trY2Ngsu9meQSYKhQLz5s3DlStXcPToUbi5uellrQQhBBhjKC0t5YPbKSkp8PPzQ1xcHCIjI/HLL78gMDAQ3bp144eTeXp66m0wUGdoamriKxm01RnSXurr63kN4gaZcIe61rzjLl26hMjISMyfPx9r164V7PdKELpArVYjMzOTP9jduHGD95v08vLCr7/+ilmzZkEulxuFBnE2R1xbsL6LELgkPzev5UGWdowxfP3111i3bh0OHTqE0NBQva6XIAwNZzPIddDa29sjNjYWMTEx+O233zB8+HAEBASgsrJS8BrEDcBWqVQGsWZijDUrNKqtrYWzszNfOdlScKu0tJQvpjh69KjRzIciCG3AGENRURHfvXbmzBmMGDECsbGx8PHxwW+//YY333wTpqamKCsrg7W1Na9BQosHcTZH3MBKQ3RZtFRopJnkv3dNMpkMv//+O95//31s2LAB8+fPF9R3SrQPCmgLCKVSiZMnT2Lbtm3Ytm0bSktL0atXL97Avbq6GjKZjB/K4enpqRND/Iehvr4eaWlpcHNzg5+fn8HWplAo+MCS5iATd3d3ODo6QiQSQalU4pVXXsGFCxeQkpJiFJ54BKErNP0mt2/fjqSkJIhEIsycORMvvfQSPD09IZPJUFpaCisrKz7BJiQNamxsRHp6Ouzt7TFkyBCDVnM2NTXxGlReXt7iIJOrV68iMjISzz//PD766COjqD4lCF2h6Te5ZcsWXLt2DT4+PnjzzTcRFRUFlUrFeydyhzohaZBCoUBaWhosLS0F0VH3oCQ/APzwww/497//jQMHDmDUqFEGXS9BGJrGxkYcPnwY27dvx++//w6lUokpU6Zg7ty5CAsL46sAhbgP4uYM6MLmqLM0NDTwGlRZWQl7e/tmGlReXo7o6GiYm5sjJSVF8NWnBKFLGGO4c+cOEhMT8dNPPyEzMxNeXl5YuHAhxGIxevbsyQ+rl8lksLS05DVIV0Na2wtnc8TNehOK/319fT3/fWkWGrm6ukIul2Pr1q1499138Z///Af/+Mc/DK7jROeggLYASU9P59tv7ezssGvXLpSXlyMiIgIxMTEICQlBTU0NZDIZzM3N+eA2F6g1FHV1dUhLS4OnpycGDBggGFFQqVTNbgC3b9/G4cOHUVpailu3buHYsWPo3r27oZdJEIKAMYaZM2fi7NmzWLhwIY4fP46kpCR4e3sjNjYWsbGx6NGjBx/ctrCw4DXIkBuqxsZGnD9/Xu+dIe3h3kEmBw4cwO3bt3H69Gk899xz+OKLLyiYTRD/P2fPnsXTTz+NRYsWwdbWFomJibhw4QLvNxkVFQWRSMRfT0LQIG0MwNYlXJKf0+21a9fCzMwMmZmZ2LdvH8aOHWvoJRKEYHj22Wdx5coVvPXWWzh69Ch27twJxhiioqIwefJkPP744/xQWyFokLYGYOsSuVzOB7ezsrKwbt06KBQKODo64q+//oKjo6Ohl0gQguDPP//EhAkT8P7778PGxgYJCQlITU3F4MGDIRaLERcXB19fX5SXl0MikRg8HsQNwFYoFHqxOeosmoVGGzduRHJyMsrLy/H//t//o6IiI4cC2gJEKpXiwIEDmD17NoD7/SaLi4sxceJExMbGIiwsjG/vMjU15TPfzs7OehWz2tpapKWloXv37ujXr5+ggkmaqNVqpKWlYd68eSgsLISdnR1iY2Px/vvvo1evXoZeHkEIgoSEBIwZM4YfAMn5TSYmJmL//v1wc3NDTEwMxGIx+vbtywdKzMzMeA1ycnLSmw5wNkcuLi4YNGiQYPUHuLvx27x5M/71r39BrVbDzs4OzzzzDL799ltBr5sg9EV1dTVSUlIgFosB/O03yQ1T4vwmxWIxoqKiYGVlxSesDaFBuhiArUsUCgWWLFmCTZs2wcbGBra2tli1ahUWLlxo6KURhCA4evQogoOD+QHxSqUSJ06cwLZt27Bz5040NDQgKioKYrEYY8eObWb1Y2pqyldN6kODuAHY5ubmRjM0986dO4iIiEBpaSnUajUcHR3xxx9/UJcIQeBugc6ZM2cwbtw4AHf3QOXl5di1axcSEhKQnJwMX19fiMViTJ48GQMHDmw2pFWf8SBD2xx1hoqKCmzZsgX//ve/0a9fPxQUFMDLyws5OTk0jNZI0VlA+4MPPsC+ffuQmZkJCwsLVFZWPvA1jDGsWbMGP/zwAyorK/HYY4/h22+/Rf/+/XWxRKOE85vkDnY3btzA+PHjERsbi9GjR6OxsRFSqRQikQju7u7w9PSEs7OzTg9YNTU1SEtLQ48ePeDr6yvooIxarcYbb7yBAwcOIDk5GTKZDDt27MAbb7xB/tldENIh7VNfX4+DBw8iISEBe/fu5ZNCYrEYAwYM4LshRCIRXy3g5OSkMw3ibI7c3d0xcOBAQesPABQXFyM8PBxPPvkkvv32W5w9exbZ2dn4xz/+YeilETqANEi7cH6TiYmJSExMxJkzZxAaGgqxWIyYmBjY2dnxgSV9aJC+BmBrC8YYtm3bhkWLFiEhIQFPPfUUjh8/DktLSzz++OOGXh6hA0iDtItKpcLp06f52UeVlZWIiIhAXFwcxo8fz5/DNPdBXGBJ2xrEDcC2tLREQECA4JNpwN1u3ri4OJSXl+PkyZO8d3ZoaChcXV0NvTxCB5AGaQ9uCOuePXuQmJiIgwcPokePHnzl9rBhw1BVVQWJRAKpVAoA/D5I2xqkOQA7MDBQEDZHD6KyshI7duzA6tWrsWzZMqxcuZKfvTR69GhDL4/oJDq788nlckydOhWvvfZau1/z8ccf44svvsDGjRtx9uxZ2NraIjw8HI2NjbpaptFhYmKC4OBgfPDBB8jLy8O5c+cwfPhwfPXVVwgODsbKlStx48YNeHt7QyQSIScnB8ePH0dubi5kMhnUarVW11NdXY20tDT07NlT0JXZwN1g9ttvv429e/fiyJEj8PX1xciRI/HRRx/pPJj99ddfo3fv3rCyskJYWBj++uuvNp+/bds2+Pn5wcrKCsOGDcP+/ft1ur6uCumQ9rGxscHkyZOxefNmlJSUYOPGjWhoaMDzzz+PUaNG4bvvvoNarYafnx8AIDs7m9cgrhpHW9TV1eH8+fPw9PQ0imC2RCJBVFQURo0ahe+//x4WFhYYM2aMXoLZpEGGgTRIu4hEIvTq1QtLly7F8ePHUVhYiBdeeAEHDx5EYGAgnnnmGRw8eBDe3t4YOnQogL81KC8vT6sa1NDQgPPnz8PJyckogtkAsHPnTixcuBC///47wsPDYW5ujvHjx+slmE0aZBhIg7SLqakpxowZg88//xwFBQU4ePAgfHx8sGrVKvTt2xdLlixBbm4ugoKCMGzYMABodhbTlgZxNkfW1tZGE8xuaGjAs88+C5lMhmPHjsHV1RUWFhaIiIjQeTCb9MdwkAZpD5FIBCcnJ8ycORM7duyARCLBe++9h8LCQkRERCAgIACffPIJamtrMWbMGPj7+8PExAS5ubk4duyY1uJBXGeIiYmJYDz7HwSXCFizZg0WLlyIlStXQiQSwcrKSi/BbNIg3aFzy5H4+HgsWbLkgdk4xhi6d++O119/Hf/6178A3P3F8/T0RHx8PKZPn67LZRo9jDFcvnwZCQkJSEhI4P0mY2NjMW7cOKjVakilUiiVSn7atKur60O1plVVVSE9PR19+vRB7969tfdhdIBarca///1vbNmyBampqRg4cKDe3nvr1q2YNWsWNm7ciLCwMGzYsAHbtm3DpUuXeEsHTU6fPo0nnngC69atQ3R0NH799Vd89NFHSE9P5w/oRMcgHdI9CoUCKSkp2L59O3bt2gWVSoXo6GiIxWIEBgaisrISEokEKpVKKxrE2Rx5e3sLvjMEuDtJOyoqCkOHDsXmzZv1uvkjDTI8pEG6hTEGqVSKnTt38n6TgwYNQlxcHMRiMTw8PCCTybSmQUIZgN0R9u7di7lz52Lz5s2YPHmyXt+bNMjwkAbpFrVajYyMDGzfvh2JiYkoKirChAkTIBaLERkZCQB85fbDnsWENAC7vTQ1NWHq1KkoKCjAyZMn0a1bN729N+mPMCAN0i11dXVISkpCYmIi9u3bBwcHB8TExCAuLg5hYWGora3lK7eVSiXc3Nzg4eEBNze3DmkQF8y2sLAQxADs9lBdXY09e/Zg1apVmDNnDtatW6dX3SQN0i2CCWhfv34dvr6+yMjIQGBgIP/4k08+icDAQHz++ee6XGaX4l6/yfPnz2P06NGIjY3FU089BRMTE0ilUsjl8mZi1pEAS2VlJTIyMtC3b1/Be08zxvDhhx/ixx9/xNGjRzFkyBC9vn9YWBhCQ0Px1VdfAbi76fXx8cHixYuxYsWK+54/bdo01NXVYe/evfxjI0eORGBgIDZu3Ki3dXclSIf0i6bf5K5du1BfX4+oqCjExsYiNDQUVVVVzTTI09OzQxsqzuaoZ8+e6Nu3r44/zcNTXl6OSZMmoV+/fti6davePeZIgwwPaZD+0PSbTExM5DuyYmNjERcXxw+17awGCXUAdlskJSVh5syZ+Pnnn/Hcc8/p/f1JgwwPaZD+YIwhJyeHD25fvnwZ48aNQ1xcHCZNmgQzMzM+uN1RDeIGYBtTZ4hcLseMGTOQl5eHU6dOoUePHnp9f9IfYUAapD8aGhpw+PBhJCYmYvfu3bC0tERMTAwmT56M0aNHo76+HlKpFBKJBE1NTc00qK14EGdzZGVlxVd/Cx1uDtTbb7+NadOm4bPPPtP7ukmDdItgfgtLSkoAAJ6ens0e9/T05P+NaB8ikQi+vr5Yvnw5zpw5g+vXr2Py5MnYvXs3RowYgddee40/jNnY2OD69es4duwYMjMzUVxcDIVC0ebPr6ioQHp6Ovr162cUwexPP/0UGzduxKFDh/QezOZaAidMmMA/ZmJiggkTJuDMmTMtvubMmTPNng8A4eHhrT6f0B6kQ9rBzMwM48aNwzfffIOioiLs3r0bbm5ueOONNxAYGIgPP/wQMpkMgwcPho2NDa5evYrU1FRkZWWhuLgYSqWy1Z/N2Rz16tXLKILZlZWVEIvF6NWrF37//Xe9B7NJg4wL0qCHRyQSwdXVFfPmzcPevXtRUlKCFStW4OLFixg3bhzGjh2LLVu2wMbGBsHBwR3SoNraWpw/fx7dunUzmmD20aNHMWvWLHz33XeYOnWq3t+fNMi4IA16eEQiEYYNG4Z3330XFy5cQFZWFsaMGYPvv/8e/fr1w8yZM3HixAn0798fw4cPh42NDa5du/ZADeJsjlxcXIwmmK1QKDBr1izk5OTg2LFjeg9mk/4YH6RBD4+1tTViY2MRHx+PkpISxMfHgzGG2bNno1+/fnj77bdRWFiI0NBQjBgxAnZ2ds3iQXfu3LkvHtTU1ITz58/DxsbGaILZtbW1SEpKwqpVqzB58mSDBLNJg3RPh/6PrlixAiKRqM0/Fy9e1NVaiU4gEonQs2dPLF26FMeOHeP9Jg8fPozRo0dj7ty5OHPmDNzd3WFvb48bN27g2LFjyMjIwO3btyGXy5v9vLKyMmRkZGDgwIHw8fEx0KdqH4wxfPHFF9iwYQMOHjyIgIAAva+htLQUKpWqQzflkpISuom3AemQccH5TW7YsIH3m+zVqxfWrFkDf39/rFmzBrdv38aQIUNgZ2eHGzduIDU1FRkZGfdtqCorK5GWloY+ffqgT58+BvxU7aO6uhpTpkyBu7s7tm3bBgsLC72vgTRI+5AGGRf3+k2uXbsWhYWFiIyMxGOPPYb//e9/MDU1RWhoKK9B3D5IU4Nqampw/vx59OjRQ/AzQziOHz+OGTNm4Msvv8QLL7xgkDWTBmkf0iDjQSQSwc/PDytXrkRaWhry8vIwceJEbN68GQMGDMBzzz2HI0eOoHfv3nxgqaV9UH19Pc6fPw83NzcMGjTIKPRHqVRi3rx5OH/+PFJTUw1iT0n6oxtIg4wHCwsLhIeH44cffsCdO3ewdetWWFlZ4dVXX4Wvry/+9a9/4fLlywgODsbIkSPh4OCAoqIiHDt2DOnp6bh9+za//3FwcMDQoUONIphdV1eHQ4cOYfXq1Zg0aRK++uorg6ybNEj3dMjE8/XXX8ecOXPafE5nK+a8vLwA3B2apemrJZFImrWbEJ1HJBLB29sbixYtwsKFCyGTybBjxw4kJibi/fffh5+fH+Li4hAeHg4nJyfcunUL+fn5cHZ2hqenJ0xNTZGfnw8/Pz90797d0B+nTRhj2LhxIz766CMkJSVh+PDhhl4SoSVIh4wXExMTjBw5kh/GmpGRgYSEBPznP//Ba6+9xvtNjh07Fo2NjSgqKkJeXh5cXFxgZ2eHW7duoX///oJPpgF3qwKeffZZ2NraYseOHbCysjL0kggtQRpkvNjb22PatGmYNm0a6uvrkZSUhISEBEyZMgX29vaIjY2FWCxGaGgoysrKeA1ycHBAbW0tfHx84Ovra+iP0S7OnDmD5557DuvXr8ecOXOMIgBGtA/SIONEJBKhX79+ePPNN7F8+XIUFRXx9pDLly/HiBEjIBaLIRaL4erqCqlUips3byIvLw8A4OzsjD59+hjFtaxUKvHKK6/g5MmTOH78uNHoJtE+SIOMEzMzMzz11FN46qmn8NVXX+HUqVPYvn07li5diqqqKkRGRkIsFuPpp58GcNf3v7CwEHV1dbCwsICjoyMUCgUsLS0N/Enapr6+HkeOHMHq1asxduxYbNy40SiC8ETn6FBA293dHe7u7jpZSJ8+feDl5YXk5GRerKqrq3H27NkOTcUl2odIJIKHhwcWLFiAV155BRUVFdi1axcSEhLw8ccfo2/fvhCLxYiIiICLiwuSkpLQvXt3ODk5QalUorGxUbABGsYYfvrpJ7z33nvYt28fRo4cabC1cH54Eomk2eMSiYS/Yd+Ll5dXh57/qEE61DUwMTFBSEgIQkJC8MEHH/B+k59//jkWLlyIcePGQSwWY8KECTh69ChUKhW8vb35a8Pd3V2wGlRfX4/nnnsOpqam2LVrF6ytrQ22FtIg7UMa1DWwsbHBlClTMGXKFDQ2NuLw4cNISEjA9OnTYWlpiejoaEyePBlyuRw7d+5EZGQkCgsL+eFUQtagc+fO4ZlnnsEHH3yABQsWGDQARhqkfUiDjB+RSIRevXph2bJlWLp0Ke7cuYPExEQkJiZi1apVCAwMhFgshq+vL37++We89dZbUKlUOHHiBJycnODh4QEPDw9BapBSqcTChQuRnJyM1NRUDBw40GBrIf3RDaRBxo+pqSmeeOIJPPHEE9iwYQPOnj2L7du3Y9WqVXj55ZcxceJEhIaGIj4+Hp9++il69+6NkpISXLp0CY6OjvD09BSkBjU0NCA5ORmrVq3CyJEj8dNPPxl0cCVpkO7RWaqiqKgImZmZKCoqgkqlQmZmJjIzM1FbW8s/x8/PDzt27ABw98a+ZMkSrF27Frt370Z2djZmzZqF7t27Iy4uTlfLJHD3u3dxccHcuXOxd+9eSCQSvP3227h48SIiIyMxfvx4LFu2DJcvX4a3tzekUilOnjyJv/76C4WFhWhoaDD0R+BhjGHTpk14++23sWvXLjz++OMGXY+FhQVCQkKQnJzMP6ZWq5GcnIxRo0a1+JpRo0Y1ez4AHD58uNXnE61DOmQctOY3+eOPP8LPzw//+Mc/+EORu7s7SkpKcPLkSZw7d05wGtTY2IgZM2ZALpdjz549sLOzM+h6SIMMC2mQcWBlZYWYmJhmfpMA8MILL2Dq1KlITU1FY2MjRowYAQ8PD0FrUEZGBuLi4rB69WosWrTI4NWcpEGGhTRI+HAdtIsXL8bRo0dx8+ZNzJ8/H/v27cPzzz+PjIwMHD16FI6Ojnjsscfg4eEh2LOYWq3GsmXLsG/fPhw5ckTvs4vuhfTH8JAGCR8TExOMGjUKn376Ka5cuYLU1FS4u7vjnXfewbVr17Bx40acPn0aAwYMwOOPPw4vLy/IZDJeg27cuIH6+npDfww0NjYiJSUFq1evRmBgIH755Zc2h1zqA9IgPcB0xOzZsxmA+/6kpKTwzwHAfv75Z/7varWarV69mnl6ejJLS0s2fvx4dunSJV0tkWgHP//8M7O0tGSjRo1idnZ2rHfv3mzx4sXs4MGDLD8/n504cYLt2rWLHT16lOXk5DCpVMrq6uoM8qe2tpb9+OOPzNbWlh0+fNjQXx3P77//ziwtLVl8fDzLy8tjr7zyCnNycmIlJSWMMcZmzpzJVqxYwT//1KlTzMzMjH3yyScsPz+frVmzhpmbm7Ps7GxDfQSjhXTIuNmzZw+zsbFh06ZNY2FhYczU1JSNGTOGffLJJyw7O5tdvHiRHT9+nNeg3NxcJpPJDKZB5eXlLDIykoWGhrKKigpDf308pEGGgzTIeDl+/Dizt7dnS5YsYa+99hrr1q0bc3JyYi+88ALbtm0bu3PnjuA06M8//2QuLi7sww8/ZGq12tBfIQ9pkOEgDTJOLl26xJydndnq1avZ//73PzZp0iRmYWHBBg8ezN566y32119/sdLSUnbp0qVmGpSTk2MwDaqpqWGvvvoqc3R0ZOfPnzf0V8hD+mNYSIOMj/r6eubj48PeeOMNlpWVxVavXs2GDBnCLCwsWEREBPv222/ZzZs3WXl5Obt06RIfD0pOTmbZ2dkGiQeVl5ezxMRE5ufnx2JiYlhTU5Ohv0Ye0iDdImKMMX0EzgnjgzGGOXPmYMaMGYiIiOD9JhMTE7F3717Y2dkhNjYWMTEx6Nu3L0pLS1FWVgZbW1t4eHjA09NTr9WJCQkJeO211/DHH39g0qRJenvf9vDVV19h/fr1KCkpQWBgIL744guEhYUBAMaOHYvevXvzFWEAsG3bNqxatQo3btxA//798fHHHwvuMxGErtm0aROsrKwwdepUMMZ4v8kdO3bgzJkzCA0NhVgsRlRUFCwtLSGTyVBWVgY7Ozu+HVdfGiSXyzFr1izcvHkTycnJcHFx0cv7thfSIILoGNevX8eff/6J559/HgCgUqlw6tQpXoOqqqoQERGBuLg4PPnkk6irq4NUKjWYBuXl5SEyMhILFy7EmjVrDF6ZfS+kQQTRfpRKJQ4cOICYmBgAd89kVVVV2LNnDxISEnDo0CH06NEDYrEYkydPhp+fH8rKyngNsrW15S0B9KFBarUaq1atwk8//YRDhw4Z1O6xJUh/CKJjZGVlwd/fn99LMMZw8eJFbN++HYmJicjNzcUTTzyBuLg4REdHw8nJCaWlpbwGWVtbN9MgXe5JmpqacPz4caxatQo9evTAzp07BefzTRqkO7p0QLu8vByLFy/Gnj17YGJigmeeeQaff/55mzf2sWPH4tixY80eW7BgATZu3Kjr5RoVnN9kYmIidu3aBQsLC8TExCA2NhYDBgxAeXk5SktLYW1t3Sy4rSsx2717N+bPn49ff/0VYrFYJ+9BEB2FNEg3MMaa+U2ePHkSAQEBiIuLQ1RUFOzt7ZttqHStQQqFAvPnz8elS5dw9OhRnfkKEkRHIQ3SDWq1GmfPnuWD2xKJBBMnToRYLMb48ePR1NQEiUSiNw26dOkSIiMjMW/ePHzwwQeCC2YTjy6kQbqhpqYG+/btQ0JCAg4cOAB3d3eIxWLExcUhMDCQD27r4yymVqvx7rvvYuPGjdi/fz/GjBmj1Z9PEJ2F9Ec3MMZw7do1PridkZGB0aNHQywWIzY2Fu7u7igrK4NEIkFpaSmsrKx4DbK3t9eqBsnlcpw4cQKrV6+Gm5sb9uzZY9DZRYT+6dIB7cjISBQXF+O7776DQqHA3LlzERoail9//bXV14wdOxYDBgzAe++9xz9mY2MDBwcHfSzZKJHL5UhJSUFCQgJ27twJtVqN6OhoxMbGYsiQIaioqEBpaSksLCz4TJ2Dg4PWxGz//v2YPXs2/u///g/PPvusVn4mQWgD0iDdwxiDVCrFzp07kZCQgNTUVAwaNIivGHB1deUPdbrQIKVSiQULFiArKwspKSnw9PTUwqciCO1AGqR71Go1MjIy+INdUVERJkyYALFYjIkTJ0KpVOpUg65du4aIiAhMnz4d69evh4mJzsbjEESHIQ3SPXV1dUhKSkJCQgL27dsHR0dHxMbGQiwWY/jw4aisrOQDS9rWILVajXXr1mHDhg3Yu3cvxo0bp6VPRRAPD+mP7mGMobCwkE/w//nnnwgLC+M1qHv37nyCTSaTwdzcnNcgR0fHh9IghUKBkydP4p133oGdnR32798PW1tbLX46whjosgHt/Px8DB48GOfOncPw4cMBAElJSZg0aRJu3bqF7t27t/i6sWPHIjAwEBs2bNDjarsOSqUSJ06cwLZt27Bz5040NDQgKioK0dHRCAwMRHV1NWQyGczMzPhM3cOI2ZEjR/D888/jhx9+wIwZM7T8aQii85AG6R/GGMrLy7Fr1y4kJCQgOTkZvr6+iI2NRWxsLDw9PSGTyVBaWqoVDVKpVFi0aBHOnDmD1NTUVv+fEoQhIA3SP4wx5OTkYNu2bdixYwcuX76McePGIS4uDhEREXwCTlsadOPGDURGRiI2Nhaff/45BbMJQUEapH8aGhr4Dtrdu3fD0tISMTExmDx5MkaOHImqqio+sPSwGqRWq/HJJ5/g448/xo4dOxAeHq6jT0UQHYf0R/8wxnD79m2+g/bUqVMIDAxEXFwcxGIxevbsiYqKCkgkEshkMpiamvL2bM7Ozh3SIIVCgT///BPvvPMOzMzMkJSUBHt7ex1+OkKodNmA9k8//YTXX38dFRUV/GNKpRJWVlbYtm0bJk+e3OLrxo4di9zcXDDG4OXlhZiYGKxevRo2Njb6WnqXQaVS4fTp09i+fTvvNxkeHo7Y2FiEhobywW2RSMRvqJycnNp9IDt27BimTp2Kb775BjNnzqQWW0JQkAYZlpb8Jr29vREXF4fY2Fj4+PhAJpNBJpPBxMSkwxsqtVqNJUuWICUlBSkpKejZs6cePhVBtB/SIMPC+U0mJCQgMTER2dnZzfwmTUxM+MBSZzTo1q1bCA8PR3h4OL755hsKZhOCgzTIsMjlchw9epTvoBWJRIiKisLkyZPx+OOPo7a2lg8siUQivmqyPWcxxhg+//xzrF27Ftu2bUNUVJSePhVBtA/SH8PCGINEImnWQTtkyBA+uN2vXz9UVFRAKpVCKpVCJBLB3d0dnp6ecHZ2blODlEolzp49izVr1kCpVOLw4cNwdHTU46cjhISZoRegK0pKSuDh4dHsMTMzM7i4uKCkpKTV1z3//PPo1asXunfvjgsXLuDNN9/EpUuXkJiYqOsldzlMTU0xZswYjBkzBv/973/x119/Yfv27VizZg0kEgmefvppiMVijBw5EnV1dcjOzgZjjD/Uubi4tCpmp06dwrRp07BhwwYKZhOChDTIsIhEIjg5OWHmzJmYOXNmM7/JSZMmwc3NjW+H8/X1hUwmQ3Z2NgA8cEOlVquxfPlyHDlyhILZhGAhDTIsIpEIgwYNwqpVq7By5Ureb3Lz5s1YunQpRo8ezQe3raysIJVK261BxcXFiIqKwrhx4/D1119TMJsQJKRBhsXCwgIRERGIiIjAt99+i2PHjmH79u1YsGABmpqaEBUVxQ+1bWho4DWoPWexb7/9Fu+//z62bNlCwWxCkJD+GBaRSAQvLy+8+uqrWLBgAcrKyvgO2nXr1qF///687//jjz+O6upqSKVS5OTkgDEGd3d3eHh4wNXVtZkGqVQqnDt3Du+99x4aGxtx5MgRCmY/4hhdQHvFihX46KOP2nxOfn5+p3/+K6+8wv/3sGHD0K1bN4wfPx7Xrl2Dr69vp3/uo46JiQlGjhyJkSNH4uOPP+b9JtetW9fMb3L06NFobGxEXl4eVCoVf6hzcXGBqakpAODs2bN49tlnsW7dOsyfP5+C2YReIQ0yTuzt7TF9+nRMnz6d95tMTEzElClTYG9vzwe3/fz8UFpaitzcXKhUKv5Qx22o1Go1Vq5cid27dyM1NRV9+vQx9EcjHjFIg4wPkUiEfv36YcWKFXjzzTdRWFjIt+QuX74cI0aM4DWIG2rbmgZJJBJER0cjLCwMP/zwA783Igh9QRpkfJiZmWH8+PEYP348vvrqK5w6dQrbt2/HkiVLUF1djcjISIjFYkyYMAFyuRwSiaTVs9gPP/yA1atXIz4+HlOmTDH0RyMeMUh/jA+RSAQ3NzfMnz8f8+bNQ1VVFXbv3o2EhAR89tln6NmzJ2JjY/nukZqaGkgkEly8eBFKpRJubm78UNsLFy5g7dq1qK6uRnJyMlxcXAz98QgDY3SWIzKZDGVlZW0+p2/fvti8eXOn2kzupa6uDnZ2dkhKSiJvMB3A+U1yw5Q4v0mxWIwnnngCCoUCEokECoUCu3btgqurKzZu3Ih///vf+Oc//0nBbELvkAZ1LVrzmxSLxRg6dCjKy8t5W4BNmzbBzMwMaWlpSE1NhZ+fn6GXTzyCkAZ1HRhjuHPnDhITE5GQkMD7TYrFYsTGxvJDbaVSKQ4fPoyMjAxcunQJYWFh2Lp1K8zMjK4uhegCkAZ1HdRqNc6ePcvbQ0qlUoSHh0MsFiM8PBwqlQpSqRQSiQQffPABqqqqkJeXh40bN2L+/PmGXj7xCEL607Worq7mO2iTkpLg4eHBB7eDg4NRW1sLqVSK69evY9asWbC2toaFhQVOnDhBRUXEXVgXJS8vjwFg58+f5x87ePAgE4lE7Pbt2+3+OSdPnmQAWFZWli6WSWigVqtZfn4+W7t2LQsKCmJmZmbsqaeeYhs2bGBZWVls8uTJzMTEhJmbm7NnnnmG7du3z9BLJohWIQ0yPpqamlhSUhJ76aWXmLu7O3Nzc2OzZ89mO3bsYOfOnWNBQUHMxMSEWVtbs2effZalp6cbeskE0SqkQcaFWq1mxcXF7Ntvv2UTJkxg5ubmLCAggL3zzjssLS2N7dmzh7m4uDBbW1tmY2PDpk6dysrLyw29bIJoFdIg40KlUrFz586xN998k/Xv359ZW1uzmJgY9uOPP7Lbt28zsVjMTE1NmaenJ7OxsWH/+Mc/DL1kgmgV0h/jo7a2lm3bto3NmDGDOTg4MB8fH7Zw4UK2d+9eNnHiRBYYGMicnZ1Z//79mZWVFfvmm28MvWRCAHTZgDZjjEVERLCgoCB29uxZdvLkSda/f382Y8YM/t9v3brFBg4cyM6ePcsYY+zq1avsvffeY+fPn2cFBQVs165drG/fvuyJJ54w1Ed4ZFGr1ezKlSvsP//5DxsxYgQfyH7nnXdYVlYWe+edd9jnn39ukLWVlZWx559/ntnb2zNHR0c2b948VlNT0+ZrnnzySQag2Z8FCxboacWEoSANMl4UCgVLTk5mr776KuvWrRuztrZmNjY2LCMjg2VlZbHVq1ezjIwMva+L9IfoCKRBxolarWalpaXsxx9/ZJMmTWLm5ubMysqKPfHEE6yhoYFlZWWxDz/8kKlUKr2vjTSI6AikQcaJSqViWVlZbNWqVWzIkCHMxMSEAWBvvPEGU6lULDs7m+3du9cgayMNItoL6Y/xUl9fz3bu3MlefPFFZmZmxkQiEXN3d2dFRUWMMcZyc3PZlStX9L4u0h/h0aUD2mVlZWzGjBnMzs6OOTg4sLlz5zb7hSsoKGAAWEpKCmOMsaKiIvbEE08wFxcXZmlpyfr168feeOMNVlVVZaBPQDB292B3+fJltnjxYqZWqw29HBYREcECAgLYn3/+yU6cOMH69evX7ObYEk8++SR7+eWXWXFxMf+Hfq+6PqRBXQOlUsni4+NZfHy8oZdC+kN0CNIg40etVrOKigq2aNEiVlZWZujlkAYRHYI0yPjZtGkTs7KyYs8//zydwwijgvTHuFGr1Wz69OksICCArVmzhh0+fNjQSyL9ESBG56FNEIYkPz8fgwcPxrlz5zB8+HAAQFJSEiZNmoRbt26he/fuLb5u7NixCAwMxIYNG/S4WoIguhKkPwRBGBLSIIJ49Pj000/h7++Pp59+2tBLIQ0iiEeMvXv3YuTIkXBzczP0Ukh/BIqJoRfQFfn666/Ru3dvWFlZISwsDH/99Vebz9+2bRv8/PxgZWWFYcOGYf/+/XpaKdFRzpw5AycnJ17EAGDChAkwMTHB2bNn23ztli1b4ObmhqFDh+Ktt95CfX29rpdLPKKQBnVNSH8IY4D0p+tCGkQYA6RB2uX1118XRDAbIA0ihA/pj3aJjo4WRDAbIP0RKhTQ1jJbt27FsmXLsGbNGqSnpyMgIADh4eGQSqUtPv/06dOYMWMG5s+fj4yMDMTFxSEuLg45OTl6XjnRHkpKSuDh4dHsMTMzM7i4uKCkpKTV1z3//PPYvHkzUlJS8NZbb2HTpk148cUXdb1c4hGENKjrQvpDCB3Sn64NaRAhdEiDujakQYSQIf3p2pD+CBRDe550NUaMGMEWLlzI/12lUrHu3buzdevWtfj85557jkVFRTV7LCwsjIzi9cybb755n1n/vX/y8/PZBx98wAYMGHDf693d3Ts0aTc5OZkBYFevXtXmxyAI0iAjhPSH6CqQ/hgnpEFEV4E0yDghDSK6AqQ/xgnpj3FjppMo+SOKXC5HWloa3nrrLf4xExMTTJgwAWfOnGnxNWfOnMGyZcuaPRYeHo6dO3fqcqnEPbz++uuYM2dOm8/p27cvvLy87suyKpVKlJeXw8vLq93vFxYWBgC4evUqfH19O7xegmgJ0iDjhPSH6AqQ/hgvpEFEV4A0yHghDSKMHdIf44X0x7ihgLYWKS0thUqlgqenZ7PHPT09cfHixRZfU1JS0uLz22pbILSPu7s73N3dH/i8UaNGobKyEmlpaQgJCQEAHD16FGq1mhen9pCZmQkA6NatW6fWSxAtQRpknJD+EF0B0h/jhTSI6AqQBhkvpEGEsUP6Y7yQ/hg35KFNEB1g0KBBiIiIwMsvv4y//voLp06dwqJFizB9+nR+su3t27fh5+fHD4G4du0a3n//faSlpeHGjRvYvXs3Zs2ahSeeeAL+/v6G/DgEQRgRpD8EQRgS0iCCIAwJaRBBEIaC9EeYUEBbi7i5ucHU1BQSiaTZ4xKJpNU2BC8vrw49nzA8W7ZsgZ+fH8aPH49Jkybh8ccfx/fff8//u0KhwKVLl/jptRYWFjhy5AgmTpwIPz8/vP7663jmmWewZ88eQ30EootCGtT1If0hhArpz6MBaRAhVEiDHg1IgwghQvrzaED6IzxEjDFm6EV0JcLCwjBixAh8+eWXAAC1Wo2ePXti0aJFWLFixX3PnzZtGurr65v9Uo8ePRr+/v7YuHGj3tZNEETXgDSIIAhDQfpDEIQhIQ0iCMJQkP4QhAEw9FTKrsbvv//OLC0tWXx8PMvLy2OvvPIKc3JyYiUlJYwxxmbOnMlWrFjBP//UqVPMzMyMffLJJyw/P5+tWbOGmZubs+zsbEN9BIIgjBjSIIIgDAXpD0EQhoQ0iCAIQ0H6QxD6h4ZCaplp06ZBJpPhnXfeQUlJCQIDA5GUlMQb/hcVFcHE5G+nl9GjR+PXX3/FqlWr8Pbbb6N///7YuXMnhg4daqiPQBCEEUMaRBCEoSD9IQjCkJAGEQRhKEh/CEL/kOUIQRAEQRAEQRAEQRAEQRAEYRTQUEiCIAiCIAiiS/H111+jd+/esLKyQlhYGD9xviXi4+MhEoma/bGystLjagmC6EqQ/hAEYUhIg4hHBQpod3FIzAiCMBSkPwRBGIKtW7di2bJlWLNmDdLT0xEQEIDw8HBIpdJWX+Pg4IDi4mL+T2FhoR5XTBBEV4H0hyAIQ0IaRDxKUEC7C0NiRhCEoSD9IQjCUHz22Wd4+eWXMXfuXAwePBgbN26EjY0Nfvrpp1ZfIxKJ4OXlxf/hPC8JgiA6AukPQRCGhDSIeJSggHYXhsSMIAhDQfpDEIQhkMvlSEtLw4QJE/jHTExMMGHCBJw5c6bV19XW1qJXr17w8fGBWCxGbm6uPpZLEEQXgvSHIAhDQhpEPGpQQLuLQmJGEIShIP0hCMJQlJaWQqVS3ZcQ8/T0RElJSYuvGThwIH766Sfs2rULmzdvhlqtxujRo3Hr1i19LJkgiC4C6Q9BEIaENIh41KCAdheFxIwgCENB+kMQhDExatQozJo1C4GBgXjyySeRmJgId3d3fPfdd4ZeGkEQXRzSH4IgDAlpEGHMUECb4OnKYvbBBx9g9OjRsLGxgZOTU7tewxjDO++8g27dusHa2hoTJkzAlStXdLtQgnhE6cr6A5AGEYS+cHNzg6mpKSQSSbPHJRIJvLy82vUzzM3NERQUhKtXr+piiQaBNIggdA/pT+uQBhGE7iENahnSn64LBbS7KCRmzZHL5Zg6dSpee+21dr/m448/xhdffIGNGzfi7NmzsLW1RXh4OBobG3W4UoIwfkh/7oc0iCD0g4WFBUJCQpCcnMw/plarkZycjFGjRrXrZ6hUKmRnZ6Nbt266WqbeIQ0iCN1D+tM6pEEEoXtIg1qG9KcLw4guy4gRI9iiRYv4v6tUKubt7c3WrVvXrtcrlUo2cOBAtnTpUl0tUe/8/PPPzNHR8YHPU6vVzMvLi61fv55/rLKykllaWrLffvtNhyskiK4B6U/LkAYRhO75/fffmaWlJYuPj2d5eXnslVdeYU5OTqykpIQxxtjMmTPZihUr+Oe/++677ODBg+zatWssLS2NTZ8+nVlZWbHc3FxDfQSdQRpEELqF9KdtSIMIQreQBrUO6U/Xw8zQAXVCdyxbtgyzZ8/G8OHDMWLECGzYsAF1dXWYO3cuAGDWrFnw9vbGunXrAADvvfceRo4ciX79+qGyshLr169HYWEhXnrpJUN+DINQUFCAkpKSZkPtHB0dERYWhjNnzmD69OkGXB1BCB/Sn4eDNIggOs+0adMgk8nwzjvvoKSkBIGBgUhKSuJ9/YuKimBi8neTYkVFBV5++WWUlJTA2dkZISEhOH36NAYPHmyoj2BwSIMIonOQ/mgH0iCC6BykQQ8P6Y/xQAHtLgyJWefhBtd1ZKgdQRB/Q/rzcJAGEcTDsWjRIixatKjFf0tNTW329//+97/473//q4dVGQ+kQQTReUh/Hh7SIILoPKRBDwfpj/FAHtpdnEWLFqGwsBBNTU04e/YswsLC+H9LTU1FfHw8//f//ve//HNLSkqwb98+BAUFGWDV7WPFihUQiURt/rl48aKhl0kQjyxdWX8A0iCCIAwLaRBBEIaENIggCENB+kMAVKFNGDGvv/465syZ0+Zz+vbt26mfzQ2uk0gkzQYiSCQSBAYGdupnEgTRtSANIgjCkJAGEQTRGsePH8f69euRlpaG4uJi7NixA3FxcW2+JjU1FcuWLUNubi58fHywatWqNjWGNIggiJYg/SH0BQW0CaPF3d0d7u7uOvnZffr0gZeXF5KTk3nRqq6uxtmzZzs0HZcgiK4LaRBBEIaENIggiNaoq6tDQEAA5s2bhylTpjzw+QUFBYiKisKrr76KLVu2IDk5GS+99BK6deuG8PDwFl9DGkQQREuQ/hD6ggLaxCNBUVERysvLUVRUBJVKhczMTABAv379YGdnBwDw8/PDunXrMHnyZIhEIixZsgRr165F//790adPH6xevRrdu3d/YHaRIAjiXkiDCIIwJKRBBPFoERkZicjIyHY/f+PGjejTpw8+/fRTAMCgQYNw8uRJ/Pe//201oNQRSIMI4tGB9IfQFxTQJh4J3nnnHfzf//0f/3fOmzclJQVjx44FAFy6dAlVVVX8c5YvX466ujq88sorqKysxOOPP46kpCRYWVnpde0EQRg/pEEEQRgS0iCCINrizJkzmDBhQrPHwsPDsWTJEq38fNIggiBag/SH6Cwixhgz9CIIgiAIgiAIgiAIgtAuIpHogR62AwYMwNy5c/HWW2/xj+3fvx9RUVGor6+HtbW1HlZKEERXg/SH0CUmhl4AQRAEQRAEQRAEQRAEQRAEQbQHCmgTBEEQBEEQBEEQxCOKl5cXJBJJs8ckEgkcHByoOpIgCJ1C+kN0FgpoEwRBEARBEARBEMQjyqhRo5CcnNzsscOHD2PUqFEGWhFBEI8KpD9EZ6GANkEQBEEQBEEQBEF0EWpra5GZmYnMzEwAQEFBATIzM1FUVAQAeOuttzBr1iz++a+++iquX7+O5cuX4+LFi/jmm2/wxx9/YOnSpYZYPkEQRgzpD6EvaCgkQRAEQRAEQRAEQXQRUlNTMW7cuPsenz17NuLj4zFnzhzcuHEDqampzV6zdOlS5OXloUePHli9ejXmzJmjv0UTBNElIP0h9AUFtAmCIAiCIAiCIAiCIAiCIAijgCxHCIIgCIIgCIIgCIIgCIIgCKOAAtoEQRAEQRAEQRAEQRAEQRCEUUABbYIgCIIgCIIgCIIgCIIgCMIooIA2QRAEQRAEQRAEQRAEQRAEYRRQQJsgCIIgCIIgCIIgCIIgCIIwCiigTRAEQRAEQRAEQRAEQRAEQRgFFNAmCIIgCIIgCIIgCIIgCIIgjAIKaBMEQRAEQRAEQRAEQRAEQRBGAQW0CYIgCIIgCIIgCIIgCIIgCKOAAtoEQRAEQRAEQRAEQRAEQRCEUUABbYIgCIIgCIIgCIIgCIIgCMIo+P8AqeRtvNccuR0AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABcMAAAPxCAYAAAA2crXTAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA06dJREFUeJzs3Xl4VOXdxvH7zGQnCwkhCUsgrCLIjkRcQDECbkgromhlcaMqVkurFV8V14JWEaxWXAquCOJCtWIUohGXCLKoVVwQQRBIIEAWsmfmef9AopEkJCTMmTn5ft5rrpJznpm5Z175kdw5c45ljDECAAAAAAAAAMDBXHYHAAAAAAAAAADgaKMMBwAAAAAAAAA4HmU4AAAAAAAAAMDxKMMBAAAAAAAAAI5HGQ4AAAAAAAAAcDzKcAAAAAAAAACA41GGAwAAAAAAAAAcjzIcAAAAAAAAAOB4lOEAAAAAAAAAAMejDEez8PTTT8uyLG3ZsqVB95s0aZJSUlKOSiYAzQczCIBdmD8A7MQMAmAnZhBqQhkOR/n73/+upUuX2h2jTnl5ebrqqqvUunVrtWjRQqeddprWrVtndywATcDfZ9DOnTt1880367TTTlNUVJQsy1JmZqbdsQA0AX+fPxkZGbrsssvUvXt3RUREqHPnzrriiiu0c+dOu6MBaAL+PoNWrlyp0aNHKzk5WWFhYUpKStKoUaP00Ucf2R0NQBPw9xn0W1deeaUsy9I555xjd5RmiTIcjlLbALz00ktVUlKijh07+j7Ur3i9Xp199tlauHChpk6dqvvvv1+7du3Sqaeeqo0bN9qaDUDj+fsM+vbbb3Xfffdp+/bt6t27t61ZADQtf58/f/vb35SZmanf/e53evjhh3XRRRfppZdeUv/+/ZWdnW1rNgCN5+8z6LvvvpPL5dIf//hHPfroo/rrX/+q7OxsDR06VOnp6bZmA9B4/j6Dfm3NmjV6+umnFRYWZneUZivI7gBAYxljVFpaqvDw8FrXuN1uud1uH6aq2csvv6yPP/5YS5Ys0dixYyVJ48aNU/fu3TVjxgwtXLjQ5oQAGiqQZtDAgQO1Z88excXF6eWXX9YFF1xgdyQAjRBI82f27Nk6+eST5XL9cizOqFGjNGzYMD3yyCO65557bEwH4EgE0gy64oordMUVV1Tbds0116hz586aM2eORo0aZVMyAEcqkGbQQcYY/elPf9KECROUkZFhd5xmiyPDcVTdcccdsixL33zzjcaNG6fo6Gi1atVK119/vUpLS6utXbBggYYPH66EhASFhoaqZ8+eeuyxxw55zJSUFJ1zzjl6++23NWjQIIWHh+vxxx+XZVkqKirSM888I8uyZFmWJk2aJKn280S99dZbGjZsmKKiohQdHa3jjz/+sIW01+vVnDlz1KtXL4WFhSkxMVFTpkzRvn37Dvt+vPzyy0pMTNTvf//7qm2tW7fWuHHj9J///EdlZWWHfQwA9ccMqi4qKkpxcXGHXQeg8Zg/1Q0dOrRaEX5wW1xcnL7++uvD3h9AwzCDDi8iIkKtW7dWXl7eEd0fQO2YQTV77rnn9OWXX+ree++t933Q9DgyHD4xbtw4paSkaObMmfrkk0/08MMPa9++fXr22Wer1jz22GPq1auXRo8eraCgIL3xxhu65ppr5PV6de2111Z7vG+//Vbjx4/XlClTdOWVV+qYY47Rc889pyuuuEKDBw/WVVddJUnq0qVLrZmefvppXXbZZerVq5emT5+uli1bav369UpPT9fFF19c6/2mTJmip59+WpMnT9af/vQnbd68WY888ojWr1+vjz76SMHBwbXed/369RowYMAhPwwOHjxYTzzxhL777jtOXQAcBcwgAHZh/tRu//792r9/v+Lj4xt0PwD1xwyqrqCgQOXl5crNzdWzzz6rL7/8Urfccsth7wfgyDCDflFYWKi//e1vuuWWW5SUlFSftw9HiwGOohkzZhhJZvTo0dW2X3PNNUaS+fzzz6u2FRcXH3L/kSNHms6dO1fb1rFjRyPJpKenH7K+RYsWZuLEiYdsX7BggZFkNm/ebIwxJi8vz0RFRZnU1FRTUlJSba3X663688SJE03Hjh2rvv7ggw+MJPPCCy9Uu096enqN22vKd9lllx2y/c0336z1NQE4csyg2i1ZssRIMu+991697wOg/pg/h3f33XcbSSYjI6PB9wVQN2ZQzUaOHGkkGUkmJCTETJky5ZAcABqPGXSov/71r6ZTp06mtLS06vWcffbZh70fmh6nSYFP/Pa3edddd50kadmyZVXbfn2ep/z8fOXm5mrYsGH64YcflJ+fX+3+nTp10siRI484z/Lly1VYWKibb775kIsWWJZV6/2WLFmimJgYnXHGGcrNza26DRw4UJGRkXrvvffqfN6SkhKFhoYesv1ghpKSkiN4NQAOhxkEwC7Mn5qtXLlSd955p8aNG6fhw4cf0WsBcHjMoOpmzZqld955R//+9791wgknqLy8XJWVlUf8egDUjRl0wHfffae5c+fqH//4R42dEHyL06TAJ7p161bt6y5dusjlclU7b9NHH32kGTNmKCsrS8XFxdXW5+fnKyYmpurrTp06NSrPpk2bJEnHHXdcg+63ceNG5efnKyEhocb9u3btqvP+4eHhNZ4X/OA5s+q68AOAI8cMAmAX5s+hvvnmG/3ud7/Tcccdp6eeeqpBOQA0DDOoun79+lX9+Q9/+IMGDBigSZMm6eWXX25QHgD1www64Prrr9eJJ56o888/v0HPi6ODMhy2+O1v3DZt2qTTTz9dPXr00OzZs5WcnKyQkBAtW7ZMDz30kLxeb7X1dpXGXq9XCQkJeuGFF2rc37p16zrv36ZNG+3cufOQ7Qe3tW3btvEhARxWc51BAOzX3OfPtm3bNGLECMXExGjZsmWKiopqypgADqO5z6BfCwkJ0ejRozVr1iyVlJRwYBLgA81xBr377rtKT0/Xq6++Wu2XAJWVlSopKdGWLVsUFxen6Ojopo6NWlCGwyc2btxY7Td433//vbxer1JSUiRJb7zxhsrKyvT666+rQ4cOVesa+pHbuj7W8msHL6bw5ZdfqmvXrvV+/C5dumjFihU66aSTjmgI9+vXTx988IG8Xm+1i2iuWrVKERER6t69e4MfE8DhMYMA2IX584s9e/ZoxIgRKisrU0ZGhtq0aXNEjwOg/phBdSspKZExRoWFhXxvBRwFzCBp69atkqTf//73h+zbvn27OnXqpIceekg33HBDgx4XR45zhsMnHn300Wpf//Of/5QknXnmmZIkt9stSTLGVK3Jz8/XggULGvQ8LVq0UF5e3mHXjRgxQlFRUZo5c2bVKUoO+nWG3xo3bpw8Ho/uvvvuQ/ZVVlYe9rnHjh2rnJwcvfrqq1XbcnNztWTJEp177rmcOwo4SphBAOzC/DmgqKhIZ511lrZv365ly5Yd8rFpAEcHM+iAmk5hkJeXp1deeUXJycm1nvoAQOMwg6Thw4frtddeO+TWunVrDRo0SK+99prOPffcw2ZH0+HIcPjE5s2bNXr0aI0aNUpZWVl6/vnndfHFF6tv376SDgykkJAQnXvuuZoyZYr279+vJ598UgkJCTWeVqQ2AwcO1IoVKzR79my1bdtWnTp1Umpq6iHroqOj9dBDD+mKK67Q8ccfr4svvlixsbH6/PPPVVxcrGeeeabGxx82bJimTJmimTNn6rPPPtOIESMUHBysjRs3asmSJZo7d67Gjh1ba76xY8fqhBNO0OTJk7VhwwbFx8frX//6lzwej+688856v04ADcMM+sU999wjSfrqq68kSc8995w+/PBDSdKtt95a79cKoH6YPwdccsklWr16tS677DJ9/fXX+vrrr6v2RUZGasyYMfV+rQDqjxl0wJlnnqn27dsrNTVVCQkJ2rp1qxYsWKAdO3Zo8eLF9X6dABqGGSR16NCh2lHvB91www1KTEzkeyA7GOAomjFjhpFkNmzYYMaOHWuioqJMbGysmTp1qikpKam29vXXXzd9+vQxYWFhJiUlxdx3331m/vz5RpLZvHlz1bqOHTuas88+u8bn++abb8zQoUNNeHi4kWQmTpxojDFmwYIFhzzOwec88cQTTXh4uImOjjaDBw82L774YtX+iRMnmo4dOx7yPE888YQZOHCgCQ8PN1FRUaZ3797mpptuMjt27Djse7J3715z+eWXm1atWpmIiAgzbNgw8+mnnx72fgAajhl0KEm13gA0HeZPdR07dqx19tT0PAAahxlU3SOPPGJOPvlkEx8fb4KCgkzr1q3Nueeea1auXFnn/QAcGWbQ4dX1enB0WcbU8TkAoJHuuOMO3Xnnndq9e7fi4+PtjgOgmWEGAbAL8weAnZhBAOzEDII/45zhAAAAAAAAAADHowwHAAAAAAAAADgeZTgAAAAAAAAAwPE4ZzgAAAAAAAAAwPE4MhwAAAAAAAAA4HiU4QAAAAAAAAAAxwuyO4A/8nq92rFjh6KiomRZlt1xADSQMUaFhYVq27atXK7A+50fMwgIXMwfAHZiBgGwS6DPH4kZBASyhswgyvAa7NixQ8nJyXbHANBI27ZtU/v27e2O0WDMICDwMX8A2IkZBMAugTp/JGYQ4AT1mUGU4TWIioqSdOANjI6OtjkNgIYqKChQcnJy1d/lQMMMAgIX8weAnZhBAOwS6PNHYgYBgawhM4gyvAYHPw4THR3NAAQCWKB+tI0ZBAQ+5g8AOzGDANglUOePxAwCnKA+MygwT+QEAAAAAAAAAEADUIYDAAAAAAAAAByPMhwAAAAAAAAA4HiU4QAAAAAAAAAAx6MMBwAAAAAAAAA4HmU4AAAAAAAAAMDxKMMBAAAAAAAAAI5HGQ4AAAAAAAAAcDzKcAAAAAAAAACA41GGAwAAAAAAAAAcjzIcAAAAAAAAAOB4flGGP/roo0pJSVFYWJhSU1O1evXqWtc++eSTOuWUUxQbG6vY2FilpaUdsn7SpEmyLKvabdSoUUf7ZQAAAAAAAAAA/JTtZfjixYs1bdo0zZgxQ+vWrVPfvn01cuRI7dq1q8b1mZmZGj9+vN577z1lZWUpOTlZI0aM0Pbt26utGzVqlHbu3Fl1e/HFF33xcgAAAAAAAAAAfijI7gCzZ8/WlVdeqcmTJ0uS5s2bpzfffFPz58/XzTfffMj6F154odrXTz31lF555RVlZGRowoQJVdtDQ0OVlJRUrwxlZWUqKyur+rqgoOBIXgoAHBFmEAC7MH8A2IkZBMBOzCCgebL1yPDy8nKtXbtWaWlpVdtcLpfS0tKUlZVVr8coLi5WRUWF4uLiqm3PzMxUQkKCjjnmGF199dXas2dPrY8xc+ZMxcTEVN2Sk5OP7AUBwBFgBgGwC/MHgJ2YQQDsxAwCmifLGGPsevIdO3aoXbt2+vjjjzVkyJCq7TfddJPef/99rVq16rCPcc011+jtt9/WV199pbCwMEnSokWLFBERoU6dOmnTpk265ZZbFBkZqaysLLnd7kMeo6bfBiYnJys/P1/R0dFN8EoB+FJBQYFiYmIC5u8wMwhwDuYPADsxgwDYJdDmj8QMApykITPI9tOkNMasWbO0aNEiZWZmVhXhknTRRRdV/bl3797q06ePunTposzMTJ1++umHPE5oaKhCQ0N9khkAfosZBMAuzB8AdmIGAbATMwhonmw9TUp8fLzcbrdycnKqbc/JyTns+b4feOABzZo1S++884769OlT59rOnTsrPj5e33//faMzAwAAAAAAAAACj61leEhIiAYOHKiMjIyqbV6vVxkZGdVOm/Jb999/v+6++26lp6dr0KBBh32en376SXv27FGbNm2aJDcAAAAAAAAAILDYWoZL0rRp0/Tkk0/qmWee0ddff62rr75aRUVFmjx5siRpwoQJmj59etX6++67T7fddpvmz5+vlJQUZWdnKzs7W/v375ck7d+/XzfeeKM++eQTbdmyRRkZGTrvvPPUtWtXjRw50pbXCAAAAAAAAACwl+3nDL/wwgu1e/du3X777crOzla/fv2Unp6uxMRESdLWrVvlcv3S2T/22GMqLy/X2LFjqz3OjBkzdMcdd8jtduuLL77QM888o7y8PLVt21YjRozQ3XffzbmgAAAAAAAAAKCZsr0Ml6SpU6dq6tSpNe7LzMys9vWWLVvqfKzw8HC9/fbbTZQMAAAAAAAAAOAEtp8mBQAAAAAAAACAo40yHAAAAAAAAADgeJThAAAAAAAAAADHowwHAAAAAAAAADgeZTgAAAAAAAAAwPEowwEAAAAAAAAAjkcZDgAAAAAAAABwPMpwAAAAAAAAAIDjUYYDAAAAAAAAAByPMhwAAAAAAAAA4HiU4QAAAAAAAAAAx6MMBwAAAAAAAAA4HmU4AAAAAAAAAMDxKMMBAAAAAAAAAI5HGQ4AAAAAAAAAcDzKcAAAAAAAAACA41GGAwAAAAAAAAAcjzIcAAAAAAAAAOB4lOEAAAAAAAAAAMejDAcAAAAAAAAAOB5lOAAAAAAAAADA8SjDAQAAAAAAAACORxkOAAAAAAAAAHA8ynAAAAAAAAAAgONRhgMAAAAAAAAAHI8yHAAAAAAAAADgeJThAAAAAAAAAADHowwHAAAAAAAAADgeZTgAAAAAAAAAwPEowwEAAAAAAAAAjkcZDgAAAAAAAABwPMpwAAAAAAAAAIDjUYYDAAAAAAAAAByPMhwAAAAAAAAA4HiU4QAAAAAAAAAAx6MMBwAAAAAAAAA4HmU4AAAAAAAAAMDxKMMBAAAAAAAAAI5HGQ4AAAAAAAAAcDzKcAAAAAAAAACA41GGAwAAAAAAAAAcjzIcAAAAAAAAAOB4lOEAAAAAAAAAAMejDAcAAAAAAAAAOB5lOAAAAAAAAADA8SjDAQAAAAAAAACORxkOAAAAAAAAAHA8ynAAAAAAAAAAgONRhgMAAAAAAAAAHI8yHAAAAAAAAADgeJThAAAAAAAAAADHowwHAAAAAAAAADgeZTgAAAAAAAAAwPEowwEAAAAAAAAAjkcZDgAAAAAAAABwPMpwAAAAAAAAAIDjUYYDAAAAAAAAAByPMhwAAAAAAAAA4HiU4QAAAAAAAAAAx6MMBwAAAAAAAAA4HmU4AAAAAAAAAMDxKMMBAAAAAAAAAI5HGQ4AAAAAAAAAcDzKcAAAAAAAAACA41GGAwAAAAAAAAAczy/K8EcffVQpKSkKCwtTamqqVq9eXevaJ598UqeccopiY2MVGxurtLS0Q9YbY3T77berTZs2Cg8PV1pamjZu3Hi0XwYAAAAAAAAAwE/ZXoYvXrxY06ZN04wZM7Ru3Tr17dtXI0eO1K5du2pcn5mZqfHjx+u9995TVlaWkpOTNWLECG3fvr1qzf3336+HH35Y8+bN06pVq9SiRQuNHDlSpaWlvnpZAAAAAAAAAAA/YnsZPnv2bF155ZWaPHmyevbsqXnz5ikiIkLz58+vcf0LL7yga665Rv369VOPHj301FNPyev1KiMjQ9KBo8LnzJmjW2+9Veedd5769OmjZ599Vjt27NDSpUt9+MoAAAAAAAAAAP4iyM4nLy8v19q1azV9+vSqbS6XS2lpacrKyqrXYxQXF6uiokJxcXGSpM2bNys7O1tpaWlVa2JiYpSamqqsrCxddNFFhzxGWVmZysrKqr4uKCg40pcEAA3GDAJgF+YPADsxgwDYiRkENE+2Hhmem5srj8ejxMTEatsTExOVnZ1dr8f429/+prZt21aV3wfv15DHnDlzpmJiYqpuycnJDX0pAHDEmEEA7ML8AWAnZhAAOzGDgObJ9tOkNMasWbO0aNEivfbaawoLCzvix5k+fbry8/Orbtu2bWvClABQN2YQALswfwDYiRkEwE7MIKB5svU0KfHx8XK73crJyam2PScnR0lJSXXe94EHHtCsWbO0YsUK9enTp2r7wfvl5OSoTZs21R6zX79+NT5WaGioQkNDj/BVAEDjMIMA2IX5A8BOzCAAdmIGAc2TrUeGh4SEaODAgVUXv5RUdTHMIUOG1Hq/+++/X3fffbfS09M1aNCgavs6deqkpKSkao9ZUFCgVatW1fmYAAAAAAAAAADnsvXIcEmaNm2aJk6cqEGDBmnw4MGaM2eOioqKNHnyZEnShAkT1K5dO82cOVOSdN999+n222/XwoULlZKSUnUe8MjISEVGRsqyLN1www2655571K1bN3Xq1Em33Xab2rZtqzFjxtj1MgEAAAAAAAAANrK9DL/wwgu1e/du3X777crOzla/fv2Unp5edQHMrVu3yuX65QD2xx57TOXl5Ro7dmy1x5kxY4buuOMOSdJNN92koqIiXXXVVcrLy9PJJ5+s9PT0Rp1XHAAAAAAAAAAQuGwvwyVp6tSpmjp1ao37MjMzq329ZcuWwz6eZVm66667dNdddzVBOgAAAAAAAABAoLP1nOEAAAAAAAAAAPgCZTgAAAAAAAAAwPEowwEAAAAAAAAAjkcZDgAAAAAAAABwPMpwAAAAAAAAAIDjUYYDAAAAAAAAAByPMhwAAAAAAAAA4HiU4QAAAAAAAAAAx6MMBwAAAAAAAAA4HmU4AAAAAAAAAMDxKMMBAAAAAAAAAI5HGQ4AAAAAAAAAcDzKcAAAAAAAAACA41GGAwAAAAAAAAAcjzIcAAAAAAAAAOB4lOEAAAAAAAAAAMejDAcAAAAAAAAAOB5lOAAAAAAAAADA8SjDAQAAAAAAAACORxkOAAAAAAAAAHA8ynAAAAAAAAAAgONRhgMAAAAAAAQwYypkPHtkTKndUQDArwXZHQAAAACAbxnPbsmzWbLCpaCesiy33ZEAAEfAePbIFD0mlSyRTIkkl0zoGbIir5EVfKzd8QDA71CGAwAAAM2E8eyUKbhHKsuQ5D2w0ZUkRV4rhY+TZVm25gMA1J/x7JLZM07y5kjy/LzVK5WtkCl7T4pbICvkeDsjAoDf4TQpAAAAQDNgPDkye8ZKZe+qqgiXJG+2TMFtUtE827IBABrOFM78TRF+kEdSpUzeNBnz230A0LxRhgMAAADNgNn/L8m7V4eWJgf3z5XxZPs2FADgiBjvXqk0XbXNdMl7oCgv/8CXsQDA71GGAwAAAA5nTLlU8ppqL01+VrLUF3EAAI1V+aMOO9Pllio2+iINAAQMynAAAADA6bx5kkoPs8gl49nhgzAAgEazwuqxyFvPdQDQfFCGAwAAAE5nRerw3/obydXSB2EAAI0WdIzkanP4dWGnH/0sABBAKMMBAAAAh7NcEVJomiR3Has8ssLO9VUkAEAjWJZLVuR1daxwSWHnyXK39VkmAAgElOEAAABAM2BFXqsDZXhNPwJYUti5soK7+TgVAOBIWRFjZUVO04G57tKBGf/zLz1Dz5AVc7d94QDATwXZHQAAAADA0WcFHyvFPS2T91fJu0MHihMjyZLCL5AVfZvNCQEADWVF/lEKHyOVvCbj2Sa5WsoKO0dWcE+7owGAX6IMBwAAAJoJK2SQ1PpdqfwjqfJ7yQqXQofLcifYHQ0AcIQsd5IUebUsu4MAQACgDAcAAACaEctySaGnHLgBAAAAzQjnDAcAAAAAAAAAOB5lOAAAAAAAAADA8SjDAQAAAAAAAACORxkOAAAAAAAAAHA8ynAAAAAAAAAAgONRhgMAAAAAAAAAHI8yHAAAAAAAAADgeJThAAAAAAAAAADHowwHAAAAAAAAADgeZTgAAAAAAAAAwPEowwEAAAAAAAAAjkcZDgAAAAAAAABwPMpwAAAAAAAAAIDjUYYDAAAAAAAAAByPMhwAAAAAAAAA4HiU4QAAAAAAAAAAx6MMBwAAAAAAAAA4HmU4AAAAAAAAAMDxguwOAAAAAAAAgIYzxqvcko+1p/RTSUaxYQOUEH6KLMttdzQA8EuU4QAAAEAzUlq5WxXePIW6WyvE3dLuOACAI7S/YovWZF+r4sofZf1c7/yQP1/hQe00KPFRRYV0tTkhAPgfynAAAACgGdhX+pm+3TdXe0s//XmLS4kRw3VM3A2KDE6xMxoAoIEqPAVatXOyyj17JUlGlVX7SiuztWrnZJ3S/j8KdcfZFREA/BLnDAcAAAAcLrckS5/snKS9pWt/tdWrXcXv6ePtF2l/+SbbsgEAGm7b/tdU5smVkeeQfUYelXvzta3wZRuSAYB/owwHAAAAHMwYj77YfevPhYm3+j55VGlK9NWee+0JBwA4Ijv3vyXJ1LHCqx373/RVHAAIGJThAAAAgIPllnyiUk+Oai9NPNpTulrFFdt8GQsA0AiV3v31WFPkgyQAEFgowwEAAAAHK6r8UZJVj3WU4QAQKCJDusiSu9b9ltyKDO7sw0QAEBgowwEAAAAHC7YiVfdH6X+9DgAQCDpEjavxfOEHGXnUMfoiHyYCgMBAGQ4AAAA4WELEMLkUXOeaMHeSYkJ7+SgRAKCx4sNPVPvI39W6v02LUUqIONV3gQAgQFCGAwAAAA4W7I5Rp5hJda7pHnudLKv2j9sDAPyLZVnqHX+njo37m8Lcbaq2h7oT1CPuL+rX+j5ZFpUPAPxWkN0BAAAAABxd3WOvk1cV2pz/rCTJkktGHrkUrB5xf1H7qPNsTggAaCjLcqlTzKVKib5EJZU7JRmFB7Xhl5sAUAfKcAAAAMDhLMulY+P+qk7Rl2pn0dsq9+xVWFAbtW1xpoLd0XbHAwA0gmW5FBHczu4YABAQKMMBAACAZiIsKFGdYibYHQMAAACwBSeQAgAAAAAAAAA4nu1l+KOPPqqUlBSFhYUpNTVVq1evrnXtV199pfPPP18pKSmyLEtz5sw5ZM0dd9why7Kq3Xr06HEUXwEAAAAAAAAAwN/ZWoYvXrxY06ZN04wZM7Ru3Tr17dtXI0eO1K5du2pcX1xcrM6dO2vWrFlKSkqq9XF79eqlnTt3Vt0+/PDDo/USAAAAAAAAAAABwNYyfPbs2bryyis1efJk9ezZU/PmzVNERITmz59f4/rjjz9e//jHP3TRRRcpNDS01scNCgpSUlJS1S0+Pv5ovQQAAAAAAAAAQACw7QKa5eXlWrt2raZPn161zeVyKS0tTVlZWY167I0bN6pt27YKCwvTkCFDNHPmTHXo0KHW9WVlZSorK6v6uqCgoFHPDwANwQwCYBfmDwA7MYMA2IkZBDRPth0ZnpubK4/Ho8TExGrbExMTlZ2dfcSPm5qaqqefflrp6el67LHHtHnzZp1yyikqLCys9T4zZ85UTExM1S05OfmInx8AGooZBMAuzB8AdmIGAbATMwhonmy/gGZTO/PMM3XBBReoT58+GjlypJYtW6a8vDy99NJLtd5n+vTpys/Pr7pt27bNh4kBNHfMIAB2Yf4AsBMzCICdmEFA82TbaVLi4+PldruVk5NTbXtOTk6dF8dsqJYtW6p79+76/vvva10TGhpa5znIAeBoYgYBsAvzB4CdmEEA7MQMApon244MDwkJ0cCBA5WRkVG1zev1KiMjQ0OGDGmy59m/f782bdqkNm3aNNljAgAAAAAAAAACi21HhkvStGnTNHHiRA0aNEiDBw/WnDlzVFRUpMmTJ0uSJkyYoHbt2mnmzJmSDlx0c8OGDVV/3r59uz777DNFRkaqa9eukqS//vWvOvfcc9WxY0ft2LFDM2bMkNvt1vjx4+15kQAAAAAAAAAA29lahl944YXavXu3br/9dmVnZ6tfv35KT0+vuqjm1q1b5XL9cvD6jh071L9//6qvH3jgAT3wwAMaNmyYMjMzJUk//fSTxo8frz179qh169Y6+eST9cknn6h169Y+fW0AAAAAAAAAAP9haxkuSVOnTtXUqVNr3Hew4D4oJSVFxpg6H2/RokVNFQ0AAAAAAAAA4BC2l+EAADQFYzxS2UqZijWSJCtksBRyiizLtstjAAAAAAAAP0IZDgAIeKbye5l9UyTPNh38p80UPSm5O0ixj8sK6mJvQAAAAAAAYDsOlwMABDTj3Suz9w+SZ8fPWyp/vknybJfZe6mMN8+mdAAAAAAAwF9QhgMAAlvxEsmbJ8lTw06P5N0jlbzi41AAAAAAAMDfUIYDAAKaKX1TkreuFTIl//VVHAAAAAAA4KcowwEAgc0UNs0aAAAAIACVe8uVX7FPFd5yu6MAgN/jApoAgMDm7iZ5slXzaVIkyS0FdfVlIgAAAOCo21W6U29nv6r1eVnyGI/cVpAGxp6okUm/V3xoot3xAMAvUYYDAAKaFTFepjyzjhUeWRHjfRUHAPxWqadY3xZ+pQpvmdqEJ6tdeEe7IwEAjtD2kh/18Hd3qtxbJu/Ppwz0mEqt2fuh/pe/Vjd0v1NJYe1sTgkA/ocyHAAQ2EJPlcLOlUrfqHl/2HlSyFCfRgIAf+I1Xi3buUSZu5apwvzyEfqOEV10cYc/Kim8vY3pAABHYuGPj1crwg/yyqsyT4kWbX1CN3S/06Z0AOC/OGc4ACCgWZYlK+Z+WVE3S65ffRzUlSQr6hZZMffJsiz7AgKAzV7a9m8tz1larQiXpG3FmzVn4x3aU7bLpmQAgCPxU/Fm/VSy+ZAi/CCvvNpc9J2yS37ycTIA8H8cGQ4ACHiW5ZZaXCZFTJQ8Ow9sdLc5sB0AmrHs0u3K2vNujfsOHj34TvZSje94lY+TAQCO1M7S+pXc2WXb+fQPAPwGR4YDABzDstyygtofuFGEA4A+3btSrjq+5ffKqzX7PpDHVPowFQCgMUJcYfVbZ4Ue5SQAEHgowwEAAACHKqjIP+yaSlOpUk+JD9IAAJrCMVHHKdgKqXNNqCtcXaOO9VEiAAgclOEAAACAQ0UHtzzsmiArWGHu8KMfBgDQJMLc4Tot4ew616QlnqsQF0eGA8BvUYYDAAAADjU4bmitF1iTJJdcGhw3VG6LSwkBQCA5s81YnRI/QtKBWe6Su+q0WKe2PktpiefZGQ8A/Bbf9QIAAAAOlRjWVifHn6EPc5cfss8ll8LcETojicIEAAKNy3JpbPJkDUs4U5/u/UAFFXmKCY7V4LihahWaYHc8APBblOEAAACAg53ffpIig6L17q43Ve4trdqe0qKbxneYoriQ1jamAwA0RuvQJJ3V5gK7YwBAwKAMBwAAABzMZbl0ZpuxGp5wjr7f/7UqvOVKCm+vpLB2dkcDAAAAfIoyHAAAAGgGQt1h6hXT3+4YAAAAgG24gCYAAAAAAAAAwPEowwEAAAAAAAAAjkcZDgAAAAAAAABwPMpwAAAAAAAAAIDjUYYDAAAAAAAAAByPMhwAAAAAAAAA4HiU4QAAAAAAAAAAxwuyOwAAAI1R5snVT4X/0f6K7+W2wpXYIk3xYSfIsvh9LwAAAAAA+AVlOAAgYG0rfEVf5t4tI68kS5akrYUvKSaklwYlPaZQd5zdEQEAAAAAgJ/gsDkAQEDaXfyR/pc7Q0aVkrySPDLySJIKyr/RmpxrZYyxNSMAAAAAAPAfDS7DJ06cqJUrVx6NLAAA1Nv3eU+otn/GjDzKL/uf9pau8W0oAAAAAPAzxlTKlL4j774/yps7Rt59V8uULpcxHrujAT7X4DI8Pz9faWlp6tatm/7+979r+/btRyMXAAC1qvAWal/ZWh04IrxmltzKKX7Pd6EAAAAAwM8Yb7HM3okyeVOlsvelyg1SWaZM3rUy+ybJeIvtjgj4VIPL8KVLl2r79u26+uqrtXjxYqWkpOjMM8/Uyy+/rIqKiqOREQCAarzesnqssuQ1pUc9CwAAAAD4K1Nwl1Sx9uevPNX/t/xTmcJ77YgF2OaIzhneunVrTZs2TZ9//rlWrVqlrl276tJLL1Xbtm315z//WRs3bmzqnAAAVAlxxyrYFVvnGiOPokK6+ygRAAAAAPgX48mVSv+j2j9R65VKXpPx7vVlLMBWjbqA5s6dO7V8+XItX75cbrdbZ511lv73v/+pZ8+eeuihh5oqIwAA1ViWWx2jL1Tt/4xZclmhaht5ti9jAQAAAID/qFijX44Gr02lVP6pL9IAfqHBZXhFRYVeeeUVnXPOOerYsaOWLFmiG264QTt27NAzzzyjFStW6KWXXtJdd911NPICACBJ6hJzuWJCe+m3/5RZckuy1Lf1TAW7omzJBgAAAAC2q/cFMmu/FhPgNEENvUObNm3k9Xo1fvx4rV69Wv369TtkzWmnnaaWLVs2QTwAAGrmdoXrhKT52pz/rLYUvqhyT64kS63DT1aXllcoNqy/3REBAAAAwD7BfSVZkkwdi6yf1wHNQ4PL8IceekgXXHCBwsLCal3TsmVLbd68uVHBAAA4HLcrXF1jp6hLy6tUaYrktkLlsoLtjgUAAAAcdQUVJXpz+zqt3fuDjDHqH9dJ57QbqJYhEXZHg5+wgtrLhJ4mlb2vmk+X4pZCT5PlbuvraIBtGlyGX3rppUcjBwAAR8yyLAVbkXbHAAAAAHxi3d7Nmrb2WZV4yqqO+f1w97d64vsV+kf/Pyg1vput+eA/rOh7ZfZeLHm2/LzF6MDR4pLcHWXF3GNTMsAeDS7DAQAAAASOfeX79fpPa7UyZ4PKvJXqFdNe53dIVfdojgIDgEC0u7RAf177jMo8FdVOfmFkVOap1F/WPafFJ9+gdhFxtmWE/7DcraRWr0glS2SKX5K8uyVXgqyIcVL4WFkuDipC80IZDgAAADjUhvyfNPXTf6uoslzm58pk0/4cvfbTp7rumFG6tNNQmxMCABrq1W2rVOapkLeG80AbGVUaj17Zukp/6nGmDengjyxXpNRisqwWk+2OAtjOZXcAAAAAAE2vuLJM169ZoOJfFeGS5DFeSdI/v01X1u7v7IoHADhCK3d9XWMRfpDXGGXu2uDDRAAQOCjDAQAAAAdK3/GZ8itKai1MXJal5zZ/4ONUAIDGKvdWHnZNRT3WAEBzRBkOAAAAONCavT/IOniBrBp4jdG6vT/ImNqPLgQA+J/jYpLltmqvc9yWS8e1TPZhIgAIHJThAAAAgAN561Fym5//DwAQOC7oOKTqlFc18RivLugwxIeJACBwUIYDAAAADtQntoNUR9HtkqWeMe3lquPoQgCA/+kZ017Xdh8p6cAprw5y/fxpoCu6DNeAuE62ZAMAf8d3vgAAAIADndNuoELdwbWeKMUro4tTTvZpJgBA05jYeZjmDpyk4+O6KMhyK8hyqX9cih4cMEFXdUuzOx4A+K0guwMAAAAAaHrRweG6v/8f9Jd1z8prTNVH6t2WSx7j1UUdT1RaUm+bUwIAjtSQ1t01pHV3u2MAQEChDAcAAAAc6oT4blp00g16aevHyszZoHJvpXrGtNe4DkN0Qnw3WVbtF9gEAAAAnIYyHAAAAHCw5Bat9Jdjz9Vfjj3X7igAAACArThnOAAAAAAAAADA8SjDAQAAAAAAAACOx2lSAAABq6iyUHvLdyvMHaH4kETOfQsAAAAAPyut3K1tha9oT+knMsaoVfjx6hB1gcKCEu2OBtiGMhwAEHD2lu/W69sX6rO81TLySpLahCXr7Lbj1DtmkM3pAAAAAMBeu4s/1Npdf5LXVEo//8y0r2y9NuX9WwMSH1JixKm25gPswmlSAAABZW95rh789lZ9/qsiXJKyS3/SUz88qNV73rcxHQAAAADYq7hiu9bm/EleUyH96mcmySujSq3LuUFFFT/aFQ+wFWU4ACCg/HfHIhVX7pe32jd1kpGRJC35aYFKPSV2RAMAAAAA220tfEleVUo//4xUnZFk9GPBiz5OBfgHynAAQMAorizS+n2fHFKE/1q5t0yf5X3iw1QAAAAA4D92Fb8v1fEzk5FHu4pX+i4Q4EcowwEAASOvYq+88tS5xm25lVu2y0eJAAAAAMC/mMP8zCRJxlT6IAngfyjDAQABI8Ld4rBrvMYo3B3hgzQAAAAA4H9iQwfIkrvW/Zbcig0b4MNEgP+gDAcABIyWIXFKiegmS1ata4y86tfyBB+mAgAAAAD/kRI9vs6jw408Som+2IeJAP9BGQ4ACChntR1X6z5Lloa0Gq5Woa19mAgAAAAA/Ed0aA/1jJsuSdWOED/45x5xf1HLsD62ZAPsRhkOAAgox0Qdp0mdrq86FYpLblk//98JrU7TBcmTbU4IAAAAAPZKiblEJ7R5VgkRpynIFaUgK1IJEcOUmjRfnWP4mQnNV5DdAQAAaKh+LVPVK7q/vsj7VLvLshXmjlDfloMVG9LK7mgAAAAA4BfiwgYojnODA9VQhgMAAlKwK0QD406yOwYAAAAAAAgQnCYFAAAAAAAAAOB4lOEAAAAAAAAAAMezvQx/9NFHlZKSorCwMKWmpmr16tW1rv3qq690/vnnKyUlRZZlac6cOY1+TAAAAAAAAACA89lahi9evFjTpk3TjBkztG7dOvXt21cjR47Url27alxfXFyszp07a9asWUpKSmqSxwQAAAAAAAg0XmOUtXOrXtr4P73z40aVVlbYHQkA/J6tZfjs2bN15ZVXavLkyerZs6fmzZuniIgIzZ8/v8b1xx9/vP7xj3/ooosuUmhoaJM8JgAAAAAAQCD5aMePGvbyExqfvkg3ffiWrnr3NR2/6FH9+6s1MsbYHQ8A/FaQXU9cXl6utWvXavr06VXbXC6X0tLSlJWV5dPHLCsrU1lZWdXXBQUFR/T8AHAkmEEA7ML8aR5+2p+vFVu/V3Flhbq3jNep7TsryGX72RIBZhBwhFZnb9OEd16S9zedd2FFue5e/a4qvB79sXeqPeECCDMIaJ5s+y44NzdXHo9HiYmJ1bYnJiYqOzvbp485c+ZMxcTEVN2Sk5OP6PkB4EgwgwDYhfnjbKWVlZq28k2dsuRx3bkqQw+u+0BXZLyqk5bMU9bOrXbHA5hBwBGauSZTRpJRzUeAP7T+IxWUl9W4D79gBgHNE4eESJo+fbry8/Orbtu2bbM7EoBmhBkEwC7MH2f788r/aummDT8XJpLn54/N7y4p0sR3luirPTm25gOYQUDDbS3M0/rdO+Wt41QoZZ5KpW/51oepAhMzCGiebDtNSnx8vNxut3Jyqn8TnpOTU+vFMY/WY4aGhtZ6DnIAONqYQQDswvxxrq/25OitH7+rcZ/XGHnk1T8/z9K84WN8Gwz4FWYQ0HC7S4oOu8ZtWdpdWuyDNIGNGQQ0T7YdGR4SEqKBAwcqIyOjapvX61VGRoaGDBniN48JAAAABJrXf/habqv2b/U9xuidrRtVUlnhw1QAgMZKjIg87BqPMUqqxzo4l9d49VX+er2b8199lLtC+RX77I4E+A3bjgyXpGnTpmnixIkaNGiQBg8erDlz5qioqEiTJ0+WJE2YMEHt2rXTzJkzJR24QOaGDRuq/rx9+3Z99tlnioyMVNeuXev1mAAAAIDT5ZeXyjrMGq8x2l9RrvCgYJ9kAgA0XvvIGKUmttenu7bXeqqUiKBgjerY3cfJ4C82Fn6l5358VPkV+2TJJSOvlmxboBNbDdfv209UkMvWKhCwna1/Ay688ELt3r1bt99+u7Kzs9WvXz+lp6dXXQBz69atcv3qSvc7duxQ//79q75+4IEH9MADD2jYsGHKzMys12MCAAAATpccGSNvLRdWOygiKFgtQ8N8lAgA0FRuOf40XbBsoSrlrbEQnz7oVLUIDrEhGey2rfgHPbZplrzGI0ky8lb978d7MlRhynVJx6vtjAjYzvZfB02dOlVTp06tcd/BgvuglJQUmTouElGfxwQAAACc7vyux+nB9R/Wut9tWRrXrbeCXW4fpgIANIW+rdto0Znj9X9Z7+jrvbuqtieEt9CNA4fqgm69bUwHO7218xUZ45Wp4RfiRkar965UWuJ5Sgxra0M6wD/YXoYDANBQe8oKtXn/LoW6g3VsdDsFUeYAQDVJLaJ044Chum/t+4fsc1uWEiOiNLUv19QBgEA1IKGt3jpvkjbs3aWthXlqGRqmQQntFeSy7dJwsFmJp1gbCtbXWIQf5JJLa/d9pLPaXODDZIB/oQwHAASM3NICPfj1f/VezldVH/+PDWmhSZ1P1UUdT5RlHe4MuQDQfFzdJ1Xx4RGa+9lH+ml/gSQpyHLp7E7H6P+OP03x4S1sTggAaKyecQnqGZdgdwz4gRJPcZ1FuCRZlqXiyv0+SgT4J8pwAEBAyCsv0mWfzNPusoJq58HdV16kh755U7llhbrumFE2JgQA/3NBt946v+tx+m5frko8FUqJilVsWLjdsQAAQBOLDIpWkBWsSlNR6xqv8SoupLUPUwH+h8/PAAACwrObV2p3Wb48xlvj/uc2r9TWolwfpwIA/+eyLPWIa63+rdtShAMA4FAhrhANij1ZrjqqPkuWBsWd7MNUgP+hDAcA+D1jjJZu+1SeOi6i7LZceuOntT5MBQAAAAD+48w2Y9UiKLrWQvzctuMVHdzSt6EAP0MZDgDweyWecu2vLK1zjTFGO0v3+SgRAAAAAPiXliFxmnbMXeoVM0CWfrmeUmxIvC7u8EcNTzzHxnSAf+Cc4QAAvxfqDlawy60Kr6fWNZZlqWUwF4MDAAAA0HzFhbTWFZ3/ooKKPO0uy1aoK1RtwzvKZXE8LCBxZDgAIAC4LZdGtukrdx3fwHmMV2e27ee7UAAAAADgp6KDW6pLZA+1j+hEEQ78Cn8bAAABYVLnUxXiCpLrVx/3O8glS0MTjlXPmPY2JAMAAAAAAIGAMhwAEBA6tIjXvMFXql1EnCRVnQPPJUtnteuve/peJMs6tCgHAAAAAACQOGc4ACCAHBvTTi+fMk3r9m7W94XZCnEH6aTWxyghLMbuaAAAAAAAwM9RhgMAAoplWRrYqrMGtupsdxQAAAAAABBAOE0KAAAAAAAAAMDxKMMBAAAAAAAAAI5HGQ4AAAAAAAAAcDzKcAAAAAAAAACA41GGAwAAAAAAAAAcL8juAAAAAAAAAACOXIW3Um9uX69Xtq7StuJctQgK06i2/TSu4xAlhsXYHQ/wG5ThAAAAAAAAQIAq81Toz2uf0Zq9P8iSJSOjYk+5Xtj8gZZuW63HBl+p7tFt7I4J+AVOkwIAAAAAAAAEqH9velfr9m6WJBmZqu1eGRVVlunG9c/JY7x2xQP8CmU4AAAAAABAANpfVq7d+4tU4fHYHQU2KfdW6uWtq+T9VQn+a14Z7SzJ0ye5G32cDPBPnCYFAAAAAAAggKzZul3/+uATffzDVhlJkSEhGjegt/548mDFhIfZHQ8+9FPxHu2vLK1zjdty6cu8rTqp9TE+SgX4L8pwAAAAwKEqvV6t3rJNuUXFSoyK1KAO7eR28eFQAAhkK775Xte9/F9ZUtWxwPvLy/XMqnV6b+MPWjT5IrWkEG823PU86YPb4t9/QKIMBwAAABzpzS+/1d/fyVRuUXHVtqSoSN026jSl9ehqYzIAwJEqLq/QTf9JlzFGvz0DtMcYbd2bp0fez9Kto06zJR98r32LVkoIjdausoJa13iMV4NbdfNhKsB/8WshAAAAwGH+++U3mvbasmpFuCTlFO7X1CVvKOPbTTYlAwA0xlsbvlNReUUtZ4c+UIi//NlXKq2o9Gku2MdtuXRpp6F17u8V0169Wyb7MBXgvzgyHAAQEHaXFGnRt59rxbbvVebxqH/rNvpDj/7q1SrR7mgA4FcqPB79/Z3MGvcZSZakv7+TqdO6d5bLsnwZDQDQSN/n7lGQy6VK72+PC/9FSUWFsgsKldIq1ofJYKdxHYfox6LdennbKrktlzzGK5cseWWUHNFK9/f/gyz+zQckUYYDAALA2pztmrB8iUoqK+Q1B46D2Zi3Ry9+94X+7/hTdeVxg21OCAD+45Mt27SnqKTW/UbST3kF+uynnRqQ3NZ3wQAAjRYRHCxjajsu/BfhIcE+SAN/YVmWbup1ns5s11+vbVutH4tyFR0UrhFt+2h44nEKdfPfA3AQZTgAwK8VlJdp0vKXVVJRIe+vPhDqMQeOhrn300z1iE3QKe1SbEoIAP4ld39Rvdbtruc6AID/SDumix5Z+Umt+12WpV5JCUqMivRhKviL3i07qHfLDnbHAPwa5wwHAPi1V7//UvsryqoV4b/mtiw9+eVqH6cCAP/VOrJ+BUhCVIujnAQA0NSOTUrQsK6daj3NldcYXTv0BB+nAoDAQRkOAPBrWTu31rnfY4yysrfW6+OiANAcnNApWfEtImrdb0nqEBujfu3a+C4UAKDJzP79WRrS6cDRv0Eul4JcLlnWgT/ffXaaTuve2eaEAOC/OE0KAMCveY2p5Zjw6msAAAcEuVz6v5Gn6s+vLjtk38HjCP9v5KlcSAsAAlRkaIjmX/J7fbEjW+kbvtP+snJ1bhWn8/ocq9iIcLvjAYBfowwHAPi1QYnttGLb97UW4m7L0qCEdpQ6APArZ/U6Ri7L0sx33ld24f6q7W1jonXbqNN0ajeOGgSAQNenbZL6tE2yOwYABBTKcACAX7ugW289tP4jlXkqayzEPcbosl7H+zwXAPi7UT2764weXbV22w7l7i9SQlSkBiS3rfU8swAAAIDTUYYDAPxaXFiE5g0foyszXpPXeOX5+ZQobsuSxxj9sXeqRnbsZnNKAPBPbpdLgzu2tzsGAAAA4BcowwEAfu/U9p31zpjJevab9Xrnx40q93rUr3UbTTp2oE5q29HueAAAAAAAIABQhgMAAkKnmDjNSD1dM1JPtzsKAAAAAAAIQJThAAAAAAAAQADLLyvVd3m5CnK51CsuUSFut92RAL9EGQ4AAAAAAAAEoILyMt27+j29uulLVXi9kqSWoWG6stfxurrPCVw4G/gNynAAAAAAAAAgwBRXlOuit17Ut/t2y2NM1fa8slI9sO4DbS3M16yTRsqiEAequOwOAAAAAAAAAKBhXvj2M329t3oRfpCRtHjjF1q/e6fvgwF+jDIcAAAAAAAACDDPf/OZjA4twg9yW5Ze2viFDxMB/o8yHAAAAAAAAAgwO4oK69zvMUZbC/J8EwYIEJThAAAAAAAAQICJCQmtc7/LshQXFuGjNEBgoAwHAAAAAAAAAsz5XY+Tu46LY3qN0ZguPX2YCPB/lOEAAAAAAABAgLms10BFh4TVWIi7LUsDWrfVae0725AM8F+U4QAAAAAAAECASYyI0pKzLlaXmDhJB06LcrAWP7VdZy04Y6zcLqo/4NeC7A4AAAAAAAAAoOG6tmylt8dcpjW7tuvz3J0Kttw6pV2KOv9ckAOojjIcAAAAAAAACFCWZen4xPY6PrG93VEAv8dnJQAAAAAAAAAAjseR4QAAv2aM0aoff9KLaz7Xd7tyFRESorN6ddfYfscpJjzM7ngAAAAAACBAUIYDAPyWMUZ3vfWuFq79Qm6XJY/XSJK+ys7Rv7PW6NlLL1DX1q1sTgkAAAAAAAIBZTgAwG8tWf+lFq79QpKqinBJMkbKKy7VlS8u1fKpkxXEFdIBAADQjGzO3qvFmZ8pa8MWeY3RoG7JuvC0fuqRnGB3NADwa5ThAAC/ZIzRU1lrZEkyNez3GKMd+QXK/O4HpfXo6ut4AOD3jDHa8GOONvyYo+Agt1KP7aA2cdF2xwIANNLytd/plvnLJP1ywEj23g16Pesr3XzRcF0wrK+d8QDAr1GGAwD80p6iYv24N6/ONUEulz75cRtlOAD8xo85+3Tzv9/Ut9t2V22zLGnEwGN02yVpiggLsTEdAOBI/bQ7T7fMX1btU5PSL6X4rEXvqmfHRPVKSbIjHgD4PT5XDgDwSzUdDd64hQDQPOzO26/LHlis77fnVttuzIGjCW947D/yehmeABCIlqz8os79Lpelhe+u91EaAAg8lOEAAL8U3yJC7WLq/jh/pdergR3a+SgRAASGF95dp/zi0kOOGpQkrzFa891PWvXNVhuSAQAa69Nvt9U43w/yeI0+/XabDxPBbiUVFUrf8J1eXPu5Vn6/RZVer92RAL/GaVIAAH7JsixNPmGA7nk7s8b9bstSq8gIpR3TxbfBAMDPvfHJhjqP/Ha7LL25aoOG9Ozow1QAgKZgWU2zBoHPGKNnVq3Xw+9/rKLyiqrtrSNb6I6zTufnJKAWHBkOAPBblxzfT2P6HCvpQPl9kMuy1CI0RI9fOEbBbrdd8QDALxUUlda53+M12ltY4qM0AICmNLhHB7lctbfdbpel1B4dfJgIdnl61TrNXP5+tSJcknL3F2nqS69r5fdb7AkG+DnKcACA33JZlmaNHqnHLhytkzp3VGJUpDq3itO1p6Rq2dUT1bNNgt0RAcDvtG4ZWed+t8tSm1ZRPkoDAGhKY0/pI5dlqbY63GuMLjqtv08zwff2l5VrTubHNe47+Nmw+1eslDFcIwT4LU6TAgDwa5ZlaXj3LhrenY/5AUB9/P7k3pr3Rpa8tfwA7PEajTnxOB+nAgA0hXbxMZp1xdm6+ck3ZWSqzh/udlnyGqNbL05Tz46JNqfE0fbud5tUWlFZ634jaePuPdq4e4+6J8T7LhgQACjDAQAAAAe58NR+Wrbqa23bnVfjRdbOST1Wx6Uk2ZAMANAUhvfrqpdnTNSSlZ8ra8MWeb1Gg7on64JhfdWtHcVnc7C3uEQuy6r1F98H7Skq9lEiIHBQhgMAAAAOEhUeqn//9ULdv/g9rVj3XVUhHhkWootPH6Arz0qVxdXVACCgdUhoqb+MHSZpmN1RYIM20VGHLcIPrgNQHWU4AAAA4DCxkeGaeflZ+usFw7Rxe66C3W71SklSWAjf/gMAEOhO7dZJ0WGhKigtq3G/y7LUp12SUlrF+jgZ4P+4gCYAAADgUK2iW+iEYztqYPf2FOEAADhEaFCQbh15Wo37XJalIJdLt4zgUwNATfiOGAAAAAAAAAgg5/U5ViFBbv1jxQfanl9Qtb1nUmvdNmq4+rZrY2M6wH9RhgMAAAAAAAAB5sye3TXy2G76ckeO9hYXq11MtLolcBFVoC5+cZqURx99VCkpKQoLC1NqaqpWr15d5/olS5aoR48eCgsLU+/evbVs2bJq+ydNmiTLsqrdRo0adTRfAgAAAAAAAOBTB88Pfmq3zhThQD3YXoYvXrxY06ZN04wZM7Ru3Tr17dtXI0eO1K5du2pc//HHH2v8+PG6/PLLtX79eo0ZM0ZjxozRl19+WW3dqFGjtHPnzqrbiy++6IuXAwAAAAAAAADwQ7aX4bNnz9aVV16pyZMnq2fPnpo3b54iIiI0f/78GtfPnTtXo0aN0o033qhjjz1Wd999twYMGKBHHnmk2rrQ0FAlJSVV3WJjuYIuAAAAAAAAADRXtpbh5eXlWrt2rdLS0qq2uVwupaWlKSsrq8b7ZGVlVVsvSSNHjjxkfWZmphISEnTMMcfo6quv1p49e2rNUVZWpoKCgmo3APAVZhAAuzB/ANiJGQTATswgoHmytQzPzc2Vx+NRYmJite2JiYnKzs6u8T7Z2dmHXT9q1Cg9++yzysjI0H333af3339fZ555pjweT42POXPmTMXExFTdkpOTG/nKAKD+mEEA7ML8AWAnZhAAOzGDgObJ9tOkHA0XXXSRRo8erd69e2vMmDH673//q08//VSZmZk1rp8+fbry8/Orbtu2bfNtYADNGjMIgF2YPwDsxAwCYCdmENA8Bdn55PHx8XK73crJyam2PScnR0lJSTXeJykpqUHrJalz586Kj4/X999/r9NPP/2Q/aGhoQoNDT2CVwAAjccMOrxtu/O0IzdfLSPD1b19a1mWZXckwBGYPwDsxAwCYCdmENA82VqGh4SEaODAgcrIyNCYMWMkSV6vVxkZGZo6dWqN9xkyZIgyMjJ0ww03VG1bvny5hgwZUuvz/PTTT9qzZ4/atGnTlPEBAEfZN9t26f7F7+mzTTuqtnVIaKk//e4UDe/X1cZkAAAAAGCvwuJSffzVjyoqK1fHxFgN6NqOA4eAw7C1DJekadOmaeLEiRo0aJAGDx6sOXPmqKioSJMnT5YkTZgwQe3atdPMmTMlSddff72GDRumBx98UGeffbYWLVqkNWvW6IknnpAk7d+/X3feeafOP/98JSUladOmTbrpppvUtWtXjRw50rbXCQBomG+37dLkfyxWxW+u97BtV57++vgbunvSKJ2deqxN6QAAAADAHl6v0WNvfKznVqxVeeUvPy8lt26pOyeOUL8u7WxMB/g3288ZfuGFF+qBBx7Q7bffrn79+umzzz5Tenp61UUyt27dqp07d1atP/HEE7Vw4UI98cQT6tu3r15++WUtXbpUxx13nCTJ7Xbriy++0OjRo9W9e3ddfvnlGjhwoD744AM+/gIAAeTBl99XRaVHXq+ptv3gV/ctfk9lFZW+DwYAAAAANpr9yvv6d/rqakW4JG3Pzdcf57yib7btsikZ4P9sPzJckqZOnVrraVFquujlBRdcoAsuuKDG9eHh4Xr77bebMh4AwMd27MnXmu9+qnPN/pIyvf/FJo0YeIyPUgEAAACAvXbsKdCL762vcZ/XGFV6vXrsjY8195oxvg0GBAjbjwwHAOC3svcWHnaNy2Vp557DrwMAAAAAp3h7zTeyVPt5wb1eow+/3KyColIfpgICB2U4AMDvtIwMP+war9fUax0AAAAAOMXewhK5XHVfJNMYKY8yHKgRZTgAwO90SopT13bxqutC6CFBbg3v18V3oQAAAADAZomxUYdcV+m33C5LcVEcOATUhDIcAOB3LMvS9b875cCfa1lzxZmpiooI810oAAAAALDZmccfU+dBQ26XpbQB3RQZHuq7UEAAoQwHAPilk3ql6P4rz6k6FYr183d8ocFuXTP6RF1+5mA74wEAAAC2KSws1ZKla3TPP/6rWQ+9pfc++EaVlR67Y8EHWkW30B/PObHGfW6XpfDQEF19bs37AUhBdgcAAKA2p/fvpqF9OuvjL7do+558xbQI17A+nTnKAQDq4fsfdmn5exuUl1+shNZROjOtt9q2aWl3LABAI32YtVF33veGKioqZVmWLMvSW8v/pzaJMXrg3nFq3zbW7og4yi4bdbyiI0L1+JtZ2ltYUrW9X5d2mj5+uDok8N8AUBvKcACAXwt2uzWsL+cGB4D6qqjwaOZDy5SR+bXc7gMfBDXG6NkXs3TxBam6atLQqk/bAAACy3ebcnT7vUvl+fmc0cYYSQf+vGt3gaZNX6znnrxCoSHUPU5mWZYuGNZXY04+Tl/8sFPFpeXqmBhLCQ7UA6dJAQAAABzkkSfe1bvvfyNJ8ni88ni8VRfaWrhklV56bY2d8QAAjfDSq5/Wus/jNcrZXaDMD771YSLYKdjt1sBu7XVK784U4UA9UYYDAAAADrEvr0hvvPXZz0cK1uyFlz5RRQXnlQWAQPRB1saqo8JrYlmWPvpkow8TAUBgoQwHAAAAHGLVms11liSSlF9Qoq+/2+mjRACAplRRUVnnfmOMSssqfJQGAAIPZTgAAADgEPUtQMooSgAgIHXq2Fp1XfbB5bLUtXOi7wIBQIChDAcAAAAconNK68OusSypY3IrH6QBADS1348eoDrOhCVjjM49s6/vAgFAgKEMBwAAAByid892Sm4fJ5er5sMG3S5LJxzfRQmto32cDADQFEadfpyGntj9kO0H5/71V5+hNokxvo4FAAGDMhwAAABwCMuydNuN5ygkJEju3xTibpelli0j9OdrzrApHQCgsdxul+6YPlo3XHOG2reNrdrer3eyHrhnnH53Tn8b08HXCveX6sdte7Qvr8juKEDACLI7AAAAAICmc0y3JD358AQ9v/gTZbz/tSorvQoLC9ZZI3rrD+NOUKu4SLsjAgAawe126Xfn9NeYs/uprKxSbrdLwcFuu2PBh7bv3Kcnn/lAKz/8turC2QP7ddTlE05Rrx5tbU4H+DfKcAAAAMBhOrRvpVv+crZu/NMoFZeUq0WLUAW5+VAoADiJZVkKCwu2OwZ8bOtPe3T1tOdVUlxeVYRL0vovtupPNy3U/XddoIH9OtqYEPBvfEcMAAAAOFRwsFsx0eEU4QAAOMTcxzJU/JsiXJK8XiOPx2jm7GXyeLw2pQP8H98VAwAAAAAAAH4uOydfa9Zvkfc3RfhBxhjtzi3U2s9+9HEyIHBQhgMA/JoxRsXFZaqo8NgdBQAAAABs89OOfYddY1nStu17fZAGCEycMxwA4JfKyiv1yn/W6pXX1yp3z35ZkgYP6qRLxp2gvscl2x0PAAAAAHyqRYvQw64xRmoRcfh1QHPFkeEAAL9TVl6pG299SU88vVK5e/ZLkoykT9dt0fV/e1EZ739tb0AAAAAA8LHuXRKVEB9V55qgIJeGDO7io0RA4KEMBwD4nSWvrdEXX22XMYdeFMYYaebsZcovKLEpHQAAAAD4ntvt0uUTTqlzzQXnDVJMdLiPEgGBhzIcAOBXjDF69Y11hxThv1ZZ6VH6ii99mAoAAAAA7Dcq7Thdd9VwBQW5ZVkHjgR3uSxZlnT+6AG6ctJQuyMCfo1zhgMA/Mr+ojLt2bu/zjUuy9IPW3b7KBEAAAAA+I+xYwZpxOm9lJH5tbJ3FSgmOlynDztWiQnRdkcD/B5lOADAr4QEuw+/yLIUGso/YQAAAACap+iocP3u3AF2xwACDqdJAQD4ldDQYA3q31Eul1XrGo/Hq5NP6ObDVAAAAAAAINBRhgMA/M4l406Q11vzOcPdLktdOydoUP8U34YCAAAAAAABjTIcAOB3BvTtqFv+craCglyyLEsulyW3+8A/WSkd43X/XWPrPHIcAAAAAADgtzjhKgDAL408vZdSB3XSsnf+p80/5io0NEgnn9BNgwd2oggHAAAAAAANRhkOAPBbLWMidPEFqXbHAAAAAAAADkAZDgAAAAAAAASQrZt26YP0/6l4f6napcRr2Nl91SIyzO5YgN+jDAcAAAAAAAACQFlphR68+SV98PaXcrldcllSpcerJ2a9qevuGKPTzxtgd0TAr3EBTQAAAAAAACAAzL7lZX24/CtJktfjVWWlVzIHSvIHpi/Rpyu/tTkh4N8owwEAAAAAAAA/t+2HXVr51hcyXlPjfsuy9PwjK3ycCggsnCYFAAAAAAAggHg8Xq37aKN+/D5HYeEhSj3tWLVOirE7Fo6yD9/5Si6XJW8tZbjxGn33v5+Um5Ov+ET+ewBqQhkOAAAAOMzWTbv0n+c+1scrvlJFeaW69mqn0ZcM0ZDTe8qyLLvjAQAa4cs1m3XfjYuVm50vl8uSMUb/uud1nTFmgK6dMUYhIVQ9TlVSVFZnGf7rdQBqxoQEAAAAHGT1+9/o7qnPyxgjj8crSfrfpz/o80826awLB2vqjDEU4gAQoH74ZqduufzfB84TLf1Sihqj5UvXqbS4XNMfutjGhDia2neKr/r/fW2CQ9wcFQ7UgXOGAwAAAA5RmFesv9+wUB6Pp6oIlySv50BZsmzxar33389sSgcAaKyF/8qQx2NqPGe08RqtTP+fNn+704Zk8IWho/ooPCJEquV32i63S8NH91d4i1DfBgMCCGU4AAAA4BDvvLZW5WWVMrV8etpyWVr6zEe+DQUAaBKlJeX6OGODvJ7ajwx2u11677+f+zAVfCksIkQ33HO+LFmyXNUbcZfbpfjEaE28foRN6YDAwGlSAAAAAIf45vOtde43XqONX22Xx+OV281xMQAQSEqKymo8Irwa68CnhOBcQ8/so6iWEXrhkRX6at2PkqSQ0CCdft4AXXpdmmLjo2xOCPg3ynAAAADAIVwulyxLtR4ZfmCNJU4ZDgCBJyomQqHhwSorqah1jfEaJbaP9WEq2KH/kK7qP6Sr8vbsV/H+UsW1jlZYRIjdsYCAwOEgAAC/VrS/VHt3F8pT6bE7CgD4vQEndv3lYmo1cLkt9UntLJeLHwMAINAEBbs14veD5Krjkz1GUtqYAb4LBVu1bBWpth3jKcKBBuDIcACAX/pi9Q96cd67+ixrkySpRVSYzhw3WBdNOU0tosJsTgcA/mnY2X214KG3VZhfXHXRzF/zeozGXjbUhmQAgKYw/o+nKStjg/buLqzx3OET/nSG4hNjbEgGAIGBQ0IAAH7ng/T/6ebJT+mL1T9UbSsqLNWrCz7QXy5+TEWFpTamAwD/FRYeonuevEwtIsOrnQrl4FGEV/3tbA08ubtN6QAAjRUbH6WHFl2tk9J6yvWrCyi2btNSN9z9e1005TQb0wGA/+PIcACAXynaX6oHb1kiY4zMbw528XqNtm3erYWPvasrbzrLnoAA4Oe69myr+e/8VSuWrlNWxgaVlVbomD7tddaFqerYNdHueACARopPjNEtcy5R3p792v5jrkLDQtS5RxKnwAKAeqAMBwD4lfff/FxlpRUHTnhYA6/HKP2l1Zp4wwiFhPDPGADUJDI6XGMmnKQxE06yOwoA4Chp2SpSLVtF2h0DAAIKLQIAwK9s3bRLbrdLnspDz4F4UHFRmfbtLlRiu1gfJgMAAAAA/1BRXqFP0z/T3p15iktqqUGj+ikkNNjuWIDfowwHAPiVsPCQWo8Kr7aOK6YDAAAAaIZWPL9Sj/35aRXsKazaFhXbQlc9MFGjJnPeeKAunFAKAOBXTjyjlzye2o8Kd7ks9RzQUTGxLXyYCgAAAADs9+6LH+q+Cf+sVoRLUuG+Ij14+b+0/Nn3bUoGBAbKcACAX+l+XHv1H9JVLrdV436vMbr46uE+TgUAAAAA9vJ4PHrixmfrXPPETc+psqLSR4mAwEMZDgDwO/839xL1HtRZkuQOcskd5JJlScEhbk27d6wGntzd5oQAAAAA4Fv/W/m19uzYV+eavF35+uy9r3yUCAg8nDMcAOB3WkSFaeaCy/XN59v04TtfqrS4TMmdE3T66P6KahlhdzwAAAAA8Ln83QX1Wpe3K/8oJwECF2U4AMAvWZalY/t10LH9OtgdBQAAAABsF9++Vb3WtU6u3zqgOeI0KQAAAAAAAICf6zmku9p2SZRl1Xx9JcuSEjq2Vu9TjvVxMiBwUIYDAAAAAAAAfs6yLF336JWyXNYhhfiBry396ZHL5XJR9wG14W8HAAAAAAAAEAAGjeirmW/9n5J7tK22vV33Nrr3zelKPXugTcmAwMA5wwEAAAAAAIAAMSCtj5768iFt+myL9uzYq7g2serav1Otp08B8AvKcAAAAAAAACCAWJalrv07qWv/TnZHAQIKp0kBAAAAAAAAADgeZTgAAAAAAAAAwPEowwEAAAAAAAAAjkcZDgAAAAAAAABwPMpwAAAAAAAAAIDjUYYDAAAAAAAAABwvyO4AgWzZp+9qfe7z8hpLgxMma+Sgk+2OBACOUlpcpm8//V6eSq869+mglq1j7I4EAAGjpKhU3326SR6PV137pSi6VZTdkQAATSjnx9366bsdCo8M0zHHd5U7yG13JADwe5ThR+CTr9fIBF+ttPb5GpV8YFu5+UCZ38appfW0+nXvYW9AAAhwnkqPnrtziV59+E2VFJZKktxBbp160Ym6Zs5kRcdR6ABAbSorKvX0bYv0n3+9rdL9B2ZoULBbwy85Rdc8NEktYlrYnBAA0Bjbv9+pf177lNYu/6JqW1yblrr09nE6+6o0WZZlYzoA8G9+cZqURx99VCkpKQoLC1NqaqpWr15d5/olS5aoR48eCgsLU+/evbVs2bJq+40xuv3229WmTRuFh4crLS1NGzdubJKsW3ZuUfvICRrcIl9Bv/r3JcSSToneqxahF2jHrl1N8lwA0BwZY3TfhH9q4d9frSrCpQMF+XsvfqRpw2aouLDExoQA4L+MMbp3/By99I/Xq4pwSaqs8GjFcyv1l1NnqLS4zMaEAIDGyN6yS9edcIvWv/tlte17d+Zp7tVP6MWZr9mUDAACg+1l+OLFizVt2jTNmDFD69atU9++fTVy5EjtqqVQ/vjjjzV+/HhdfvnlWr9+vcaMGaMxY8boyy9/+Yfg/vvv18MPP6x58+Zp1apVatGihUaOHKnS0tIaH7MhPtw+RW2DK1XTL1otS+oSWqZXvp3S6OcBgObqfx98rfcWfSRjzCH7vB6vtn79k958fLkNyQDA/61b8YU+fHVVrTP0hy+2Kv3f79qQDADQFJ6ZsVjFBcXyerw17n/2jsXal5Pn21AAEEBsL8Nnz56tK6+8UpMnT1bPnj01b948RUREaP78+TWunzt3rkaNGqUbb7xRxx57rO6++24NGDBAjzzyiKQDR8PMmTNHt956q8477zz16dNHzz77rHbs2KGlS5c2Om9a0lZ5D/3ZoorXSGd1bJqj0AGgOUpf8K7cQbX/82S8Rv99gjIcAGqSvuA9ueqaoTJ6kxkKAAGpZH+JMhd9JE9lzUW4dOB75RXPf+DDVAAQWGwtw8vLy7V27VqlpaVVbXO5XEpLS1NWVlaN98nKyqq2XpJGjhxZtX7z5s3Kzs6utiYmJkapqam1PmZZWZkKCgqq3WoT7fLIVcfpt1yWFOeurH0BAPxGQ2ZQc5CzeXed3+BLUu5Pe3yUBnA25o/zZG/eJW9dM9RIu7bm+i4QUAdmENAwebsLVFnhqXONy+3Srh93+yhRYGMGAc2TrWV4bm6uPB6PEhMTq21PTExUdnZ2jffJzs6uc/3B/23IY86cOVMxMTFVt+Tk5FozlxmXavjUaRVjpBJj+wH3AAJIQ2ZQcxCbGCOXu+45Gt2KC2gCTYH54zxxiS0PP0PjmaHwD8wgoGGiYiNl1XV0niSv16hlQoyPEgU2ZhDQPNHaSpo+fbry8/Orbtu2bat17af58Yd9vA93t2nKeAAcriEzqDk4/Q9Daz0HonTgaJeRk07zYSLAuZg/znP6H06pc4ZaLkujJg/3YSKgdswgoGEiW7ZQ6tkD6vylp9fr1WnjT/JhqsDFDAKapyA7nzw+Pl5ut1s5OTnVtufk5CgpKanG+yQlJdW5/uD/5uTkqE2bNtXW9OvXr8bHDA0NVWhoaL0yB3lvU6n5k0JlDjlditdIRcZSctjf6/VYACA1bAY1B4PP6q9eJx2jrz/ZeEih4w5yKTo+WudNHWVTOsBZmD/Oc+J5x+uY47tq47ofDpmhriCX4hJb6tyrR9iUDqiOGQQ03MQ7LtTadz6XMUbmNxc0syzprKvOUNsuNfcpqI4ZBDRPth4ZHhISooEDByojI6Nqm9frVUZGhoYMGVLjfYYMGVJtvSQtX768an2nTp2UlJRUbU1BQYFWrVpV62M2xPDjRurl76co33vgrfMaVZ02Jdfj1usbp2nIsamNfh4AaK7cbrfuffMWnfz7wdLBXzr+/L9d+nXSQyvvUmxiS7viAYBfCwoO0qy3b9UJ5ww8ZIYeM6irHvrgbk41BQABrGv/Trp/+e1K7NhakmRZB4Z8ULBb5//5HF33z8vtjAcAfs/WI8Mladq0aZo4caIGDRqkwYMHa86cOSoqKtLkyZMlSRMmTFC7du00c+ZMSdL111+vYcOG6cEHH9TZZ5+tRYsWac2aNXriiSckHfiH4IYbbtA999yjbt26qVOnTrrtttvUtm1bjRkzpkkyTxw6TV7vDZr3/jXqnPClvMbS9zv7609nPKxL2zfJUwBAs9YiOkK3Lf6Lsrfs0roV/5OnolLHDO6q7gO72B0NAPxeZMsWuvO1m7Tzhxytz/ifPJUeHXtCd3Xt38nuaACAJnDcycfqmY3/1OeZX2nr19sVHhmmE84ZyC87AaAebC/DL7zwQu3evVu33367srOz1a9fP6Wnp1ddAHPr1q1yuX45gP3EE0/UwoULdeutt+qWW25Rt27dtHTpUh133HFVa2666SYVFRXpqquuUl5enk4++WSlp6crLCysyXK7XC5dc9q8XzYcV/taAMCRSUpJ0FlXnG53DAAISG06J6pN58TDLwQABByXy6X+w3ur//DedkcBgIBiGWPM4Zc1LwUFBYqJiVF+fr6io6PtjgOggQL973Cg5weas0D/+xvo+YHmLtD/Dgd6fqA5c8LfXye8BqC5asjfX1vPGQ4AAAAAAAAAgC9QhgMAAAAAAAAAHI8yHAAAAAAAAADgeJThAAAAAAAAAADHowwHAAAAAAAAADgeZTgAAAAAAAAAwPEowwEAAAAAAAAAjkcZDgAAAAAAAABwPMpwAAAAAAAAAIDjUYYDAAAAAAAAAByPMhwAAAAAAAAA4HhBdgfwR8YYSVJBQYHNSQAciYN/dw/+XQ40zCAgcDF/ANiJGQTALoE+fyRmEBDIGjKDKMNrUFhYKElKTk62OQmAxigsLFRMTIzdMRqMGQQEPuYPADsxgwDYJVDnj8QMApygPjPIMoH8a7ujxOv1aseOHYqKipJlWXWuLSgoUHJysrZt26bo6GgfJQwMvDc1432pXVO9N8YYFRYWqm3btnK5Au9sUMygxuN9qR3vTc2YPwcwf5oG703NeF9qxww6gBnUeLwvteO9qV1TvDeBPn+k+s8g/luqHe9N7XhvambH90AcGV4Dl8ul9u3bN+g+0dHR/MdcC96bmvG+1K4p3ptAPRpBYgY1Jd6X2vHe1Iz5w/xpSrw3NeN9qR0ziBnUVHhfasd7U7vGvjeBPH+khs8g/luqHe9N7XhvaubL74EC89d1AAAAAAAAAAA0AGU4AAAAAAAAAMDxKMMbKTQ0VDNmzFBoaKjdUfwO703NeF9qx3vTcLxnNeN9qR3vTc14XxqO96x2vDc1432pHe9Nw/Ge1Yz3pXa8N7XjvWkY3q/a8d7UjvemZna8L1xAEwAAAAAAAADgeBwZDgAAAAAAAABwPMpwAAAAAAAAAIDjUYYDAAAAAAAAAByPMhwAAAAAAAAA4HiU4QAAAAAAAAAAx6MMBwAAAAAAAAA4HmU4AAAAAAAAAMDxKMMBAAAAAAAAAI5HGQ4AAAAAAAAAcDzKcAAAAAAAAACA41GGAwAAAAAAAAAcjzIcAAAAAAAAAOB4lOEAAAAAAAAAAMejDAcAAAAAAAAAOB5lOAAAAAAAAADA8SjDAQAAAAAAAACORxkOAAAAAAAAAHA8ynAAAAAAAAAAgONRhgMAAAAAAAAAHI8yHAAAAAAAAADgeJThAAAAAAAAAADHowwHAAAAAAAAADgeZTgAAAAAAAAAwPEowwEAAAAAAAAAjkcZDgAAAAAAAABwPMpwAAAAAAAAAIDjUYYDAAAAAAAAAByPMhwAAAAAAAAA4HiU4QAAAAAAAAAAx6MMBwAAAAAAAAA4HmU4AAAAAAAAAMDxKMMBAAAAAAAAAI5HGQ4AAAAAAAAAcDzKcAAAAAAAAACA41GGAwAAAAAAAAAcjzIcAAAAAAAAAOB4lOEAAAAAAAAAAMejDAcAAAAAAAAAOB5lOAAAAAAAAADA8SjDAQAAAAAAAACORxkOAAAAAAAAAHA8ynAAAAAAAAAAgONRhgMAAAAAAAAAHI8yHAAAAAAAAADgeJThAAAAAAAAAADHowwHAAAAAAAAADgeZTgAAAAAAAAAwPEowwEAAAAAAAAAjkcZDgAAAAAAAABwPMpwAAAAAAAAAIDjUYYDAAAAAAAAAByPMhwAAAAAAAAA4HiU4QAAAAAAAAAAx6MMBwAAAAAAAAA4HmU4AAAAAAAAAMDxKMPRLDz99NOyLEtbtmxp0P0mTZqklJSUo5IJQPPBDAJgF+YPADsxgwDYiRmEmlCGw1H+/ve/a+nSpXbHqNXBQVzTLTs72+54ABrJ32fQQStWrNDw4cMVExOjqKgoDRw4UIsXL7Y7FoBG8Pf5c+qpp9b6PVBwcLDd8QA0kr/PIElau3atzjnnHCUlJSkyMlJ9+vTRww8/LI/HY3c0AI0UCDNo+fLlOvnkkxUREaHY2FiNHTu2wSU9moZljDF2hwCaSmRkpMaOHaunn3662naPx6OKigqFhobKsqx6P96kSZOUmZnZZAPq6aef1uTJk3XXXXepU6dO1faNHTtWYWFhTfI8AOzh7zNIkhYsWKDLL79cZ5xxhkaPHi23261vv/1W7dq101//+tcmex4AvuXv82f58uXKycmptq2oqEh//OMfddZZZ+nNN99skucBYA9/n0Fr167ViSeeqG7duunyyy9XRESE3nrrLf3nP//Rn/70J82dO7dJngeAPfx9Bv33v//VeeedpwEDBujSSy9VQUGB5s6dq9DQUK1fv16tW7dukudB/QTZHQBoLGOMSktLFR4eXusat9stt9vtw1R1O/PMMzVo0CC7YwBoAoE0g7Zs2aJrr71W1113HT/0AQ4QSPPnjDPOOGTb888/L0m65JJLfB0HQBMIpBn0+OOPS5JWrlypuLg4SdKUKVM0bNgwPf3003xfBASgQJpBf/vb39S5c2d99NFHCgkJkSSde+65GjBggGbNmqUHH3zQ5oTNC6dJwVF1xx13yLIsffPNNxo3bpyio6PVqlUrXX/99SotLa22dsGCBRo+fLgSEhIUGhqqnj176rHHHjvkMVNSUnTOOefo7bff1qBBgxQeHq7HH39clmWpqKhIzzzzTNXHbidNmiSp9vNEvfXWWxo2bJiioqIUHR2t448/XgsXLqzzNXm9Xs2ZM0e9evVSWFiYEhMTNWXKFO3bt69B701hYSEfyQOOMmZQdfPmzZPH49Fdd90lSdq/f7/4gBhwdDB/Dm/hwoVq0aKFzjvvvCO6P4DaMYOqKygoUFhYmFq2bFlte5s2beos0gAcGWbQL/bu3asNGzbod7/7XVURLkl9+/bVscceq0WLFtV5fzQ9ynD4xLhx41RaWqqZM2fqrLPO0sMPP6yrrrqq2prHHntMHTt21C233KIHH3xQycnJuuaaa/Too48e8njffvutxo8frzPOOENz585Vv3799Nxzzyk0NFSnnHKKnnvuOT333HOaMmVKrZmefvppnX322dq7d6+mT5+uWbNmqV+/fkpPT6/ztUyZMkU33nijTjrpJM2dO1eTJ0/WCy+8oJEjR6qioqJe78dpp52m6OhoRUREaPTo0dq4cWO97gfgyDCDDlixYoV69OihZcuWqX379oqKilKrVq102223yev11nlfAEeG+VOz3bt3a/ny5RozZoxatGjRoPsCqD9m0AGnnnqqCgoKNGXKFH399df68ccfNW/ePL366quaPn16nfcFcOSYQVJZWZkk1fiLt4iICO3YsYNryPmaAY6iGTNmGElm9OjR1bZfc801RpL5/PPPq7YVFxcfcv+RI0eazp07V9vWsWNHI8mkp6cfsr5FixZm4sSJh2xfsGCBkWQ2b95sjDEmLy/PREVFmdTUVFNSUlJtrdfrrfrzxIkTTceOHau+/uCDD4wk88ILL1S7T3p6eo3bf2vx4sVm0qRJ5plnnjGvvfaaufXWW01ERISJj483W7durfO+ABqOGVRddHS0iY2NNaGhoea2224zL7/8srn44ouNJHPzzTfXeV8ADcP8qds///lPI8ksW7asQfcDUD/MoOoqKyvN1KlTTXBwsJFkJBm3220ee+yxOu8H4Mgwg37h8XhMy5Ytzemnn15te25urmnRooWRZNasWVPr/dH0ODIcPnHttddW+/q6666TJC1btqxq269/S5afn6/c3FwNGzZMP/zwg/Lz86vdv1OnTho5cuQR51m+fLkKCwt18803H3LRyrouqrBkyRLFxMTojDPOUG5ubtVt4MCBioyM1HvvvVfn844bN04LFizQhAkTNGbMGN199916++23tWfPHt17771H/HoA1I0ZdMD+/fu1b98+3Xnnnbrrrrt0/vnn64UXXtCoUaM0d+5cFRYWHvFrAlAz5k/NFi5cqNatW9d4LnEATYcZdIDb7VaXLl00cuRIPfPMM1q8eLHOPfdcXXfddVq6dOkRvx4AdWMGSS6XS1OmTFFGRoamT5+ujRs3au3atRo3bpzKy8slSSUlJUf8mtBwXEATPtGtW7dqX3fp0kUul6vaeZs++ugjzZgxQ1lZWSouLq62Pj8/XzExMVVfd+rUqVF5Nm3aJEk67rjjGnS/jRs3Kj8/XwkJCTXu37VrV4OznHzyyUpNTdWKFSsafF8A9cMMOiA8PFxFRUUaP358te3jx49Xenq61q9fr6FDhzYoE4C6MX8O9cMPPygrK0tTp05VUBA/jgBHEzPogFmzZmnu3LnauHGjIiMjJR04UOm0007Ttddeq3POOYd5BBwFzKAD7rrrLuXm5ur+++/XrFmzJEkjRozQ5Zdfrnnz5lXNJfgG0x62+O1v3DZt2qTTTz9dPXr00OzZs5WcnKyQkBAtW7ZMDz300CHnsrXrIider1cJCQl64YUXatzfunXrI3rc5ORkffvtt42JBqABmusMatu2rTZu3KjExMRq2w9+U3ekF8EDUH/Ndf782sELVF1yySVNkg1A/TXXGfSvf/1Lw4cPP6RwGj16tKZNm6YtW7aoa9euTZYXQM2a6wwKCQnRU089pXvvvVffffedEhMT1b17d1188cVyuVzMHx+jDIdPbNy4sdpv8L7//nt5vV6lpKRIkt544w2VlZXp9ddfV4cOHarWNfQjt3V9rOXXunTpIkn68ssvGzR0unTpohUrVuikk05q0iH8ww8/HHGRDuDwmEEHDBw4UBs3btT27dvVuXPnqu07duyQdOS/0ANQO+bPoRYuXKguXbrohBNOaNTjADg8ZtABOTk58ng8h2w/eNG7ysrKBj8mgMNjBlWXmJhYdWCSx+NRZmamUlNTOTLcxzhnOHzit1cB/uc//ylJOvPMMyUdOIebJBljqtbk5+drwYIFDXqeFi1aKC8v77DrRowYoaioKM2cOVOlpaXV9v06w2+NGzdOHo9Hd9999yH7KisrD/vcu3fvPmTbsmXLtHbtWo0aNeqwuQEcGWbQARdeeKEk6d///nfVNq/XqwULFiguLk4DBw48bHYADcP8qW79+vX6+uuvdfHFF9drPYDGYQYd0L17dy1fvlx79uyp2ubxePTSSy8pKiqqqiAD0LSYQbV74IEHtHPnTv3lL39p8H3ROBwZDp/YvHmzRo8erVGjRikrK0vPP/+8Lr74YvXt21fSgYEUEhKic889V1OmTNH+/fv15JNPKiEhQTt37qz38wwcOFArVqzQ7Nmz1bZtW3Xq1EmpqamHrIuOjtZDDz2kK664Qscff7wuvvhixcbG6vPPP1dxcbGeeeaZGh9/2LBhmjJlimbOnKnPPvtMI0aMUHBwsDZu3KglS5Zo7ty5Gjt2bK35TjzxRPXv31+DBg1STEyM1q1bp/nz5ys5OVm33HJLvV8ngIZhBh1w3nnn6fTTT9fMmTOVm5urvn37aunSpfrwww/1+OOPKzQ0tN6vFUD9MH+qO/jxYk6RAvgGM+iAm2++WX/4wx+Umpqqq666SuHh4XrxxRe1du1a3XPPPQoODq73awVQf8ygA55//nm98sorGjp0qCIjI7VixQq99NJLuuKKK3T++efX+3WiiRjgKJoxY4aRZDZs2GDGjh1roqKiTGxsrJk6daopKSmptvb11183ffr0MWFhYSYlJcXcd999Zv78+UaS2bx5c9W6jh07mrPPPrvG5/vmm2/M0KFDTXh4uJFkJk6caIwxZsGCBYc8zsHnPPHEE014eLiJjo42gwcPNi+++GLV/okTJ5qOHTse8jxPPPGEGThwoAkPDzdRUVGmd+/e5qabbjI7duyo8/34v//7P9OvXz8TExNjgoODTYcOHczVV19tsrOz67wfgCPDDDpUYWGhuf76601SUpIJCQkxvXv3Ns8///xh7wegYZg/h/J4PKZdu3ZmwIABh10LoHGYQYdKT083w4YNM/Hx8VXfA82bN++w9wPQcMyg6latWmWGDh1qYmNjTVhYmOnbt6+ZN2+e8Xq9dd4PR4dlTB2fAwAa6Y477tCdd96p3bt3Kz4+3u44AJoZZhAAuzB/ANiJGQTATswg+DPOGQ4AAAAAAAAAcDzKcAAAAAAAAACA41GGAwAAAAAAAAAcj3OGAwAAAAAAAAAcjyPDAQAAAAAAAACORxkOAAAAAAAAAHC8ILsD+COv16sdO3YoKipKlmXZHQdAAxljVFhYqLZt28rlCrzf+TGDgMDF/AFgJ2YQALsE+vyRmEFAIGvIDKIMr8GOHTuUnJxsdwwAjbRt2za1b9/e7hgNxgwCAh/zB4CdmEEA7BKo80diBgFOUJ8ZRBleg6ioKEkH3sDo6Gib0wBoqIKCAiUnJ1f9XQ40zCAgcDF/ANiJGQTALoE+fyRmEBDIGjKDKMNrcPDjMNHR0QxAIIAF6kfbmEFA4GP+ALATMwiAXQJ1/kjMIMAJ6jODAvNETgAAAAAAAAAANABlOAAAAAAAAADA8SjDAQAAAAAAAACORxkOAAAAAAAAAHA8ynAAAAAAAAAAgONRhgMAAAAAAAAAHI8yHAAAAAAAAADgeJThAAAAAAAAAADHowwHAAAAAAAAADgeZTgAAAAAAAAAwPEowwEAAADADxhTIWPK7Y4BAADgWH5Rhj/66KNKSUlRWFiYUlNTtXr16lrXPvnkkzrllFMUGxur2NhYpaWlHbJ+0qRJsiyr2m3UqFFH+2UAAAAAQIOZ0hXy7rlIJqeXTM5x8uaeJ1OyVMYYu6MBAAA4iu1l+OLFizVt2jTNmDFD69atU9++fTVy5Ejt2rWrxvWZmZkaP3683nvvPWVlZSk5OVkjRozQ9u3bq60bNWqUdu7cWXV78cUXffFyAAAAAKDezP5/yeRdI1V89svGym9l8m+SKbiTQhwAAKAJBdkdYPbs2bryyis1efJkSdK8efP05ptvav78+br55psPWf/CCy9U+/qpp57SK6+8ooyMDE2YMKFqe2hoqJKSkuqVoaysTGVlZVVfFxQUHMlLAYAjwgwCYBfmD2AvU/GlzP45P3/l/dWen/9cslAKO1UKPdWnuXyFGQTATswgoHmy9cjw8vJyrV27VmlpaVXbXC6X0tLSlJWVVa/HKC4uVkVFheLi4qptz8zMVEJCgo455hhdffXV2rNnT62PMXPmTMXExFTdkpOTj+wFAcARYAYBsAvzB7CXKX5RkruOFW6Zoud9FcfnmEEA7MQMApony9j4ubsdO3aoXbt2+vjjjzVkyJCq7TfddJPef/99rVq16rCPcc011+jtt9/WV199pbCwMEnSokWLFBERoU6dOmnTpk265ZZbFBkZqaysLLndh36zWdNvA5OTk5Wfn6/o6OgmeKUAfKmgoEAxMTEB83eYGQQ4B/MHQEN4c0dLld/UvcjVSq6E+h0oxAwCYJdAmz8SMwhwkobMINtPk9IYs2bN0qJFi5SZmVlVhEvSRRddVPXn3r17q0+fPurSpYsyMzN1+umnH/I4oaGhCg0N9UlmAP/f3p3HR1Xd/x9/3zuTfYdAEiAS9n0HERWtGgWXClatohWLFv26fK0/WtvSKvhVK0itUlurldaKVgVXtIoooKgIgoIgIiogOyTs2SDb3Pv7IxAJzAyZQOYkk9fTRx6Ye0+G91ySTzKfnHsOjkYNAmAK9QcwzIo9/hhF7tcoNQiASdQgoGkyukxKenq6PB6P8vPzaxzPz88/7nrfDz/8sCZPnqz33ntPvXv3Djq2ffv2Sk9P17p16044MwAAAACcDFbsBZKsICM8UuywcMUBAACIeEab4dHR0RowYIDmz59ffcxxHM2fP7/GsilHmzJliu6//37NmTNHAwcOPO7fs3XrVu3Zs0dZWVknJTcAAAAAnLC4yyUrSf5fllmSvLLirw1zKAAAgMhltBkuSePGjdO0adM0ffp0rVmzRrfccotKSko0ZswYSdLo0aM1fvz46vEPPfSQ7rnnHj399NPKyclRXl6e8vLyVFxcLEkqLi7WXXfdpU8//VQbN27U/PnzNWLECHXs2FHDhjGrAgAAAEDDYNlpsppNl+zUQ0c8qnqJZklWvKy0abK8p5gLCAAAEGGMrxl+1VVXadeuXZowYYLy8vLUt29fzZkzRxkZGZKkzZs3y7Z/6Nk/8cQTKi8v1xVXXFHjcSZOnKh7771XHo9HX375paZPn679+/erVatWuuCCC3T//fezFhQAAACABsWK6iG1WCAdfFtu+WJJrqzo/lLsCFl2oul4AAAAEcV4M1ySbr/9dt1+++1+zy1YsKDG+xs3bgz6WHFxcXr33XdPUjIAAAAAqF+WFSvFXy4r/nLTUQAAACKa8WVSAAAAAAAAAACobzTDAQAAAAAAAAARj2Y4AAAAAAAAACDi0QwHAAAAAAAAAEQ8muEAAAAAAAAAgIhHMxwAAAAAAAAAEPFohgMAAAAAAAAAIh7NcAAAAAAAAABAxKMZDgAAAAAAAACIeDTDAQAAAAAAAAARj2Y4AAAAAAAAACDi0QwHAAAAAAAAAEQ8muEAAAAAAAAAgIhHMxwAAAAAAAAAEPFohgMAAAAAAAAAIh7NcAAAAAAAAABAxKMZDgAAAAAAAACIeDTDAQAAAAAAAAARj2Y4AAAAAAAAACDieU0HAAAAAICmrMJXoC1Fr2pbyduq8BUoISpHpyRfpcz4c2VZHtPxAAAAIgbNcAAAAAAwpKRisz7d8XOV+XZJciVJpb6d2lP6qVrGn6P+LR+RbUWZDQkAABAhWCYFAAAAAAxwXVfL8u9QuW+PDjfCqziSpJ0HFmj9/mlGsgEAAEQimuEAAAAAYMDe0s9UXLFOrnwBRrjaWPi8HLcirLkAAAAiFc1wAAAAADBgb+lyWQq+JniFU6Diig1hSgQAABDZaIYDAAAAgAGWrJM6DgAAAMHRDAcAAAAAA5rFDQyyREqVKDtNCVE54QkEAAAQ4WiGAwAAAIABaTH9lRTdJchSKZbapfxMthUV1lwAAACRimY4AAAAABhgWZYGtHxMMZ6WkqxDb6pujmfGn6/2KTeaCwgAABBhvKYDAAAAAEBTFR/VWkPbvK5tRW9oW/FbqnAKlBDVTqckX6mWcWfJspi/BAAAcLLQDAcAAAAAg6LsROWkXKuclGtNRwEAAIhoTDMAAAAAAAAAAEQ8ZoYDANBAuE6h5Nsu2UmyPK1NxwEAAAAAIKLQDAcAwDDXlye36M9S6duSKquOeXvISvqlrJgfGc0GAAAAAECkYJkUAAAMcn15cvdcLpW+pcONcElS5ddy990s9+CbxrIBAAAAABBJaIYDAGCQW/RnydkryXf0GUmu3MJ75DolBpIBAAAAABBZaIYDAGCI6xQdWhrl6Eb4kYMOSqXvhC0TAAAAAACRimY4AACm+PJUY2kUv7xyfZvCkQYAAAAAgIhGMxwAAFPspFoMcmRZtRkHAAAAAACCoRkOAIAhlidTiuqj4N+OXSl2eLgiAQAAAAAQsWiGAwBgkJV4p6o2y7T8nZViL5PlPSW8oQAAAAAAiEA0wwEAMMiKOUNWyqOSFX/oiFdV354PNcJT7jOYDgAAAACAyOE1HQAAgKbOirtIij1HKp0jt3KTLDtRihkmy5ttOhoAAAAAABGDZjgAAA2AZcVJcZf5XSwFAAAAAACcOJZJAQAAAAAAAABEPJrhAAAAAAAAAICIRzMcAAAAAAAAABDxaIYDAAAAAAAAACIeG2gCAAAAAAAACInrFEnliyS3TPJ2kRXVxXQk4LhohgMAAAAAAACoFdetlFv8qFTyrKSyH45H9ZGVMlmWt4O5cMBx0AwHAAAAAINc19X3Jd9q0e75yivdpjhPvPqnDdGAtDMU44k1HQ8AgBrcgglS6auS3JonKr6Su+dqqfnrsrxtjGQDjodmOAAAAAAY4rquXtn6by3cPVe2bDlyJFlaW7xac/Pf0P92ukfNoluYjgkAgCTJrfhOKn0lwFmf5BbLLZkmK+X/wpoLqC020AQAAAAAQxbunquFu+dK0qFGuHR4pt3+8j16av2f5LpugI8GACC83NJZkjxBRvikg6/JdX1hSgSEhmY4AAAAABjguI7m7/xv4PNytKN0i9YVfx3GVAAABOHbWYtBZZJ7oN6jAHVBMxwAAAAADNhXvlv7yncHHWPLo2+LvgpTIgAAjsOTUYtBsZIVX+9RgLqgGQ4AAAAABvywLMpxxrm1GwcAQH2z4i6TFGwJFI8U/xNZVrClVABzaIYDAAAAgAHNotOV6E0OOsaRT+0SO4UpEQAAwVnejlLcVQHOeiQrWVbCzWHNBISCZjgAAAAAGOCxvDqrxTBZsvyet2QrLSpdPZL7hzkZAACBWcn3Sgm3SVZczRNR/WQ1f0mWJ8tILqA2vKYDAAAAAEBTlZtxqTaVrNPqwi9kyZIrV1JVIzzWE6ex7X8t22IOEwCg4bAsj6ykX8pN+IVUvlRSmeTtJMvbwXQ04LhohgMAAACAIR7Lqxvb/0rL9y3Swt1ztbN0h2I9cRqQdoaGtjhfKVHNTEcEAMAvy06QYs8xHQMICc1wAAAAADDIY3k0qNlQDWo21HQUAACAiMb9dgAAAAAAAACAiEczHAAAAAAAAAAQ8WiGAwAAAAAAAAAiHmuGAwDQAPicMu0p/VQVvgLFR2UrNaavLMsyHQsAAAAAgIhBMxwAAINc19Wmwuf13f7HVekUVR9P8LZVz/R71TxukMF0AAAAAABEjgaxTMrjjz+unJwcxcbGavDgwVq6dGnAsdOmTdPQoUOVlpamtLQ05ebmHjPedV1NmDBBWVlZiouLU25urtauXVvfTwMAgJBtKPi3vt47uUYjXJJKKrdoad5Y7StdYSYYAAAAAAARxngzfObMmRo3bpwmTpyo5cuXq0+fPho2bJh27tzpd/yCBQs0atQoffDBB1q8eLGys7N1wQUXaNu2bdVjpkyZoscee0xPPvmklixZooSEBA0bNkylpaXheloAABxXha9Q3+37W4Czjlw5+mbvo2HNBAAAAABApDLeDH/kkUc0duxYjRkzRt27d9eTTz6p+Ph4Pf30037HP//887r11lvVt29fde3aVf/85z/lOI7mz58vqWpW+NSpU3X33XdrxIgR6t27t5599llt375ds2bNCuMzAwAguLwDc+WoIsgIR/vKlulgxfawZQIAAAAAIFIZXTO8vLxcy5Yt0/jx46uP2bat3NxcLV68uFaPceDAAVVUVKhZs2aSpA0bNigvL0+5ubnVY1JSUjR48GAtXrxYV1999TGPUVZWprKysur3CwsL6/qUACBk1KCmq8y3W5Y8clV53HFxUa3ClApNCfUHgEnUIAAmUYOApsnozPDdu3fL5/MpIyOjxvGMjAzl5eXV6jF++9vfqlWrVtXN78MfF8pjTpo0SSkpKdVv2dnZoT4VAKgzalDTFeNpedxGuCTFeFuEIQ2aIuoPAJOoQQBMogYBTZPxZVJOxOTJkzVjxgy9/vrrio2NrfPjjB8/XgUFBdVvW7ZsOYkpASA4alDTlZlwvmwrJsgIW81iBynOmxW2TGhaqD8ATKIGATCJGgQ0TUaXSUlPT5fH41F+fn6N4/n5+crMzAz6sQ8//LAmT56sefPmqXfv3tXHD39cfn6+srJ+aB7k5+erb9++fh8rJiZGMTHBmhEAUH+oQU1XlJ2oLml3as3eh/yctWXLq67NxoU9F5oO6g8Ak6hBAEyiBgFNk9GZ4dHR0RowYED15peSqjfDHDJkSMCPmzJliu6//37NmTNHAwcOrHGuXbt2yszMrPGYhYWFWrJkSdDHBADAhHYp16ln8wmKttNqHE+M6qDBWf9SakwvQ8kAAAAAAIgsRmeGS9K4ceN0/fXXa+DAgTr11FM1depUlZSUaMyYMZKk0aNHq3Xr1po0aZIk6aGHHtKECRP0wgsvKCcnp3od8MTERCUmJsqyLN1555164IEH1KlTJ7Vr10733HOPWrVqpZEjR5p6mgAABHRK8k/VJuky7S39XBVOoeK92UqO7ibLskxHAwAAAAAgYhhvhl911VXatWuXJkyYoLy8PPXt21dz5syp3gBz8+bNsu0fJrA/8cQTKi8v1xVXXFHjcSZOnKh7771XkvSb3/xGJSUluummm7R//36deeaZmjNnzgmtKw4AQH2yrSilx3EHEwAAAAAA9cV4M1ySbr/9dt1+++1+zy1YsKDG+xs3bjzu41mWpfvuu0/33XffSUgHAAAAAAAAAGjsjK4ZDgAAAAAAAABAODSImeEAAAAAAAAAGgfHrVB+yXztL1sly/IoPe50NY8dzL5HaPBohgMAAAAAAAColX2lK7Vs5x0q9+2Rdai1+H3B00qM6qRBmX9XnDfLcEIgMJrhAAAAAGDY7tJCzdr6mRbu/FaVrk990trqJ9mD1SEpw3Q0AACqHajYqqV5Y+VzSyVJriqrz5VUfK8lO8ZoaOtZ8tixpiICQdEMBwAAAACDlu/9Xncum65yX6UcuZKk9cX5emXzp7qr+6W64pTTDCcEAKDKxsLn5bhlkpxjzrny6UDlVu0omaM2SSPDng2oDTbQBAAAAABD9peX6P8te1ZlRzTCJcnnVr035es3tWLfRmP5AAA40vaS2XLlCzLC1o6Sd8OWBwgVzXAAAAAAMOS/25ap1Fch94hG+JE8lq0XNiwMcyoAAPzzOQePM8JRpVMclixAXdAMBwAAAABDlu5eF7ARLlXNEF+6Z30YEwEAEFhiVDsFayda8igxumP4AgEhohkOAAAAAIY4QRrhhwVrlgMAEE6nJF8tf+uFH+bKp1OSrgxfICBENMMBAAAAwJC+aTmyZQU877Fs9UlrG8ZEAAAE1jrxx2oRN1Q65ntX1fvtU25USkz3sOcCaotmOAAAAAAYMrLNIHmswC/LfK6jUW3PCGMiAAACsy2vBmQ8ps5ptyvabl59PCEqR73S71eXtDvNhQNqwWs6AAAAAAA0VS1ik/XHvqM0fsULkqqa31LVjHCf62hsx/M0pEVnkxEBAKjBtqLUMfVmdUj5hUor82VZHsV4WsqyAt/pBDQUNMMBAAAAwKAfZXTXC2fcoZc2LdbCXd+o0vGpV+op+mnbIRrYvIPpeAAA+GVZHsVFtTIdAwgJzXAAAAAAMKxdYkv9tscI/VYjTEcBAACIWKwZDgAAAAAAAACIeDTDAQAAAAAAAAARj2Y4AAAAAAAAACDi0QwHAAAAAAAAAEQ8muEAAAAAAAAAgIjnNR0AAICmrqBirxbtfl9f7v9MlW6lTonvoKEtLlBOQkfT0QAAAAAAiBg0wwEAMOj74m/15PrJKnfK5MqVJO0uy9Pn+z7WRVlXaljmTwwnBAAAAAAgMrBMCgAAhpT6Dugf66fUaIRLkiNHkjR7x8v6qmC5qXgAAAAAAEQUmuEAABjy2d6FKnUO1GiEH8mWrQ92vh3mVAAAAAAARCaa4QAAGLKu+GtZsgKed+RoffEaua7/ZjkAAAAAAKg9muEAABgSaEZ4XccBAAAAAIDAaIbjpHIrt8o9OEvuwdflVm42HQcAGrT2CV2Dtrkt2cpJ6Czb4ts1AAAAAAAnyms6ACKD6xTILfi9VDZPOqK140b/SFbqZFl2M3PhAKCBOrXZWZq946VjNtA8zJWjc1pebCAZAAAAAACRh6lmOGGuWyZ372ip7H3p6GZO+cdy91wj1zlgJBsANGTx3gSNbf9reS2v7CO+JR/+/9yMEeqTOshUPAAAAAAAIgozw3HiSt+WKtcEOOmTfBuk0llS/DXhTAUAjUKnpB4a3+3P+mT3XH1Z8JkqnAq1TeigoenD1Cmpu+l4AAAAAABEDJrhOGHugddUdZOBE2TMK7JohgOAX81jWujS1tfo0tbUSQAAAAAA6gvNcJw4Z5eCNcIl99AYAAAAAAAARIK8g1uVV7ZNMXaMOiR2V7QdbToScFw0w3HiPFmSb5MCN8TtqjEAAAAAAABo1HYc3KIZm6dp44G11cdi7TjlZoxQbsalsizLYDogODbQxAmz4q5U8Jnhjqy4q8IVBwAAAAAAAPVgV1mepn43UZsPrK9xvNQ5qLd2zNB/t88wlAyoHWaG48TFXiAdGChVLNexTXFb8vaQ4i4xkQwAAABoFEorK/Xa+q/04rcrta24UM1i43RFp14a1bmPUmJiTccDAECS9M6OV1TulMkJMCny/Z3/1Zktzlez6PQwJwNqh5nhOGGWFSUr7Z9S3JWq+fsVrxQ7Qlaz6bKsGFPxAAAAgAatuKJMV7/zon6/6D19tSdfe8sOal3BXk35/CNd9MYz2lZcaDoiAAAq85Xqi32fBmyEV7H0+d6FYcsEhIqZ4TgpLDteVsr9cpPGSeUrqg5G9ZblaW40FwAAANDQPbD0A63akydJco847shV3oEi3fHhf/XqxdeaCQcAwCEHfCVy5As6xpKlgoq9YUoEhI5mOE4qy06TYs8xHQMAAABoFArKSvXquq/kc12/532uq2U7t+nrvTvVvVnLMKcDAOAH8Z4E2bKPMzPcVXJUargiASFjmRQAAAAAMGT13nxVOMGaClWW7dwWhjQAAAQW44lVn9TBsoO0Ex05Gph2ZhhTAaGhGQ4AAAAAhtiWVbtxqt04AADq04VZlyvKjpYVoKV4VvpwNY/hTiY0XDTDAQAAAMCQXs0zFeeNOu6407NOCUMaAACCy4htrTs6TVSruOwax6PsaA3L/Ikua3OdoWRA7bBmOAAAAAAYkhAVrdFd++mpr5bK36rhHsvSWa3bqV1Ks7BnAwDAnzbxOfpN18nacuB75ZVuU7Qdq65JvRTjiTUdDTgumuEAAAAAYNCv+g/VuoI9mr9lvTyWJZ/ryrYsOa6rLmkt9MjQi01HBADgGNnx7ZUd3950DCAkNMMBAAAAwKBoj0fTzvuJPtz6vV787kttLtqvFnEJurxjD12Y00UxHl62AQAAnAz8VAUAAAAAhtmWpXOyO+ic7A6mowAAAEQsNtAEAAAAAAAAAEQ8muEAAAAAAAAAgIhHMxwAAAAAAAAAEPFohgMAAAAAAAAAIh7NcAAAAAAAAABAxKMZDgAAAAAAAACIeF7TAQAAaOoc19GS3eu0dM86+VxXvVKz9aOM7oqy+TYNAAAAAMDJwqtsAAAM2nZgr+5c9ow2leyW16q6YWvGpk/ULDpRjwwYre4pbQwnBAAAAAAgMrBMCgAAhhyoLNMtS6dp64G9kqRK11Gl60iS9peX6Nal/1Lewf0GEwIAAAAAEDlohuOk8TkHVVKxWWW+PaajAECjMGf7CuWVFsh3qAF+JEeuypxyvbR5sYFkAAAAAABEHpZJwQkr8+3V2n2Pa2vxG3LcUklSWkw/dUy7RS3iTjecDgAarnl5X8mS5AY473NdvbfjS93R5cJwxgIAAAAAICIxMxwnpMy3V4u3X6MtRa9UN8IlaV/ZSn2Wd7O2F882mA4AGrYDlaUBG+GHHawsC0sWAAAAAAAiHc1wnJC1+x7XwcodcuU76kzVLf+rdk9UpVMS/mAA0Ai0T8qQxwr8rdiWpXaJLcOYCAAAAACAyEUzHHXmcw5qa/EsP43ww1z53IPaXvxOWHMBQGPxk+zBftcLP8yRqytOOS2MiQAAAAAAiFw0w1Fnpb5dctzgt+9b8qqkYkOYEgFA49IzNVvX5pwpSbKOOmdJOrtld52f1TvsuQAAAAAAiERsoIk689rxtRjlymsn1HsWAGis7uhyodolttRz33+kTQd2S5JaxCTr6pzTNartGUGXUQEAAAAAE7Yd2Ks3t36uTSW7leCN0bmZPXVaeidev6DBoxmOOovxpCs1po/2l63S4TXCj+bKp8yEC8IbDAAaEcuydGmbgfpx6wHaU1Ykn+soPTaZHyIBAAAANEj/2fCx/vrtHFmSXLmyLVv/3bZMXZNb6S8Df6606ETTEYGAeKWNE9Ip9VZJboCztjLiz1NSdMdwRgKARsmyLKXHJisjLpVGOAAAAIAGae6OL/XYt+/IlStHrlypeh+ktUV5umv5f+S6gfpEgHm82sYJaRF/hvq0mCzbipVkyZJXljySpIz4c9S3xWSzAQEAAIBGpqS8XIWlpTQTAAANiuu6+vf6D2Qds+NRFZ/r6Mv9m7Vq/5YwJwNqj2VScMJaJ16sjPgfaXvxbJVUbJTHjldWwgVKiu5kOhoAAADQaMz7Zp2eWvSZVm7LkyS1TknW9YP76WeD+spjM48JAGDW7rIirSvODzrGY9lauOsb9U47JUypgNDQDMdJ4bUTdErylaZjAAAAAI3StEWf6eH5C2VbP8y2215QqEnvfajPNm/TXy6/mIY4AMCocqfyuGOsWo4DTOGnKQAAAAAwaP2uPXp4/kJJknPE0ijuobe536zTm6vWmAkHAMAhLWOTleiNDTqm0nXUOSkrTImA0Blvhj/++OPKyclRbGysBg8erKVLlwYcu3r1al1++eXKycmRZVmaOnXqMWPuvfdeWZZV461r1671+AwAAAAAoO5mLF8lj+V//VVJsi1L//lsZRgTAQBwrCjbq8uzB8sOsGa4JUtJ3lidl9kzzMmA2jPaDJ85c6bGjRuniRMnavny5erTp4+GDRumnTt3+h1/4MABtW/fXpMnT1ZmZmbAx+3Ro4d27NhR/bZw4cL6egoAAAAAcEK+zd8lX5DNMh3X1bpde8KYCAAA/27ocI66pbQ+ZhNNj2XLa9ma1PcaxXiiDKUDjs/omuGPPPKIxo4dqzFjxkiSnnzySb399tt6+umn9bvf/e6Y8YMGDdKgQYMkye/5w7xeb9BmOQAAAAA0FPHRUbIsKUg/XDFetntqjNzKdXIP/EcqWyLJkmLOlBV/jSxvjuloAFAncd5oPXHqWL20abFe3rxY+aUFirI8Oi+zp65rf5Y6sUQKGjhjP1GVl5dr2bJlGj9+fPUx27aVm5urxYsXn9Bjr127Vq1atVJsbKyGDBmiSZMm6ZRTAu9iW1ZWprKysur3CwsLT+jvB4BQUIMAmEL9ARqG3K4d9cHaDQHPeyxLw7t3CmOi8Ij0GuQefE1uwe9VtZ2cr+rggQ1yDzwnpT4iK/ZCk/GAJi/Sa1B9ivVEaXT7szS6/VmqdHzyWLasIMt9AQ2JsWVSdu/eLZ/Pp4yMjBrHMzIylJeXV+fHHTx4sJ555hnNmTNHTzzxhDZs2KChQ4eqqKgo4MdMmjRJKSkp1W/Z2dl1/vsBIFTUIACmUH+AhuHiHl3UKjnJ77rhliV5bFvXn9rPQLL6Fck1yK1YI7dgvCRH1Y1w6dD/O3L3j5NbuclMOACSIrsGhZPX9tAIR6NifAPNk+3CCy/UlVdeqd69e2vYsGGaPXu29u/fr5deeingx4wfP14FBQXVb1u2bAljYgBNHTUIgCnUH6BhiIuK0vTrrlDr1GRJkte25bWrXqrFR0XrH1ePUIcWzU1GrBeRXIPcA/9R4Jfb7qExL4QtD4BjRXINAhCYsWVS0tPT5fF4lJ+fX+N4fn7+SV3vOzU1VZ07d9a6desCjomJiVFMTMxJ+zsBIBTUIACmUH+AhuOUZql659afa8HaDfp4/UZV+hz1bp2hS3p2VUJ0tOl49SKia1DZItWcEX40n1T+SbjSAPAjomsQgICMNcOjo6M1YMAAzZ8/XyNHjpQkOY6j+fPn6/bbbz9pf09xcbHWr1+v66677qQ9JgAAAACcbF7bVm6XDsrt0sF0FJywILuhhjQGAACcTEaXSRk3bpymTZum6dOna82aNbrllltUUlKiMWPGSJJGjx5dY4PN8vJyrVixQitWrFB5ebm2bdumFStW1Jj1/etf/1offvihNm7cqEWLFumyyy6Tx+PRqFGjwv78AAAAAABNUPRpkjxBBnik6NPDlQYAABxibGa4JF111VXatWuXJkyYoLy8PPXt21dz5syp3lRz8+bNsu0f+vXbt29Xv34/bBzz8MMP6+GHH9bZZ5+tBQsWSJK2bt2qUaNGac+ePWrRooXOPPNMffrpp2rRokVYnxsAAAAAoGmyEkbLLX09yAhXVjwTtgAACDejzXBJuv322wMui3K4wX1YTk6OXDf4rWQzZsw4WdEAAAAAAAiZFdVdSr5PbuEEVd2QfXj9cI8kV1bKFFne9uYCAgDQRBlvhgMAAAAAEGms+KukqF5yS/4jVXwqyZKiz5QV/zNZUZ1MxwMAoEmiGQ4AAAAAQD2worrLSn3QdAwAAHCI0Q00AQAAAAAAAAAIB5rhAAAAAAAAAICIxzIpOGGVToVWF36h/eV7lRSVop4p/RVtx5iOBQCNhuO6Wrh9oz7atkGVjqu+LTJ1YU4XxXj4Ng0AAAAAwMnCq2yckKV7PtJr257VQV+JLFly5SrGjtUlra7WWS2GmY4HAA3e1uIC3TD3FX23f4+8VtUNW8+scfR/S97XU+ddpkEZbQwnBAAAAAAgMrBMCups+b5Fen7zEzroK5EkuXIlSWVOqV7d+ow+3vWeyXgA0OCVVlbqmjkztL5grySp0nVU6TqSpIKyUo1+7yVtLNxnMiIAAAAAABGDZjjqxHEdvbHthaBj3t4xU5VORZgSAUDj8/bGb7S5qEA+1z3mnCNX5T6fnvl6mYFkAAAAAABEHprhqJONJWu1v2JP0DEHfQe0pmhlmBIBQOPzzsZvZcsKeN7nunrj+zVhTAQAAAAAQOSiGY46Ka4srOW4onpOAgCNV1F5mRwdOyv8SAcrucMGAAAAAICTgQ00USfNotNrOa5FPScBgMarS1oLfb5zm99lUiTJlqWOqc3DnAoAAAAAgjtQUa43N6zRl7vzFG17dE52Bw1tlSPbCnznK9AQ0AxHnbSOy1FWbLbySrdWb5x5tNSoZuqU2D3MyQCg8RjVpY+e/eaLgOcduRrdtV8YEwEAAABAcB9u26BbP3hDJRXl8lpVi048s2a5uqSm69/nX6FWicmGEwKBsUwK6sSyLF2RPUaWbFlHrXdrHfrvyuwbZFt8igFAIN2atdQdfYZI0jErh1uSftS6vX7SsWfYcwEAAACAP9/s3aVfzHtVByrKJUmVrqNK15EkrSvYo2vfnakKx2cyIhAUnUrUWcfEbrq9091qE9euxvHM2Da6ucNv1TNlgKFkANB4jOs/VI+edbE6pf6w/FTLuAT9esBZmpZ7mbw236oBAAAANAxPfbVUjiu/awT4XFcbCvfpvU1rw54LqC2WScEJ6ZDYVb/u+kfllW7T/vI9So5KVVZstizWiAKAWrusQw+NbN9du0sPyOc4ahGXIA9NcAAAAAANzDubvpXv0Exwf2zL0jubvtPF7bqGMRVQezTDcVJkxrZWZmxr0zEAoNGyLEst4hJMxwAANADrt+/Wpp37lRATpX4dWys6ipdtjY3PLVdeyXvaVvyWyn17leDNVpvky5UeO4SJQwAaLdd1VVpZGXSM47o6WFkRpkRA6PipCgAAAAAagO+27tIDz8/TVxvzqo8lx8fopotP06hz+tFEbSTKffu0ZMeNKqr4TlUrkzoqKv9WOw68q8z4YerbcrJsK8p0TAAImWVZ6pDSTOsL9vpdJkWSPJZVYwlIoKHhHmwAAAAAMGxD3l7d8PBMfb0pv8bxwgNlevjlDzVt9hJDyRCqFTt/o+KK9Yfeq1pKwFXVZnJ5B97Tuv3/MJQMAE7c6G79g553XFejOvcOUxogdDTDAQAAAMCwv7+5SGUVlXJc/3Ptps3+VHsKS8KcCqEqKl+v3aWLq5vfx3K1seA/8jmlYc0FACfLqC59dGarHB19r5J96O6lPww6R22T08IfDKglmuEAAAAAYFDRgVJ9sHKdfE6gm84l15XeWfpNGFOhLvYc/FQ6pkVUU6VbrMJy/i0BNE5Rtkf/yr1cdw04SxnxidXHezfP1FPnXqZf9BxkMB1wfKwZDgAAAAAG7Ss+KCdII1ySbNvSzv3FYUqEunLlqKoZHvzf0z20fAoANEbRHo9u7X2a/qfXYO0tPaAo26OUmFjTsYBaoRkOAAAAAAalJsTJsqpmfwfiOK6aJyeELxTqJC2mj3ScRrdtxSgpunN4AgFAPbItS+lxfG9C48IyKQAAAABgUHJCrIb2bC+PHXx5jQtP7RqmRKirlJheSo7uLkueACNsZSf+RFF2YoDzAACgPtEMBwAAAADDbr30dHk9dvUGZEe77vwBaplKA7WhsyxL/Vv+WdGeZqr5crvq3zU1ppe6NPt/RrIBAACa4QAAAABgXOc2LfTU/7tSbTPSahyPi47SLT8eov8dcaahZAhVfFS2hrZ+TZ1Tb1O8N1teO1nJ0V3Vs/lEDc76t7x2vOmIAAA0WawZDgAAAAANQK92WXplwmit2pCnTfl7FR8brSHd2io+Ntp0NIQo2pOmjmk3q2PazaajAACAI9AMBwAAAIAGwrIs9W6fpd7ts0xHAQAAiDgskwIAAAAAAAAAiHg0wwEAAAAAAAAAES/kZvj111+vjz76qD6yAAAAAAAAAABQL0JuhhcUFCg3N1edOnXSgw8+qG3bttVHLgAAAAAAAAAATpqQm+GzZs3Stm3bdMstt2jmzJnKycnRhRdeqFdeeUUVFRX1kREN3KbiXVq6Z53WFeXJdV3TcQAAAAAAAADgGN66fFCLFi00btw4jRs3TsuXL9e///1vXXfddUpMTNTPfvYz3XrrrerUqdPJzooG5st9m/TnNW9pTeEPdwe0T2ypO7terNPS+fcHAAAAAAAA0HCc0AaaO3bs0Ny5czV37lx5PB5ddNFFWrVqlbp3765HH330ZGVEA7Ri30b9z9J/6tvC7TWObyjepTs/f0Yf71xjKBkAAAAAAAAAHCvkZnhFRYVeffVVXXLJJWrbtq1efvll3Xnnndq+fbumT5+uefPm6aWXXtJ9991XH3nRALiuqymr35TjOnJUc1kU99B/k1e/IZ/rGEoIAAAAAAAAADWFvExKVlaWHMfRqFGjtHTpUvXt2/eYMeecc45SU1NPQjw0RGuL8rSuOC/geVfSrrJCfb5nvQazXAoAHFfBwVK9umK13l79rUrKy9W5ZbpGDeit03KyZVmW6XgAAAAAAESEkJvhjz76qK688krFxsYGHJOamqoNGzacUDA0XHml+2s1bsfB2o0DgKZs/a49uu65l7X3wEEd3oN48779enfNWl3dv5fuveg8GuIAAAAAAJwEIS+Tct111wVthCPypUbF125cdEI9JwGAxq3ScTT2xVnaf6C0uhEuST6n6p0Zy1dp5vJVhtIBAAAAQHD7D5ZqZ1GxKh2WykXjEPLMcKBnarYyYlOUX1oQcEyiN1ZDWCIFAIJasHaDthUUBjxvSfrX4mW6qn8vZocDANBIuK6r9cVrtL7kG1my1DGxu9oldOZ7OYCI8sF33+uJhUu0clvVMrpp8XG6ZkBv3XTGqYqNot2IhovPToTMtmzd0eVC/WHljIBjbul0vmI8UWFMBQCNz9JNW+S17YCzKFxVLZmyq7hELZMSwxsOAACEbFdZnv71/SPaUbpF9qEbsR05ahOXoxvbj1Oz6BaGEwLAiXv+85W67533ZR/xS759Bw7qiYVLtXjDFj1z3eWK8dJyRMMU8jIpgCSdn9VbE3tdoSRv1ZI5lqoKYJwnWr/qeomubDvEZDwAaBSOXBol6Lj6jQEAAE6CkspiPfbd/ym/dJukqia4o6pfeG8/uFmPrb1Ppb4DJiMCwAnLKyzSA3M+kCQ5R72gcVxXX2zbrmeXfmEiGlAr/JoGdXZx6/46P6u3Fu78RjtLC9QsJlFDW3RTnDfadDQAaBQGntI66A+KlqRWKclqkcgeDAAANHSf7nlfRZUFcv38GtuRo33lu7V078c6q8UwA+kA4OR4ZcXqoOddV/rPZys09vRBYUoEhIZmOE5ItO3VuZk9TccAgEbp3M7tlZGUqN3FJfL5mSbuShpzWv8atx8CAICG6fO9C/02wo8eQzMcQGO2ftee447JKyxWWWUlS6WgQWKZFAAADInyePTU1SOVGBNdo+HtOfT/I3t307WD+hpKBwAAQnHAV1KLMcVhSAIA9ScuOkrHm6vjsS1FeTzhCQSEiF/RAABgUNfMFpp9y/WauXyV3l79rUrKy9W5RbpGDeytczq1l8WscAAAGoWWMa1UULFfrvxvjG3LVsuYVmFOBQAn1wVdO+rVIEuleGxLuV06cncrGiya4QAAGJaemKDbzjpNt511mukoAADDXNfV19/u0PsfrlFRcalaZaXqovN7qWWLZNPRcBynp5+n74q/CnjekaPT088LYyIAOPmGdshRt4wW+m7n7mOWerQkWbI09vSBZsIBtUAzHAAAAAAagIOl5Zr44Bta8vkGeTy25FatQP3M85/oF6PP0s+u4pemDVmf1FPVI7mfvi5c4Xft8L6pg9U9uW/4gwHASeSxbf3zmsv0PzPe0Kod+fLaVSswVzqO4qKi9OefXKherTINpwQCoxkOAAAAAA3ApD/P1mfLN0qSfL6aS21Mm/6R0psnangum9c3VLZl64Z24/Re/uv6eNe71WuIJ3iSdHbL4crNGCHbYtsuAI1femKCXr5xlD7bvE3vf7deZZU+dc1I1yU9uyohOtp0PCAomuEAAAAAYNjWbXv14SffBR0z/cVFGnZeD/aTaMC8tlcXZV2pCzJGKr9suyxZahnTSl6bl94AIotlWTq1bRud2raN6ShASPi1NAAAAAAY9smSdbLt4E3u7Tv2a9OWvWFKhBPhtaPUOq6tWsWdQiMcAIAGhGY4AAAAABhWWlpZqxnf5eUVYUgDAAAQmWiGAwAAAIBhHdq1OGad8KN5vbZaZaWFKREAAEDkoRkOAAAAAIaddmoHNUtLkB1gdrhtW7rgnB5KTIgJczIAAIDIQTMcAAAAAAzzemxN+O2P5fHa8hy1drhtW8rKTNHNN5xtKB0AAEBkoBkOAAAAAA1Av96n6MlHr9NZZ3aRx1PVEE9MiNFPLxukJx+9Tqkp8YYTAgAANG5saw0AAAAADUTH9i117+8uVUWFT6VlFUqIj5FtH39jTQAAABwfzXAAAAAAaGCiojyKivKYjgEAABBRWCYFAAAAAAAAABDxmBmOOss/UKSX136ltft3K94bpWFtO+us1u1kW9zGCQAAAAAAAKBhoRmOOnn+mxWa8OlcuZLkSrZl6cXvvlTP5hl65vwrlB6XYDoiAAAAAAAAAFRjmRSE7IMt6/WHxe/J57pyXFeOXFW6jiRpzd6d+sW81+S6ruGUAAAAABB+ruuquLJU5U6l6SgAAOAozAxHyP66crFsWXJ0bMPb57pasXuHluZv1eDMbAPpAAAAACD8Sn0VemHjQr2y+VPtLiuSJUtD0jtpTIdz1Cetrel4AABAzAxHiArKSrV813a/jfDDvJatuZvXhjEVAAAAAJhT6ivXbZ/9U/9YO0+7y4okSa5cLdmzTjcveUrz81YZTggAACSa4QhRqa/i+IMsqcznq/8wAAAAANAAPLfhY63ev1XuUZOGfK4jV67u/fJlFVeUGkoHAAAOoxmOkDSPTVBaTFzQMZWOo65pLcKUCAAAAADM8bmOXtn8acC7Z11J5U6lZm//IrzBACAMDpSW6/sde5S3t8h0FKBWjDfDH3/8ceXk5Cg2NlaDBw/W0qVLA45dvXq1Lr/8cuXk5MiyLE2dOvWEHxOh8dq2ruvaV7Zl+T1vSYr3RmlEh27hDQYAjZzruvpu6y59tOp7rdqwQ47DRsQAADQGBeUHtK+8JOgY27K1vigvTIkAoP7tKzqgB56fp3PvelJX3PesLvrDPzXqj//RgpXrTUcDgjLaDJ85c6bGjRuniRMnavny5erTp4+GDRumnTt3+h1/4MABtW/fXpMnT1ZmZuZJeUyE7pbep6lvepZs1WyIeyxLtmVp6lmXKDEqxlA6AGh8vli3TaMefF5X//E/uvPvb+j6KTN06YSnNX85+y8AANDQRXu8tRoX44mq5yQAEB77ig9q9JQZemPRVyqv/GGZ3O+27dK4J9/UawvZJwENl9Fm+COPPKKxY8dqzJgx6t69u5588knFx8fr6aef9jt+0KBB+tOf/qSrr75aMTH+m62hPiZCF+eN0gvDr9KvBgxVRnyiJMm2LJ2X3VGvXvwzXdC2k+GEANB4rFi/TTdPfUXrtu2ucXz7nkLdNe0tzfnsG0PJAABAbSR6Y9UvLeeYyUJH8rmOzmrJ3bMAIsO0tz9V3t5C+Y66m9U99O5DM95XQQn7JKBhqt2vsOtBeXm5li1bpvHjx1cfs21bubm5Wrx4cVgfs6ysTGVlZdXvFxYW1unvb0pivVG6rfdpurXXYB2srFC0xyuvbXzVHaBRogY1bX+auUCO48px/S+L8tDMD3Rev06K8nrCnAxNAfUHgEmRVINu6HCO/vfzf/s957FsdUlupQHN2oc5FYBgIqkGhVN5RaXeWLT6mEb4kSodR28v+VrXnNs/jMmA2jHWvdy9e7d8Pp8yMjJqHM/IyFBeXt3WUqvrY06aNEkpKSnVb9nZ2XX6+5siy7IUHxVNIxw4AdSgpuv7HXu0ZsvOgI1wSSooKdUnqzeGLxSaFOoPAJMiqQYNTu+ke3peLq9ly5Iljyx5rKrXSJ2SMvVI/9GyAuy7BMCMSKpB4bS36KAOllcEHeOxbW3euT88gYAQ0cGUNH78eBUUFFS/bdmyxXQkAE0INajpyt9XfNwxlqS8fezMjvpB/QFgUqTVoB+3GaC3fvQ73dr5Ag1r1Vcj2gzUXweO0TNDblWzmETT8QAcJdJqULgkxB5//wPXdZUQGx2GNEDojC2Tkp6eLo/Ho/z8/BrH8/PzA26OWV+PGRMTE3ANcgCob9SgpqtZUtxxx7i1HAfUBfUHgEmRWIOaxSTq+vZnm44BoBYisQaFQ1J8rAZ3PUWffbsl4B2uPsfVBQM6hzkZUDvGZoZHR0drwIABmj9/fvUxx3E0f/58DRkypME8JgAA9aVzmxZqm5GmYHdNx8dEaWgv1hgFAAAA0DDcdPFpkuR322DbsnR27/bqkt0yvKGAWjK6TMq4ceM0bdo0TZ8+XWvWrNEtt9yikpISjRkzRpI0evToGpthlpeXa8WKFVqxYoXKy8u1bds2rVixQuvWrav1YwIA0FBYlqVxl59V9f8Bxtw+4gzFRR//VkQAAAAACId+HVvrTzddooS4qqVQvB5btl31iuacPh304A0XmYwHBGVsmRRJuuqqq7Rr1y5NmDBBeXl56tu3r+bMmVO9AebmzZtlH7Ex4/bt29WvX7/q9x9++GE9/PDDOvvss7VgwYJaPSYAAA3J0F7t9aebfqxJL87XnsID1ccTY6N124gzdNWP+poLBwAAAAB+nNO3o4Z0z9G8L77Thh17FRcTpfP6dVK7zGamowFBWa4bYIGfJqywsFApKSkqKChQcnKy6TgAQtTYv4Ybe37UTaXP0ZJvNitvb6HSkuJ1evccxUYb/Z016qCxf/029vxApPhy6fd69emPtHzROrmOqy59sjVy9Bk684KesoKsrdXYv4Ybe36gKYuEr99IeA5AUxXK1y+vsgEAaAC8Hltn9MgxHQMAYNh/n1+svz/wpmyPLcfnSJK+WbFZDy7fpJGjz9BNv7s4aEMcAAAAgRldMxwAAAAAUGXz+p36+x/flKTqRrgkOU7Vzbyznv1ESxd8YyQbAABAJKAZDgAAAAANwOyZS2rsmXQ022Ppv88vDmMiAACAyEIzHAAAAAAagG9WbqkxI/xojs/Vt6u2hDERAABAZKEZDgAAAAANQFQtNk72RnnCkAQAACAy0QwHAAAAgAZg8Dldg26O6fHYGnJejzAmAgAAiCw0wwEAAACgAbjgsgGKT4yRbftpiFtVbyN+dnrYc6F2yn0+vbXhGz3yxUI98eUSrS/YYzoSAAA4yvHvwwMAAAAA1LvktAT98V836J6x/1ZR4UFZklxXsmxLXq+t8Y9co7adMkzHhB8fbdugX374lvaVHZTXsuXI1UPLPtSwtp306NCLFR8VbToiAAAQzXDUkeu6+nzzNn2w9nuV+3zqkdlSF3bvotgoPqUAAACAuurSK1vPzP+t3n9jub5YvF4+n0/d+rbVsMsHKrV5oul48OPL3Tt0w9xX5XOrNj+tdH/YBHXu5nW6bcGb+vf5V5iKBwAAjkDnEiHbXVyi/5n5hlZtz5fXrlppp9Jx9Md3P9RfrrhYZ7RvazghAAAA0HjFJ8TokmuG6JJrhpiOglr464rFcuXK9XPOcV19sPV7rdy1Q31aZIU9GwAAqIk1wxGSSsfRDc+/pq/zdla/X+lUzXwoLivTzTNm6Zv8XSYjAgAAAEBYHKys0Lwt6+Rz/bXCq3gtW29t+CaMqQAAQCA0wxGSBWs36Nudu+Vzjv1hz1XVzId/LV4W/mAAAAAAEGYlFeV+Z4QfraiirN6zAACA46MZjpC8t2atPJaf3e0P8Tmu5nz9ndwgMyMAAAAAIBKkxsQp8TibYzpy1TYpLUyJAABAMDTDEZID5RVBbwGUpHKfTw7NcAAAAAARzmvbGtW5T9AJQ5akyzv2CF8oAAAQEM1whKR9elrQH/QkKTs1RR6bTy0AAAAAke/W3qcpOzHlmNdJh9/7/aBz1DI+MfzBAADAMbymA6BxubJfTz31yWcBz1uSrh3UJ3yBAAAAAMCgtNg4vXbJzzRl2Ud6ff1qlfl8kqQOKc11R9/TdWn7boYTAkD9cF1Xy1Zs0jtzV2n3nmKlN0/U8NyeGtA3R7YdfCIlYArNcIQkOy1Vd+UO1ZR5H8uypCNXQ7EtS/3aZOmagTTDAQAAADQdzWLjNfmM4frDoHO0tbhAcd4otU1KlXWcu2oBoLEqr6jUhD++ocVL18tjW/I5rjy2pXkL1mjwwHa6/+7LFBNN2xEND2tZIGQ3Dhmov1x+sbpltKw+lhoXq1vOPFVPX3u5YrwUOwAAAABNT1J0jLo1a6mc5DQa4QAi2uPTPtCnn30vSfI5bo0/P1u2UX/7x3xj2YBg6FqiToZ376zh3TtrT8kBlVf61CIpQV7WCQcAAAAAAIhohUUH9daclXKPXC7gCI7ravbcVbpx9FClpsSHOR0QHN1LnJDmCfHKSkmiEQ4AAAAAANAErFy1VZWVTtAxlZWOVq7aEqZEQO0xMxwAgAbgiy8366XXP9MXKzfLldSnZxv99LJBGtgvx3Q0AAAAAKjmc4I3wg+r9NVuHBBONMMBADDs5Vmf629PvS+Px5LPd2idveUbteTzDRp7/Vn62VWnGU4IAAAAAFW6dMyo3bhOmfWcBAgda1sAAGDQd+vz9ben3pek6ka4JDmHNp+ZNv0jffX1NiPZAAAAAOBoWZmpGjywvTy2/42CPbalgf1y1KZVWpiTAcdHMxwAAINmvfWFPB7/P0RKksdj67X/Lg9jIgAAAAAI7rd3DlfLFsmyrZqvZWzbUnp6kn73/y40lAwIjmVSAAAw6Kuvt9WYEX40n8/RV2uYGQ4AAACg4WjeLFHTHrtes97+Qm/NWam9+0qUlpagiy/orct+3E/JSXGmIwJ+0QwHAMAgj+f4N2l5azEGAAAAAMIpKSlW1109RNddPcR0FKDWeHUNAIBBpw/uIDvAWntS1W2Gpw/uEMZEAAAAAABEJmaGAwBg0IiL+uql1z9XRUWl3KNWS7EsybZtjbykv5lwAACgVtbk7dRzS1do4feb5MrV4LbZuu7UvurTOst0NAAAcARmhgMAYFDLFsmaNPEniomOknXE5jOWZSnK69EDd49kF3YAaKLWr9yoOU+/r3n/+Uh78/aZjoMAZq38Wj/55wuatepr5RcVa2dRiWZ//a1++vQMPbf0C9PxAADAEZgZDgCAYQP75WjmMzfr7Xe/1PKVm+W6rvr2ytbFw3qrebNE0/EAAGG2bd0OTf7ZY/pm6brqY7bH1gXX/0i3//UGxcTFGEyHI32/e6/G//c9Oa4rHXGHl8+peueBdxeoT5ss9W6VaSghAAA4Es1wAAAagNSUeF3709N07U9PMx0FAGDQ7u17deeZ96hwT1GN447P0bvPfKC9efv0wH/H17ibCOa8sGylgv1LeGxLzy1doT+NHB62TAAAIDCWSQEAAACABuK1R99S4Z4iOT7nmHOu42rp7C/05UdfG0gGf5Zu3Crf0Zt+HMHnuFqycUsYEwEAgGBohgMAAABAA/HuMwv8NsIP83htzXv2wzAmQjB2LWbo12YMAAAID5rhOCGu68oNMhMCAAAAQO24rquivUVBx/gqHe3LLwhTIhzPGe3byhOk2e2xLQ3t0DaMiQAAQDCsGY6Q+RxHby5arRc/WKH1O3bLa9sa2ru9RucOVO/2WabjAQAAAI2SZVlKy0zV3h37A47xeD1qkd08fKEQ1KiBvTV96XI5Plf+pgi5rvSzQf3CngsAAPjHzHCExOc4Gv+v2br/+Xlav2O3XFeq8Dn6cOV63fDwTL372bemIwIAAACN1kW/yJXtCfwyzVfp0/Abzg1jIgTTJjVFf7n8Enlsu8YMcY9lybYsPTRimLpkpBtMCAAAjkQzHCGZ9clXmrd8raSqWQ6H+RxXjuvqnulztKewxFA6AAAAoHG77JcXqeUp6fJ4j32pZlnSedcOVZdBHQ0kQyDndemgd2/7uW4YMkDdMluoa0YL/ezUvnrnlut1aa9upuMBAIAjsEwKQvLiB1/Ismo2wo/kc1y9sWi1bhh+aniDAQAAABEguVmSpi58QI/dOk2L3/y8en+euMRYXXbHRRp9708NJ4Q/bVJT9OvzhurX5w01HQUAAARBMxy1Vulz9P2OvccZ5eqbLTvDkgcAAACIRM2z0vR/r/9Gu7bu0foVGxUV41X307soLiHWdDQAAIBGjWY4as22LNm2JccJMC1cVZv+RHk9YUwFAAAARKYWbZqrRRs2ywQAADhZWDMctWbbls7okSOPbQUc4ziuhvZsF8ZUAAAAAAAAAHB8zAxHSK4/f6AWrtrg95zHttQyNVHn9mVDHwAAAAAAgEjnOI6Wf7JW7722TLt27Fezlsk6f2R/DTq7qzwe5uCi4aEZjpD079RGE0dfoPv/M1euKzmuK9uy5Liu0lMS9cQvL1d0FJ9WAAAAAAAAkay8vFIP/O9/9NlH38r22HJ8jmyPpUVzV6vXoHb6vyeuV1xCjOmYQA10LRGyS4f00Gnd2ur1hav07dZdivZ6NLRXe53fvxONcAAAAAAAgCbgX3+arc8//k6S5PicQ39W7TO3etlGPX7fG/r1Qz81lg/wh84l6qRlaqJuvmSI6RgAAAAAAAAIs+LCg3rnpaVyXdfvecdx9cFbKzTmV8PVvGVymNMBgbF4DwAAAAAAAIBa+3r5JlWU+4KOcRxXXy79PkyJgNphZjgAAAAAACdoX9EB5e8vVnJ8rFo1ZxYkgMjmOE6txvkqazcOCBea4QAAAAAA1NHmnfs09bWP9dGX38s5tFxAz5xM3TbiDA3ueorhdABQPzr2aC3LtuQ6/pdJOaxrn+wwJQJqh2VSAAAAAACog035+3TdQy/q41U/NMIl6etN+brtsde0YOV6g+kAoP6kZ6To9Nwesj3+W4sej62+p3VQm3YtwpwMCI5mOAAAAAAAdfDwywt0oLRcvqNmRjquK9d19X/PvaeKyuBr6gJAY/W/945U67bNZVk1j1u2pfTMFP1q8pVmggFBsEwKAAANgOu6Wrnke737ymfavmmPktPide6l/XTGBT0VHc23awAAGpqd+4u1aPVGBVogwJVUUFKqj1Z9r/P6dQpnNAAIi5S0BE196Ta989JSvfPSUu3dWaiU5okafsUgXXTVYCWlxJmOCByDV9cAABjmq/Tp4d+9rAVvr5TtseX4HFm2pc8//k450z7UpH/fqNRmiaZjAgCAI2zbXRCwEX6YbVvauqsgLHkAwIT4hBhdPmaoLh8z1HQUoFZYJgUAAMNm/GOBPpy9UpLk+Kp2Wz+8Ec3m9Tv10K9mGMsGAAD8S4qLOe4Y13GVFH/8cQAAIDxohgMAYFB5eaVmPfuJ3ABTyxyfoxWfrtemtfnhDQYAAILq0Kq52makyQoyxrZt/ah3h7BlAgAAwdEMBwDAoA3f7lBx4cGgYyzL0vJFa8OUCAAA1IZlWbp9xBlBl0q55tx+apYcH7ZMAAAgOJrhAAAY5PiOt9qoZFmS79DyKQAAoOE4r18n3Tv6AsVFR0mSvB5blmXJtixde24/3XHZmYYTAgCAI7GBJgAABrXtlKHo2CiVl1YEHOM4rrr3axvGVAAAoLYuHdJDuf06ad4Xa7Vtd4FSE+KU27+TWqSy+TUAAA0NzXAAAAyKT4jRsMsH6u0XP5XjHDtL3OOxdUrHlurW9xQD6QAAQG3Ex0br0iE9TMcAAADHwTIpAAAYdsO44erSO1tS1ZIoh9m2paTUeP1h6rWyrGDbcwEAAAAAgONhZjhC5rquFi1dr1lvfaH1G3YpLjZKPxraRSMv7qcW6Umm4wFAoxMbH63J08dq3uvL9PaMJcrfuk9JqXHKHdlfF199mlKbc5s1AAAAAAAnimY4QuI4rqb85R29M/cr2bZVfUv/Cy8v0Wv/Xa5HHrxK3TpnGU4JAI1PdLRXF101WBddNdh0FAAAAAAAIhLLpCAk/31nhd6Z+5Uk1Vjb1nFclZZW6HcTX1V5RaWpeAAAAAAAAADgF81w1Jrrunrp9c8DnnccV/sLDmjBx9+GMRUAAAAAAAAAHB/NcNRaUXGptm7fF3SMx2Nr1eqtYUoEAAAAAAAAALVDMxy1Zsmq5cBajgMAAAAAAACAMGEDTdRaYmKMcto216bNe+S6/sf4fI769zklvMEAAAAAwCCfz9EXX27Wrt1FSkuN14C+OYqK8piOBQAAjtIgZoY//vjjysnJUWxsrAYPHqylS5cGHf/yyy+ra9euio2NVa9evTR79uwa53/+85/Lsqwab8OHD6/Pp9AkWJalUZcPDtgIt21LLdKTNHRIp/AGAwAAAABDPlr0na68/kn96g8vafKj7+i3E1/VT677u2a/t8p0NAAIq/LScm39brt2bt4lN1DzCDDMeDN85syZGjdunCZOnKjly5erT58+GjZsmHbu3Ol3/KJFizRq1CjdeOON+uKLLzRy5EiNHDlSX331VY1xw4cP144dO6rfXnzxxXA8nYg37Lwe+ullAyVJHs8Py6FYlpSUGKsp910hr5cZEAAAAAAi3ydL1umeB2Zpz97iGscLCw/qoanv6O33vjSUDADC50DRQT057hldkXGjxnT9pa7NuVVje43T+y8uNB0NOIbxZvgjjzyisWPHasyYMerevbuefPJJxcfH6+mnn/Y7/i9/+YuGDx+uu+66S926ddP999+v/v37629/+1uNcTExMcrMzKx+S0tLC8fTiXiWZem2sefqr3+6RucM7aqcU9LVrUuWbrnxR/rPtF+ofU4L0xEBAAAAoN65rqu/PfV+0C2TnvzXApVXVIYvFACE2cHig/rVjybq9b++o4NFpdXHN6/ZpknX/kUv/ekNg+mAYxldM7y8vFzLli3T+PHjq4/Ztq3c3FwtXrzY78csXrxY48aNq3Fs2LBhmjVrVo1jCxYsUMuWLZWWlqZzzz1XDzzwgJo3b+73McvKylRWVlb9fmFhYR2fUdPRu0cb9e7RxnQMICJQgwCYQv0BYFJjr0HffJen7Tv2Bx1TWFSqz5Zv1BmDO4YnFIBaa+w1qKF4bepsrV+5Ua5Tc1mUw8uk/PN3z+usK4coM6eliXjAMYzODN+9e7d8Pp8yMjJqHM/IyFBeXp7fj8nLyzvu+OHDh+vZZ5/V/Pnz9dBDD+nDDz/UhRdeKJ/P5/cxJ02apJSUlOq37OzsE3xmAFB71CAAplB/AJjU2GvQ3v0ltRu3r3bjAIRXY69BDYHrunrziXePaYQfybItzXn6/TCmAoIzvkxKfbj66qt16aWXqlevXho5cqTeeustffbZZ1qwYIHf8ePHj1dBQUH125YtW8IbGECTRg0CYAr1B4BJjb0GtWieeFLHAQivxl6DGoLy0nLt3bEv+CDX1ba1O8ITCKgFo8ukpKeny+PxKD8/v8bx/Px8ZWZm+v2YzMzMkMZLUvv27ZWenq5169bpvPPOO+Z8TEyMYmJi6vAMAODEUYMAmEL9AWBSY69BnTpkqG12c23eukdugEmRaanxGtgvJ6y5ANROY69BDUFUTJQ8UR75KvyvxCBVzQyPT4oLYyogOKMzw6OjozVgwADNnz+/+pjjOJo/f76GDBni92OGDBlSY7wkzZ07N+B4Sdq6dav27NmjrKyskxMcAAAAANCkWZalX96SK8uyZAXYRfOOm8+T1+sJczIACA/btnXWFafJ4w3cXvRVOjr7p6eHMRUQnPFlUsaNG6dp06Zp+vTpWrNmjW655RaVlJRozJgxkqTRo0fX2GDzl7/8pebMmaM///nP+uabb3Tvvffq888/1+233y5JKi4u1l133aVPP/1UGzdu1Pz58zVixAh17NhRw4YNM/IcAQAAAACRZ0Dftppy35Vq0zqtxvGMlsm67/cjdO7Z3QwlA4DwuPq3l8n22LLsY38paHtsdRvSWX3P7WkgGeCf0WVSJOmqq67Srl27NGHCBOXl5alv376aM2dO9SaZmzdvlm3/0LM//fTT9cILL+juu+/W73//e3Xq1EmzZs1Sz55VX1gej0dffvmlpk+frv3796tVq1a64IILdP/993P7CwAAAADgpBrUP0fP/eNGfbM2T7t2FSktNV49urWW7acxBACRpn3vtnrgrd/rj1c/qsI9RfJGeeS6rnyVjnqf3V33vDSuRl8PMM1y3UCrmzVdhYWFSklJUUFBgZKTk03HARCixv413NjzA01ZY//6bez5gaausX8NN/b8QFMWCV+/kfAcTCovq9DC15bo+5UbFR0brSGXDlSn/u1Nx0ITEcrXr/GZ4QAAAAAAAAAar+iYKJ076kydO+pM01GAoLhPAQAAAAAAAAAQ8WiGAwAAAAAAAAAiHsukAADQQPh8Pi15e7kWzPxERXuL1apDpi688Tx17NfOdDQAAAAAABo9muEAADQAhXuL9PsLH9S3n62T7bHl+Bx5vKv05t/f1WV3XKRbHv25LMsyHRMAAAAAgEaLZVIAAGgAHrzmL1q7/HtJkuNzJEm+yqo/X39stl5/bLaxbAAAAAAARAKa4agzx3G0a8d+7corkOM4puMAQKO14avNWvbeyuomuD8zp7whn88XxlQAACAU2zft1kfvfKlF81arqOCg6TgAAMAPlklByHw+R28+t0ivT1+oXXkFkqSMNmm6/OdDdfGowbJtfscCAKH4fM4K2bYd9BeLe3fs06bVW9W+d9swJgMAAMezK69AU//wipYvWld9LCraowt/eqp+cddFiormZTcAAA0F35UREsdx9PBvX9KCt1fWOJ6/bZ/+/sCb+v7bHbrj/y5jXVsACEFFeaUsW9JxbrKpKK8MSx4AAFA7BftK9KtRT2jPrqIaxyvKffrv859qd16h7n7sWl4fAQDQQDCFFyFZ8sE3xzTCJUlu1R9zXv5MKz5dH95QANDIdR7YoXp98EBi4qKV3aVVmBIBAIDaeOPZT7RnZ6Hfpc5c19Wieau1etnG8AcDAAB+0QxHSN568VPZnsCzGmyPrdkzloQxEQA0fv1zeymrfYZsj/9vy7bH1rAx5yg+KS7MyQAAQDDvvvq5HMcNeN7jsTX39eVhTAQAAIKhGY6QbF6XL8cX+Ic9x+do49r8MCYCgMbPtm1NePlXikuMle2t+a3Zsi21791WN0661lA6AAAQyP49xUHP+3yO9uQXhCkNAAA4HprhCElcQsxxx8QnHn8MAKCmjv3a6ckv/qQRtw5XUrNEeby2sjpkaOxD1+nRj+9nVjgAAA1QSvPEoOc9HlvNMpLDlAYAABwPG2giJGdf1Ecv/H1+wFsBLUs6+6LeYU4FAJEhM6elbp06RrdOHWM6CgAAqIXhlw/UzKcWBHx95PM5On/kgDCnAgAAgTAzHCG56KpTlZAU63fdcNtjK7VZos6/bKCBZAAAAAAQXiNGn6FmLZP97vthWZaGnNddPQfmhD8YAADwi2Y4QpKWnqSHpo9V8xZVt/p5vLY8h9a3zWiVqinP3aSkFG7lBwAAABD5UtIS9MgL/6Peg9rVOO6N8uiSUYP1u0dGybKOnUgEAADMYJkUhKxdlyz9e+5dWrLgG61etlGyLPU5tb0GDO0sj58ZEQAAAAAQqVpkpWrSv3+hbRt3a+3qbYqK8qj3qe2VlBpvOhoAADgKzXDUicfr0em5PXR6bg/TUQAAAADAuNY56Wqdk246BgAACIJpvAAAAAAAAACAiEczHAAAAAAAAAAQ8WiGAwAAAAAAAAAiHs1wAAAAAAAAAEDEoxkOAAAAAAAAAIh4NMMBAAAAAAAAABHPazoAAAAAAACNWemBMs1+ap7e+sd72rl5txLTEnX+6LN12R0Xqllmmul4AADgEJrhAAAAAADUUUnhAf36nHu1fsVGuXIlVyo7uFcv/ekNvfOv+Xr0o/uU3aW16ZgAAEAskwIAAAAAQJ09dddz+v7LTXLdqkb4YY7PUdHeYt3/00eqzgEAAONohgMAAAAAUAfF+0s099kFcnyO3/OOz9GGVZv19eLvwpwMAAD4QzMcAAAAAIA62Lh6iyrKKoOOsW1L3yxZG6ZEAAAgGJrhAAAAAADUgcfrOe4Y163dOAAAUP9ohgMAAAAAUAcd+uYoKS0h6BjXdTXggt5hSgQAAILxmg6Axmv9yo2a++yH2pu3T80y0zTs5z9Su15tTccCAAAAgLCIjonST+68RNPvnVlj88zDbI+tgcP6KLtL6/CHAwAAx6AZjpD5Kn16ZOyTem/6Anm8tlxXsixLrz76lobfcI7u/MfN8ni4DRAAAABA5Bv1+8u0bd0OzXvuI3m8tnyVjmyPLcfnqFP/9vrdc3eYjggAAA6hGY6QPf2HF/XeswskSb7Kmrumv/vvD5SWkaob/niNgWQAAAAAEF4ej0e/eeZ2XTw2V+/8633t+D5fKS2Sdd61QzXkxwNZLxwAgAaEZjhCUlJQoll/ne33FkCpanOY1/4yW1f/7jLFJ8WFNxwAAAAAGGBZlnqe2U09z+xmOgoAAAiCDTQRkhUfrFZ5aUXQMWUHyrRyweowJQIAAAAAAACA46MZjpCUHSyv1bjyWo4DAAAAAAAAgHCgGY6QtO/dtlbj2tVyHAAAAAAAAACEA81whCSnR7Z6nN5Ftsf/p47tsdXrrG46pWvrMCcDAAAAAAAAgMBohiNkv376ViWmJsj21vz0sb22kpol6lf/vMVQMgAAAAAAAADwj2Y4Qtamcys9sXyKLrnpfMXEx0iSYhNi9OObL9ATy6aodccswwkBAAAAAAAAoCav6QBonFpmp+t///YL3fbYDSo7UKaY+BjZNr9bAQAAAAAAANAw0QzHCbFtW3GJcaZjAAAAAAAAAEBQTOUFAAAAAAAAAEQ8muEAAAAAAAAAgIhHMxwAAAAAAAAAEPFohgMAAAAAAAAAIh7NcAAAAAAAAABAxKMZDgAAAAAAAACIeDTDAQAAAAAAAAARj2Y4AAAAAAAAACDi0QwHAAAAAAAAAEQ8muEAAAAAAAAAgIhHMxwAAAAAAAAAEPFohgMAAAAAAAAAIh7NcAAAAAAAAABAxKMZDgAAAAAAAACIeDTDAQAAAAAAAAARj2Y4AAAAAAAAACDi0QwHAAAAAAAAAEQ8muEAAAAAAAAAgIhHMxwAAAAAAAAAEPFohgMAAAAAAAAAIh7NcAAAAAAAAABAxKMZDgAAAAAAAACIeDTDAQAAAAAAAAARr0E0wx9//HHl5OQoNjZWgwcP1tKlS4OOf/nll9W1a1fFxsaqV69emj17do3zrutqwoQJysrKUlxcnHJzc7V27dr6fAoAAAAAAAAAgAbMeDN85syZGjdunCZOnKjly5erT58+GjZsmHbu3Ol3/KJFizRq1CjdeOON+uKLLzRy5EiNHDlSX331VfWYKVOm6LHHHtOTTz6pJUuWKCEhQcOGDVNpaWm4nhYAAAAAAAAAoAEx3gx/5JFHNHbsWI0ZM0bdu3fXk08+qfj4eD399NN+x//lL3/R8OHDddddd6lbt266//771b9/f/3tb3+TVDUrfOrUqbr77rs1YsQI9e7dW88++6y2b9+uWbNmhfGZAQAAAAAAAAAaCqPN8PLyci1btky5ubnVx2zbVm5urhYvXuz3YxYvXlxjvCQNGzasevyGDRuUl5dXY0xKSooGDx4c8DHLyspUWFhY4w0AwoUaBMAU6g8Ak6hBAEyiBgFNk9Fm+O7du+Xz+ZSRkVHjeEZGhvLy8vx+TF5eXtDxh/8M5TEnTZqklJSU6rfs7Ow6PR8AqAtqEABTqD8ATKIGATCJGgQ0TcaXSWkIxo8fr4KCguq3LVu2mI4EoAmhBgEwhfoDwCRqEACTqEFA0+Q1+Zenp6fL4/EoPz+/xvH8/HxlZmb6/ZjMzMyg4w//mZ+fr6ysrBpj+vbt6/cxY2JiFBMTU9enAQAnhBoEwBTqDwCTqEEATKIGAU2T0Znh0dHRGjBggObPn199zHEczZ8/X0OGDPH7MUOGDKkxXpLmzp1bPb5du3bKzMysMaawsFBLliwJ+JgAAAAAAAAAgMhmdGa4JI0bN07XX3+9Bg4cqFNPPVVTp05VSUmJxowZI0kaPXq0WrdurUmTJkmSfvnLX+rss8/Wn//8Z1188cWaMWOGPv/8cz311FOSJMuydOedd+qBBx5Qp06d1K5dO91zzz1q1aqVRo4caeppAgAAAAAAAAAMMt4Mv+qqq7Rr1y5NmDBBeXl56tu3r+bMmVO9AebmzZtl2z9MYD/99NP1wgsv6O6779bvf/97derUSbNmzVLPnj2rx/zmN79RSUmJbrrpJu3fv19nnnmm5syZo9jY2LA/PwAAAAAAAACAeZbruq7pEA1NYWGhUlJSVFBQoOTkZNNxAISosX8NN/b8QFPW2L9+G3t+oKlr7F/DjT0/0JRFwtdvJDwHoKkK5evX6JrhAAAAAAAAAACEA81wAAAAAAAAAEDEoxkOAAAAAAAAAIh4NMMBAAAAAAAAABGPZjgAAAAAAAAAIOLRDAcAAAAAAAAARDya4QAAAAAAAACAiEczHAAAAAAAAAAQ8WiGAwAAAAAAAAAiHs1wAAAAAAAAAEDEoxkOAAAAAAAAAIh4XtMBGiLXdSVJhYWFhpMAqIvDX7uHv5YbG2oQ0HhRfwCYRA0CYEpjrz8SNQhozEKpQTTD/SgqKpIkZWdnG04C4EQUFRUpJSXFdIyQUYOAxo/6A8AkahAAUxpr/ZGoQUAkqE0NstzG/Gu7euI4jrZv366kpCRZlhV0bGFhobKzs7VlyxYlJyeHKWHjwLXxj+sS2Mm6Nq7rqqioSK1atZJtN77VoKhBJ47rEhjXxj/qTxXqz8nBtfGP6xIYNagKNejEcV0C49oEdjKuTWOvP1LtaxCfS4FxbQLj2vhn4mcgZob7Ydu22rRpE9LHJCcn88kcANfGP65LYCfj2jTW2QgSNehk4roExrXxj/pD/TmZuDb+cV0CowZRg04WrktgXJvATvTaNOb6I4Veg/hcCoxrExjXxr9w/gzUOH9dBwAAAAAAAABACGiGAwAAAAAAAAAiHs3wExQTE6OJEycqJibGdJQGh2vjH9clMK5N6Lhm/nFdAuPa+Md1CR3XLDCujX9cl8C4NqHjmvnHdQmMaxMY1yY0XK/AuDaBcW38M3Fd2EATAAAAAAAAABDxmBkOAAAAAAAAAIh4NMMBAAAAAAAAABGPZjgAAAAAAAAAIOLRDAcAAAAAAAAARDya4bXw+OOPKycnR7GxsRo8eLCWLl0adPzLL7+srl27KjY2Vr169dLs2bPDlDS8Qrku06ZN09ChQ5WWlqa0tDTl5uYe9zo2ZqF+zhw2Y8YMWZalkSNH1m9Ag0K9Nvv379dtt92mrKwsxcTEqHPnzhH7NRUINcg/alBg1CD/qD+ho/4ERg3yj/oTGDUodNQg/6g/gVGD/KP+hI76Exg1KDBqkH8Nrga5CGrGjBludHS0+/TTT7urV692x44d66amprr5+fl+x3/yySeux+Nxp0yZ4n799dfu3Xff7UZFRbmrVq0Kc/L6Fep1ueaaa9zHH3/c/eKLL9w1a9a4P//5z92UlBR369atYU5e/0K9Nodt2LDBbd26tTt06FB3xIgR4QkbZqFem7KyMnfgwIHuRRdd5C5cuNDdsGGDu2DBAnfFihVhTm4ONcg/alBg1CD/qD+ho/4ERg3yj/oTGDUodNQg/6g/gVGD/KP+hI76Exg1KDBqkH8NsQbRDD+OU0891b3tttuq3/f5fG6rVq3cSZMm+R3/05/+1L344otrHBs8eLB7880312vOcAv1uhytsrLSTUpKcqdPn15fEY2py7WprKx0Tz/9dPef//yne/3110dkAXTd0K/NE0884bZv394tLy8PV8QGhxrkHzUoMGqQf9Sf0FF/AqMG+Uf9CYwaFDpqkH/Un8CoQf5Rf0JH/QmMGhQYNci/hliDWCYliPLyci1btky5ubnVx2zbVm5urhYvXuz3YxYvXlxjvCQNGzYs4PjGqC7X5WgHDhxQRUWFmjVrVl8xjajrtbnvvvvUsmVL3XjjjeGIaURdrs2bb76pIUOG6LbbblNGRoZ69uypBx98UD6fL1yxjaIG+UcNCowa5B/1J3TUn8CoQf5RfwKjBoWOGuQf9ScwapB/1J/QUX8CowYFRg3yr6HWIO9Je6QItHv3bvl8PmVkZNQ4npGRoW+++cbvx+Tl5fkdn5eXV285w60u1+Vov/3tb9WqVatjvmE0dnW5NgsXLtS//vUvrVixIgwJzanLtfn+++/1/vvv69prr9Xs2bO1bt063XrrraqoqNDEiRPDEdsoapB/1KDAqEH+UX9CR/0JjBrkH/UnMGpQ6KhB/lF/AqMG+Uf9CR31JzBqUGDUIP8aag2iGY6wmzx5smbMmKEFCxYoNjbWdByjioqKdN1112natGlKT083HafBcRxHLVu21FNPPSWPx6MBAwZo27Zt+tOf/tQkfhBD/aAG/YAaFBj1B/WFGlSF+hMcNQj1gfrzA2pQYNQf1Bdq0A+oQYGFowbRDA8iPT1dHo9H+fn5NY7n5+crMzPT78dkZmaGNL4xqst1Oezhhx/W5MmTNW/ePPXu3bs+YxoR6rVZv369Nm7cqB//+MfVxxzHkSR5vV59++236tChQ/2GDpO6fN5kZWUpKipKHo+n+li3bt2Ul5en8vJyRUdH12tm06hB/lGDAqMG+Uf9CR31JzBqkH/Un8CoQaGjBvlH/QmMGuQf9Sd01J/AqEGBUYP8a6g1iDXDg4iOjtaAAQM0f/786mOO42j+/PkaMmSI348ZMmRIjfGSNHfu3IDjG6O6XBdJmjJliu6//37NmTNHAwcODEfUsAv12nTt2lWrVq3SihUrqt8uvfRSnXPOOVqxYoWys7PDGb9e1eXz5owzztC6deuqvylI0nfffaesrKyI/yFMogYFQg0KjBrkH/UndNSfwKhB/lF/AqMGhY4a5B/1JzBqkH/Un9BRfwKjBgVGDfKvwdagetuaM0LMmDHDjYmJcZ955hn366+/dm+66SY3NTXVzcvLc13Xda+77jr3d7/7XfX4Tz75xPV6ve7DDz/srlmzxp04caIbFRXlrlq1ytRTqBehXpfJkye70dHR7iuvvOLu2LGj+q2oqMjUU6g3oV6bo0XqDsKuG/q12bx5s5uUlOTefvvt7rfffuu+9dZbbsuWLd0HHnjA1FMIO2qQf9SgwKhB/lF/Qkf9CYwa5B/1JzBqUOioQf5RfwKjBvlH/Qkd9ScwalBg1CD/GmINohleC3/961/dU045xY2OjnZPPfVU99NPP60+d/bZZ7vXX399jfEvvfSS27lzZzc6Otrt0aOH+/bbb4c5cXiEcl3atm3rSjrmbeLEieEPHgahfs4cKVIL4GGhXptFixa5gwcPdmNiYtz27du7f/zjH93KysowpzaLGuQfNSgwapB/1J/QUX8Cowb5R/0JjBoUOmqQf9SfwKhB/lF/Qkf9CYwaFBg1yL+GVoMs13XdkzPHHAAAAAAAAACAhok1wwEAAAAAAAAAEY9mOAAAAAAAAAAg4tEMBwAAAAAAAABEPJrhAAAAAAAAAICIRzMcAAAAAAAAABDxaIYDAAAAAAAAACIezXAAAAAAAAAAQMSjGQ4AAAAAAAAAiHg0wwEAAAAAAAAAEY9mOAAAAAAAAAAg4tEMBwAAAAAAAABEPJrhaDJ27dqlzMxMPfjgg9XHFi1apOjoaM2fP99gMgCRjvoDwCRqEABTqD8ATKIGwR/LdV3XdAggXGbPnq2RI0dq0aJF6tKli/r27asRI0bokUceMR0NQISj/gAwiRoEwBTqDwCTqEE4Gs1wNDm33Xab5s2bp4EDB2rVqlX67LPPFBMTYzoWgCaA+gPAJGoQAFOoPwBMogbhSDTD0eQcPHhQPXv21JYtW7Rs2TL16tXLdCQATQT1B4BJ1CAAplB/AJhEDcKRWDMcTc769eu1fft2OY6jjRs3mo4DoAmh/gAwiRoEwBTqDwCTqEE4EjPD0aSUl5fr1FNPVd++fdWlSxdNnTpVq1atUsuWLU1HAxDhqD8ATKIGATCF+gPAJGoQjkYzHE3KXXfdpVdeeUUrV65UYmKizj77bKWkpOitt94yHQ1AhKP+ADCJGgTAFOoPAJOoQTgay6SgyViwYIGmTp2q5557TsnJybJtW88995w+/vhjPfHEE6bjAYhg1B8AJlGDAJhC/QFgEjUI/jAzHAAAAAAAAAAQ8ZgZDgAAAAAAAACIeDTDAQAAAAAAAAARj2Y4AAAAAAAAACDi0QwHAAAAAAAAAEQ8muEAAAAAAAAAgIhHMxwAAAAAAAAAEPFohgMAAAAAAAAAIh7NcAAAAAAAAABAxKMZDgAAAAAAAACIeDTDAQAAAAAAAAARj2Y4AAAAAAAAACDi/X/TyQR0V+7kAQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "### Plot a fixed number of states\n", "SHOW_N_STATES = 10 # should be even\n", "# skip some particles to make the plot more readable\n", "SHOW_NTH_PARTICLE = 1\n", "\n", "particles_in_time = utils.to_particles_3d(sol)\n", "\n", "## Show the particles in 3D\n", "fig, axs = plt.subplots(2, SHOW_N_STATES//2, subplot_kw={'projection': '3d'})\n", "\n", "for i, ax in enumerate(axs.flat):\n", " nth = int(particles_in_time.shape[0] / SHOW_N_STATES) * i\n", " p = particles_in_time[nth][::SHOW_NTH_PARTICLE]\n", " ax.scatter(p[:,0], p[:,1], p[:,2], cmap='viridis', c=range(p.shape[0]))\n", " ax.set_title(f\"t={t_range[nth]:.2g} (step {nth})\")\n", "\n", "fig.set_size_inches(18, 12)\n", "plt.show()\n", "\n", "# show some phase space diagrams\n", "# fig, axs = plt.subplots(2, SHOW_N_STATES//2, sharex=True, sharey=True)\n", "# for i, ax in enumerate(axs.flat):\n", "# r = []\n", "# v = []\n", "# for j in range(t_range.size):\n", "# p = utils.to_particles(sol[j])\n", "# print(p.shape)\n", "# r.append(np.linalg.norm(p[i,:3]))\n", "# v.append(np.linalg.norm(p[i,3:6]))\n", "# ax.plot(r, v)\n", "# ax.set_title(f\"particle {i}\")\n", "\n", "## Show the 2D orbits of selected particles\n", "fig, axs = plt.subplots(2, SHOW_N_STATES//2, sharex=True, sharey=True)\n", "\n", "for i, ax in enumerate(axs.flat):\n", " nth = int(particles_in_time.shape[0] / SHOW_N_STATES) * i\n", " x = particles_in_time[:,i,0]\n", " y = particles_in_time[:,i,1]\n", " ax.scatter(x, y, c=range(t_range.size))\n", " ax.set_title(f\"particle {nth}\")\n", "\n", " ax.set_xlabel('x')\n", " ax.set_ylabel('y')\n", "\n", "# Share x and y axis\n", "for ax in axs.flat:\n", " ax.label_outer()\n", "\n", "fig.set_size_inches(18, 12)\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUohJREFUeJzt3XlYVPXiBvB3FhZBGFaBURY3JFFRUdBWDVKsNM1cUBHRNCutLuU1W0S7ldlqN72ZhuKelUu7pmS5AgLivgAqKKuAMCyyzZzfH17nd4lFwIEzy/t5nnlqznzPmfd4hHk958w5EkEQBBARERGZEKnYAYiIiIjaGwsQERERmRwWICIiIjI5LEBERERkcliAiIiIyOSwABEREZHJYQEiIiIik8MCRERERCaHBYiIiIhMDgsQEbXYkiVLIJFIRHv/GTNmwMvLS7T3JyLDxwJERACAmJgYSCQSJCYm1pleUlKCgIAAWFpaYs+ePe2WJzs7G0uWLEFKSkq7vScRmQ4WICJqlEqlwogRI3Dq1Cns2rULISEhAIC33noLt27datP3zs7OxtKlSxssQGvXrsXFixfb9P2JyLjJxQ5ARPqptLQUI0eOREpKCnbu3IlRo0ZpX5PL5ZDLxfv1YWZmJtp7t7WKigpYWVmJHYPI6HEPEBHVU1ZWhpCQECQnJ2PHjh144okn6rze0DlAEokE8+bNw+7du9GnTx9YWFjA19e3wcNmWVlZmDlzJlxcXLTj1q1bp339zz//xODBgwEAERERkEgkkEgkiImJAdDwOUAajQaff/45+vbtC0tLSzg7OyMkJKTeIb2GxMfHIyQkBAqFAlZWVnjkkUdw5MiRBtc5LS0NM2bMgJ2dHRQKBSIiIlBRUVFvmZs3b4a/vz86dOgABwcHTJ48GdeuXaszZtiwYejTpw+SkpLw8MMPw8rKCm+88QYAoLCwEGFhYbC1tYWdnR3Cw8Nx8uTJOn8O69evh0QiwYkTJ+q9//vvvw+ZTIasrKy7rj+RKWIBIqI6ysvLMWrUKBw/fhzfffcdnnzyyWbPe/jwYbzwwguYPHkyPvzwQ1RWVmL8+PEoLCzUjsnLy8OQIUOwf/9+zJs3D59//jl69OiBWbNmYcWKFQCA++67D++88w4AYM6cOdi0aRM2bdqEhx9+uNH3njVrFl555RW4u7tj+fLleP3112FpaYm4uLgmM//xxx94+OGHoVKpEBUVhffffx/FxcV49NFHkZCQUG/8xIkTUVpaimXLlmHixImIiYnB0qVL64x57733MH36dPTs2ROffvopXnnlFcTGxuLhhx9GcXFxnbGFhYUYNWoU+vfvjxUrVmD48OHQaDQYPXo0tm3bhvDwcLz33nvIyclBeHh4nXmfeeYZdOjQAVu2bKmXc8uWLRg2bBg6d+7c5PoTmSyBiEgQhPXr1wsABE9PT8HMzEzYvXt3o2OjoqKEv//6ACCYm5sLaWlp2mknT54UAAhffPGFdtqsWbMENzc3oaCgoM78kydPFhQKhVBRUSEIgiAcP35cACCsX7++3vuHh4cLnp6e2ud//PGHAEB46aWX6o3VaDSNrodGoxF69uwpjBw5ss64iooKoWvXrsJjjz1Wb51nzpxZZxnjxo0THB0dtc+vXr0qyGQy4b333qsz7vTp04JcLq8z/ZFHHhEACKtXr64zdseOHQIAYcWKFdpparVaePTRR+v9mYSGhgpKpVJQq9XaacnJyY3+2RHRbdwDRER15OXlwdLSEu7u7i2eNzg4GN27d9c+79evH2xtbXH58mUAgCAI2LFjB0aPHg1BEFBQUKB9jBw5EiUlJUhOTm7x++7YsQMSiQRRUVH1Xmvq6/opKSlITU3FlClTUFhYqM1SXl6OoKAgHDx4EBqNps48c+fOrfP8oYceQmFhIVQqFQBg586d0Gg0mDhxYp31c3V1Rc+ePXHgwIE681tYWCAiIqLOtD179sDMzAyzZ8/WTpNKpXjxxRfrrcP06dORnZ1dZ7lbtmxBhw4dMH78+EbXncjU8SRoIqrjq6++QmRkJEJCQnDo0CH06tWr2fN6eHjUm2Zvb4+bN28CAG7cuIHi4mKsWbMGa9asaXAZ+fn5Lc6cnp4OpVIJBweHFs2XmpoKAPUOLf2vkpIS2Nvba5//fR3vvHbz5k3Y2toiNTUVgiCgZ8+eDS7v7ydwd+7cGebm5nWmZWRkwM3Nrd7J0D169Ki3vMceewxubm7YsmULgoKCoNFosG3bNjz11FOwsbFpdL2ITB0LEBHV0bt3b/z6668ICgrCY489hiNHjjR7b5BMJmtwuiAIAKDdmzJt2rRGS0e/fv1akbp17uT56KOP0L9//wbHdOzYsc7z5qyjRCLBb7/91uDYvy+vQ4cOLY1dL8+UKVOwdu1a/Oc//8GRI0eQnZ2NadOm3dNyiYwdCxAR1RMQEIDdu3fjiSeewGOPPYZDhw7B2dn5npfr7OwMGxsbqNVqBAcHNzm2JVea7t69O/bu3YuioqIW7QW6c7jO1tb2rnlaskxBENC1a1d4e3u3ahmenp44cOBAva/Ep6WlNTh++vTp+OSTT/DTTz/ht99+g7OzM0aOHNmq9yYyFTwHiIgaFBQUhG3btiEtLQ0hISHac1zuhUwmw/jx47Fjxw6cOXOm3us3btzQ/r+1tTUA1PvWVEPGjx8PQRDqfRsL+P89Mw3x9/dH9+7d8fHHH6OsrKzJPM319NNPQyaTYenSpfXeWxCEOt+Ia8zIkSNRU1ODtWvXaqdpNBqsWrWqwfH9+vVDv3798PXXX2PHjh2YPHmyqNdpIjIE/AkhokaNGzcOa9euxcyZMzFmzBjs2bMHlpaW97TMDz74AAcOHEBgYCBmz56N3r17o6ioCMnJydi/fz+KiooA3N6TYmdnh9WrV8PGxgbW1tYIDAxE165d6y1z+PDhCAsLw7///W+kpqYiJCQEGo0Ghw4dwvDhwzFv3rwGs0ilUnz99dcYNWoUfH19ERERgc6dOyMrKwsHDhyAra0tfvrppxatX/fu3fHuu+9i0aJFuHr1KsaOHQsbGxtcuXIFu3btwpw5c/Daa681uYyxY8ciICAAr776KtLS0uDj44Mff/xR+2fT0N6x6dOna5fLw19Ed8cCRERNioiIQFFREV577TVMmDABu3btuqflubi4ICEhAe+88w527tyJ//znP3B0dISvry+WL1+uHWdmZoYNGzZg0aJFmDt3Lmpra7F+/foGCxBw+6KA/fr1Q3R0NBYsWACFQoFBgwbh/vvvbzLPsGHDcOzYMfzrX//CypUrUVZWBldXVwQGBuK5555r1Tq+/vrr8Pb2xmeffabdK+Xu7o4RI0ZgzJgxd51fJpPhl19+wcsvv4wNGzZAKpVi3LhxiIqKwgMPPNBgCZ06dSoWLlyI7t27IyAgoFW5iUyJRGhq/zAREemN3bt3Y9y4cTh8+DAeeOCBOq8VFBTAzc0Nixcvxttvvy1SQiLDwXOAiIj00N9vNqtWq/HFF1/A1tYWAwcOrDc+JiYGarUaYWFh7RWRyKDxEBgRkR6aP38+bt26haFDh6Kqqgo7d+7E0aNH8f7779f56vwff/yBc+fO4b333sPYsWPr3SONiBrGQ2BERHpo69at+OSTT5CWlobKykr06NEDzz//fL0TuocNG4ajR4/igQcewObNm3nvL6JmYgEiIiIik8NzgIiIiMjksAARERGRyeFJ0A3QaDTIzs6GjY1Niy7HT0REROIRBAGlpaVQKpWQSpvex8MC1IDs7Oxm3/yRiIiI9Mu1a9fQpUuXJsewADXAxsYGwO0/QFtbW5HTEBERUXOoVCq4u7trP8ebwgLUgDuHvWxtbVmAiIiIDExzTl/hSdBERERkcliAiIiIyOSwABEREZHJYQEiIiIik8MCRERERCaHBYiIiIhMDgsQERERmRwWICIiIjI5LEBERERkcliAiIiIyOSwABEREZHJYQEiIiIik8MCRERERO1GEATsO5cHQRBEzcECRERERO1CEAQs+fEsZm9MxId7L4qaRS7quxMREZFJEAQBi384i01xGZBIAC9HK1HzsAARERFRm9JoBCz+8Qw2x2VCIgGWP90PEwe7i5qJBYiIiIjajEYj4K0fzmBr/O3y8+H4fpgwSNzyA7AAERERURvRaAS8ufs0tiVcg0QCfPyMH8b7dxE7FgAWICIiImoDGo2ARTtPY3viNUglwCcT/TBugH6UH4AFiIiIiHRMrRGwcMcpfJ90HVIJ8Nmk/niqf2exY9XBAkREREQ6o9YI+Of3p7Aj+Xb5WTF5AMb4KcWOVQ8LEBEREemEWiNgwXcnsfNEFmRSCVZM6o/Relh+ABYgIiIi0gG1RsCr36Zgd0o2ZFIJ/j15AJ7o5yZ2rEaxABEREdE9qVVr8Op3J/FDSjbkUgm+CB2AUX31t/wALEBERER0D2rVGvzj25P46eTt8rNyygCE9NHv8gOwABEREVEr1ag1eGV7Cn45lQMzmQQrpwzESF9XsWM1CwsQERERtViNWoOXvzmBX0/nwkwmwX+m+uOx3i5ix2o2FiAiIiJqkRq1BvO3nsCes7kwl0nx5bSBCLrPcMoPwAJERERELVBdq8H8bcnYezYP5jIpVocNxKM+hlV+ABYgIiIiaqbqWg1e3JqMfefyYC6X4qswfwzv1UnsWK3CAkRERER3VVWrxotbkrH/fD7M5VKsCfPHMAMtPwALEBEREd1FVa0aL2xORuyFfFjIpVg7fRAe9nYWO9Y9kYr55gcPHsTo0aOhVCohkUiwe/fuOq/PmDEDEomkziMkJOSuy121ahW8vLxgaWmJwMBAJCQktNEaEBERGbfKGjXmbkrSlp/o8MEGX34AkQtQeXk5/Pz8sGrVqkbHhISEICcnR/vYtm1bk8vcvn07IiMjERUVheTkZPj5+WHkyJHIz8/XdXwiIiKjVlmjxnObknDg4g1YmkmxbsZgPNjTSexYOiHqIbBRo0Zh1KhRTY6xsLCAq2vzL6r06aefYvbs2YiIiAAArF69Gr/88gvWrVuH119//Z7yEhERmYrKGjVmb0zEodQCbfm5v7txlB9A5D1AzfHnn3+iU6dO6NWrF55//nkUFhY2Ora6uhpJSUkIDg7WTpNKpQgODsaxY8cana+qqgoqlarOg4iIyFT9b/npYCbD+hkBRlV+AD0vQCEhIdi4cSNiY2OxfPly/PXXXxg1ahTUanWD4wsKCqBWq+HiUvd6BC4uLsjNzW30fZYtWwaFQqF9uLu763Q9iIiIDMWtajWe3XC7/FiZyxATMRhDuzuKHUvn9PpbYJMnT9b+f9++fdGvXz90794df/75J4KCgnT2PosWLUJkZKT2uUqlYgkiIiKTc6tajVkbjuNoeiGszWVYHxGAgK4OYsdqE3q9B+jvunXrBicnJ6SlpTX4upOTE2QyGfLy8upMz8vLa/I8IgsLC9ja2tZ5EBERmZKK6lrMjPn/8rNhpvGWH8DACtD169dRWFgINze3Bl83NzeHv78/YmNjtdM0Gg1iY2MxdOjQ9opJRERkUMqrahGx/jiOXS5ERws5Ns4KwCAv4y0/gMgFqKysDCkpKUhJSQEAXLlyBSkpKcjMzERZWRkWLFiAuLg4XL16FbGxsXjqqafQo0cPjBw5UruMoKAgrFy5Uvs8MjISa9euxYYNG3D+/Hk8//zzKC8v134rjIiIiP7fnfITf6UINv8tP/6exl1+AJHPAUpMTMTw4cO1z++chxMeHo4vv/wSp06dwoYNG1BcXAylUokRI0bgX//6FywsLLTzpKeno6CgQPt80qRJuHHjBhYvXozc3Fz0798fe/bsqXdiNBERkakrq6pFxPoEHL96U1t+BnjYix2rXUgEQRDEDqFvVCoVFAoFSkpKeD4QEREZpdLKGsxYfxxJGTdhYynHplmB6O9uJ3ase9KSz2+9/hYYERER6V5pZQ3C1yUgObMYtpZybH42EP262Ikdq12xABEREZkQ1X/Lz4nMYig6mGHLs4Ho01khdqx2xwJERERkIkpu1WD6ugScvFYMOyszbJ5lmuUHYAEiIiIyCSW3ajA9Oh4nr5fAzur2nh9fpWmWH4AFiIiIyOiVVNRgWnQ8TmeVwN7KDFueHYLeStP+kg8LEBERkRErrqjGtOh4nMlSwcHaHFueDcR9bqZdfgAWICIiIqN1s7waU7+Ox7kcFRytzbF19hD0crURO5ZeYAEiIiIyQkX/LT/nc1Rw6ni7/Hi7sPzcwQJERERkZIrKqzFlbRwu5JbCqaMFts0ORE+WnzpYgIiIiIxIYVkVpn4djwu5pXC2scC22UPQo1NHsWPpHRYgIiIiI1FQVoWpa+NxMa8UnWwssG3OEHR3ZvlpCAsQERGREbhRWoUpa+OQml8GF9vbe366sfw0igWIiIjIwOWXVmLK2nik5ZfB1dYS2+YMQVcna7Fj6TUWICIiIgOWr6pE6No4pN8oh5vCEttmD4EXy89dsQAREREZqDxVJULXxOFyQTmUitt7fjwdWX6agwWIiIjIAOWW3N7zc6WgHJ3tOmDb7CHwcLQSO5bBYAEiIiIyMDkltxC6Jg5XCyvQ2a4DvpkzBO4OLD8twQJERERkQLKLbyF0bRwyCivQxf72nh+Wn5ZjASIiIjIQWcW39/xkFlXA3eF2+eliz/LTGixAREREBuD6zQqEro3DtaJb8HCwwrY5Q9DZroPYsQwWCxAREZGeu1Z0u/xcv3kLno5W+GbOELgpWH7uBQsQERGRHrtWVIHJa+KQVXwLXZ2ssXV2IMuPDrAAERER6amMwnKErolDdkklujlZY9ucIXCxtRQ7llFgASIiItJDVwvKEbo2DjkllejubI1ts4egE8uPzrAAERER6ZkrBeWYvOYY8lRV6NGpI7bODkQnG5YfXWIBIiIi0iPpN8oQuiYO+aVV8HbpiC3PDoGzjYXYsYwOCxAREZGeSMsvRejaeNworYKPqw02PxsIp44sP22BBYiIiEgPpObdLj8FZbfLz5ZnA+HI8tNmWICIiIhEdjG3FFO/jkNBWTV6u9li87OBcLA2FzuWUWMBIiIiEtGFXBWmrI1HUXk1fJW22PJsIOysWH7aGgsQERGRSM5lqzD16zjcrKhB384KbJ4VCIWVmdixTAILEBERkQjOZpdg6tfxKK6ogV8XBTbOCoSiA8tPe2EBIiIiamdnsm6Xn5JbNejvbocNMwNYftoZCxAREVE7OnW9GNO+joeqshYDPG6XH1tLlp/2xgJERETUTk5eK8a06HiUVtbC39MeMRGDYcPyIwoWICIionZwIvMmpkcnoLSqFoO97LE+IgAdLfgxLBb+yRMREbWxpIybCF+XgLKqWgR0dcD6GYNhzfIjKv7pExERtaHEq0UIX5eA8mo1hnRzwLoZg2Flzo9fsXELEBERtZGEK0WYsT4BFdVq3N/dEdHhg9HBXCZ2LAILEBERUZuIv1yIiJjjqKhW48EeTlg7fRDLjx5hASIiItKxY+mFmBlzHLdq1Hio5+3yY2nG8qNPpGK++cGDBzF69GgolUpIJBLs3r270bFz586FRCLBihUrmlzmkiVLIJFI6jx8fHx0G5yIiKgRR9MKEBGTgFs1ajzi7czyo6dELUDl5eXw8/PDqlWrmhy3a9cuxMXFQalUNmu5vr6+yMnJ0T4OHz6si7hERERNOpxagIiY46is0WB4L2d8FebP8qOnRD0ENmrUKIwaNarJMVlZWZg/fz727t2LJ554olnLlcvlcHV11UVEIiKiZjl46QZmb0xEVa0GQT6d8J9pA2EhZ/nRV6LuAbobjUaDsLAwLFiwAL6+vs2eLzU1FUqlEt26dcPUqVORmZnZ5PiqqiqoVKo6DyIioub682I+nv1v+Qm+z4XlxwDodQFavnw55HI5XnrppWbPExgYiJiYGOzZswdffvklrly5goceegilpaWNzrNs2TIoFArtw93dXRfxiYjIBBy4kI85G5NQXavBiN4u+M9Ulh9DoLffAktKSsLnn3+O5ORkSCSSZs/3v4fU+vXrh8DAQHh6euLbb7/FrFmzGpxn0aJFiIyM1D5XqVQsQUREdFex5/Pw/OZkVKs1CPF1xRdTBsBMptf7Fui/9HYrHTp0CPn5+fDw8IBcLodcLkdGRgZeffVVeHl5NXs5dnZ28Pb2RlpaWqNjLCwsYGtrW+dBRETUlN/P5mLu5iRUqzV4oq8by4+B0ds9QGFhYQgODq4zbeTIkQgLC0NERESzl1NWVob09HSEhYXpOiIREZmoPWdyMW9rMmo1Ap7s54YVk/pDzvJjUEQtQGVlZXX2zFy5cgUpKSlwcHCAh4cHHB0d64w3MzODq6srevXqpZ0WFBSEcePGYd68eQCA1157DaNHj4anpyeys7MRFRUFmUyG0NDQ9lkpIiIyar+dzsH8bSdQqxEwxk+JTyf6sfwYIFELUGJiIoYPH659fuc8nPDwcMTExDRrGenp6SgoKNA+v379OkJDQ1FYWAhnZ2c8+OCDiIuLg7Ozs06zExGR6fnlVA5e+uYE1BoBY/sr8fEElh9DJREEQRA7hL5RqVRQKBQoKSnh+UBERAQA+OlkNl7ZngK1RsDTAzrjowl+kEmb/yUdanst+fzW23OAiIiI9MUPKVn4x/YUaATgGf8uWD6+H8uPgeN+OyIioibsOnFdW34mDuqCD1l+jAL3ABERETViR9J1vPb9SQgCMHmwO94f1xdSlh+jwAJERETUgO8Sr+GfO05BEIApgR5496k+LD9GhIfAiIiI/ubb4/9ffqYNYfkxRtwDRERE9D+2JWRi0c7TAIDwoZ5YMsa3RbdkIsPAAkRERPRfW+Iz8OauMwCAiAe8sPjJ3iw/RooFiIiICMCmY1fx9g9nAQCzHuyKt564j+XHiLEAERGRydtw9CqifrxdfuY83A2LRvmw/Bg5FiAiIjJp6w5fwTs/nwMAPPdIN7wewvJjCliAiIjIZH196DLe/eU8AOCFYd2xYGQvlh8TwQJEREQmac3BdLz/6wUAwPxHeyDyMW+WHxPCAkRERCZn9V/p+OC32+XnpaCe+EdwT5YfE8MCREREJmXVgTR8tPciAOCV4J54Jdhb5EQkBhYgIiIyGV/EpuKTfZcAAK8+5o35QT1FTkRiYQEiIiKTsGL/JazYnwoAWDCyF14c3kPkRCQmFiAiIjJqgiDgs/2p+Hfs7fKzMMQHzw/rLnIqEhsLEBERGS1BEPDJ75ew8kAaAOCNx30w52GWH2IBIiIiIyUIApb9dgFrDl4GALz1xH149qFuIqcifcECRERERkejEbD0p7PYcCwDALB0jC/C7/cSNxTpFRYgIiIyKhqNgDd3n8a2hGuQSID3xvbFlEAPsWORnmEBIiIio6HWCFjw/UnsTM6CVAJ8+IwfnvHvInYs0kMsQEREZBRq1BpEfnsSP53MhkwqwWeT+mOMn1LsWKSnWICIiMjgVddqMH9bMvaezYOZTIIvQgcipI+r2LFIj7EAERGRQausUeOFLcn440I+zOVSrJ42EI/6uIgdi/QcCxARERmsW9VqzNmUiEOpBbA0k2JN2CA87O0sdiwyACxARERkkMqrajEz5jjirxTBylyG6PDBGNrdUexYZCBYgIiIyOCoKmsQsf44kjJuwsZCjpiZg+Hv6SB2LDIgLEBERGRQiiuqMX1dAk5dL4GtpRybZgXCz91O7FhkYFiAiIjIYBSWVSEsOgHnclSwtzLD5mcD4atUiB2LDBALEBERGYT80kpM+zoel/LK4NTRAlueDUQvVxuxY5GBYgEiIiK9l1tSiSlr43C5oBwuthbYOnsIujt3FDsWGTAWICIi0mvXb1Zgytp4ZBZVoLNdB2ydHQhPR2uxY5GBYwEiIiK9lVFYjilr45FVfAseDlbYOjsQXeytxI5FRoAFiIiI9FL6jTJMWRuHPFUVujlZY+vsIXBVWIodi4wECxAREemdi7mlmPp1PArKquDt0hGbnw1EJxuWH9IdFiAiItIrZ7JKEBYdj5sVNejtZovNzwbCwdpc7FhkZFiAiIhIb5y8Voyw6HioKmvh10WBjTMDobAyEzsWGSEWICIi0guJV4swY/1xlFXVYpCnPdZHDIaNJcsPtQ0WICIiEt2x9ELM2nAcFdVqDOnmgOjwwbC24EcUtR2pmG9+8OBBjB49GkqlEhKJBLt372507Ny5cyGRSLBixYq7LnfVqlXw8vKCpaUlAgMDkZCQoLvQRESkUwcv3cCM9QmoqFbjoZ5OWD8jgOWH2pyoBai8vBx+fn5YtWpVk+N27dqFuLg4KJXKuy5z+/btiIyMRFRUFJKTk+Hn54eRI0ciPz9fV7GJiEhHYs/n4dkNiaiq1SDIpxPWTh+EDuYysWORCRC1AI0aNQrvvvsuxo0b1+iYrKwszJ8/H1u2bIGZ2d2PBX/66aeYPXs2IiIi0Lt3b6xevRpWVlZYt26dLqMTEdE92nMmB3M3J6FarUGIryu+nOYPSzOWH2ofohagu9FoNAgLC8OCBQvg6+t71/HV1dVISkpCcHCwdppUKkVwcDCOHTvW6HxVVVVQqVR1HkRE1HZ+PJmNF7eeQI1awBg/JVZOGQBzuV5/JJGR0eu/bcuXL4dcLsdLL73UrPEFBQVQq9VwcXGpM93FxQW5ubmNzrds2TIoFArtw93d/Z5yExFR475Puo5XvjkBtUbAM/5d8Nmk/pDL9PrjiIyQ3v6NS0pKwueff46YmBhIJJI2fa9FixahpKRE+7h27Vqbvh8RkanaGp+JBd+fhEYAQgM88OH4fpBJ2/Z3PFFD9LYAHTp0CPn5+fDw8IBcLodcLkdGRgZeffVVeHl5NTiPk5MTZDIZ8vLy6kzPy8uDq6tro+9lYWEBW1vbOg8iItKtmCNX8Mau0xAEYMb9Xnh/XB9IWX5IJHpbgMLCwnDq1CmkpKRoH0qlEgsWLMDevXsbnMfc3Bz+/v6IjY3VTtNoNIiNjcXQoUPbKzoREf3NmoPpWPLTOQDAcw93Q9To3m2+d5+oKaJeaKGsrAxpaWna51euXEFKSgocHBzg4eEBR0fHOuPNzMzg6uqKXr16aacFBQVh3LhxmDdvHgAgMjIS4eHhGDRoEAICArBixQqUl5cjIiKifVaKiIjq+CI2FZ/suwQAeOnRHvjHY94sPyQ6UQtQYmIihg8frn0eGRkJAAgPD0dMTEyzlpGeno6CggLt80mTJuHGjRtYvHgxcnNz0b9/f+zZs6feidFERNS2BEHAJ79fwsoDt/+h+9oIb8x7tKfIqYhukwiCIIgdQt+oVCooFAqUlJTwfCAiolYQBAHLfruANQcvAwDefPw+zH64m8ipyNi15POb1xonIiKd0mgELP3pLDYcywAAvPOUL6YP9RI3FNHfsAAREZHOaDQC3tx9GtsSrkEiAd4f1xehAR5ixyKqhwWIiIh0Qq0RsOD7k9iZnAWpBPjoGT+M9+8idiyiBrEAERHRPatRaxD57Un8dDIbMqkEKyb1x2i/u9/AmkgsLEBERHRPqms1mL8tGXvP5sFMJsEXoQMR0qfxi88S6QMWICIiarXKGjVe2JKMPy7kw1wuxeppA/GoDy87QvqPBYiIiFrlVrUaczYl4lBqASzNpFg7fRAe6uksdiyiZmEBIiKiFiuvqsXMmOOIv1IEK3MZ1s0YjCHdHO8+I5GeYAEiIqIWUVXWIGL9cSRl3ISNhRwxMwfD39NB7FhELcICREREzVZcUY3p6xJw6noJFB3MsGlWAPp1sRM7FlGLsQAREVGzFJZVISw6AedyVHCwNsemWQHwVSrEjkXUKixARER0V/mllZj2dTwu5ZXBqaMFts4OhLeLjdixiFqNBYiIiJqUW1KJKWvjcLmgHK62ltg6OxDdnDuKHYvonrAAERFRo67frMCUtfHILKpAZ7sO2DZ7CDwcrcSORXTPpK2Zqby8XNc5iIhIz2QUlmPSV3HILKqAp6MVtj/H8kPGo1UFyMXFBTNnzsThw4d1nYeIiPTAhVwVJqw+hqziW+jmbI3tc4aiiz3LDxmPVhWgzZs3o6ioCI8++ii8vb3xwQcfIDs7W9fZiIhIBEkZNzFx9THkl1bBx9UG2+cMhavCUuxYRDrVqgI0duxY7N69G1lZWZg7dy62bt0KT09PPPnkk9i5cydqa2t1nZOIiNrBX5duYNrX8VBV1sLf0x7b5wyFs42F2LGIdE4iCIKgiwV98cUXWLBgAaqrq+Hk5IS5c+fi9ddfh5WV4e0yValUUCgUKCkpga2trdhxiIjaxU8nsxH5bQpq1AIe8XbGl9MGwsqc35Uhw9GSz+97+pudl5eHDRs2ICYmBhkZGXjmmWcwa9YsXL9+HcuXL0dcXBx+//33e3kLIiJqB5vjMvD2D2cgCMBoPyU+meAHc3mrDhIQGYRWFaCdO3di/fr12Lt3L3r37o0XXngB06ZNg52dnXbM/fffj/vuu09XOYmIqA0IgoD//JmOj/ZeBABMG+KBpWP6QCaViJyMqG21qgBFRERg8uTJOHLkCAYPHtzgGKVSiTfffPOewhERUdvRaAS8/+t5fH34CgDgpUd74B+PeUMiYfkh49eqc4AqKioM8tye5uI5QERk7GrVGizccRo7kq8DAN5+sjdmPdhV5FRE96bNzwGqra2FSqWqN10ikcDCwgLm5uatWSwREbWDyho15m87gX3n8iCTSvDh+H4Y799F7FhE7apVBcjOzq7JXaRdunTBjBkzEBUVBamUJ9EREemL0soazN6YiLjLRTCXS7FqykA81ttF7FhE7a5VBSgmJgZvvvkmZsyYgYCAAABAQkICNmzYgLfeegs3btzAxx9/DAsLC7zxxhs6DUxERK1TWFaFGeuP43RWCTpayPF1+CAM6eYodiwiUbSqAG3YsAGffPIJJk6cqJ02evRo9O3bF1999RViY2Ph4eGB9957jwWIiEgPZBXfQlh0PC7fKIejtTk2zAxAn84KsWMRiaZVx6eOHj2KAQMG1Js+YMAAHDt2DADw4IMPIjMz897SERHRPUvLL8MzXx7F5Rvl6GzXAd/NHcryQyavVQXI3d0d0dHR9aZHR0fD3d0dAFBYWAh7e/t7S0dERPfk1PViTPzqGHJKKtHd2RrfzR2Kbs4dxY5FJLpWHQL7+OOPMWHCBPz222/a6wAlJibiwoUL+P777wEAx48fx6RJk3SXlIiIWuRoegFmb0hEebUafl0UWB8RAAdrfkuXCLiHe4FdvXoVX331FS5evH310F69euG5556Dl5eXLvOJgtcBIiJDt/dsLuZvPYFqtQb3d3fEmumD0NGC9/Ui49am1wGqqalBSEgIVq9ejWXLlrU6JBERtY1vE6/h9R2noBGAkb4u+HzyAFiaycSORaRXWlyAzMzMcOrUqbbIQkRE9+jrQ5fx7i/nAQCTBrnjvXF9IJfxemxEf9eqn4pp06Y1eBI0ERGJQxAEfLjngrb8PPdwN3wwvi/LD1EjWn0rjHXr1mH//v3w9/eHtbV1ndc//fRTnYQjIqK7U2sEvP3DGWyNv33pkYUhPnh+WHeRUxHpt1YVoDNnzmDgwIEAgEuXLtV5jXcRJiJqP9W1Gvzj2xT8cioHEgnw/ri+CA3wEDsWkd5rVQE6cOCArnMQEVELlVfVYu7mJBxKLYCZTILPJw/A433dxI5FZBDu6eBwWloa9u7di1u3bgG4fQyaiIjaXnFFNaZFx+NQagGszGVYN2Mwyw9RC7SqABUWFiIoKAje3t54/PHHkZOTAwCYNWsWXn31VZ0GJCKiuvJUlZj0VRxOZBZD0cEMW54NxEM9ncWORWRQWlWA/vGPf8DMzAyZmZmwsrLSTp80aRL27Nmjs3BERFTX1YJyjP/yKC7mlcLF1gLfzR2KAR687RBRS7XqHKDff/8de/fuRZcuXepM79mzJzIyMnQSjIiI6jqXrcL0dQkoKKuCl6MVNs0KhLuD1d1nJKJ6WrUHqLy8vM6enzuKiopgYWHR7OUcPHgQo0ePhlKphEQiwe7du+u8vmTJEvj4+MDa2hr29vYIDg5GfHx8k8tcsmQJJBJJnYePj0+zMxER6aPjV4swac0xFJRVobebLb6bez/LD9E9aFUBeuihh7Bx40btc4lEAo1Ggw8//BDDhw9v9nLKy8vh5+eHVatWNfi6t7c3Vq5cidOnT+Pw4cPw8vLCiBEjcOPGjSaX6+vri5ycHO3j8OHDzc5ERKRvDlzIR1h0PEorazHYyx7b5gyBs03z/7FJRPW16hDYhx9+iKCgICQmJqK6uhr//Oc/cfbsWRQVFeHIkSPNXs6oUaMwatSoRl+fMmVKneeffvopoqOjcerUKQQFBTU6n1wuh6ura7NzEBHpqx9SsvDqtydRqxHwqE8nrJoyEB3MeV8vonvVqj1Affr0waVLl/Dggw/iqaeeQnl5OZ5++mmcOHEC3bu3zdVHq6ursWbNGigUCvj5+TU5NjU1FUqlEt26dcPUqVORmZnZ5PiqqiqoVKo6DyIisW08dhWvbE9BrUbA2P5KfBXmz/JDpCOt2gMEAAqFAm+++aYuszTo559/xuTJk1FRUQE3Nzfs27cPTk5OjY4PDAxETEwMevXqhZycHCxduhQPPfQQzpw5AxsbmwbnWbZsGZYuXdpWq0BE1CKCIODfsWn4bP/tK+3PuN8Li5/sDamUV9on0hWJ0MqrFxYXFyMhIQH5+fnQaDR1Xps+fXrLg0gk2LVrF8aOHVtnenl5OXJyclBQUIC1a9fijz/+QHx8PDp16tTsnJ6envj0008xa9asBsdUVVWhqqpK+1ylUsHd3R0lJSWwtbVt8boQEbWWRiPgnZ/PIeboVQDAK8E98XJQT95miKgZVCoVFApFsz6/W7UH6KeffsLUqVNRVlYGW1vbOj+YEomkVQWoMdbW1ujRowd69OiBIUOGoGfPnoiOjsaiRYuaNb+dnR28vb2RlpbW6BgLC4sWfXuNiKgt1Kg1+Of3p7DrRBYAYMno3pjxQFeRUxEZp1adA/Tqq69i5syZKCsrQ3FxMW7evKl9FBUV6TpjHRqNps7emrspKytDeno63Nx4iXgi0l+VNWrM3ZSEXSeyIJdKsGJSf5YfojbUqgKUlZWFl156qcFrAbVEWVkZUlJSkJKSAgC4cuUKUlJSkJmZifLycrzxxhuIi4tDRkYGkpKSMHPmTGRlZWHChAnaZQQFBWHlypXa56+99hr++usvXL16FUePHsW4ceMgk8kQGhp6T1mJiNqKqrIG06MTEHshHxZyKdZM98fYAZ3FjkVk1Fp1CGzkyJFITExEt27d7unNExMT61w3KDIyEgAQHh6O1atX48KFC9iwYQMKCgrg6OiIwYMH49ChQ/D19dXOk56ejoKCAu3z69evIzQ0FIWFhXB2dsaDDz6IuLg4ODvzPjlEpH9ulFYhfF0CzuWoYGMhR/SMwQjo6iB2LCKj16qToKOjo/HOO+8gIiICffv2hZmZWZ3Xx4wZo7OAYmjJSVRERK11ragCYdHxuFpYAaeO5tgwMwC+SoXYsYgMVks+v1tVgKTSxo+cSSQSqNXqli5Sr7AAEVFbS80rRVh0AnJVlehs1wGbnw1EVydrsWMRGbQ2/xbY37/2TkREzXci8yYiYo6juKIG3i4dsXFmIFwVlmLHIjIpLToJ+vHHH0dJSYn2+QcffIDi4mLt88LCQvTu3Vtn4YiIjM3h1AJM/ToexRU16O9uh2+fG8ryQySCFhWgvXv31vkK+vvvv1/na++1tbW4ePGi7tIRERmR307nYGbMcVRUq/FQTydseTYQdlbmYsciMkktOgT299OFWnkRaSIik7MtIRNv7joNjQA80dcNn07yg4Wc9/UiEkur7wVGRETN8+Wf6Vi+5wIAIDTAHe+O7QsZ7+tFJKoWFSCJRFLvfjS8Pw0RUcMEQcAHv13AVwcvAwCeH9Yd/xzZi783ifRAiw+BzZgxQ3vfrMrKSsydOxfW1re/utmSW1QQERmzWrUGb+46g+2J1wAAbzzugzkPdxc5FRHd0aICFB4eXuf5tGnT6o3R5Y1QiYgMUVWtGi9vS8Ges7mQSoAPnu6HiYPdxY5FRP+jRQVo/fr1bZWDiMgolFTU4PktSTiaXghzmRT/Dh2AkD6uYscior/hSdBERDqSUViOmTHHkX6jHNbmMqyZPggP9HASOxYRNYAFiIhIBxKvFmHOpiQUlVfDTWGJ6PDB6K3krXSI9BULEBHRPfohJQsLvjuFarUGfTsrEB0+CJ1seXVnIn3GAkRE1EqCIODz2FSs2J8KABjR2wUrJveHlTl/tRLpO/6UEhG1QmWNGgt3nMIPKdkAgOce6YaFI30g5QUOiQwCCxARUQsVllVhzqYkJGXchFwqwbtj+2BygIfYsYioBViAiIhaIC2/FBExx3Gt6BZsLOVYPc2f3/QiMkAsQEREzXQ4tQDPb0lCaWUtPByssG7GYPTo1FHsWETUCixARETNsC0hE2/tPgO1RsAgT3usmT4IDtbmYsciolZiASIiaoJaI2D5ngtY898bmo7tr8TyZ/rBQi4TORkR3QsWICKiRlRU1+Llb1Kw71weAOAfwd54KagH7+ZOZARYgIiIGpBbUolnNx7HmSwVzGVSfDShH57q31nsWESkIyxARER/cza7BLNiEpGrqoSDtTnWhPljkJeD2LGISIdYgIiI/sf+c3l46ZsTqKhWo0enjlgXPhgejlZixyIiHWMBIiLC7dtarDtyFe/+cg6CADzYwwmrpg6EooOZ2NGIqA2wABGRyatVa7Dkp7PYHJcJAAgN8MA7T/nCTCYVORkRtRUWICIyaarKGry4JRmHUgsgkQBvPn4fZj3Yld/0IjJyLEBEZLKuFVVgZsxxpOaXoYOZDJ9P7o8Rvq5ixyKidsACREQmKTnzJuZsTERBWTVcbC0QHT4YfTorxI5FRO2EBYiITM5PJ7Px6ncnUV2rga/SFtHhg+GqsBQ7FhG1IxYgIjIZgiBg5R9p+GTfJQBA8H2d8PnkAbC24K9CIlPDn3oiMglVtWos2nEaO09kAQBmPdgVbzx+H2RSnuxMZIpYgIjI6N0sr8Zzm5KQcLUIMqkES8f4YtoQT7FjEZGIWICIyKil3yjDrJjjuFpYARsLOVZNHYiHvZ3FjkVEImMBIiKjdSy9EHM3J6HkVg262HfAuhmD4e1iI3YsItIDLEBEZJS+TbyGN3aeRq1GwAAPO6ydPghOHS3EjkVEeoIFiIiMikYj4KPfL+LLP9MBAE/2c8PHE/xgaSYTORkR6RMWICIyGreq1Yj8NgW/nckFALz0aA+8EuwNKb/pRUR/wwJEREYhX1WJ2RsTcfJ6CcxlUnwwvi+eHthF7FhEpKdYgIjI4J3PUWFWzHFkl1TC3soMX4UNQkBXB7FjEZEek4r55gcPHsTo0aOhVCohkUiwe/fuOq8vWbIEPj4+sLa2hr29PYKDgxEfH3/X5a5atQpeXl6wtLREYGAgEhIS2mgNiEhsBy7k45kvjyK7pBLdnKyx64UHWH6I6K5ELUDl5eXw8/PDqlWrGnzd29sbK1euxOnTp3H48GF4eXlhxIgRuHHjRqPL3L59OyIjIxEVFYXk5GT4+flh5MiRyM/Pb6vVICKRbDh6FbM2HEd5tRpDuzli5wv3w8vJWuxYRGQAJIIgCGKHAACJRIJdu3Zh7NixjY5RqVRQKBTYv38/goKCGhwTGBiIwYMHY+XKlQAAjUYDd3d3zJ8/H6+//nqzstx5n5KSEtja2rZ4XYiobdWqNXj3l/OIOXoVADBxUBe8O7YvzOWi/puOiETWks9vgzkHqLq6GmvWrIFCoYCfn1+jY5KSkrBo0SLtNKlUiuDgYBw7dqzRZVdVVaGqqkr7XKVS6S44EelUWVUt5m9NxoGLt/cELwzxwdxHukEi4Te9iKj59P6fSz///DM6duwIS0tLfPbZZ9i3bx+cnJwaHFtQUAC1Wg0XF5c6011cXJCbm9voeyxbtgwKhUL7cHd31+k6EJFuZBXfwjNfHsWBizdgaSbFl1MH4vlh3Vl+iKjF9L4ADR8+HCkpKTh69ChCQkIwceJEnZ/Ps2jRIpSUlGgf165d0+nyiejenbxWjKdWHsGF3FI421hg+5yhGNXXTexYRGSg9L4AWVtbo0ePHhgyZAiio6Mhl8sRHR3d4FgnJyfIZDLk5eXVmZ6XlwdXV9dG38PCwgK2trZ1HkSkP347nYNJa46hoKwKPq422P3iA/BztxM7FhEZML0vQH+n0WjqnK/zv8zNzeHv74/Y2Ng642NjYzF06ND2ikhEOiIIAv7zZxqe35KMyhoNhvVyxvfP34/Odh3EjkZEBk7Uk6DLysqQlpamfX7lyhWkpKTAwcEBjo6OeO+99zBmzBi4ubmhoKAAq1atQlZWFiZMmKCdJygoCOPGjcO8efMAAJGRkQgPD8egQYMQEBCAFStWoLy8HBEREe2+fkTUetW1Gry56zS+S7oOAJhxvxfeeuI+yGUG9+82ItJDohagxMREDB8+XPs8MjISABAeHo7Vq1fjwoUL2LBhAwoKCuDo6IjBgwfj0KFD8PX11c6Tnp6OgoIC7fNJkybhxo0bWLx4MXJzc9G/f3/s2bOn3onRRKS/iiuqMXdzEuIuF0EqAaJG+yL8fi+xYxGREdGb6wDpE14HiEg8VwvKMTPmOC4XlMPaXIaVUwZiuE8nsWMRkQEwyusAEZHxS7hShDmbElFcUQOlwhLRMwbjPjf+I4SIdI8FiIhEp9EI+PrwZXy45yJqNQL8uiiwNnwQOtlYih2NiIwUCxARiaqovBqvfpuivbLzk/3c8NEzfuhgLhM5GREZMxYgIhJN/OVCvPTNCeSpqmAulyJqdG9MCfDglZ2JqM2xABFRu1NrBKw6kIYV+y9BIwDdna2xcspAnu9DRO2GBYiI2lW+qhKvbE/B0fRCAMD4gV3wzlO+sLbgryMiaj/8jUNE7eZQ6g38Y3sKCsqqYWUuw7+e6oPx/l3EjkVEJogFiIjaXK1ag0/3XcKXf6VDEAAfVxusnDIQPTp1FDsaEZkoFiAialPZxbfw0rYTSMy4CQCYGuiBt5/sDUszfsuLiMTDAkREbWbfuTws+P4kiitqYGMhxwfj++GJfm5ixyIiYgEiIt2rrtXgg98uYN2RKwCAfl0UWBk6EB6OViInIyK6jQWIiHQqo7Ac87edwKnrJQCAWQ92xcIQH5jLeRd3ItIfLEBEpDM/n8rGoh2nUVpVCzsrM3z8jB+Ce7uIHYuIqB4WICK6Z5U1arzz8zlsjc8EAAzytMe/QwdAaddB5GRERA1jASKie5KWX4Z5W5NxIbcUEgnwwrDu+EewN+QyHvIiIv3FAkRErfZ90nW8vfsMbtWo4dTRHJ9N6o+HejqLHYuI6K5YgIioxcqravH2D2ewMzkLAPBAD0d8Nqk/OtlYipyMiKh5WICIqEXO56jw4tZkXL5RDqkEiHzMG88P6wGZlHdwJyLDwQJERM0iCAK2xGfinZ/PobpWA1dbS3w+uT8CuzmKHY2IqMVYgIjorlSVNVi04zR+OZ0DAHjUpxM+nuAHB2tzkZMREbUOCxARNenktWLM25aMa0W3IJdKsDDEB7Me7AopD3kRkQFjASKiBgmCgOjDV7B8zwXUqAV0se+AL0IHYICHvdjRiIjuGQsQEdVzs7waC74/if3n8wEAo/q44oPx/aDoYCZyMiIi3WABIqI6jl8twkvbTiCnpBLmcinefuI+TBviCYmEh7yIyHiwABERAECjEfDlX+n4dN8lqDUCujlZ44spA+CrVIgdjYhI51iAiAg3SqsQ+W0KDqUWAADG9lfi3XF90dGCvyKIyDjxtxuRiTuSVoCXv0lBQVkVOpjJsPQpX0zw78JDXkRk1FiAiExUrVqDz2NTsfJAGgQB6OVig5VTBqCni43Y0YiI2hwLEJEJyim5hZe3pSDhahEAIDTAHYuf9EUHc5nIyYiI2gcLEJGJ+eNCHl799iRuVtSgo4Uc7z/dF2P8lGLHIiJqVyxARCaiulaDj/ZewNpDVwAAfTrbYmXoQHg5WYucjIio/bEAEZmAa0UVmLftBE5eKwYARDzghddH+cBCzkNeRGSaWICIjNxvp3Pwzx2nUFpZC1tLOT6a4IeRvq5ixyIiEhULEJGRqqxR471fzmNTXAYAYKCHHf4dOgBd7K1ETkZEJD4WICIjdPlGGV7cegLnc1QAgOeHdUfkY94wk0lFTkZEpB9YgIiMzK4T1/HmrjOoqFbD0docn0z0w7BencSORUSkV1iAiIxERXUton44i++SrgMAhnZzxIrJ/eFiaylyMiIi/cMCRGQELuaW4sWtyUjLL4NUArwc5I15j/aATMrbWRARNYQFiMiA3apW48s/07D64GVU12rQycYCn08egKHdHcWORkSk11iAiAyQIAjYezYX//r5PLKKbwEAhvdyxscT/ODY0ULkdERE+o8FiMjApN8ow5Ifz+JQagEAoLNdB7z95H0Y6evKO7gTETWTqN+JPXjwIEaPHg2lUgmJRILdu3drX6upqcHChQvRt29fWFtbQ6lUYvr06cjOzm5ymUuWLIFEIqnz8PHxaeM1IWp75VW1+OC3CwhZcRCHUgtgLpNi/qM9sD/yEYT0cWP5ISJqAVH3AJWXl8PPzw8zZ87E008/Xee1iooKJCcn4+2334afnx9u3ryJl19+GWPGjEFiYmKTy/X19cX+/fu1z+Vy7ugiwyUIAn4+lYP3fjmPXFUlgNuHu6JG+/I+XkRErSRqMxg1ahRGjRrV4GsKhQL79u2rM23lypUICAhAZmYmPDw8Gl2uXC6Hqysv9U+G71JeKaJ+OItjlwsBAO4OHRD1pC+Ce7uInIyIyLAZ1K6RkpISSCQS2NnZNTkuNTUVSqUSlpaWGDp0KJYtW9ZkYaqqqkJVVZX2uUql0lVkolYprazBiv2piDl6FWqNAAu5FC8M64HnHukGSzPewJSI6F4ZTAGqrKzEwoULERoaCltb20bHBQYGIiYmBr169UJOTg6WLl2Khx56CGfOnIGNjU2D8yxbtgxLly5tq+hEzSYIAnanZOH9Xy/gRuntUj6itwvefrI33B14Dy8iIl2RCIIgiB0CACQSCXbt2oWxY8fWe62mpgbjx4/H9evX8eeffzZZgP6uuLgYnp6e+PTTTzFr1qwGxzS0B8jd3R0lJSUtei+ie3EuW4WoH8/g+NWbAICuTtaIGt2bt7EgImomlUoFhULRrM9vvd8DVFNTg4kTJyIjIwN//PFHiwuJnZ0dvL29kZaW1ugYCwsLWFjw2ikkjpJbNfj094vYFJcBjQB0MJNhflAPzHqwKyzkPNxFRNQW9LoA3Sk/qampOHDgABwdW35127KyMqSnpyMsLKwNEhK1nkYj4Puk61i+5wIKy6sBAE/0c8Obj98HpV0HkdMRERk3UQtQWVlZnT0zV65cQUpKChwcHODm5oZnnnkGycnJ+Pnnn6FWq5GbmwsAcHBwgLm5OQAgKCgI48aNw7x58wAAr732GkaPHg1PT09kZ2cjKioKMpkMoaGh7b+CRI04db0Yi384i5RrxQCAHp06YukYXzzQw0ncYEREJkLUApSYmIjhw4drn0dGRgIAwsPDsWTJEvz4448AgP79+9eZ78CBAxg2bBgAID09HQUFBdrXrl+/jtDQUBQWFsLZ2RkPPvgg4uLi4Ozs3LYrQ9QMN8ur8eHei/jmeCYEAbA2l+GVYG/MeMALZjJRr0tKRGRS9OYkaH3SkpOoiJpDrRGwLSETH/9+EcUVNQCAsf2VWPT4fXCxtRQ5HRGRcTCqk6CJDF1y5k1E/XAWp7NKAAA+rjZYOsYXgd14x3YiIrGwABG1kYKyKiz/7QK+S7oOALCxlOPVx7wxbYgn5DzcRUQkKhYgIh2rVWuwOS4Dn+y7hNLKWgDAM/5dsDDEB842vNwCEZE+YAEi0qGEK0VY/MMZXMgtBQD06WyLpWP6wN/TXuRkRET0v1iAiHQgX1WJZb9dwK4TWQAARQczLBjZC6EBHpBJJSKnIyKiv2MBIroHNWoNNhy9ihX7U1FWVQuJBJg82AMLRvaCg7W52PGIiKgRLEBErXQ0rQCLfzyLtPwyAICfux3eGeMLP3c7cYMREdFdsQARtVBOyS28+8t5/HIqBwDgYG2OhSG9MMHfHVIe7iIiMggsQETNVFWrRvThK/giNg23atSQSoCwIZ6IfKwXFFZmYscjIqIWYAEiaoa/Lt3A0h/P4nJBOQBgkKc9lj7lC1+lQuRkRETUGixARE24VlSBf/18Dr+fywMAOHW0wBuP+2DcgM6QSHi4i4jIULEAETWgskaNNQcvY9WBNFTVaiCTSjDjfi+8HNwTtpY83EVEZOhYgIj+JvZ8Hpb+dA6ZRRUAgMCuDnjnqT7o5WojcjIiItIVFiCi/8ooLMfSn87hjwv5AAAXWwu8+URvjO7nxsNdRERGhgWITN6tajX+82cavvrrMqrVGpjJJJj5YFe89GhPWFvwR4SIyBjxtzuZLI1GwJ6zuXjvl/PIKr4FAHiopxOiRvuiR6eOIqcjIqK2xAJEJqekogbfJV3DprgMZBTePs+ns10HvP3kfRjp68rDXUREJoAFiEzGmawSbDqWgR9OZqGyRgMAsLGUY8b9XnhhWA90MJeJnJCIiNoLCxAZtepaDX47k4ONxzKQlHFTO93H1QbTh3ph7AAlrMz5Y0BEZGr4m5+MUk7JLWyNz8S2hGsoKKsCAMilEoT0ccX0oV4Y7GXPQ11ERCaMBYiMhiAIOHa5EJuOZeD3c3lQawQAQCcbC0wJ9MCUAA90srUUOSUREekDFiAyeGVVtdiVfB0bj2UgNb9MOz2gqwPCh3phhK8LzGRSERMSEZG+YQEig5WWX4qNxzKwMzkLZVW1AAArcxnGDeiMsKGe8HG1FTkhERHpKxYgMii1ag32n8/HxmNXcTS9UDu9m5M1woZ6Yrx/F96ri4iI7ooFiAxCQVkVvknIxNb4TGSXVAIApBIg6D4XTB/qiQe6O0Eq5UnNRETUPCxApLcEQUByZjE2HbuKX0/nolp9+9o9DtbmmDTYHVMDPdDF3krklEREZIhYgEjvVNao8WNKNjbGXcWZLJV2up+7HcKHeuLxvm6wNONFC4mIqPVYgEhvZBZWYHN8BrYfv4aSWzUAAHO5FKP7KTF9qCf83O3EDUhEREaDBYhEpdEI+Cv1BjYevYo/L92AcPvSPehs1wFhQz0xcZA7HKzNxQ1JRERGhwWIRFFcUY3vEq9jc/z/35AUAB72dsb0IZ4Y7tMJMp7UTEREbYQFiNpVYzckneDvjmlDPNDNuaPICYmIyBSwAFGb4w1JiYhI3/BTh9pMYzckHdXXDdOHemKQJ29ISkRE4mABIp1q6oakUwM9ERrgzhuSEhGR6FiASCcauyFpYFcHTOcNSYmISM+wANE9aeqGpNOHeqGXq43ICYmIiOpjAaIWK66oxpG0QmyJz6h7Q1Jna4QN4Q1JiYhI/7EAUZPUGgGp+aVIzihGcuZNJGfexOUb5drX79yQNHyoFx7o4ciTmomIyCCwAFEdJRU1OHHtJpIzi3Ei8yZSMotR+t9DW/+rm5M1RvZx5Q1JiYjIILEAmTCNRkD6jTIkZdz8796dYqT9zwnMd1iby+DnboeBHvYY6GmHAe72sOftKYiIyICJWoAOHjyIjz76CElJScjJycGuXbswduxYAEBNTQ3eeust/Prrr7h8+TIUCgWCg4PxwQcfQKlUNrncVatW4aOPPkJubi78/PzwxRdfICAgoB3WSL+pKmuQklmsLTspmTehqqy/d8fL0QoDPewxwNMe/h726OVqw9tSEBGRURG1AJWXl8PPzw8zZ87E008/Xee1iooKJCcn4+2334afnx9u3ryJl19+GWPGjEFiYmKjy9y+fTsiIyOxevVqBAYGYsWKFRg5ciQuXryITp06tfUq6Q2NRsDlgnIka/fu3ERqfpn2ZqN3dDCTwc9dcXvvjoc9BnjYwbGjhTihiYiI2olEEP7+kSgOiURSZw9QQ44fP46AgABkZGTAw8OjwTGBgYEYPHgwVq5cCQDQaDRwd3fH/Pnz8frrrzcri0qlgkKhQElJCWxtbVu8LmIorazByWsl2rJzIrMYJbdq6o3zcLDCQA87DPS8XXh8XG0g5/V5iIjICLTk89ugzgEqKSmBRCKBnZ1dg69XV1cjKSkJixYt0k6TSqUIDg7GsWPHGl1uVVUVqqqqtM9VKpXOMrcFQRBwpaAcyXcOZ2XcxMW80np7dyzNpOjX+U7ZscMAD3s423DvDhERkcEUoMrKSixcuBChoaGNtrqCggKo1Wq4uLjUme7i4oILFy40uuxly5Zh6dKlOs2rS+VVtTh57f/P3TmReRM3K+rv3eli3+G/h7Jul5773Gx59WUiIqIGGEQBqqmpwcSJEyEIAr788kudL3/RokWIjIzUPlepVHB3d9f5+zSHIAjIKKzQHspKzijGhVwVNH/bu2Mul6JfZ4X2UNZADzveY4uIiKiZ9L4A3Sk/GRkZ+OOPP5o8pufk5ASZTIa8vLw60/Py8uDq6trofBYWFrCwEOfQUEV1rfbcnRP/PXensLy63rjOdh0wwOPOV9Ht0dvNFuZy7t0hIiJqDb0uQHfKT2pqKg4cOABHR8cmx5ubm8Pf3x+xsbHak6k1Gg1iY2Mxb968dkjcNEEQcK3o1v/v3cm8ifM5pdo7pt9hLpOiT2dbbdkZ6GEPVwX37hAREemKqAWorKwMaWlp2udXrlxBSkoKHBwc4ObmhmeeeQbJycn4+eefoVarkZubCwBwcHCAufntC/EFBQVh3Lhx2oITGRmJ8PBwDBo0CAEBAVixYgXKy8sRERHR/iv4N+/9ch5fH75Sb7qbwlL7FfSBnvbwVdrCQi4TISEREZFpELUAJSYmYvjw4drnd87DCQ8Px5IlS/Djjz8CAPr3719nvgMHDmDYsGEAgPT0dBQUFGhfmzRpEm7cuIHFixcjNzcX/fv3x549e+qdGC2G2yclS+CrVGivqjzQwx5Kuw5iRyMiIjIpenMdIH3SVtcBqqxRAwAszbh3h4iISNeM9jpAho7Fh4iISD/wa0RERERkcliAiIiIyOSwABEREZHJYQEiIiIik8MCRERERCaHBYiIiIhMDgsQERERmRwWICIiIjI5LEBERERkcliAiIiIyOSwABEREZHJYQEiIiIik8MCRERERCaHd4NvgCAIAACVSiVyEiIiImquO5/bdz7Hm8IC1IDS0lIAgLu7u8hJiIiIqKVKS0uhUCiaHCMRmlOTTIxGo0F2djZsbGwgkUh0umyVSgV3d3dcu3YNtra2Ol02tQy3hf7gttAf3Bb6g9ui5QRBQGlpKZRKJaTSps/y4R6gBkilUnTp0qVN38PW1pZ/ofUEt4X+4LbQH9wW+oPbomXutufnDp4ETURERCaHBYiIiIhMDgtQO7OwsEBUVBQsLCzEjmLyuC30B7eF/uC20B/cFm2LJ0ETERGRyeEeICIiIjI5LEBERERkcliAiIiIyOSwABEREZHJYQG6R6tWrYKXlxcsLS0RGBiIhISEJsd/99138PHxgaWlJfr27Ytff/21zuuCIGDx4sVwc3NDhw4dEBwcjNTU1LZcBaOh622xc+dOjBgxAo6OjpBIJEhJSWnD9MZFl9uipqYGCxcuRN++fWFtbQ2lUonp06cjOzu7rVfDKOj652LJkiXw8fGBtbU17O3tERwcjPj4+LZcBaOi6+3xv+bOnQuJRIIVK1boOLWREqjVvvnmG8Hc3FxYt26dcPbsWWH27NmCnZ2dkJeX1+D4I0eOCDKZTPjwww+Fc+fOCW+99ZZgZmYmnD59Wjvmgw8+EBQKhbB7927h5MmTwpgxY4SuXbsKt27daq/VMkhtsS02btwoLF26VFi7dq0AQDhx4kQ7rY1h0/W2KC4uFoKDg4Xt27cLFy5cEI4dOyYEBAQI/v7+7blaBqktfi62bNki7Nu3T0hPTxfOnDkjzJo1S7C1tRXy8/Pba7UMVltsjzt27twp+Pn5CUqlUvjss8/aeE2MAwvQPQgICBBefPFF7XO1Wi0olUph2bJlDY6fOHGi8MQTT9SZFhgYKDz33HOCIAiCRqMRXF1dhY8++kj7enFxsWBhYSFs27atDdbAeOh6W/yvK1eusAC1QFtuizsSEhIEAEJGRoZuQhup9tgWJSUlAgBh//79ugltxNpqe1y/fl3o3LmzcObMGcHT05MFqJl4CKyVqqurkZSUhODgYO00qVSK4OBgHDt2rMF5jh07Vmc8AIwcOVI7/sqVK8jNza0zRqFQIDAwsNFlUttsC2qd9toWJSUlkEgksLOz00luY9Qe26K6uhpr1qyBQqGAn5+f7sIbobbaHhqNBmFhYViwYAF8fX3bJryRYgFqpYKCAqjVari4uNSZ7uLigtzc3Abnyc3NbXL8nf+2ZJnUNtuCWqc9tkVlZSUWLlyI0NBQ3iCyCW25LX7++Wd07NgRlpaW+Oyzz7Bv3z44OTnpdgWMTFttj+XLl0Mul+Oll17SfWgjxwJERAajpqYGEydOhCAI+PLLL8WOY7KGDx+OlJQUHD16FCEhIZg4cSLy8/PFjmVykpKS8PnnnyMmJgYSiUTsOAaHBaiVnJycIJPJkJeXV2d6Xl4eXF1dG5zH1dW1yfF3/tuSZVLbbAtqnbbcFnfKT0ZGBvbt28e9P3fRltvC2toaPXr0wJAhQxAdHQ25XI7o6GjdroCRaYvtcejQIeTn58PDwwNyuRxyuRwZGRl49dVX4eXl1SbrYUxYgFrJ3Nwc/v7+iI2N1U7TaDSIjY3F0KFDG5xn6NChdcYDwL59+7Tju3btCldX1zpjVCoV4uPjG10mtc22oNZpq21xp/ykpqZi//79cHR0bJsVMCLt+XOh0WhQVVV176GNWFtsj7CwMJw6dQopKSnah1KpxIIFC7B37962WxljIfZZ2Ibsm2++ESwsLISYmBjh3Llzwpw5cwQ7OzshNzdXEARBCAsLE15//XXt+CNHjghyuVz4+OOPhfPnzwtRUVENfg3ezs5O+OGHH4RTp04JTz31FL8G3wxtsS0KCwuFEydOCL/88osAQPjmm2+EEydOCDk5Oe2+foZE19uiurpaGDNmjNClSxchJSVFyMnJ0T6qqqpEWUdDoettUVZWJixatEg4duyYcPXqVSExMVGIiIgQLCwshDNnzoiyjoakLX5P/R2/BdZ8LED36IsvvhA8PDwEc3NzISAgQIiLi9O+9sgjjwjh4eF1xn/77beCt7e3YG5uLvj6+gq//PJLndc1Go3w9ttvCy4uLoKFhYUQFBQkXLx4sT1WxeDpelusX79eAFDvERUV1Q5rY9h0uS3uXIagoceBAwfaaY0Mly63xa1bt4Rx48YJSqVSMDc3F9zc3IQxY8YICQkJ7bU6Bk/Xv6f+jgWo+SSCIAji7HsiIiIiEgfPASIiIiKTwwJEREREJocFiIiIiEwOCxARERGZHBYgIiIiMjksQERERGRyWICIiIjI5LAAEZHRmTFjBsaOHSt2DCLSY3KxAxARtcTd7nodFRWFzz//HLzGKxE1hQWIiAxKTk6O9v+3b9+OxYsX4+LFi9ppHTt2RMeOHcWIRkQGhIfAiMiguLq6ah8KhQISiaTOtI4dO9Y7BDZs2DDMnz8fr7zyCuzt7eHi4oK1a9eivLwcERERsLGxQY8ePfDbb7/Vea8zZ85g1KhR6NixI1xcXBAWFoaCgoJ2XmMiagssQERkEjZs2AAnJyckJCRg/vz5eP755zFhwgTcf//9SE5OxogRIxAWFoaKigoAQHFxMR599FEMGDAAiYmJ2LNnD/Ly8jBx4kSR14SIdIEFiIhMgp+fH9566y307NkTixYtgqWlJZycnDB79mz07NkTixcvRmFhIU6dOgUAWLlyJQYMGID3338fPj4+GDBgANatW4cDBw7g0qVLIq8NEd0rngNERCahX79+2v+XyWRwdHRE3759tdNcXFwAAPn5+QCAkydP4sCBAw2eT5Seng5vb+82TkxEbYkFiIhMgpmZWZ3nEomkzrQ73y7TaDQAgLKyMowePRrLly+vtyw3N7c2TEpE7YEFiIioAQMHDsSOHTvg5eUFuZy/KomMDc8BIiJqwIsvvoiioiKEhobi+PHjSE9Px969exEREQG1Wi12PCK6RyxAREQNUCqVOHLkCNRqNUaMGIG+ffvilVdegZ2dHaRS/uokMnQSgZdLJSIiIhPDf8YQERGRyWEBIiIiIpPDAkREREQmhwWIiIiITA4LEBEREZkcFiAiIiIyOSxAREREZHJYgIiIiMjksAARERGRyWEBIiIiIpPDAkREREQmhwWIiIiITM7/Aaiw+efJLopiAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXwFJREFUeJzt3XtYFGX/BvB7WWA5LyKyCIIr4llA5JSZoUmS+ZqWaZkHwGNK9jPeLHnfQu2Ep4wSX01TsbS0zMqsNCWtNBUF8YTiCQRBQFSWkyywO78/yE0CDBAY2L0/17VX7OwzM99hEO5mnnkeiSAIAoiIiIgMiJHYBRARERG1NAYgIiIiMjgMQERERGRwGICIiIjI4DAAERERkcFhACIiIiKDwwBEREREBocBiIiIiAwOAxAREREZHAYgImoR6enpkEgkiIuL0y1buHAhJBJJo7Y3ePBgDB48uGmKIyKDwwBEZMDi4uIgkUh0L2NjYzg7OyM0NBRZWVlil9fqlJaWYuHChThw4IDYpRDRAzIWuwAiEt9bb72FLl26oKysDEeOHEFcXBwOHjyIM2fOwMzMrNn2+8Ybb2D+/PnNtv2mVlpaikWLFgEArz4RtXEMQESE4cOHw9fXFwAwbdo02NvbY8mSJdi5cyfGjRvXbPs1NjaGsbH+/hoqKSmBpaWl2GUQUS14C4yIahg0aBAA4PLly7pl5eXliIqKgo+PD+RyOSwtLTFo0CDs37+/xvoFBQUIDQ2FXC6Hra0tQkJCUFBQUKNdbX2ANm7ciMceewwODg6QyWTo3bs3Vq9e/UDHs3nzZvj4+MDc3Bx2dnZ4/vnnkZmZWW2fEokEGzZsqLbee++9B4lEgh9//BHp6eno0KEDAGDRokW624YLFy4EAISGhsLKygqXL1/Gk08+CWtra0yYMAEAoNVqERMTgz59+sDMzAwKhQIzZ87E7du3q+1PqVTiX//6Fw4cOABfX1+Ym5vDw8NDd8ttx44d8PDwgJmZGXx8fHDixIlq6586dQqhoaFwc3ODmZkZHB0dMWXKFNy8efOBvn9E+kh//9eLiBotPT0dANCuXTvdssLCQnzyyScYP348pk+fjqKiIqxfvx7BwcFISEhAv379AACCIGDUqFE4ePAgXnzxRfTq1QvffPMNQkJC6rXv1atXo0+fPnjqqadgbGyM77//HrNnz4ZWq0V4eHiDj+Xdd9/Fm2++iXHjxmHatGm4ceMGVq5ciUcffRQnTpyAra0twsLCsGPHDkRERODxxx+Hi4sLTp8+jUWLFmHq1Kl48sknUVJSgtWrV2PWrFl4+umn8cwzzwAAPD09dfuqrKxEcHAwHnnkESxfvhwWFhYAgJkzZyIuLg5hYWF4+eWXkZaWhtjYWJw4cQKHDh2CiYmJbhuXLl3CCy+8gJkzZ2LixIlYvnw5Ro4ciTVr1uA///kPZs+eDQCIjo7GuHHjkJqaCiOjqv+X3bt3L65cuYKwsDA4Ojri7NmzWLt2Lc6ePYsjR440usM5kV4SiMhgbdy4UQAg7Nu3T7hx44aQmZkpbN++XejQoYMgk8mEzMxMXdvKykpBrVZXW//27duCQqEQpkyZolv27bffCgCEpUuXVlt30KBBAgBh48aNuuULFiwQ/v5rqLS0tEadwcHBgpubW7VlgYGBQmBg4H2PLz09XZBKpcK7775bbfnp06cFY2PjasuvX78u2NnZCY8//rigVqsFb29vwdXVVVCpVLo2N27cEAAICxYsqLGvkJAQAYAwf/78ast///13AYCwZcuWast3795dY3nnzp0FAMIff/yhW7Znzx4BgGBubi5cvXpVt/zjjz8WAAj79+/XLavte/fFF18IAITffvutju8SkWHiLTAiQlBQEDp06AAXFxc8++yzsLS0xM6dO9GpUyddG6lUClNTUwBVt3Ru3bqFyspK+Pr6IikpSdfuxx9/hLGxMWbNmlVt3Tlz5tSrFnNzc93XKpUK+fn5CAwMxJUrV6BSqRp0XDt27IBWq8W4ceOQn5+vezk6OqJbt27Vbt85Ojpi1apV2Lt3LwYNGoTk5GRs2LABNjY2DdrnvccNAF999RXkcjkef/zxajX4+PjAysqqxi3E3r17Y8CAAbr3AQEBAIDHHnsMrq6uNZZfuXJFt+ze711ZWRny8/Px0EMPAUC1c0REvAVGRABWrVqF7t27Q6VSYcOGDfjtt98gk8lqtNu0aRPef/99nD9/HhUVFbrlXbp00X199epVdOzYEVZWVtXW7dGjR71qOXToEBYsWIDDhw+jtLS02mcqlQpyubzex3Xx4kUIgoBu3brV+vm9t54A4Pnnn8fmzZvxww8/YMaMGRg6dGi99wVUdeq+NzTerUGlUsHBwaHWdfLy8qq9vzfkANAdr4uLS63L7+1HdOvWLSxatAhbt26tsd2GhkcifccARETw9/fXPQU2evRoPPLII3jhhReQmpqqCzKbN29GaGgoRo8ejXnz5sHBwQFSqRTR0dHVOks/iMuXL2Po0KHo2bMnVqxYARcXF5iamuLHH3/EBx98AK1W26DtabVaSCQS/PTTT5BKpTU+/3tIu3nzJo4fPw4ASElJgVar1fWvqQ+ZTFajvVarhYODA7Zs2VLrOnc7Vt9VW533Wy4Igu7rcePG4Y8//sC8efPQr18/WFlZQavV4oknnmjw945I3zEAEVE1d0PNkCFDEBsbqxunZ/v27XBzc8OOHTuqdaZdsGBBtfU7d+6M+Ph4FBcXVwsYqamp/7jv77//Hmq1Gjt37qx2JaS2J83qo2vXrhAEAV26dEH37t3/sX14eDiKiooQHR2NyMhIxMTEICIiQvd5YzoRd+3aFfv27cPAgQOr3aJqardv30Z8fDwWLVqEqKgo3fKLFy822z6J2jL2ASKiGgYPHgx/f3/ExMSgrKwMwF9XIO694nD06FEcPny42rpPPvkkKisrqz26rtFosHLlyn/cb237UKlU2LhxY6OO45lnnoFUKsWiRYuqbfPuPu59PHz79u3Ytm0bFi9ejPnz5+P555/HG2+8gQsXLuja3H2qq7ZH+usybtw4aDQavP322zU+q6ysbNC27qe27x0AxMTENMn2ifQNrwARUa3mzZuHsWPHIi4uDi+++CL+9a9/YceOHXj66acxYsQIpKWlYc2aNejduzeKi4t1640cORIDBw7E/PnzkZ6ejt69e2PHjh316oMybNgwmJqaYuTIkZg5cyaKi4uxbt06ODg44Pr16w0+hq5du+Kdd95BZGQk0tPTMXr0aFhbWyMtLQ3ffPMNZsyYgVdffRV5eXmYNWsWhgwZgpdeegkAEBsbi/379yM0NBQHDx6EkZERzM3N0bt3b2zbtg3du3eHnZ0d+vbti759+9ZZQ2BgIGbOnIno6GgkJydj2LBhMDExwcWLF/HVV1/hww8/xLPPPtvgY/s7GxsbPProo1i6dCkqKirg7OyMn3/+GWlpaQ+8bSK9JN4DaEQktruPwR87dqzGZxqNRujatavQtWtXobKyUtBqtcJ7770ndO7cWZDJZIK3t7ewa9cuISQkROjcuXO1dW/evClMmjRJsLGxEeRyuTBp0iThxIkT9XoMfufOnYKnp6dgZmYmKJVKYcmSJcKGDRsEAEJaWpquXX0eg7/r66+/Fh555BHB0tJSsLS0FHr27CmEh4cLqampgiAIwjPPPCNYW1sL6enp1db77rvvBADCkiVLdMv++OMPwcfHRzA1Na32SHxISIhgaWlZZw1r164VfHx8BHNzc8Ha2lrw8PAQXnvtNSE7O1vXpnPnzsKIESNqrAtACA8Pr7YsLS1NACAsW7ZMt+zatWvC008/Ldja2gpyuVwYO3askJ2dXeej+0SGTCIIf7teSkRERKTn2AeIiIiIDA4DEBERERkcBiAiIiIyOAxAREREZHAYgIiIiMjgMAARERGRweFAiLXQarXIzs6GtbV1o4a+JyIiopYnCAKKiorg5OT0j/P4MQDVIjs7u8bMy0RERNQ2ZGZmolOnTvdtwwBUC2trawBV30AbGxuRqyEiIqL6KCwshIuLi+7v+P0wANXi7m0vGxsbBiAiIqI2pj7dV9gJmoiIiAwOAxAREREZHAYgIiIiMjjsA/QANBoNKioqxC6DWhkTExNIpVKxyyAiovtgAGoEQRCQk5ODgoICsUuhVsrW1haOjo4cR4qIqJViAGqEu+HHwcEBFhYW/CNHOoIgoLS0FHl5eQCAjh07ilwRERHVhgGogTQajS78tG/fXuxyqBUyNzcHAOTl5cHBwYG3w4iIWiF2gm6gu31+LCwsRK6EWrO7Px/sI0ZE1DoxADUSb3vR/fDng4iodWMAIiIiIoPDAER1Gjx4MObOndvs21UqlYiJiWny/RAREdWFAciAhIaGQiKR4MUXX6zxWXh4OCQSCUJDQ3XLduzYgbfffrvZ6zp27BhmzJhRr7YMS0RE1BQYgAyMi4sLtm7dijt37uiWlZWV4fPPP4erq2u1tnZ2dvWaUfdBdejQgZ3KiYgMSPy5XGi1gqg1MAAZmP79+8PFxQU7duzQLduxYwdcXV3h7e1drW1tt6ree+89TJkyBdbW1nB1dcXatWvvu7+SkhJMnjwZVlZW6NixI95///0abe69qiMIAhYuXAhXV1fIZDI4OTnh5Zdf1tVz9epVvPLKK5BIJLqOxjdv3sT48ePh7OwMCwsLeHh44IsvvqhxLC+//DJee+012NnZwdHREQsXLqzWpqCgADNnzoRCoYCZmRn69u2LXbt26T4/ePAgBg0aBHNzc7i4uODll19GSUnJfY+fiIiq+/xoBqZuOo5ZWxJFDUEMQE1AEASUlle2+EsQGveDM2XKFGzcuFH3fsOGDQgLC6vXuu+//z58fX1x4sQJzJ49G7NmzUJqamqd7efNm4dff/0V3333HX7++WccOHAASUlJdbb/+uuv8cEHH+Djjz/GxYsX8e2338LDwwNAVVDr1KkT3nrrLVy/fh3Xr18HUHUFy8fHBz/88APOnDmDGTNmYNKkSUhISKi27U2bNsHS0hJHjx7F0qVL8dZbb2Hv3r0AAK1Wi+HDh+PQoUPYvHkzUlJSsHjxYt0YPpcvX8YTTzyBMWPG4NSpU9i2bRsOHjyIl156qV7fNyIiAo5euYmo784AADyc5TAyEu+JWdEHQly1ahWWLVuGnJwceHl5YeXKlfD396+17dmzZxEVFYXExERcvXoVH3zwQY1OuhqNBgsXLsTmzZuRk5MDJycnhIaG4o033mi2R5PvVGjQO2pPs2z7flLeCoaFacNP4cSJExEZGYmrV68CAA4dOoStW7fiwIED/7juk08+idmzZwMAXn/9dXzwwQfYv38/evToUaNtcXEx1q9fj82bN2Po0KEAqkJIp06d6tx+RkYGHB0dERQUBBMTE7i6uup+Huzs7CCVSmFtbQ1HR0fdOs7Oznj11Vd17+fMmYM9e/bgyy+/rPaz5OnpiQULFgAAunXrhtjYWMTHx+Pxxx/Hvn37kJCQgHPnzqF79+4AADc3N9260dHRmDBhgu7nrVu3bvjoo48QGBiI1atXw8zM7B+/d0REhuza7VLM2pKESq2AEZ4dET7EXdR6RL0CtG3bNkRERGDBggVISkqCl5cXgoODddMI/F1paSnc3NywePHian8A77VkyRKsXr0asbGxOHfuHJYsWYKlS5di5cqVzXkobUqHDh0wYsQIxMXFYePGjRgxYgTs7e3rta6np6fua4lEAkdHxzrP1+XLl1FeXo6AgADdMjs7u1rD0l1jx47FnTt34ObmhunTp+Obb75BZWXlfWvSaDR4++234eHhATs7O1hZWWHPnj3IyMios3agapqKu7UnJyejU6dOuvDzdydPnkRcXBysrKx0r+DgYGi1WqSlpd23PiIiQ1daXonpnybiVkk5+jjZYNmznqKPlybqFaAVK1Zg+vTputsva9aswQ8//IANGzZg/vz5Ndr7+fnBz88PAGr9HAD++OMPjBo1CiNGjABQ1b/kiy++qHE7pCmZm0iR8lZws23/fvttrClTpuhu36xatare65mYmFR7L5FIoNVqG13H37m4uCA1NRX79u3D3r17MXv2bCxbtgy//vprjX3ftWzZMnz44YeIiYmBh4cHLC0tMXfuXJSXl9e79rvTV9SluLgYM2fO1PVHutffO48TEdFftFoB//7yJM5dL4S9lSnWTvZt1N2LpiZaBeXl5UhMTERkZKRumZGREYKCgnD48OFGb/fhhx/G2rVrceHCBXTv3h0nT57EwYMHsWLFijrXUavVUKvVuveFhYUN2qdEImkVJ7MhnnjiCZSXl0MikSA4uHnCW9euXWFiYoKjR4/qQsLt27dx4cIFBAYG1rmeubk5Ro4ciZEjRyI8PBw9e/bE6dOn0b9/f5iamkKj0VRrf+jQIYwaNQoTJ04EUNWf58KFC+jdu3e9a/X09MS1a9d0Pzd/179/f6SkpMDdXdxLtkREbc3KXy7hpzM5MJFKsGaiD5xt7/8/nC1FtL/a+fn50Gg0UCgU1ZYrFAqcP3++0dudP38+CgsL0bNnT0ilUmg0Grz77ruYMGFCnetER0dj0aJFjd5nWySVSnHu3Dnd183BysoKU6dOxbx589C+fXs4ODjgv//9L4yM6r7zGhcXB41Gg4CAAFhYWGDz5s0wNzdH586dAVRd0fvtt9/w/PPPQyaTwd7eHt26dcP27dvxxx9/oF27dlixYgVyc3MbFIACAwPx6KOPYsyYMVixYgXc3d1x/vx5SCQSPPHEE3j99dfx0EMP4aWXXsK0adNgaWmJlJQU7N27F7GxsQ/8vSIi0ke7z+Tgg30XAADvjO4LX6WdyBX9Re+eAvvyyy+xZcsWfP7550hKSsKmTZuwfPlybNq0qc51IiMjoVKpdK/MzMwWrFg8NjY2sLGxadZ9LFu2DIMGDcLIkSMRFBSERx55BD4+PnW2t7W1xbp16zBw4EB4enpi3759+P7779G+fXsAwFtvvYX09HR07doVHTp0AAC88cYb6N+/P4KDgzF48GA4Ojpi9OjRDa7166+/hp+fH8aPH4/evXvjtdde011t8vT0xK+//ooLFy5g0KBB8Pb2RlRUFJycnBr+TSEiMgDnrhci4stkAEDow0o859e6ugtIhMY+S/2AysvLYWFhge3bt1f7YxUSEoKCggJ89913911fqVRi7ty5NZ4Cc3Fxwfz58xEeHq5b9s4772Dz5s31vrJUWFgIuVwOlUpVIyCUlZUhLS0NXbp04ZM/VCf+nBCRIbtVUo6nYg/i2u07GOjeHpvC/GEsbf5rLvf7+/13ol0BMjU1hY+PD+Lj43XLtFot4uPjMWDAgEZvt7S0tMYtFqlU2qQddYmIiKh2FRotZm1OxLXbd9C5vQVix/dvkfDTUKL23I2IiEBISAh8fX3h7++PmJgYlJSU6J4Kmzx5MpydnREdHQ2g6qpRSkqK7uusrCwkJyfDyspK1zl15MiRePfdd+Hq6oo+ffrgxIkTWLFiBaZMmSLOQRIRERmQRd+fxdG0W7CSGWPdZF+0szQVu6RaiRqAnnvuOdy4cQNRUVHIyclBv379sHv3bl3H6IyMjGpXc7Kzs6tN17B8+XIsX74cgYGBukH8Vq5ciTfffBOzZ89GXl4enJycMHPmTERFRbXosRERERmazUeuYvORDEgkQMxz/dBd0fzzSTaWaH2AWjP2AaIHxZ8TIjI0R67cxMRPjqJSK2BecA9RRnpuE32A2jrmRrof/nwQkSHJvFWK2X9OczHSywmzB3cVu6R/xADUQHdHEy4tLRW5EmrN7v581DV6NRGRvihRV2L6p8dxq6QcfZ1tsHSM+NNc1EfbGr64FZBKpbC1tdXNIWVhYdEmTjS1DEEQUFpairy8PNja2jbbIJNERK2BVisg4stknM8pgr2VDGsn+cLctG383mMAaoS7E7HWNQkoka2tbZ0T9hIR6YsP4y9iz9lcmEqN8PEkHzi1kmku6oMBqBEkEgk6duwIBwcHVFRUiF0OtTImJia88kNEeu+n09fxYfxFAMA7T/eFT+d2IlfUMAxAD0AqlfIPHRERGZyU7EJEfHkSADBlYBeM83URuaKGYydoIiIiqrebxWpM//Q47lRoMKibPf7zZE+xS2oUBiAiIiKql/JKLWZtSUJWwR0oW/E0F/XRNqsmIiKiFiUIAhbsPIuEP6e5+CTEF3KLtjvUBwMQERER/aPNR67ii4SqaS4+Gt8P7g6td5qL+mAAIiIiovv643I+Fn1fNRn5a8E98VhPhcgVPTgGICIiIqpTxs1ShP85zcWofk54MdBN7JKaBAMQERER1ar4z2kubpdWwLOTHEvayDQX9cEARERERDVotQIitiUjNbcIHayrprkwM9Gfse8YgIiIiKiGmH0X8HPKX9NcOMrNxC6pSTEAERERUTU/nLqOj365BAB47xkP9HdtW9Nc1AcDEBEREemcyVLh318lAwCmPdIFz/p0EregZsIARERERACAG0VqzPj0OMoqtHi0ewfMH942p7moDwYgIiIiqprmYnMislVlcLO3xMrx3m12mov60N8jIyIionoRBAFR353B8au3YS0zxroQX8jN2+40F/XBAERERGTgPj18FVuPZVZNc/GCN7p2sBK7pGbHAERERGTADl3Kx1u7qqa5iBzeE0N6OIhcUctgACIiIjJQV2+WIPzzJGi0Ap72dsb0QfoxzUV9MAAREREZoKKyCkzbdBwFpRXwcrFF9DMeejPNRX0wABERERkYrVbAK9uScTGvGA7WMqyd5KNX01zUBwMQERGRgVmx9wL2ncuDqbER1k72hcJGv6a5qA8GICIiIgPy/clsxO6vmuZi8TMe6OdiK25BImEAIiIiMhBnslSYt/0kAGDmo254pr9+TnNRHwxAREREBuBGkRrT/5zmYnCPDnjtCf2d5qI+GICIiIj0nLpSgxc3J+K6qgxuHSzx4fPekBoZzhNftWkVAWjVqlVQKpUwMzNDQEAAEhIS6mx79uxZjBkzBkqlEhKJBDExMTXa3P3s76/w8PBmPAoiIqLWRxAEvPntGSRevQ1rM2N8Mln/p7moD9ED0LZt2xAREYEFCxYgKSkJXl5eCA4ORl5eXq3tS0tL4ebmhsWLF8PR0bHWNseOHcP169d1r7179wIAxo4d22zHQURE1BrF/ZGOL49fg5EEiH2hP9wMYJqL+hA9AK1YsQLTp09HWFgYevfujTVr1sDCwgIbNmyotb2fnx+WLVuG559/HjKZrNY2HTp0gKOjo+61a9cudO3aFYGBgc15KERERK3KwYv5eOeHcwCA/zzZC4HdO4hcUeshagAqLy9HYmIigoKCdMuMjIwQFBSEw4cPN9k+Nm/ejClTphjUCJdERGTY0vP/mubimf7OmPpIF7FLalWMxdx5fn4+NBoNFApFteUKhQLnz59vkn18++23KCgoQGhoaJ1t1Go11Gq17n1hYWGT7JuIiEgMRWUVmPbpcajuVKCfiy3ee9qwprmoD9FvgTW39evXY/jw4XBycqqzTXR0NORyue7l4uLSghUSERE1HY1WwNytybiUVwyFjWFOc1EfogYge3t7SKVS5ObmVluem5tbZwfnhrh69Sr27duHadOm3bddZGQkVCqV7pWZmfnA+yYiIhLD+z+nIv78n9NcTPKFgwFOc1EfogYgU1NT+Pj4ID4+XrdMq9UiPj4eAwYMeODtb9y4EQ4ODhgxYsR928lkMtjY2FR7ERERtTXfJWfhfwcuAwCWjvGEl4FOc1EfovYBAoCIiAiEhITA19cX/v7+iImJQUlJCcLCwgAAkydPhrOzM6KjowFUdWpOSUnRfZ2VlYXk5GRYWVnB3d1dt12tVouNGzciJCQExsaiHyYREVGzOnWtAK9tPwUAeDGwK0Z7O4tcUesmejJ47rnncOPGDURFRSEnJwf9+vXD7t27dR2jMzIyYGT014Wq7OxseHt7694vX74cy5cvR2BgIA4cOKBbvm/fPmRkZGDKlCktdixERERiyCsqw4xPE6Gu1OKxng6YF9xD7JJaPYkgCILYRbQ2hYWFkMvlUKlUvB1GREStmrpSg+fXHsGJjAJ07WCJb8IHwsbMMEd6bsjfb71/CoyIiEhfCYKA/35zBicyCmBjZoxPQvwMNvw0FAMQERFRG7XhUDq2J/41zUUXe0uxS2ozGICIiIjaoN8u3MC7P1Q9FPTfEb3xKKe5aBAGICIiojYmLb8EL32eBK0AjPXphCkDlWKX1OYwABEREbUhhWUVmLbpGArLKtHf1RbvPN2X01w0AgMQERFRG6HRCvi/L07g8o0SdJSbYc0kH8iMOc1FYzAAERERtRFL95zH/tQbkN2d5sKa01w0FgMQERFRG7Aj6Ro+/vUKAGDps57w6CQXuaK2jQGIiIiolfvjUj5e/7pqmovZg7tiVD9Oc/GgGICIiIhasdScIsz8LBEVGgH/8uyIV4dxmoumwABERETUSuWoyhC6MQFF6kr4K+2wfKwXjIz4xFdTYAAiIiJqhYrVlQiLO4brqjK4dbDE2sk+MDPhE19NhQGIiIiolanQaDF7SxLOXS+EvZUpNoX5w9bCVOyy9AoDEBERUStSNcHpafx24QbMTaTYEOoHFzsLscvSOwxARERErcjKXy7hy+N3Jzj1hmcnW7FL0ksMQERERK3E9sRrWLH3AgDgrVF9MbSXQuSK9BcDEBERUStw6FI+5v851s+LgV0x8aHOIlek3xiAiIiIRHY+pxAvfpaISq2AkV5OeC2YY/00NwYgIiIiEV1X3UHohmNVY/10scPysZ4c66cFMAARERGJpKisAmEbjyGnsAzuDlZYN8mXs7u3EAYgIiIiEdwd6+d8ThHsrWTYGOoHuYWJ2GUZDAYgIiKiFiYIAiJ3nMbvF/NhbiLFRo710+IYgIiIiFrYh/EXsT2xaqyfVRO84dFJLnZJBocBiIiIqAV9dTwTMfsuAgDeGe2Bx3pyrB8xMAARERG1kN8v3kDkjtMAgNmDu+KFAFeRKzJcDEBEREQt4Nz1QszanIRKrYBR/Zzw6jCO9SMmBiAiIqJmdl11B2Ebj6FYXYmALnZY+izH+hEbAxAREVEzKrxnrJ9uDlZYy7F+WgUGICIiomZSXqnF7M1VY/10sJZhYxjH+mktGICIiIiawd2xfg5eyoeFadVYP53acayf1oIBiIiIqBl8sO8ivk66BqmRBKsm9EdfZ47105qIHoBWrVoFpVIJMzMzBAQEICEhoc62Z8+exZgxY6BUKiGRSBATE1Nru6ysLEycOBHt27eHubk5PDw8cPz48WY6AiIiouq+PJaJj+LvjvXTF0N6OIhcEf2dqAFo27ZtiIiIwIIFC5CUlAQvLy8EBwcjLy+v1valpaVwc3PD4sWL4ejoWGub27dvY+DAgTAxMcFPP/2ElJQUvP/++2jXrl1zHgoREREA4NcLNxD5TdVYPy8Nccd4f4710xpJBEEQxNp5QEAA/Pz8EBsbCwDQarVwcXHBnDlzMH/+/Puuq1QqMXfuXMydO7fa8vnz5+PQoUP4/fffG11XYWEh5HI5VCoVbGxsGr0dIiIyLGezVRi35jBKyjV42tsZK8Z5QSLh4+4tpSF/v0W7AlReXo7ExEQEBQX9VYyREYKCgnD48OFGb3fnzp3w9fXF2LFj4eDgAG9vb6xbt+6+66jVahQWFlZ7ERERNUR2wR1MiTuGknINBri1x5Ixngw/rZhoASg/Px8ajQYKRfU5UBQKBXJychq93StXrmD16tXo1q0b9uzZg1mzZuHll1/Gpk2b6lwnOjoacrlc93JxcWn0/omIyPCo7lQgdGMCcgvV6K6wwppJPjA1Fr2bLd2H3p0drVaL/v3747333oO3tzdmzJiB6dOnY82aNXWuExkZCZVKpXtlZma2YMVERNSWlVdqMWtzIi7kFsPBWoaNYf6Qm3Osn9ZOtABkb28PqVSK3Nzcastzc3Pr7OBcHx07dkTv3r2rLevVqxcyMjLqXEcmk8HGxqbai4iI6J8IgoD5X5/CH5dvwtJUig2hfnC2NRe7LKoH0QKQqakpfHx8EB8fr1um1WoRHx+PAQMGNHq7AwcORGpqarVlFy5cQOfOnRu9TSIiotqs2HsBO05kcayfNshYzJ1HREQgJCQEvr6+8Pf3R0xMDEpKShAWFgYAmDx5MpydnREdHQ2gquN0SkqK7uusrCwkJyfDysoK7u7uAIBXXnkFDz/8MN577z2MGzcOCQkJWLt2LdauXSvOQRIRkV7ampCBlb9cAgC8O7ovBnOsnzZF1MfgASA2NhbLli1DTk4O+vXrh48++ggBAQEAgMGDB0OpVCIuLg4AkJ6eji5dutTYRmBgIA4cOKB7v2vXLkRGRuLixYvo0qULIiIiMH369HrXxMfgiYjofg6k5mHqpuPQaAXMecwd/x7WQ+ySCA37+y16AGqNGICIiKguZ7JUeO7jqrF+nvF2xvsc66fVaBPjABEREbU1WfeM9fNw1/ZYzLF+2iwGICIionpQ3alA2MYE5BWp0UNhzbF+2jieOSIion+grtRg5mfHcSG3GAobGTaG+cHGjGP9tGUMQERERPchCAJe334KR67cgpXMGBtD/eHEsX7aPAYgIiKi+3j/5wv4NjkbUiMJ/jehP3o78eEYfcAAREREVIfPj2Ygdn/VWD/RT3vg0e4dRK6ImgoDEBERUS32n8/Dm9+dAQC8PLQbxvlxomx9wgBERET0N2eyVAj/PAkarYAx/TvhlaBuYpdETYwBiIiI6B7XbpciLO4YSss1eMTdHtHPeHCsHz3EAERERPQnVWkFQjcew40iNXo6WuN/E/tzrB89xbNKRESEqrF+Znx2HJfyiuFoY8axfvQcAxARERk8rVbAvK9O4Wjan2P9hPmho5xj/egzBiAiIjJ4y39Oxc6T2TA2kmD1xP7o1ZFj/eg7BiAiIjJoW45exf8OXAYARD/jgUHdONaPIWAAIiIig/XL+Vy8+W3VWD9zg7phrC/H+jEUDEBERGSQTl0rQPiWE9AKwFifTvi/oRzrx5AwABERkcHJvFWKKXHHcadCg0Hd7PEex/oxOAxARERkUKrG+klAfvGfY/1M6A8TKf8cGhqecSIiMhjqSg2mf3Ycl2+UoKPcDHFh/rDmWD8GiQGIiIgMglYr4NWvTiEh7Ras/xzrx1FuJnZZJBIGICIiMghL96Ti+z/H+lkzyQc9HTnWjyFjACIiIr332ZGrWPNr1Vg/S8Z4YqC7vcgVkdgYgIiISK/tTcnFgu+qxvqJeLw7xvh0Erkiag0YgIiISG8dvJiP8M+ToBWAcb6dMOcxd7FLolaCAYiIiPTS8fRbmP7pcZRXajGstwLvPs2xfugvDEBERKR3Tl0rQNjGY7hTocGj3Ttg5QveHOuHquFPAxER6ZXUnCJM3pCAInUl/LvY4eOJPpAZS8Uui1oZBiAiItIbafklmPDJURSUVsDLxRYbQv1gbsrwQzUxABERkV64drsUE9YdQX6xGr062uDTMH9YyYzFLotaKQYgIiJq83ILyzDhk6PIVpXBrYMlPpvqD7kFp7igurWKALRq1SoolUqYmZkhICAACQkJdbY9e/YsxowZA6VSCYlEgpiYmBptFi5cCIlEUu3Vs2fPZjwCIiISy81iNSZ+chRXb5bCxc4cn097CPZWMrHLolZO9AC0bds2REREYMGCBUhKSoKXlxeCg4ORl5dXa/vS0lK4ublh8eLFcHR0rHO7ffr0wfXr13WvgwcPNtchEBGRSFR3KjB5QwIu5hXD0cYMn097iPN7Ub2IHoBWrFiB6dOnIywsDL1798aaNWtgYWGBDRs21Nrez88Py5Ytw/PPPw+ZrO6Eb2xsDEdHR93L3p7DnhMR6ZMSdSVCNybgbHYh7K1MsWV6AFzsLMQui9oIUQNQeXk5EhMTERQUpFtmZGSEoKAgHD58+IG2ffHiRTg5OcHNzQ0TJkxARkZGnW3VajUKCwurvYiIqPUqq9Bg2qbjOJFRALm5CT6bGoCuHazELovaEFEDUH5+PjQaDRQKRbXlCoUCOTk5jd5uQEAA4uLisHv3bqxevRppaWkYNGgQioqKam0fHR0NuVyue7m4uDR630RE1LzKK7WYtTkRh6/chJXMGJ9O8UevjpzZnRpG9FtgzWH48OEYO3YsPD09ERwcjB9//BEFBQX48ssva20fGRkJlUqle2VmZrZwxUREVB+VGi3+b+sJ7E+9ATMTI6wP8YWXi63YZVEbJOoACfb29pBKpcjNza22PDc3974dnBvK1tYW3bt3x6VLl2r9XCaT3bc/ERERiU+rFfDa9lP46UwOTKVGWDvJFwFu7cUui9ooUa8AmZqawsfHB/Hx8bplWq0W8fHxGDBgQJPtp7i4GJcvX0bHjh2bbJtERNRyBEHAm9+dwY4TWZAaSRD7gjce7d5B7LKoDRN9iMyIiAiEhITA19cX/v7+iImJQUlJCcLCwgAAkydPhrOzM6KjowFUdZxOSUnRfZ2VlYXk5GRYWVnB3d0dAPDqq69i5MiR6Ny5M7Kzs7FgwQJIpVKMHz9enIMkIqJGEwQB7/14DluOZkAiAVaM88KwPk13l4AMk+gB6LnnnsONGzcQFRWFnJwc9OvXD7t379Z1jM7IyICR0V8XqrKzs+Ht7a17v3z5cixfvhyBgYE4cOAAAODatWsYP348bt68iQ4dOuCRRx7BkSNH0KED/2+BiKitidl3Eet+TwMALH7GA6P6OYtcEekDiSAIgthFtDaFhYWQy+VQqVSwseGTBUREYvn418uI/uk8AGDByN4IG9hF5IqoNWvI32+9fAqMiIjavs8Op+vCz7zgHgw/1KQYgIiIqNXZnngNb353FgAQPqQrwoe4i1wR6RsGICIialV+OHUdr20/CQAIfViJV4f1ELki0kcMQERE1GrEn8vF/209Aa0APO/nggUje0MikYhdFukhBiAiImoVDl3Kx6wtSajUCnjKywnvPu3B8EPN5oEDUFlZWVPUQUREBux4+i1M23Qc5ZVaPN5bgffHeUFqxPBDzadRAUir1eLtt9+Gs7MzrKyscOXKFQDAm2++ifXr1zdpgUREpN9OX1MhbOMx3KnQYFA3e8S+4A0TKW9QUPNq1E/YO++8g7i4OCxduhSmpqa65X379sUnn3zSZMUREZF+S80pwqQNR1GkroS/0g5rJ/lCZiwVuywyAI0KQJ9++inWrl2LCRMmQCr96wfVy8sL58+fb7LiiIhIf6Xll2Di+qMoKK2Al4st1of6wtyU4YdaRqMCUFZWlm7erXtptVpUVFQ8cFFERKTfrt0uxYR1R3CjSI2ejtbYFOYHazMTscsiA9KoANS7d2/8/vvvNZZv37692jxdREREf5dXWIYJnxxFtqoMbh0s8dnUANhamP7zikRNqFGToUZFRSEkJARZWVnQarXYsWMHUlNT8emnn2LXrl1NXSMREemJWyXlmPDJUVy9WQoXO3NsmRaADtYyscsiA9SoK0CjRo3C999/j3379sHS0hJRUVE4d+4cvv/+ezz++ONNXSMREekB1Z0KTFp/FBfziuFoY4bPpz2EjnJzscsiA8XZ4GvB2eCJiJpWiboSk9YfRVJGAdpbmmLbzAFwd7ASuyzSM80+G/yxY8dw9OjRGsuPHj2K48ePN2aTRESkp8oqNJi26TiSMgogNzfBZ1MDGH5IdI0KQOHh4cjMzKyxPCsrC+Hh4Q9cFBER6YfySi1mb0nC4Ss3YWkqxaYp/ujtxCvrJL5GBaCUlBT079+/xnJvb2+kpKQ8cFFERNT2VWq0mLvtBH45nwczEyNsCPVDPxdbscsiAtDIACSTyZCbm1tj+fXr12Fs3KgHy4iISI9otQJe+/oUfjydAxOpBB9P8kWAW3uxyyLSaVQAGjZsGCIjI6FSqXTLCgoK8J///IdPgRERGThBEBC18wx2JGVBaiRB7Av9Edi9g9hlEVXTqMs1y5cvx6OPPorOnTvrBj5MTk6GQqHAZ5991qQFEhFR2yEIAqJ/Oo/NRzIgkQArxnkhuI+j2GUR1dCoAOTs7IxTp05hy5YtOHnyJMzNzREWFobx48fDxIRDmRMRGaoP4y9i7W9XAADRT3tgVD9nkSsiql2jO+xYWlpixowZTVkLERG1YWt/u4yYfRcBAFH/6o3n/V1Froiobo0OQBcvXsT+/fuRl5cHrVZb7bOoqKgHLoyIiNqOz45cxXs/ngcAzAvugSmPdBG5IqL7a1QAWrduHWbNmgV7e3s4OjpCIpHoPpNIJAxAREQGZHviNbz57RkAwOzBXRE+xF3kioj+WaMC0DvvvIN3330Xr7/+elPXQ0REbciPp6/jte0nAQChDysxL7iHyBUR1U+jHoO/ffs2xo4d29S1EBFRG/LL+Vy8/MUJaAXgOV8XRP2rd7U7AkStWaMC0NixY/Hzzz83dS1ERNRG/HEpHy9uTkKlVsBILye894wHjIwYfqjtaNQtMHd3d7z55ps4cuQIPDw8ajz6/vLLLzdJcURE1PokXr2FaZ8eR3mlFo/3VmDFOC9IGX6ojZEIgiA0dKUuXeru3S+RSHDlypUHKkpshYWFkMvlUKlUsLHhpH1ERHedyVJh/NojKFJXYlA3e3wS4guZsVTssogANOzvd6OuAKWlpTWqMCIiarsu5BZh0vqjKFJXwl9ph7WTGH6o7WpUH6CmtmrVKiiVSpiZmSEgIAAJCQl1tj179izGjBkDpVIJiUSCmJiY+2578eLFkEgkmDt3btMWTURkQNLzSzDhk6O4XVoBr05yrA/1hbkpww+1XY0eCPHatWvYuXMnMjIyUF5eXu2zFStW1Hs727ZtQ0REBNasWYOAgADExMQgODgYqampcHBwqNG+tLQUbm5uGDt2LF555ZX7bvvYsWP4+OOP4enpWe96iIioumu3SzHhk6O4UaRGT0drbJriD2szTntEbVujAlB8fDyeeuopuLm54fz58+jbty/S09MhCAL69+/foG2tWLEC06dPR1hYGABgzZo1+OGHH7BhwwbMnz+/Rns/Pz/4+fkBQK2f31VcXIwJEyZg3bp1eOeddxpUExERVckrLMPET44iq+AO3Owt8dnUANhamIpdFtEDa9QtsMjISLz66qs4ffo0zMzM8PXXXyMzMxOBgYENGh+ovLwciYmJCAoK+qsgIyMEBQXh8OHDjSlNJzw8HCNGjKi2bSIiqr9bJeWYuP4o0m+WolM7c2yZHoAO1jKxyyJqEo26AnTu3Dl88cUXVRswNsadO3dgZWWFt956C6NGjcKsWbPqtZ38/HxoNBooFIpqyxUKBc6fP9+Y0gAAW7duRVJSEo4dO1av9mq1Gmq1Wve+sLCw0fsmItIHeUVlmLw+ARdyi6GwkeHzaQ+ho9xc7LKImkyjrgBZWlrq+v107NgRly9f1n2Wn5/fNJU1UmZmJv7v//4PW7ZsgZmZWb3WiY6Ohlwu171cXFyauUoiotbr2u1SjFtzGOdzitDBWoYt0wLg2t5C7LKImlSjAtBDDz2EgwcPAgCefPJJ/Pvf/8a7776LKVOm4KGHHqr3duzt7SGVSpGbm1tteW5uLhwdHRtTGhITE5GXl4f+/fvD2NgYxsbG+PXXX/HRRx/B2NgYGo2mxjqRkZFQqVS6V2ZmZqP2TUTU1l3KK8bYNYd1t72+mjkA7g7WYpdF1OQadQtsxYoVKC4uBgAsWrQIxcXF2LZtG7p169agJ8BMTU3h4+OD+Ph4jB49GgCg1WoRHx+Pl156qTGlYejQoTh9+nS1ZWFhYejZsydef/11SKU1H9uUyWSQyXhfm4gM25ksFSZvSMCtknK4O1hh89QAOMrrdyWdqK1pVAByc3PTfW1paYk1a9Y0uoCIiAiEhITA19cX/v7+iImJQUlJie6psMmTJ8PZ2RnR0dEAqjpOp6Sk6L7OyspCcnIyrKys4O7uDmtra/Tt27faPiwtLdG+ffsay4mIqEpC2i1MjTuGInUlPJzl2DTFH3aWfNqL9FejA9CxY8fQvn37assLCgrQv3//Bk2F8dxzz+HGjRuIiopCTk4O+vXrh927d+s6RmdkZMDI6K87ddnZ2fD29ta9X758OZYvX47AwEAcOHCgMYdDRGTQDqTm4cXNiSir0MK/ix3Wh/hynB/Se42aC8zIyAg5OTk1BirMzc2Fq6trtSeq2iLOBUZEhuKHU9cxd9sJVGgEDOnRAasn+sDMhCM8U9vUbHOB7dy5U/f1nj17IJfLde81Gg3i4+OhVCobVi0REYli27EMRO44Da0A/MuzI1aM6wdT41YxQxJRs2tQALrbUVkikSAkJKTaZyYmJlAqlXj//febrDgiImoen/x+Be/8cA4AMN7fFe+M7gupkUTkqohaToMCkFarBQB06dIFx44dg729fbMURUREzUMQBKzYewErf7kEAJj5qBvmD+8JiYThhwxLozpBp6Wl1VhWUFAAW1vbB62HiIiaiVYrYNH3Z7Hp8FUAwLzgHpg9uCvDDxmkRt3sXbJkCbZt26Z7P3bsWNjZ2cHZ2RknT55ssuKIiKhpVGq0ePWrk7rw8/aoPggf4s7wQwarUQFozZo1uuki9u7di3379mH37t0YPnw45s2b16QFEhHRgymr0GD2liTsOJEFqZEEHzznhUkDlGKXRSSqRt0Cy8nJ0QWgXbt2Ydy4cRg2bBiUSiUCAgKatEAiImq8EnUlZnx2HIcu3YSpsRFWvdAfj/dW/POKRHquUVeA2rVrp5sva/fu3QgKCgJQ1bmutrm2iIio5RWUlmPi+qM4dOkmLEyliAv1Y/gh+lOjrgA988wzeOGFF9CtWzfcvHkTw4cPBwCcOHEC7u7uTVogERE1XF5RGSavT8D5nCLIzU0QF+YHb9d2YpdF1Go0KgB98MEHUCqVyMzMxNKlS2FlZQUAuH79OmbPnt2kBRIRUcNcu12KiZ8cRfrNUnSwlmHz1AD0cOSM7kT3atRUGPqOU2EQUVt1Ka8Yk9YfxXVVGTq1M8eWaQHo3N5S7LKIWkSzTIWxc+dODB8+HCYmJtWmxKjNU089Vd/NEhFREzmTpcLkDQm4VVIOdwcrbJ4aAEe5mdhlEbVK9b4CdO8EqPfOzl5jgxJJm+8IzStARNTWJKTdwtS4YyhSV8KzkxxxYf6wszQVuyyiFtUsV4DuToPx96+JiEhc+1PzMGtzIsoqtAjoYodPQnxhbWYidllErVqDO0FrtVrExcVhx44dSE9Ph0QigZubG8aMGYNJkyZxVFEioha061Q25m5NRqVWwGM9HfC/Cf1hZiIVuyyiVq9B4wAJgoCnnnoK06ZNQ1ZWFjw8PNCnTx+kp6cjNDQUTz/9dHPVSUREf7M1IQNzvjiBSq2AkV5O+HiSD8MPUT016ApQXFwcfvvtN8THx2PIkCHVPvvll18wevRofPrpp5g8eXKTFklERNWt++0K3v3xHADghQBXvD2qL6RGvAJPVF8NugL0xRdf4D//+U+N8AMAjz32GObPn48tW7Y0WXFERFSdIAh4/+dUXfiZGeiGd0cz/BA1VIMC0KlTp/DEE0/U+fnw4cM5GzwRUTPRagUs3HkWK3+5BAB47YkeiBzei30viRqhQbfAbt26BYWi7nlkFAoFbt++/cBFERFRdZUaLV7bfgo7TmRBIgHeGtUXkx7qLHZZRG1WgwKQRqOBsXHdq0ilUlRWVj5wUURE9JeyCg1e/uIEfk7JhdRIgvfHemG0t7PYZRG1aQ0KQIIgIDQ0FDKZrNbP1Wp1kxRFRERVStSVmPHZcRy6dBOmxkb43wv9EcQZ3YkeWIMCUEhIyD+24RNgRERNo6C0HGFxx3AiowCWplKsC/HFw13txS6LSC80KABt3LixueogIqJ75BWVYfL6BJzPKYKthQniwvzRz8VW7LKI9EaDR4ImIqLmlXmrFJPWH0X6zVI4WMvw2dQA9HC0FrssIr3CAERE1IpcyivCxE8SkFNYBhc7c2yeGoDO7S3FLotI7zAAERG1EmeyVJi8IQG3SsrRzcEKn00NgKPcTOyyiPQSAxARUSuQkHYLU+OOoUhdCc9OcsSF+cPO0lTssoj0FgMQEZHI9qfm4cXPEqGu1CKgix0+CfGFtZmJ2GUR6TUGICIiEe06lY25W5NRqRUwtKcDVk3ozxndiVoAAxARkUi2JmQg8pvTEATgKS8nvD/OCybSBk3RSESN1Cr+pa1atQpKpRJmZmYICAhAQkJCnW3Pnj2LMWPGQKlUQiKRICYmpkab1atXw9PTEzY2NrCxscGAAQPw008/NeMREBE1zLrfrmD+jqrwMyHAFR8814/hh6gFif6vbdu2bYiIiMCCBQuQlJQELy8vBAcHIy8vr9b2paWlcHNzw+LFi+Ho6Fhrm06dOmHx4sVITEzE8ePH8dhjj2HUqFE4e/Zscx4KEdE/EgQB7/+cind/PAcAeDGwK94Z3RdSI87oTtSSJIIgCGIWEBAQAD8/P8TGxgIAtFotXFxcMGfOHMyfP/++6yqVSsydOxdz5879x/3Y2dlh2bJlmDp16j+2LSwshFwuh0qlgo2NTb2Og4jon2i1AhZ9fxabDl8FALz2RA/MHuwuclVE+qMhf79F7QNUXl6OxMREREZG6pYZGRkhKCgIhw8fbpJ9aDQafPXVVygpKcGAAQNqbaNWq6tN5FpYWNgk+yYiuqtSo8Vr209hx4ksSCTAW6P6YtJDncUui8hgiXoLLD8/HxqNBgpF9ZmNFQoFcnJyHmjbp0+fhpWVFWQyGV588UV888036N27d61to6OjIZfLdS8XF5cH2jcR0b3KKjSYvSUJO05kQWokQcxz/Rh+iEQmeh+g5tKjRw8kJyfj6NGjmDVrFkJCQpCSklJr28jISKhUKt0rMzOzhaslIn1Voq7ElLhj+DklF6bGRvh4og9G9XMWuywigyfqLTB7e3tIpVLk5uZWW56bm1tnB+f6MjU1hbt71b11Hx8fHDt2DB9++CE+/vjjGm1lMhlkMtkD7Y+I6O8KSssRuvEYkjMLYGkqxSchfhjQtb3YZRERRL4CZGpqCh8fH8THx+uWabVaxMfH19lfp7G0Wm21fj5ERM0pr6gMz689guTMAthamODz6Q8x/BC1IqIPhBgREYGQkBD4+vrC398fMTExKCkpQVhYGABg8uTJcHZ2RnR0NICqjtN3b2WVl5cjKysLycnJsLKy0l3xiYyMxPDhw+Hq6oqioiJ8/vnnOHDgAPbs2SPOQRKRQcm8VYqJ64/i6s1SOFjLsHlaALorrMUui4juIXoAeu6553Djxg1ERUUhJycH/fr1w+7du3UdozMyMmBk9NeFquzsbHh7e+veL1++HMuXL0dgYCAOHDgAAMjLy8PkyZNx/fp1yOVyeHp6Ys+ePXj88cdb9NiIyPAcT7+FFzcnIb9YDRc7c2yZ+hBc21uIXRYR/Y3o4wC1RhwHiIgaY8vRq1i48ywqNAJ6Olpj0xR/KGzMxC6LyGC0mXGAiIj0QXmlFgu/P4vPj2YAAEZ4dsSyZz1hYcpfsUStFf91EhE9gBtFaszekohj6bchkQDzgntgVmBXSCSc2oKoNWMAIiJqpFPXCjDzs0RcV5XB2swYHz3vjSE9HcQui4jqgQGIiKgRvjlxDfO/Pg11pRZdO1hi3WRfuHWwErssIqonBiAiogao1Gix+Kfz+ORgGgAgqJcDPniuH6zNTESujIgaggGIiKiebpeUY84XJ3DwUj4AYM5j7nglqDuMjNjfh6itYQAiIqqH8zmFmP7pcWTeugMLUyneH+uF4R4dxS6LiBqJAYiI6B/8dPo6/v3VSZSWa+BqZ4G1k33Q05FjhBG1ZQxARER10GoFfLDvAlb+cgkA8Ii7PWJf8IathanIlRHRg2IAIiKqRVFZBV7Zlox95/IAANMe6YL5w3vCWCrqHNJE1EQYgIiI/ubyjWLM+PQ4Lt8ogamxERY/44Fn+ncSuywiakIMQERE99h/Pg8vf3ECRepKdJSb4eNJPvDsZCt2WUTUxBiAiIgACIKA/x24jOU/p0IQAD9lO/xvgg86WMvELo2ImgEDEBEZvNLySszbfgo/nLoOAJgQ4IoFI/vA1Jj9fYj0FQMQERm0zFulmPFZIs5dL4SJVIJFT/XFCwGuYpdFRM2MAYiIDNYfl/IR/nkSbpdWwN5KhtUT+8NPaSd2WUTUAhiAiMjgCIKAjYfS8e6P56DRCvDsJMfHk3zQUW4udmlE1EIYgIjIoJRVaPDfb87g66RrAIBnvJ3x3jMeMDORilwZEbUkBiAiMhg5qjLM3JyIk5kFkBpJ8J8ne2HKQCUkEk5mSmRoGICIyCAkXr2FFzcn4UaRGrYWJlj1Qn8MdLcXuywiEgkDEBHpva0JGXjzuzOo0Ajo6WiNtZN84dreQuyyiEhEDEBEpLfKK7V4e1cKPjtyFQDwpIcjlj3rBUsZf/URGTr+FiAivZRfrMbszUlISL8FiQT49+PdET7Enf19iAgAAxAR6aHT11SY+dlxZKvKYC0zRszz/TC0l0LssoioFWEAIiK98u2JLLz+9SmoK7Vws7fE2sm+cHewErssImplGICISC9otAKW7D6Ptb9dAQAM6dEBMc97Q25uInJlRNQaMQARUZtXUFqOOV+cwO8X8wEA4UO6IuLxHpAasb8PEdWOAYiI2rTUnCLM+Ow4rt4shbmJFMvHemGEZ0exyyKiVo4BiIjarN1nchDxZTJKyzXo1M4cayf5oreTjdhlEVEbwABERG2OVisgJv4iPoq/CAB4uGt7xL7QH3aWpiJXRkRthZHYBQDAqlWroFQqYWZmhoCAACQkJNTZ9uzZsxgzZgyUyqr5e2JiYmq0iY6Ohp+fH6ytreHg4IDRo0cjNTW1GY+AiFpKUVkFZnyWqAs/YQOV+HSKP8MPETWI6AFo27ZtiIiIwIIFC5CUlAQvLy8EBwcjLy+v1valpaVwc3PD4sWL4ejoWGubX3/9FeHh4Thy5Aj27t2LiooKDBs2DCUlJc15KETUzNLyS/D0//7AvnO5MDU2wvKxXlgwsg+MpaL/KiOiNkYiCIIgZgEBAQHw8/NDbGwsAECr1cLFxQVz5szB/Pnz77uuUqnE3LlzMXfu3Pu2u3HjBhwcHPDrr7/i0Ucf/ceaCgsLIZfLoVKpYGPD/gRErcGB1DzM+eIEisoq4WhjhjWTfNDPxVbssoioFWnI329R+wCVl5cjMTERkZGRumVGRkYICgrC4cOHm2w/KpUKAGBnZ1fr52q1Gmq1Wve+sLCwyfZNRA9GEASs+fUKlu45D0EAfDq3w+qJ/eFgbSZ2aUTUhol63Tg/Px8ajQYKRfUh6hUKBXJycppkH1qtFnPnzsXAgQPRt2/fWttER0dDLpfrXi4uLk2ybyJ6MHfKNXh5azKW7K4KP+P9XfD59ACGHyJ6YHp/4zw8PBxnzpzB1q1b62wTGRkJlUqle2VmZrZghURUm8xbpRiz+g98fzIbxkYSvD26L9572gMyY6nYpRGRHhD1Fpi9vT2kUilyc3OrLc/Nza2zg3NDvPTSS9i1axd+++03dOrUqc52MpkMMpnsgfdHRE3j8OWbCP88CbdKytHe0hT/m9AfAW7txS6LiPSIqFeATE1N4ePjg/j4eN0yrVaL+Ph4DBgwoNHbFQQBL730Er755hv88ssv6NKlS1OUS0TNTBAEbPojHRPXH8WtknL0dbbB93MeYfghoiYn+kCIERERCAkJga+vL/z9/RETE4OSkhKEhYUBACZPngxnZ2dER0cDqOo4nZKSovs6KysLycnJsLKygru7O4Cq216ff/45vvvuO1hbW+v6E8nlcpibm4twlET0T1R3KrBo51nsOJEFABjdzwmLx3jCzIS3vIio6Yn+GDwAxMbGYtmyZcjJyUG/fv3w0UcfISAgAAAwePBgKJVKxMXFAQDS09NrvaITGBiIAwcOAAAkktonQNy4cSNCQ0P/sR4+Bk/UsuLP5eI/35xGbqEaRhIgcngvTBvUpc5/y0REtWnI3+9WEYBaGwYgopZxu6Qcb+1KwTd/XvXpYm+Jpc96wk9Z+5AVRET302bGASIiw7X7zHW88e1Z5BdXXfWZNsgNrwR1h7kpb3kRUfNjACKiFpVfrMaC787ih9PXAQDuDlZY9qwnvF3biVwZERkSBiAiahGCIGDnyWws3HkWt0srIDWS4MVAN7w8tBvH9iGiFscARETNLq+wDP/99gz2plSN+dXT0RrLx3qhr7Nc5MqIyFAxABFRsxEEAV8nZeGt78+isKwSxkYSvPSYO2YPdoepsd4PRE9ErRgDEBE1i+yCO/jPN6dxIPUGAMDDWY6lz3qiV0c+WUlE4mMAIqImJQgCth7LxLs/nEOxuhKmUiPMfbwbZgxyg7GUV32IqHVgACKiJpN5qxTzd5zCoUs3AQDerrZY9qwn3B2sRa6MiKg6BiAiemBarYDNR69i8U/nUVqugczYCPOCeyBsYBdIjTiaMxG1PgxARPRA0vNL8NrXp5CQdgsA4K+0w5JnPdHF3lLkyoiI6sYARESNotEK2HgoDct/TkVZhRYWplK8/kRPTHqoM4x41YeIWjkGICJqsEt5RZi3/RROZBQAAAa6t8fiZzzhYmchbmFERPXEAERE9Vap0WLt71cQs+8iyiu1sJIZ478jeuF5PxfO3E5EbQoDEBHVy/mcQsz76hROZ6kAAIN7dMB7T3vAydZc5MqIiBqOAYiI7qu8UovVBy4jdv9FVGgE2JgZI2pkH4zp78yrPkTUZjEAEVGdzmSp8OpXJ3E+pwgAENRLgXef7guFjZnIlRERPRgGICKqQV2pwcr4S1j962VotALaWZhg4VN98JSXE6/6EJFeYAAiompOZNzGa9tP4WJeMQBghEdHLBrVB/ZWMpErIyJqOgxARAQAKKvQYMXeC/jk9yvQCoC9lSneHtUXwz06il0aEVGTYwAiIhxLv4XXtp9CWn4JAGB0PycsGNkH7SxNRa6MiKh5MAARGbDS8kos3Z2KTYfTIQiAwkaGd0d7IKi3QuzSiIiaFQMQkYH643I+Xv/6FDJv3QEAjPPthP+O6A25uYnIlRERNT8GICIDU1RWgcU/nceWoxkAAGdbc0Q/44FHu3cQuTIiopbDAERkQH69cAORX59CtqoMADDxIVe8/kRPWJvxqg8RGRYGICIDoCqtwDs/pOCrxGsAABc7cywZ44mHu9qLXBkRkTgYgIj03L6UXPznm9PIK1JDIgFCBijx2hM9YGHKf/5EZLj4G5BIT90uKcei78/i2+RsAICbvSWWPOsJP6WdyJUREYmPAYhID/10+jre/O4M8ovLYSQBpg9ywyuPd4eZiVTs0oiIWgUGICI9kl+sRtR3Z/Dj6RwAQDcHKywb64V+LrbiFkZE1MowABHpAUEQsPNkNhbuPIvbpRWQGkkwK7Ar5gx1h8yYV32IiP7OSOwCVq1aBaVSCTMzMwQEBCAhIaHOtmfPnsWYMWOgVCohkUgQExNTo81vv/2GkSNHwsmpatbqb7/9tvmKJ2oFTl9TYUrcMfzf1mTcLq1Ar442+C58IF4N7sHwQ0RUB1ED0LZt2xAREYEFCxYgKSkJXl5eCA4ORl5eXq3tS0tL4ebmhsWLF8PR0bHWNiUlJfDy8sKqVauas3Qi0SVevY3QjQkYGXsQ+1NvwEQqQcTj3fFd+ED0dZaLXR4RUasmEQRBEGvnAQEB8PPzQ2xsLABAq9XCxcUFc+bMwfz58++7rlKpxNy5czF37tw620gkEnzzzTcYPXp0g+oqLCyEXC6HSqWCjY1Ng9Ylam5HrtzEyl8u4tClmwAAIwkwqp8zXnrMHV07WIlcHRGReBry91u0PkDl5eVITExEZGSkbpmRkRGCgoJw+PBhscoiapUEQcChSzfx0S8XkZB2CwBgbCTBM/2dMXuwO5T2liJXSETUtogWgPLz86HRaKBQVJ91WqFQ4Pz58y1ai1qthlqt1r0vLCxs0f0T1UUQBBxIvYGPfrmIExkFAABTqRHG+nbCi4Fd4WJnIW6BRERtFJ8CAxAdHY1FixaJXQaRjlYrYO+5XMT+cgmns1QAAJmxEcb7u2JmoBs6ys1FrpCIqG0TLQDZ29tDKpUiNze32vLc3Nw6Ozg3l8jISEREROjeFxYWwsXFpUVrIAKqgs9PZ3Kw8peLOJ9TBAAwN5Fi4kOumP6oGxyszUSukIhIP4gWgExNTeHj44P4+HhdJ2WtVov4+Hi89NJLLVqLTCaDTCZr0X0S3atSo8WuU9cRu/8SLuUVAwCsZMaYPKAzpj7SBe2t+PNJRNSURL0FFhERgZCQEPj6+sLf3x8xMTEoKSlBWFgYAGDy5MlwdnZGdHQ0gKqO0ykpKbqvs7KykJycDCsrK7i7uwMAiouLcenSJd0+0tLSkJycDDs7O7i6urbwERLdX4VGi29OZOF/+y8h/WYpAMDGzBhhA7sgbKASthamIldIRKSfRH0MHgBiY2OxbNky5OTkoF+/fvjoo48QEBAAABg8eDCUSiXi4uIAAOnp6ejSpUuNbQQGBuLAgQMAgAMHDmDIkCE12oSEhOi280/4GDw1N3WlBtsTr2H1gcu4dvsOAKCdhQmmDXLDpAGdYWNmInKFRERtT0P+fosegFojBiBqLmUVGmw7lok1v17GdVUZAMDeyhTTB7lh4kOdYSnjcwlERI3VJsYBIjIkpeWV+PxoBj7+7QpuFFUNuaCwkWHmo10x3t8V5qacsoKIqCUxABE1o2J1JT49nI5Pfk/DrZJyAICzrTleHNwVY306wcyEwYeISAwMQETNQHWnAnGH0rHhUBpUdyoAAK52Fpg9uCue6d8Jpsaiz0NMRGTQGICImtDtknJsOJSGuEPpKFJXAgDc7C0RPsQdo/o5wVjK4ENE1BowABE1gfxiNdb9fgWbD19FSbkGANBdYYWXHuuGER4dITWSiFwhERHdiwGI6AHkFpbh41+v4POEqyir0AIAene0wctD3TGstyOMGHyIiFolBiCiRsgquIM1By5j2/FMlFdWBR+vTnLMeawbhvZygETC4ENE1JoxABE1QMbNUqz+9RK2J15DhaZqCC3fzu0wZ2g3PNrNnsGHiKiNYAAiqocrN4qxav9lfJucBY22KvgMcGuPOUPdMcCtPYMPEVEbwwBEdB8XcosQ+8sl7DqVjT9zDwZ1s8fLQ7vBT2knbnFERNRoDEBEtUjJLkTs/ov46UwO7k4WM7SnA+YM7YZ+Lrai1kZERA+OAYjoHqeuFeCj+EvYdy5Xt+yJPo546TF39HWWi1gZERE1JQYgIgCJV2/ho/hL+PXCDQCARAL8y9MJLw1xRw9Ha5GrIyKipsYARAarQqPF4cs3sebXy/jj8k0AgNRIglFeTpg9xB3uDlYiV0hERM2FAYgMiqq0Agcu5CH+XB4OpOahsKxqugpjIwnG9O+E2UO6onN7S5GrJCKi5sYARHovLb8E8edyse9cLo6l39Y9xg4Adpam+JdnR8x41A2d2lmIWCUREbUkBiDSO5UaLZIyCnSh5/KNkmqfd1dYYWgvBYJ6OaCfSzvO00VEZIAYgEgvFJZV4LcLNxB/Lg/7U/NQUFqh+8zYSIIANzsM7alAUC8FXNvzSg8RkaFjAKI2K/NWKfady0X8uTwcTbupm5oCAOTmJnispwOG9nLAo907wMbMRMRKiYiotWEAojZDoxWQnHkb+87lIf5cLi7kFlf73K2DJYJ6KTC0pwN8OreDsdRIpEqJiKi1YwCiVq1EXYnfL97AvnN52H8+DzdLynWfSY0k8FO2qwo9vRToYs+nt4iIqH4YgKjVySq4g1/O5WLvuTwcuXwT5Rqt7jNrM2MM7uGAoF4OGNzdAXIL3toiIqKGYwAi0Wm1Ak5lqf58aisP564XVvu8c3uLqg7MvR3gp7SDCW9tERHRA2IAIlHcKdfg4KV87EvJxS+pebhRpNZ9ZiQBfDq30z2q3rWDFSQSPqpORERNhwGIWkyOqgzx56ue2jp0KR/qyr9ubVnJjPFod3sE9VJgcA8H2FmailgpERHpOwYgajaCIOBsdiH2puQi/nwuzmRVv7XVqZ35nx2YHRDQpT1MjXlri4iIWgYDEDWpsgoN/ricj33n8vDLuTzkFJbpPpNIgH4utrrQ00NhzVtbREQkCgYgemB5RWX45Vwe9v15a+tOhUb3mYWpFIO62WNoLwWG9HBAB2uZiJUSERFVYQCiBtFoBdwsVuNawR0cupiPfefzcDKzoFqbjnIzDO3lgKG9FBjg1h5mJlJxiiUiIqoDAxABqOqvc7u0ArmFZfe81Lr/5hVVLbtRpMY9k6nreHaS625t9e5ow1tbRETUqjEA6TlBEFBYVom8ewNNURnydOGmavmNInW1AQfvx0gC2FvJ4NlJjqG9FHispwMUNmbNfCRERERNp1UEoFWrVmHZsmXIycmBl5cXVq5cCX9//1rbnj17FlFRUUhMTMTVq1fxwQcfYO7cuQ+0zbaqtLzynqs094SaIvWf76vCzb19cv5Je0tTONiYQWEjg8LaDAr5PV//uby9lQxSI17hISKitkv0ALRt2zZERERgzZo1CAgIQExMDIKDg5GamgoHB4ca7UtLS+Hm5oaxY8filVdeaZJttjbqSg3ydLed7rkN9efVmxxVVdgpUlfWe5tyc5OqIGNjBgdrM93XChvZn4HHDB2sZHwUnYiIDIJEEIRaenS0nICAAPj5+SE2NhYAoNVq4eLigjlz5mD+/Pn3XVepVGLu3Lk1rgA9yDYBoLCwEHK5HCqVCjY2No07sFpUarTILy7/69ZTkRq5qr++zvtz+e3Sinpv08JUCkcbMzjoAo0ZHKz/+vpu0GFHZCIi0ncN+fst6hWg8vJyJCYmIjIyUrfMyMgIQUFBOHz4cIttU61WQ63+ayqGwsLCWts9qK8SryFyx+l6tTU1Nqp+G+qeqzb3hh0rmegX8YiIiNocUf965ufnQ6PRQKFQVFuuUChw/vz5FttmdHQ0Fi1a1Kj9NYTCRgZjIwkcrGV/9bOp46qN3NyET1IRERE1E14+ABAZGYmIiAjd+8LCQri4uDT5fgK7O+DCO8NhxA7EREREohI1ANnb20MqlSI3N7fa8tzcXDg6OrbYNmUyGWSy5h+hmE9OERERtQ6iPvJjamoKHx8fxMfH65ZptVrEx8djwIABrWabREREpF9EvwUWERGBkJAQ+Pr6wt/fHzExMSgpKUFYWBgAYPLkyXB2dkZ0dDSAqk7OKSkpuq+zsrKQnJwMKysruLu712ubREREZNhED0DPPfccbty4gaioKOTk5KBfv37YvXu3rhNzRkYGjIz+ulCVnZ0Nb29v3fvly5dj+fLlCAwMxIEDB+q1TSIiIjJsoo8D1Bo11zhARERE1Hwa8vebw/4SERGRwWEAIiIiIoPDAEREREQGhwGIiIiIDA4DEBERERkcBiAiIiIyOAxAREREZHAYgIiIiMjgMAARERGRwRF9KozW6O7g2IWFhSJXQkRERPV19+92fSa5YACqRVFREQDAxcVF5EqIiIiooYqKiiCXy+/bhnOB1UKr1SI7OxvW1taQSCRNuu3CwkK4uLggMzOT84yJjOei9eC5aD14LloPnouGEwQBRUVFcHJyqjaRem14BagWRkZG6NSpU7Puw8bGhj/QrQTPRevBc9F68Fy0HjwXDfNPV37uYidoIiIiMjgMQERERGRwGIBamEwmw4IFCyCTycQuxeDxXLQePBetB89F68Fz0bzYCZqIiIgMDq8AERERkcFhACIiIiKDwwBEREREBocBiIiIiAwOA9ADWrVqFZRKJczMzBAQEICEhIT7tv/qq6/Qs2dPmJmZwcPDAz/++GO1zwVBQFRUFDp27Ahzc3MEBQXh4sWLzXkIeqOpz8WOHTswbNgwtG/fHhKJBMnJyc1YvX5pynNRUVGB119/HR4eHrC0tISTkxMmT56M7Ozs5j4MvdHU/zYWLlyInj17wtLSEu3atUNQUBCOHj3anIegN5r6XNzrxRdfhEQiQUxMTBNXracEarStW7cKpqamwoYNG4SzZ88K06dPF2xtbYXc3Nxa2x86dEiQSqXC0qVLhZSUFOGNN94QTExMhNOnT+vaLF68WJDL5cK3334rnDx5UnjqqaeELl26CHfu3Gmpw2qTmuNcfPrpp8KiRYuEdevWCQCEEydOtNDRtG1NfS4KCgqEoKAgYdu2bcL58+eFw4cPC/7+/oKPj09LHlab1Rz/NrZs2SLs3btXuHz5snDmzBlh6tSpgo2NjZCXl9dSh9UmNce5uGvHjh2Cl5eX4OTkJHzwwQfNfCT6gQHoAfj7+wvh4eG69xqNRnBychKio6NrbT9u3DhhxIgR1ZYFBAQIM2fOFARBELRareDo6CgsW7ZM93lBQYEgk8mEL774ohmOQH809bm4V1paGgNQAzTnubgrISFBACBcvXq1aYrWYy1xPlQqlQBA2LdvX9MUraea61xcu3ZNcHZ2Fs6cOSN07tyZAaieeAuskcrLy5GYmIigoCDdMiMjIwQFBeHw4cO1rnP48OFq7QEgODhY1z4tLQ05OTnV2sjlcgQEBNS5TWqec0GN01LnQqVSQSKRwNbWtknq1lctcT7Ky8uxdu1ayOVyeHl5NV3xeqa5zoVWq8WkSZMwb9489OnTp3mK11MMQI2Un58PjUYDhUJRbblCoUBOTk6t6+Tk5Ny3/d3/NmSb1DznghqnJc5FWVkZXn/9dYwfP54TRP6D5jwfu3btgpWVFczMzPDBBx9g7969sLe3b9oD0CPNdS6WLFkCY2NjvPzyy01ftJ5jACKiNqOiogLjxo2DIAhYvXq12OUYtCFDhiA5ORl//PEHnnjiCYwbNw55eXlil2VQEhMT8eGHHyIuLg4SiUTsctocBqBGsre3h1QqRW5ubrXlubm5cHR0rHUdR0fH+7a/+9+GbJOa51xQ4zTnubgbfq5evYq9e/fy6k89NOf5sLS0hLu7Ox566CGsX78exsbGWL9+fdMegB5pjnPx+++/Iy8vD66urjA2NoaxsTGuXr2Kf//731Aqlc1yHPqEAaiRTE1N4ePjg/j4eN0yrVaL+Ph4DBgwoNZ1BgwYUK09AOzdu1fXvkuXLnB0dKzWprCwEEePHq1zm9Q854Iap7nOxd3wc/HiRezbtw/t27dvngPQMy35b0Or1UKtVj940XqqOc7FpEmTcOrUKSQnJ+teTk5OmDdvHvbs2dN8B6MvxO6F3ZZt3bpVkMlkQlxcnJCSkiLMmDFDsLW1FXJycgRBEIRJkyYJ8+fP17U/dOiQYGxsLCxfvlw4d+6csGDBglofg7e1tRW+++474dSpU8KoUaP4GHw9NMe5uHnzpnDixAnhhx9+EAAIW7duFU6cOCFcv369xY+vLWnqc1FeXi489dRTQqdOnYTk5GTh+vXrupdarRblGNuSpj4fxcXFQmRkpHD48GEhPT1dOH78uBAWFibIZDLhzJkzohxjW9Ecv6f+jk+B1R8D0ANauXKl4OrqKpiamgr+/v7CkSNHdJ8FBgYKISEh1dp/+eWXQvfu3QVTU1OhT58+wg8//FDtc61WK7z55puCQqEQZDKZMHToUCE1NbUlDqXNa+pzsXHjRgFAjdeCBQta4GjatqY8F3eHIajttX///hY6oratKc/HnTt3hKefflpwcnISTE1NhY4dOwpPPfWUkJCQ0FKH06Y19e+pv2MAqj+JIAiCONeeiIiIiMTBPkBERERkcBiAiIiIyOAwABEREZHBYQAiIiIig8MARERERAaHAYiIiIgMDgMQERERGRwGICLSO6GhoRg9erTYZRBRK2YsdgFERA3xT7NeL1iwAB9++CE4xisR3Q8DEBG1KdevX9d9vW3bNkRFRSE1NVW3zMrKClZWVmKURkRtCG+BEVGb4ujoqHvJ5XJIJJJqy6ysrGrcAhs8eDDmzJmDuXPnol27dlAoFFi3bh1KSkoQFhYGa2truLu746effqq2rzNnzmD48OGwsrKCQqHApEmTkJ+f38JHTETNgQGIiAzCpk2bYG9vj4SEBMyZMwezZs3C2LFj8fDDDyMpKQnDhg3DpEmTUFpaCgAoKCjAY489Bm9vbxw/fhy7d+9Gbm4uxo0bJ/KREFFTYAAiIoPg5eWFN954A926dUNkZCTMzMxgb2+P6dOno1u3boiKisLNmzdx6tQpAEBsbCy8vb3x3nvvoWfPnvD29saGDRuwf/9+XLhwQeSjIaIHxT5ARGQQPD09dV9LpVK0b98eHh4eumUKhQIAkJeXBwA4efIk9u/fX2t/osuXL6N79+7NXDERNScGICIyCCYmJtXeSySSasvuPl2m1WoBAMXFxRg5ciSWLFlSY1sdO3ZsxkqJqCUwABER1aJ///74+uuvoVQqYWzMX5VE+oZ9gIiIahEeHo5bt25h/PjxOHbsGC5fvow9e/YgLCwMGo1G7PKI6AExABER1cLJyQmHDh2CRqPBsGHD4OHhgblz58LW1hZGRvzVSdTWSQQOl0pEREQGhv8bQ0RERAaHAYiIiIgMDgMQERERGRwGICIiIjI4DEBERERkcBiAiIiIyOAwABEREZHBYQAiIiIig8MARERERAaHAYiIiIgMDgMQERERGRwGICIiIjI4/w/rTB22oPKBHgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP41JREFUeJzt3Xd0FPX+//HXJpANYggtFWNCkd5BEIQLSCSEIkUQgUsvXg0KxAYWml6CSBNFUASCFcuPJmCUzhUQpERBEQUCAUlCkSQQJEAyvz887Nc1hSzsps3zcc6c43zm8/nMe3YUXk7ZtRiGYQgAAMBE3Aq6AAAAgPxGAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAALgsOPHj8tisSg6OtrWNmnSJFkslluar23btmrbtu0t12OxWDRp0iTbenR0tCwWi44fP37Lc+bV4MGDFRISYlu/8dnMmDHD5fuWbu9zB8yMAAQUEzf+0r+xlChRQpUqVdLgwYP1+++/F3R5hd7ly5c1adIkbdmypaBLyaIw1wYUVQQgoJiZMmWKPvjgAy1YsEDh4eH68MMP1aZNG125csWl+33ppZf0559/unQfeTVgwAD9+eefCg4OzvOYy5cva/LkyQ6HjIULF+rw4cMOVuiY3GorTJ87UJSUKOgCADhXeHi4mjZtKkkaPny4KlasqNdee02rV6/WI4884rL9lihRQiVKFI4/Utzd3eXu7u7SfaSlpal06dIqWbKkS/dzM4XpcweKEq4AAcVc69atJUlHjx61tV29elUTJkxQkyZN5O3trdKlS6t169bavHlzlvHJyckaPHiwvL29VbZsWQ0aNEjJyclZ+mX3LMqSJUv0wAMPyNfXV1arVbVr19b8+fNv+VjS09M1duxY+fj4yMvLSw899JBOnTqVpV92zwDt2bNHYWFhqlixokqVKqXKlStr6NChkv56bsfHx0eSNHnyZNttxBvPFQ0ePFh33nmnjh49qk6dOsnLy0v9+/e3bfv7M0B/N3v2bAUHB6tUqVJq06aNDh48aLc9p2ef/j7nzWrL7nO/fv26XnnlFVWtWlVWq1UhISF64YUXlJ6ebtcvJCREXbp00bfffqtmzZrJ09NTVapU0fvvv5/t8QDFCf/bABRzN0JAuXLlbG2pqal677331LdvX40YMUIXL17UokWLFBYWpt27d6thw4aSJMMw1K1bN3377bf6z3/+o1q1amnFihUaNGhQnvY9f/581alTRw899JBKlCihL7/8Uk888YQyMzMVERHh8LEMHz5cH374ofr166eWLVtq06ZN6ty5803HnTlzRh06dJCPj4/GjRunsmXL6vjx41q+fLkkycfHR/Pnz9fjjz+uHj16qGfPnpKk+vXr2+a4fv26wsLC1KpVK82YMUN33HFHrvt8//33dfHiRUVEROjKlSt644039MADD+jAgQPy8/PL8zHnpbZ/Gj58uJYuXapevXrp6aef1q5duxQVFaVDhw5pxYoVdn2PHDmiXr16adiwYRo0aJAWL16swYMHq0mTJqpTp06e6wSKHANAsbBkyRJDkrFhwwbj7NmzxsmTJ40vvvjC8PHxMaxWq3Hy5Elb3+vXrxvp6el24y9cuGD4+fkZQ4cOtbWtXLnSkGRMnz7dbmzr1q0NScaSJUts7RMnTjT++UfK5cuXs9QZFhZmVKlSxa6tTZs2Rps2bXI9vtjYWEOS8cQTT9i19+vXz5BkTJw4MctnERcXZxiGYaxYscKQZHz//fc5zn/27Nks89wwaNAgQ5Ixbty4bLcFBwfb1uPi4gxJRqlSpYxTp07Z2nft2mVIMsaOHXvT4/7nnLnV9s/P/cbnNHz4cLt+zzzzjCHJ2LRpk60tODjYkGRs27bN1nbmzBnDarUaTz/9dJZ9AcUJt8CAYiY0NFQ+Pj4KCgpSr169VLp0aa1evVp33XWXrY+7u7s8PDwkSZmZmfrjjz90/fp1NW3aVPv27bP1W7dunUqUKKHHH3/cbuyTTz6Zp1pKlSpl++eUlBSdO3dObdq00bFjx5SSkuLQca1bt06S9NRTT9m1jxkz5qZjy5YtK0las2aNrl275tB+/+7vn8PNdO/eXZUqVbKtN2vWTM2bN7cdh6vcmD8yMtKu/emnn5YkrV271q69du3attuk0l9XnGrUqKFjx465tE6goBGAgGJm3rx5Wr9+vb744gt16tRJ586dk9VqzdJv6dKlql+/vjw9PVWhQgX5+Pho7dq1dsHkxIkTCggI0J133mk3tkaNGnmqZfv27QoNDVXp0qVVtmxZ+fj46IUXXpAkhwPQiRMn5ObmpqpVqzpcS5s2bfTwww9r8uTJqlixorp166YlS5ZkeSYmNyVKlLALkTdzzz33ZGmrXr26y7+b6MbnVK1aNbt2f39/lS1bVidOnLBrv/vuu7PMUa5cOV24cMGldQIFjQAEFDPNmjVTaGioHn74Ya1evVp169ZVv379dOnSJVufDz/8UIMHD1bVqlW1aNEixcTEaP369XrggQeUmZnplDqOHj2q9u3b69y5c5o1a5bWrl2r9evXa+zYsZLktP3khcVi0RdffKGdO3dq1KhR+v333zV06FA1adLE7nPJjdVqlZubc//IzOkLDDMyMlw29z/l9LacYRi3XQNQmBGAgGLM3d1dUVFROn36tN566y1b+xdffKEqVapo+fLlGjBggMLCwhQaGprlu4KCg4OVkJCQJSTk5XtvvvzyS6Wnp2v16tV67LHH1KlTJ4WGhtrdFnNEcHCwMjMz7d5my2stN9x3333673//qz179uijjz7STz/9pGXLlknKe2DIq99++y1L26+//mr3xli5cuWyfaPun1dpHKntxuf0z/0nJSUpOTnZoe9GAoozAhBQzLVt21bNmjXTnDlzbAHnxv/1//3/8nft2qWdO3faje3UqZOuX79u9+p6RkaG3nzzzZvuN7t9pKSkaMmSJbd0HOHh4ZKkuXPn2rXPmTPnpmMvXLiQ5YrGjTfdbtwGu/FWV3aB5FasXLnS7hu4d+/erV27dtmOQ5KqVq2qX375RWfPnrW1/fDDD9q+fbvdXI7U1qlTJ0lZP5dZs2ZJUp7emgPMgNfgARN49tln1bt3b0VHR+s///mPunTpouXLl6tHjx7q3Lmz4uLitGDBAtWuXdvuak/Xrl11//33a9y4cTp+/Lhq166t5cuX5+n5nQ4dOsjDw0Ndu3bVY489pkuXLmnhwoXy9fVVQkKCw8fQsGFD9e3bV2+//bZSUlLUsmVLbdy4UUeOHLnp2KVLl+rtt99Wjx49VLVqVV28eFELFy5UmTJlbIGhVKlSql27tj799FNVr15d5cuXV926dVW3bl2Ha5WkatWqqVWrVnr88ceVnp6uOXPmqEKFCnruuedsfYYOHapZs2YpLCxMw4YN05kzZ7RgwQLVqVNHqamptn6O1NagQQMNGjRI7777rpKTk9WmTRvt3r1bS5cuVffu3dWuXbtbOh6g2CnYl9AAOMuNV7+ze9U7IyPDqFq1qlG1alXj+vXrRmZmpjF16lQjODjYsFqtRqNGjYw1a9Zkef3aMAzj/PnzxoABA4wyZcoY3t7exoABA4z9+/fn6TX41atXG/Xr1zc8PT2NkJAQ47XXXjMWL15s94q6YeTtNXjDMIw///zTeOqpp4wKFSoYpUuXNrp27WqcPHnypq/B79u3z+jbt69x9913G1ar1fD19TW6dOli7Nmzx27+HTt2GE2aNDE8PDzs5hw0aJBRunTpbGvK6TX4119/3Zg5c6YRFBRkWK1Wo3Xr1sYPP/yQZfyHH35oVKlSxfDw8DAaNmxofP3119meh5xqy+5zv3btmjF58mSjcuXKRsmSJY2goCBj/PjxxpUrV+z6BQcHG507d85SU17PB1CUWQyDJ90AAIC58AwQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHb4IMRuZmZk6ffq0vLy8nP71+AAAwDUMw9DFixcVGBh409/uIwBl4/Tp0woKCiroMgAAwC04efKk7rrrrlz7EICy4eXlJemvD7BMmTIFXA0AAMiL1NRUBQUF2f4ezw0BKBs3bnuVKVOGAAQAQBGTl8dXeAgaAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYTomCLgBwlZBxawtkv8endS6Q/QIA8o4rQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQKNABFRUXp3nvvlZeXl3x9fdW9e3cdPnzYrs+VK1cUERGhChUq6M4779TDDz+spKSkXOc1DEMTJkxQQECASpUqpdDQUP3222+uPBQAAFCEFGgA2rp1qyIiIvTdd99p/fr1unbtmjp06KC0tDRbn7Fjx+rLL7/U559/rq1bt+r06dPq2bNnrvNOnz5dc+fO1YIFC7Rr1y6VLl1aYWFhunLliqsPCQAAFAEWwzCMgi7ihrNnz8rX11dbt27Vv/71L6WkpMjHx0cff/yxevXqJUn65ZdfVKtWLe3cuVP33XdfljkMw1BgYKCefvppPfPMM5KklJQU+fn5KTo6Wo8++uhN60hNTZW3t7dSUlJUpkwZ5x4k8g2/Bg8A5uLI39+F6hmglJQUSVL58uUlSXv37tW1a9cUGhpq61OzZk3dfffd2rlzZ7ZzxMXFKTEx0W6Mt7e3mjdvnuOY9PR0paam2i0AAKD4KlHQBdyQmZmpMWPG6P7771fdunUlSYmJifLw8FDZsmXt+vr5+SkxMTHbeW60+/n55XlMVFSUJk+efJtHABSs27nixVUrAGZTaK4ARURE6ODBg1q2bFm+73v8+PFKSUmxLSdPnsz3GgAAQP4pFAFo1KhRWrNmjTZv3qy77rrL1u7v76+rV68qOTnZrn9SUpL8/f2znetG+z/fFMttjNVqVZkyZewWAABQfBVoADIMQ6NGjdKKFSu0adMmVa5c2W57kyZNVLJkSW3cuNHWdvjwYcXHx6tFixbZzlm5cmX5+/vbjUlNTdWuXbtyHAMAAMylQANQRESEPvzwQ3388cfy8vJSYmKiEhMT9eeff0r66+HlYcOGKTIyUps3b9bevXs1ZMgQtWjRwu4NsJo1a2rFihWSJIvFojFjxujVV1/V6tWrdeDAAQ0cOFCBgYHq3r17QRwmAAAoZAr0Iej58+dLktq2bWvXvmTJEg0ePFiSNHv2bLm5uenhhx9Wenq6wsLC9Pbbb9v1P3z4sO0NMkl67rnnlJaWppEjRyo5OVmtWrVSTEyMPD09XXo8AACgaChU3wNUWPA9QMWD2b4HiLfAAJhdkf0eIAAAgPxAAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZToAFo27Zt6tq1qwIDA2WxWLRy5Uq77RaLJdvl9ddfz3HOSZMmZelfs2ZNFx8JAAAoSgo0AKWlpalBgwaaN29ettsTEhLslsWLF8tisejhhx/Odd46derYjfv2229dUT4AACiiShTkzsPDwxUeHp7jdn9/f7v1VatWqV27dqpSpUqu85YoUSLLWAAAgBuKzDNASUlJWrt2rYYNG3bTvr/99psCAwNVpUoV9e/fX/Hx8bn2T09PV2pqqt0CAACKryITgJYuXSovLy/17Nkz137NmzdXdHS0YmJiNH/+fMXFxal169a6ePFijmOioqLk7e1tW4KCgpxdPgAAKESKTABavHix+vfvL09Pz1z7hYeHq3fv3qpfv77CwsK0bt06JScn67PPPstxzPjx45WSkmJbTp486ezyAQBAIVKgzwDl1f/+9z8dPnxYn376qcNjy5Ytq+rVq+vIkSM59rFarbJarbdTIgAAKEKKxBWgRYsWqUmTJmrQoIHDYy9duqSjR48qICDABZUBAICiqEAD0KVLlxQbG6vY2FhJUlxcnGJjY+0eWk5NTdXnn3+u4cOHZztH+/bt9dZbb9nWn3nmGW3dulXHjx/Xjh071KNHD7m7u6tv374uPRYAAFB0FOgtsD179qhdu3a29cjISEnSoEGDFB0dLUlatmyZDMPIMcAcPXpU586ds62fOnVKffv21fnz5+Xj46NWrVrpu+++k4+Pj+sOBAAAFCkFGoDatm0rwzBy7TNy5EiNHDkyx+3Hjx+3W1+2bJkzSgMAAMVYkXgGCAAAwJkIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQKNABt27ZNXbt2VWBgoCwWi1auXGm3ffDgwbJYLHZLx44dbzrvvHnzFBISIk9PTzVv3ly7d+920REAAICiqEADUFpamho0aKB58+bl2Kdjx45KSEiwLZ988kmuc3766aeKjIzUxIkTtW/fPjVo0EBhYWE6c+aMs8sHAABFVImC3Hl4eLjCw8Nz7WO1WuXv75/nOWfNmqURI0ZoyJAhkqQFCxZo7dq1Wrx4scaNG3db9QIAgOLBKVeAkpOTnTFNtrZs2SJfX1/VqFFDjz/+uM6fP59j36tXr2rv3r0KDQ21tbm5uSk0NFQ7d+7McVx6erpSU1PtFgAAUHw5HIBee+01ffrpp7b1Rx55RBUqVFClSpX0ww8/OLW4jh076v3339fGjRv12muvaevWrQoPD1dGRka2/c+dO6eMjAz5+fnZtfv5+SkxMTHH/URFRcnb29u2BAUFOfU4AABA4eJwAFqwYIEtIKxfv17r16/XV199pfDwcD377LNOLe7RRx/VQw89pHr16ql79+5as2aNvv/+e23ZssWp+xk/frxSUlJsy8mTJ506PwAAKFwcfgYoMTHRFoDWrFmjRx55RB06dFBISIiaN2/u9AL/rkqVKqpYsaKOHDmi9u3bZ9lesWJFubu7Kykpya49KSkp1+eIrFarrFar0+sFAACFk8NXgMqVK2e7QhITE2N73sYwjBxvTTnLqVOndP78eQUEBGS73cPDQ02aNNHGjRttbZmZmdq4caNatGjh0toAAEDR4fAVoJ49e6pfv3665557dP78edtbXPv371e1atUcmuvSpUs6cuSIbT0uLk6xsbEqX768ypcvr8mTJ+vhhx+Wv7+/jh49queee07VqlVTWFiYbUz79u3Vo0cPjRo1SpIUGRmpQYMGqWnTpmrWrJnmzJmjtLQ021thAAAADgeg2bNnKyQkRCdPntT06dN15513SpISEhL0xBNPODTXnj171K5dO9t6ZGSkJGnQoEGaP3++fvzxRy1dulTJyckKDAxUhw4d9Morr9jdrjp69KjOnTtnW+/Tp4/Onj2rCRMmKDExUQ0bNlRMTEyWB6MBAIB5WQzDMAq6iMImNTVV3t7eSklJUZkyZQq6HNyikHFrC2S/x6d1LpD93s7xFlTNAOBMjvz9fUvfA/TBBx+oVatWCgwM1IkTJyRJc+bM0apVq25lOgAAgHzlcACaP3++IiMjFR4eruTkZNuDz2XLltWcOXOcXR8AAIDTORyA3nzzTS1cuFAvvvii3N3dbe1NmzbVgQMHnFocAACAKzgcgOLi4tSoUaMs7VarVWlpaU4pCgAAwJUcDkCVK1dWbGxslvaYmBjVqlXLGTUBAAC4lMOvwUdGRioiIkJXrlyRYRjavXu3PvnkE0VFRem9995zRY0AAABO5XAAGj58uEqVKqWXXnpJly9fVr9+/RQYGKg33nhDjz76qCtqBAAAcCqHA5Ak9e/fX/3799fly5d16dIl+fr6OrsuAAAAl7mlAHTDHXfcoTvuuMNZtQAAAOSLPAWgRo0ayWKx5GnCffv23VZBAAAArpanANS9e3cXlwEAAJB/8hSAJk6c6Oo6AAAA8o3D3wP0/fffa9euXVnad+3apT179jilKAAAAFdyOABFRETo5MmTWdp///13RUREOKUoAAAAV3I4AP38889q3LhxlvZGjRrp559/dkpRAAAAruRwALJarUpKSsrSnpCQoBIlbuutegAAgHzhcADq0KGDxo8fr5SUFFtbcnKyXnjhBT344INOLQ4AAMAVHL5kM2PGDP3rX/9ScHCw7VfhY2Nj5efnpw8++MDpBQIAADibwwGoUqVK+vHHH/XRRx/phx9+UKlSpTRkyBD17dtXJUuWdEWNAAAATnVLD+2ULl1aI0eOdHYtAAAA+SJPAWj16tUKDw9XyZIltXr16lz7PvTQQ04pDAAAwFXy/FMYiYmJ8vX1zfVnMSwWizIyMpxVGwAAgEvkKQBlZmZm+88AAABFkcOvwb///vtKT0/P0n716lW9//77TikKAADAlRwOQEOGDLH7DqAbLl68qCFDhjilKAAAAFdyOAAZhiGLxZKl/dSpU/L29nZKUQAAAK6U59fgGzVqJIvFIovFovbt29v97EVGRobi4uLUsWNHlxQJAADgTHkOQDfe/oqNjVVYWJjuvPNO2zYPDw+FhITo4YcfdnqBAAAAzpbnADRx4kRlZGQoJCREHTp0UEBAgCvrAgAAcBmHngFyd3fXY489pitXrriqHgAAAJdz+CHounXr6tixY66oBQAAIF84HIBeffVVPfPMM1qzZo0SEhKUmppqtzhi27Zt6tq1qwIDA2WxWLRy5UrbtmvXrun5559XvXr1VLp0aQUGBmrgwIE6ffp0rnNOmjTJ9rD2jaVmzZqOHiYAACjGHP4x1E6dOkn66ze//v46/I3X4x35KYy0tDQ1aNBAQ4cOVc+ePe22Xb58Wfv27dPLL7+sBg0a6MKFCxo9erQeeugh7dmzJ9d569Spow0bNtjW//7GGgAAgMPJYPPmzU7beXh4uMLDw7Pd5u3trfXr19u1vfXWW2rWrJni4+N199135zhviRIl5O/v77Q6AQBA8eJwAGrTpo0r6siTlJQUWSwWlS1bNtd+v/32mwIDA+Xp6akWLVooKioq18CUnp5u9/Mejt7KAwAARcst3xu6fPmy4uPjdfXqVbv2+vXr33ZR2bly5Yqef/559e3bV2XKlMmxX/PmzRUdHa0aNWooISFBkydPVuvWrXXw4EF5eXllOyYqKkqTJ092Sd0AAKDwcTgAnT17VkOGDNFXX32V7XZHngHKq2vXrumRRx6RYRiaP39+rn3/fkutfv36at68uYKDg/XZZ59p2LBh2Y4ZP368IiMjbeupqakKCgpyTvEAAKDQcfgtsDFjxig5OVm7du1SqVKlFBMTo6VLl+qee+7R6tWrnV7gjfBz4sQJrV+/PterP9kpW7asqlevriNHjuTYx2q1qkyZMnYLAAAovhy+ArRp0yatWrVKTZs2lZubm4KDg/Xggw+qTJkyioqKUufOnZ1W3I3w89tvv2nz5s2qUKGCw3NcunRJR48e1YABA5xWFwAAKNocvgKUlpYmX19fSVK5cuV09uxZSVK9evW0b98+h+a6dOmSYmNjFRsbK0mKi4tTbGys4uPjde3aNfXq1Ut79uzRRx99pIyMDCUmJioxMdHuuaP27dvrrbfesq0/88wz2rp1q44fP64dO3aoR48ecnd3V9++fR09VAAAUEw5fAWoRo0aOnz4sEJCQtSgQQO98847CgkJ0YIFCxz+fbA9e/aoXbt2tvUbz+EMGjRIkyZNst1Sa9iwod24zZs3q23btpKko0eP6ty5c7Ztp06dUt++fXX+/Hn5+PioVatW+u677+Tj4+PooQIAgGLK4QA0evRoJSQkSPrrB1I7duyojz76SB4eHoqOjnZorrZt28owjBy357bthuPHj9utL1u2zKEaAACA+TgcgP7973/b/rlJkyY6ceKEfvnlF919992qWLGiU4sDAABwhdv6jQjDMFSqVCk1btzYWfUAAAC4nMMPQUvSokWLVLduXXl6esrT01N169bVe++95+zaAAAAXMLhK0ATJkzQrFmz9OSTT6pFixaSpJ07d2rs2LGKj4/XlClTnF4kAACAMzkcgObPn6+FCxfavVb+0EMPqX79+nryyScJQAAAoNBz+BbYtWvX1LRp0yztTZo00fXr151SFAAAgCs5HIAGDBiQ7e9xvfvuu+rfv79TigIAAHClW3oLbNGiRfrmm2903333SZJ27dql+Ph4DRw40O5HRWfNmuWcKgEAAJzI4QB08OBB22vvR48elSRVrFhRFStW1MGDB239LBaLk0oEAABwLocD0ObNm11RBwAAQL65pe8BAgAAKMoIQAAAwHQIQAAAwHQIQAAAwHTyFIAaN26sCxcuSJKmTJmiy5cvu7QoAAAAV8pTADp06JDS0tIkSZMnT9alS5dcWhQAAIAr5ek1+IYNG2rIkCFq1aqVDMPQjBkzdOedd2bbd8KECU4tEAAAwNnyFICio6M1ceJErVmzRhaLRV999ZVKlMg61GKxEIAAAEChZzEMw3BkgJubmxITE+Xr6+uqmgpcamqqvL29lZKSojJlyhR0OaYWMm5tQZeAmzg+rfMtjy2o83s7NRdFt/M5F9T5LYr7RcFz5O9vh78JOjMz85YLAwAAKAxu6cdQjx49qjlz5ujQoUOSpNq1a2v06NGqWrWqU4sDAABwBYe/B+jrr79W7dq1tXv3btWvX1/169fXrl27VKdOHa1fv94VNQIAADiVw1eAxo0bp7Fjx2ratGlZ2p9//nk9+OCDTisOAADAFRy+AnTo0CENGzYsS/vQoUP1888/O6UoAAAAV3I4APn4+Cg2NjZLe2xsbLF+MwwAABQfDt8CGzFihEaOHKljx46pZcuWkqTt27frtddeU2RkpNMLBAAAcDaHA9DLL78sLy8vzZw5U+PHj5ckBQYGatKkSXrqqaecXiAAAICzORyALBaLxo4dq7Fjx+rixYuSJC8vL6cXBgAA4Cq39D1ANxB8AABAUeTwQ9AAAABFHQEIAACYToEGoG3btqlr164KDAyUxWLRypUr7bYbhqEJEyYoICBApUqVUmhoqH777bebzjtv3jyFhITI09NTzZs31+7du110BAAAoChyKABdu3ZN7du3z1MIyYu0tDQ1aNBA8+bNy3b79OnTNXfuXC1YsEC7du1S6dKlFRYWpitXruQ456effqrIyEhNnDhR+/btU4MGDRQWFqYzZ844pWYAAFD0ORSASpYsqR9//NFpOw8PD9err76qHj16ZNlmGIbmzJmjl156Sd26dVP9+vX1/vvv6/Tp01muFP3drFmzNGLECA0ZMkS1a9fWggULdMcdd2jx4sVOqxsAABRtDt8C+/e//61Fixa5ohY7cXFxSkxMVGhoqK3N29tbzZs3186dO7Mdc/XqVe3du9dujJubm0JDQ3McI0np6elKTU21WwAAQPHl8Gvw169f1+LFi7VhwwY1adJEpUuXtts+a9YspxSWmJgoSfLz87Nr9/Pzs237p3PnzikjIyPbMb/88kuO+4qKitLkyZNvs2IARUXIuLW3PPb4tM5Fbr8o/IrivxtFsea/czgAHTx4UI0bN5Yk/frrr3bbLBaLc6rKZ+PHj7f7GY/U1FQFBQUVYEUAAMCVHA5AmzdvdkUdWfj7+0uSkpKSFBAQYGtPSkpSw4YNsx1TsWJFubu7Kykpya49KSnJNl92rFarrFbr7RcNAACKhFt+Df7IkSP6+uuv9eeff0r666FlZ6pcubL8/f21ceNGW1tqaqp27dqlFi1aZDvGw8NDTZo0sRuTmZmpjRs35jgGAACYj8MB6Pz582rfvr2qV6+uTp06KSEhQZI0bNgwPf300w7NdenSJcXGxio2NlbSXw8+x8bGKj4+XhaLRWPGjNGrr76q1atX68CBAxo4cKACAwPVvXt32xzt27fXW2+9ZVuPjIzUwoULtXTpUh06dEiPP/640tLSNGTIEEcPFQAAFFMO3wIbO3asSpYsqfj4eNWqVcvW3qdPH0VGRmrmzJl5nmvPnj1q166dbf3GcziDBg1SdHS0nnvuOaWlpWnkyJFKTk5Wq1atFBMTI09PT9uYo0eP6ty5c3Z1nD17VhMmTFBiYqIaNmyomJiYLA9GAwAA83I4AH3zzTf6+uuvddddd9m133PPPTpx4oRDc7Vt2zbXW2cWi0VTpkzRlClTcuxz/PjxLG2jRo3SqFGjHKoFAACYh8O3wNLS0nTHHXdkaf/jjz94kBgAABQJDgeg1q1b6/3337etWywWZWZmavr06Xa3swAAAAorh2+BTZ8+Xe3bt9eePXt09epVPffcc/rpp5/0xx9/aPv27a6oEQAAwKkcvgJUt25d/frrr2rVqpW6deumtLQ09ezZU/v371fVqlVdUSMAAIBTOXwFSPrrN7lefPFFZ9cCAACQL24pAF24cEGLFi3SoUOHJEm1a9fWkCFDVL58eacWBwAA4AoO3wLbtm2bQkJCNHfuXF24cEEXLlzQ3LlzVblyZW3bts0VNQIAADiVw1eAIiIi1KdPH82fP1/u7u6SpIyMDD3xxBOKiIjQgQMHnF4kAACAMzl8BejIkSN6+umnbeFHktzd3RUZGakjR444tTgAAABXcDgANW7c2Pbsz98dOnRIDRo0cEpRAAAArpSnW2A//vij7Z+feuopjR49WkeOHNF9990nSfruu+80b948TZs2zTVVAgAAOFGeAlDDhg1lsVjsfrfrueeey9KvX79+6tOnj/OqAwAAcIE8BaC4uDhX1wEAAJBv8hSAgoODXV0HAABAvrmlL0I8ffq0vv32W505c0aZmZl225566imnFAYAAOAqDgeg6OhoPfbYY/Lw8FCFChVksVhs2ywWCwEIAAAUeg4HoJdfflkTJkzQ+PHj5ebm8Fv0AAAABc7hBHP58mU9+uijhB8AAFBkOZxihg0bps8//9wVtQAAAOQLh2+BRUVFqUuXLoqJiVG9evVUsmRJu+2zZs1yWnEAAACucEsB6Ouvv1aNGjUkKctD0AAAAIWdwwFo5syZWrx4sQYPHuyCcgAAAFzP4WeArFar7r//flfUAgAAkC8cDkCjR4/Wm2++6YpaAAAA8oXDt8B2796tTZs2ac2aNapTp06Wh6CXL1/utOIAAABcweEAVLZsWfXs2dMVtQAAAOQLhwPQkiVLXFEHAABAvuHrnAEAgOk4fAWocuXKuX7fz7Fjx26rIAAAAFdzOACNGTPGbv3atWvav3+/YmJi9OyzzzqrLgAAAJdxOACNHj062/Z58+Zpz549t10QAACAqzntGaDw8HD9v//3/5w1nU1ISIgsFkuWJSIiItv+0dHRWfp6eno6vS4AAFB0OXwFKCdffPGFypcv76zpbL7//ntlZGTY1g8ePKgHH3xQvXv3znFMmTJldPjwYds6v1EGAAD+zuEA1KhRI7tAYRiGEhMTdfbsWb399ttOLU6SfHx87NanTZumqlWrqk2bNjmOsVgs8vf3d3otAACgeHA4AHXv3t1u3c3NTT4+Pmrbtq1q1qzprLqydfXqVX344YeKjIzM9arOpUuXFBwcrMzMTDVu3FhTp05VnTp1cuyfnp6u9PR023pqaqpT6wYAAIWLwwFo4sSJrqgjT1auXKnk5ORcf4m+Ro0aWrx4serXr6+UlBTNmDFDLVu21E8//aS77ror2zFRUVGaPHmyi6oGAACFTZH6IsRFixYpPDxcgYGBOfZp0aKFBg4cqIYNG6pNmzZavny5fHx89M477+Q4Zvz48UpJSbEtJ0+edEX5AACgkMjzFSA3N7ebPkxssVh0/fr12y4qOydOnNCGDRsc/rHVkiVLqlGjRjpy5EiOfaxWq6xW6+2WCAAAiog8B6AVK1bkuG3nzp2aO3euMjMznVJUdpYsWSJfX1917tzZoXEZGRk6cOCAOnXq5KLKAABAUZPnANStW7csbYcPH9a4ceP05Zdfqn///poyZYpTi7shMzNTS5Ys0aBBg1SihH3JAwcOVKVKlRQVFSVJmjJliu677z5Vq1ZNycnJev3113XixAkNHz7cJbUBAICi55aeATp9+rRGjBihevXq6fr164qNjdXSpUsVHBzs7PokSRs2bFB8fLyGDh2aZVt8fLwSEhJs6xcuXNCIESNUq1YtderUSampqdqxY4dq167tktoAAEDR49BbYCkpKZo6darefPNNNWzYUBs3blTr1q1dVZtNhw4dZBhGttu2bNlitz579mzNnj3b5TUBAICiK88BaPr06Xrttdfk7++vTz75JNtbYgAAAEVBngPQuHHjVKpUKVWrVk1Lly7V0qVLs+3n6FtaAAAA+S3PAWjgwIH8phYAACgW8hyAoqOjXVgGAABA/ilS3wQNAADgDAQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOoU6AE2aNEkWi8VuqVmzZq5jPv/8c9WsWVOenp6qV6+e1q1bl0/VAgCAoqJQByBJqlOnjhISEmzLt99+m2PfHTt2qG/fvho2bJj279+v7t27q3v37jp48GA+VgwAAAq7Qh+ASpQoIX9/f9tSsWLFHPu+8cYb6tixo5599lnVqlVLr7zyiho3bqy33norHysGAACFXaEPQL/99psCAwNVpUoV9e/fX/Hx8Tn23blzp0JDQ+3awsLCtHPnzlz3kZ6ertTUVLsFAAAUX4U6ADVv3lzR0dGKiYnR/PnzFRcXp9atW+vixYvZ9k9MTJSfn59dm5+fnxITE3PdT1RUlLy9vW1LUFCQ044BAAAUPoU6AIWHh6t3796qX7++wsLCtG7dOiUnJ+uzzz5z6n7Gjx+vlJQU23Ly5Emnzg8AAAqXEgVdgCPKli2r6tWr68iRI9lu9/f3V1JSkl1bUlKS/P39c53XarXKarU6rU4AAFC4FeorQP906dIlHT16VAEBAdlub9GihTZu3GjXtn79erVo0SI/ygMAAEVEoQ5AzzzzjLZu3arjx49rx44d6tGjh9zd3dW3b19J0sCBAzV+/Hhb/9GjRysmJkYzZ87UL7/8okmTJmnPnj0aNWpUQR0CAAAohAr1LbBTp06pb9++On/+vHx8fNSqVSt999138vHxkSTFx8fLze3/MlzLli318ccf66WXXtILL7yge+65RytXrlTdunUL6hAAAEAhVKgD0LJly3LdvmXLlixtvXv3Vu/evV1UEQAAKA4K9S0wAAAAVyAAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0ynUASgqKkr33nuvvLy85Ovrq+7du+vw4cO5jomOjpbFYrFbPD0986liAABQFBTqALR161ZFRETou+++0/r163Xt2jV16NBBaWlpuY4rU6aMEhISbMuJEyfyqWIAAFAUlCjoAnITExNjtx4dHS1fX1/t3btX//rXv3IcZ7FY5O/v7+ryAABAEVWorwD9U0pKiiSpfPnyufa7dOmSgoODFRQUpG7duumnn37KtX96erpSU1PtFgAAUHwVmQCUmZmpMWPG6P7771fdunVz7FejRg0tXrxYq1at0ocffqjMzEy1bNlSp06dynFMVFSUvL29bUtQUJArDgEAABQSRSYARURE6ODBg1q2bFmu/Vq0aKGBAweqYcOGatOmjZYvXy4fHx+98847OY4ZP368UlJSbMvJkyedXT4AAChECvUzQDeMGjVKa9as0bZt23TXXXc5NLZkyZJq1KiRjhw5kmMfq9Uqq9V6u2UCAIAiolBfATIMQ6NGjdKKFSu0adMmVa5c2eE5MjIydODAAQUEBLigQgAAUBQV6itAERER+vjjj7Vq1Sp5eXkpMTFRkuTt7a1SpUpJkgYOHKhKlSopKipKkjRlyhTdd999qlatmpKTk/X666/rxIkTGj58eIEdBwAAKFwKdQCaP3++JKlt27Z27UuWLNHgwYMlSfHx8XJz+78LWRcuXNCIESOUmJiocuXKqUmTJtqxY4dq166dX2UDAIBCrlAHIMMwbtpny5YtduuzZ8/W7NmzXVQRAAAoDgr1M0AAAACuQAACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmU6KgCzCjkHFrb3ns8WmdnVgJAADmxBUgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOkUiAM2bN08hISHy9PRU8+bNtXv37lz7f/7556pZs6Y8PT1Vr149rVu3Lp8qBQAARUGhD0CffvqpIiMjNXHiRO3bt08NGjRQWFiYzpw5k23/HTt2qG/fvho2bJj279+v7t27q3v37jp48GA+Vw4AAAqrQh+AZs2apREjRmjIkCGqXbu2FixYoDvuuEOLFy/Otv8bb7yhjh076tlnn1WtWrX0yiuvqHHjxnrrrbfyuXIAAFBYFeoAdPXqVe3du1ehoaG2Njc3N4WGhmrnzp3Zjtm5c6ddf0kKCwvLsT8AADCfEgVdQG7OnTunjIwM+fn52bX7+fnpl19+yXZMYmJitv0TExNz3E96errS09Nt6ykpKZKk1NTUWy09V5npl295rKtqKqxu57NC/ridfyeL4vktqONlv4V/v7eDmp3jxryGYdy0b6EOQPklKipKkydPztIeFBRUANXkzntOQVcA2DPbv5MFdbzst3jv93ZQc1YXL16Ut7d3rn0KdQCqWLGi3N3dlZSUZNeelJQkf3//bMf4+/s71F+Sxo8fr8jISNt6Zmam/vjjD1WoUEEWi+U2jiCr1NRUBQUF6eTJkypTpoxT50becR4KB85D4cB5KBw4D7fPMAxdvHhRgYGBN+1bqAOQh4eHmjRpoo0bN6p79+6S/gonGzdu1KhRo7Id06JFC23cuFFjxoyxta1fv14tWrTIcT9Wq1VWq9WurWzZsrdbfq7KlCnDv+CFAOehcOA8FA6ch8KB83B7bnbl54ZCHYAkKTIyUoMGDVLTpk3VrFkzzZkzR2lpaRoyZIgkaeDAgapUqZKioqIkSaNHj1abNm00c+ZMde7cWcuWLdOePXv07rvvFuRhAACAQqTQB6A+ffro7NmzmjBhghITE9WwYUPFxMTYHnSOj4+Xm9v/vczWsmVLffzxx3rppZf0wgsv6J577tHKlStVt27dgjoEAABQyBT6ACRJo0aNyvGW15YtW7K09e7dW71793ZxVbfGarVq4sSJWW65IX9xHgoHzkPhwHkoHDgP+cti5OVdMQAAgGKkUH8RIgAAgCsQgAAAgOkQgAAAgOkQgAAAgOkQgJxs3rx5CgkJkaenp5o3b67du3fn2v/zzz9XzZo15enpqXr16mndunX5VGnx58i5WLhwoVq3bq1y5cqpXLlyCg0Nvem5Q944+t/EDcuWLZPFYrF9CSpuj6PnITk5WREREQoICJDValX16tX588kJHD0Pc+bMUY0aNVSqVCkFBQVp7NixunLlSj5VW8wZcJply5YZHh4exuLFi42ffvrJGDFihFG2bFkjKSkp2/7bt2833N3djenTpxs///yz8dJLLxklS5Y0Dhw4kM+VFz+Onot+/foZ8+bNM/bv328cOnTIGDx4sOHt7W2cOnUqnysvXhw9DzfExcUZlSpVMlq3bm1069Ytf4otxhw9D+np6UbTpk2NTp06Gd9++60RFxdnbNmyxYiNjc3nyosXR8/DRx99ZFitVuOjjz4y4uLijK+//toICAgwxo4dm8+VF08EICdq1qyZERERYVvPyMgwAgMDjaioqGz7P/LII0bnzp3t2po3b2489thjLq3TDBw9F/90/fp1w8vLy1i6dKmrSjSFWzkP169fN1q2bGm89957xqBBgwhATuDoeZg/f75RpUoV4+rVq/lVoik4eh4iIiKMBx54wK4tMjLSuP/++11ap1lwC8xJrl69qr179yo0NNTW5ubmptDQUO3cuTPbMTt37rTrL0lhYWE59kfe3Mq5+KfLly/r2rVrKl++vKvKLPZu9TxMmTJFvr6+GjZsWH6UWezdynlYvXq1WrRooYiICPn5+alu3bqaOnWqMjIy8qvsYudWzkPLli21d+9e222yY8eOad26derUqVO+1FzcFYlvgi4Kzp07p4yMDNtPdNzg5+enX375JdsxiYmJ2fZPTEx0WZ1mcCvn4p+ef/55BQYGZgmoyLtbOQ/ffvutFi1apNjY2Hyo0Bxu5TwcO3ZMmzZtUv/+/bVu3TodOXJETzzxhK5du6aJEyfmR9nFzq2ch379+uncuXNq1aqVDMPQ9evX9Z///EcvvPBCfpRc7HEFCPiHadOmadmyZVqxYoU8PT0LuhzTuHjxogYMGKCFCxeqYsWKBV2OqWVmZsrX11fvvvuumjRpoj59+ujFF1/UggULCro0U9myZYumTp2qt99+W/v27dPy5cu1du1avfLKKwVdWrHAFSAnqVixotzd3ZWUlGTXnpSUJH9//2zH+Pv7O9QfeXMr5+KGGTNmaNq0adqwYYPq16/vyjKLPUfPw9GjR3X8+HF17drV1paZmSlJKlGihA4fPqyqVau6tuhi6Fb+ewgICFDJkiXl7u5ua6tVq5YSExN19epVeXh4uLTm4uhWzsPLL7+sAQMGaPjw4ZKkevXqKS0tTSNHjtSLL75o90PgcByfnpN4eHioSZMm2rhxo60tMzNTGzduVIsWLbId06JFC7v+krR+/foc+yNvbuVcSNL06dP1yiuvKCYmRk2bNs2PUos1R89DzZo1deDAAcXGxtqWhx56SO3atVNsbKyCgoLys/xi41b+e7j//vt15MgRWwCVpF9//VUBAQGEn1t0K+fh8uXLWULOjVBq8DOet6+gn8IuTpYtW2ZYrVYjOjra+Pnnn42RI0caZcuWNRITEw3DMIwBAwYY48aNs/Xfvn27UaJECWPGjBnGoUOHjIkTJ/IavJM4ei6mTZtmeHh4GF988YWRkJBgWy5evFhQh1AsOHoe/om3wJzD0fMQHx9veHl5GaNGjTIOHz5srFmzxvD19TVeffXVgjqEYsHR8zBx4kTDy8vL+OSTT4xjx44Z33zzjVG1alXjkUceKahDKFYIQE725ptvGnfffbfh4eFhNGvWzPjuu+9s29q0aWMMGjTIrv9nn31mVK9e3fDw8DDq1KljrF27Np8rLr4cORfBwcGGpCzLxIkT87/wYsbR/yb+jgDkPI6ehx07dhjNmzc3rFarUaVKFeO///2vcf369Xyuuvhx5Dxcu3bNmDRpklG1alXD09PTCAoKMp544gnjwoUL+V94MWQxDK6jAQAAc+EZIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIABFgsVi0cqVKwu6DADFBAEIQIEaPHiwLBaLLBaLSpYsKT8/Pz344INavHix3W9RJSQkKDw8PE9zEpYA3AwBCECB69ixoxISEnT8+HF99dVXateunUaPHq0uXbro+vXrkiR/f39ZrdYCrhRAcUEAAlDgrFar/P39ValSJTVu3FgvvPCCVq1apa+++krR0dGS7K/qXL16VaNGjVJAQIA8PT0VHBysqKgoSVJISIgkqUePHrJYLLb1o0ePqlu3bvLz89Odd96pe++9Vxs2bLCrIyQkRFOnTtXQoUPl5eWlu+++W++++65dn1OnTqlv374qX768SpcuraZNm2rXrl227atWrVLjxo3l6empKlWqaPLkybYQB6DwIAABKJQeeOABNWjQQMuXL8+ybe7cuVq9erU+++wzHT58WB999JEt6Hz//feSpCVLlighIcG2funSJXXq1EkbN27U/v371bFjR3Xt2lXx8fF2c8+cOVNNmzbV/v379cQTT+jxxx/X4cOHbXO0adNGv//+u1avXq0ffvhBzz33nO1W3f/+9z8NHDhQo0eP1s8//6x33nlH0dHR+u9//+uqjwnArSroX2MFYG65/eJ7nz59jFq1ahmGYRiSjBUrVhiGYRhPPvmk8cADDxiZmZnZjvt739zUqVPHePPNN23rwcHBxr///W/bemZmpuHr62vMnz/fMAzDeOeddwwvLy/j/Pnz2c7Xvn17Y+rUqXZtH3zwgREQEHDTWgDkrxIFHcAAICeGYchisWRpHzx4sB588EHVqFFDHTt2VJcuXdShQ4dc57p06ZImTZqktWvXKiEhQdevX9eff/6Z5QpQ/fr1bf9ssVjk7++vM2fOSJJiY2PVqFEjlS9fPtt9/PDDD9q+fbvdFZ+MjAxduXJFly9f1h133JHnYwfgWgQgAIXWoUOHVLly5SztjRs3VlxcnL766itt2LBBjzzyiEJDQ/XFF1/kONczzzyj9evXa8aMGapWrZpKlSqlXr166erVq3b9SpYsabdusVhst7hKlSqVa72XLl3S5MmT1bNnzyzbPD09cx0LIH8RgAAUSps2bdKBAwc0duzYbLeXKVNGffr0UZ8+fdSrVy917NhRf/zxh8qXL6+SJUsqIyPDrv/27ds1ePBg9ejRQ9JfYeX48eMO1VS/fn299957tv38U+PGjXX48GFVq1bNoXkB5D8CEIACl56ersTERGVkZCgpKUkxMTGKiopSly5dNHDgwCz9Z82apYCAADVq1Ehubm76/PPP5e/vr7Jly0r6622ujRs36v7775fValW5cuV0zz33aPny5eratassFotefvllu+8Zyou+fftq6tSp6t69u6KiohQQEKD9+/crMDBQLVq00IQJE9SlSxfdfffd6tWrl9zc3PTDDz/o4MGDevXVV53xUQFwEt4CA1DgYmJiFBAQoJCQEHXs2FGbN2/W3LlztWrVKrm7u2fp7+XlpenTp6tp06a69957dfz4ca1bt05ubn/9kTZz5kytX79eQUFBatSokaS/QlO5cuXUsmVLde3aVWFhYWrcuLFDdXp4eOibb76Rr6+vOnXqpHr16mnatGm2GsPCwrRmzRp98803uvfee3Xfffdp9uzZCg4Ovs1PCICzWQzDMAq6CAAAgPzEFSAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6/x8sbpsCctV2awAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#### Plot some key quantities of the system as a whole\n", "# sol has the shape (n_steps, n_particles*6) where the first 3*n are the positions and the last 3*n are the velocities\n", "\n", "# kinetic energy\n", "energies = np.zeros(sol.shape[0])\n", "for i in range(sol.shape[0]):\n", " p = utils.to_particles(sol[i])\n", " k_e = 0.5 * np.sum(p[:,6] * np.linalg.norm(p[:,3:6], axis=1)**2)\n", " energies[i] = k_e\n", "\n", "plt.figure()\n", "plt.plot(t_range, energies)\n", "plt.title('Kinetic energy')\n", "plt.xlabel('Time')\n", "plt.ylabel('Energy')\n", "plt.show()\n", "\n", "\n", "# radial extrema of the particles\n", "r_mins = np.zeros(sol.shape[0])\n", "r_maxs = np.zeros(sol.shape[0])\n", "for i in range(sol.shape[0]):\n", " p = utils.to_particles(sol[i])\n", " r = np.linalg.norm(p[:,:3], axis=1)\n", " r_mins[i] = np.partition(r, 4)[4]\n", "\n", " # r_mins[i] = np.min(r)\n", " r_maxs[i] = np.max(r)\n", "\n", "plt.figure()\n", "plt.plot(t_range, r_mins, label='Min distance')\n", "# plt.plot(t_range, r_maxs, label='Max distance')\n", "plt.title('Radial extrema')\n", "plt.xlabel('Time')\n", "plt.ylabel('Distance')\n", "plt.legend()\n", "plt.show()\n", "\n", "# plot the last radial distribution\n", "plt.figure()\n", "plt.hist(r, bins=NBINS)\n", "plt.title('Radial distribution')\n", "plt.xlabel('Distance')\n", "plt.ylabel('Number of particles')\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Full PM solver\n", "We now have all the tools to implement the full PM solver:\n", "- force computation using mesh\n", "- integrator with RK4\n", "- estimate for good timesteps" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "09:38:52 - task2 (mesh) - Integration range: 0.0 -> 952.8627203476617, n_steps: 188495\n", "09:38:52 - utils.integrate - Reshaped 7 columns into particles.shape=(1414,)\n", "09:38:52 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:52 - utils.forces_mesh - Using mesh spacing: 0.036589586055252865\n", "09:38:52 - utils.forces_mesh - Got k_square with: (50, 50, 50), 560.2040843578968 0.0\n", "09:38:52 - utils.forces_mesh - Count of zeros: 1\n", "09:38:52 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023263587300085347\n", "09:38:52 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:52 - utils.forces_mesh - Using mesh spacing: 0.03655587384174008\n", "09:38:52 - utils.forces_mesh - Got k_square with: (50, 50, 50), 561.2378130598636 0.0\n", "09:38:52 - utils.forces_mesh - Count of zeros: 1\n", "09:38:52 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023276852959839096\n", "09:38:52 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:52 - utils.forces_mesh - Using mesh spacing: 0.03655588099934548\n", "09:38:52 - utils.forces_mesh - Got k_square with: (50, 50, 50), 561.2375932802661 0.0\n", "09:38:52 - utils.forces_mesh - Count of zeros: 1\n", "09:38:52 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023277010406627646\n", "09:38:52 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:52 - utils.forces_mesh - Using mesh spacing: 0.036522181836341594\n", "09:38:52 - utils.forces_mesh - Got k_square with: (50, 50, 50), 562.2737834446085 0.0\n", "09:38:52 - utils.forces_mesh - Count of zeros: 1\n", "09:38:52 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002328243321003685\n", "09:38:52 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:52 - utils.forces_mesh - Using mesh spacing: 0.036522179872084615\n", "09:38:52 - utils.forces_mesh - Got k_square with: (50, 50, 50), 562.2738439256772 0.0\n", "09:38:52 - utils.forces_mesh - Count of zeros: 1\n", "09:38:52 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023282430456915432\n", "09:38:52 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:52 - utils.forces_mesh - Using mesh spacing: 0.036488485599897924\n", "09:38:52 - utils.forces_mesh - Got k_square with: (50, 50, 50), 563.312755512869 0.0\n", "09:38:52 - utils.forces_mesh - Count of zeros: 1\n", "09:38:52 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023296764679076416\n", "09:38:52 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:52 - utils.forces_mesh - Using mesh spacing: 0.03648849184990921\n", "09:38:52 - utils.forces_mesh - Got k_square with: (50, 50, 50), 563.3125625363663 0.0\n", "09:38:52 - utils.forces_mesh - Count of zeros: 1\n", "09:38:52 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002329692111844953\n", "09:38:52 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:52 - utils.forces_mesh - Using mesh spacing: 0.03645480193246109\n", "09:38:52 - utils.forces_mesh - Got k_square with: (50, 50, 50), 564.3542208099584 0.0\n", "09:38:52 - utils.forces_mesh - Count of zeros: 1\n", "09:38:52 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023307495043927325\n", "09:38:52 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:52 - utils.forces_mesh - Using mesh spacing: 0.03645480256424183\n", "09:38:52 - utils.forces_mesh - Got k_square with: (50, 50, 50), 564.3542012488526 0.0\n", "09:38:52 - utils.forces_mesh - Count of zeros: 1\n", "09:38:52 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023307495602778597\n", "09:38:52 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:52 - utils.forces_mesh - Using mesh spacing: 0.036421119249247735\n", "09:38:52 - utils.forces_mesh - Got k_square with: (50, 50, 50), 565.398546447918 0.0\n", "09:38:52 - utils.forces_mesh - Count of zeros: 1\n", "09:38:52 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00232950987824078\n", "09:38:52 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:52 - utils.forces_mesh - Using mesh spacing: 0.036421124661245585\n", "09:38:52 - utils.forces_mesh - Got k_square with: (50, 50, 50), 565.3983784171105 0.0\n", "09:38:52 - utils.forces_mesh - Count of zeros: 1\n", "09:38:52 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002329525415335444\n", "09:38:52 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:52 - utils.forces_mesh - Using mesh spacing: 0.03638744654358328\n", "09:38:52 - utils.forces_mesh - Got k_square with: (50, 50, 50), 566.4454628819223 0.0\n", "09:38:52 - utils.forces_mesh - Count of zeros: 1\n", "09:38:52 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002330265642381862\n", "09:38:52 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:52 - utils.forces_mesh - Using mesh spacing: 0.03638744661516169\n", "09:38:52 - utils.forces_mesh - Got k_square with: (50, 50, 50), 566.445460653392 0.0\n", "09:38:52 - utils.forces_mesh - Count of zeros: 1\n", "09:38:52 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00233026562665376\n", "09:38:52 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:52 - utils.forces_mesh - Using mesh spacing: 0.03635377396190931\n", "09:38:52 - utils.forces_mesh - Got k_square with: (50, 50, 50), 567.4952859129335 0.0\n", "09:38:52 - utils.forces_mesh - Count of zeros: 1\n", "09:38:52 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002330678372584404\n", "09:38:52 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:52 - utils.forces_mesh - Using mesh spacing: 0.036353779316408485\n", "09:38:52 - utils.forces_mesh - Got k_square with: (50, 50, 50), 567.4951187417134 0.0\n", "09:38:52 - utils.forces_mesh - Count of zeros: 1\n", "09:38:52 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002330693911383059\n", "09:38:52 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:52 - utils.forces_mesh - Using mesh spacing: 0.036320111877452654\n", "09:38:52 - utils.forces_mesh - Got k_square with: (50, 50, 50), 568.5477015459736 0.0\n", "09:38:52 - utils.forces_mesh - Count of zeros: 1\n", "09:38:52 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023314672626540624\n", "09:38:52 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:52 - utils.forces_mesh - Using mesh spacing: 0.03632011192420981\n", "09:38:52 - utils.forces_mesh - Got k_square with: (50, 50, 50), 568.5477000821195 0.0\n", "09:38:52 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023314672437481994\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03628644983158558\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 569.6030462293836 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023305149129133743\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.036286455021310116\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 569.6028832990178 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023305304307303684\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03625279806602266\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 570.6610084084925 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002329306090022995\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.036252798083507676\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 570.6610078580239 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023293060673842164\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.036219146331349705\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 571.721919888895 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002330314231154491\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03621915150883381\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 571.7217564349863 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023303297472987896\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.0361855049014812\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 572.7854663876836 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023286778658505106\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03618550491239647\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 572.7854660421249 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002328677842376436\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03615186347213306\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 573.8519833284242 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023282876323810985\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.0361518685856862\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 573.8518209897948 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023283031280356297\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.036118232268987915\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 574.9211562432217 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023250593688728337\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03611823226567279\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 574.9211563487603 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023250593436057294\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03608460106875433\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 575.993319896967 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002325299089755698\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03608460621093301\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 575.9931557349782 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023253145704358004\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03605098011062813\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 577.0681576566012 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00232432177073339\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03605098012583874\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 577.0681571696487 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023243217478623296\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.036017359125161685\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 578.1460076701314 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002322310557269271\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03601736409405576\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 578.1458481500695 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023223259969428257\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03598374837169627\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 579.2265509175885 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023193497814591093\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03598374826857731\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 579.2265542373782 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023193497433866535\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03597508648482639\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 579.5055105728891 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023221749878453253\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.035975085994245704\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 579.5055263779498 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002322189722552836\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03614845177080328\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 573.9603090723007 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002349319974408932\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.036148448003124334\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 573.96042871773 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023493194595798775\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03632181141684232\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 568.494496787204 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023769454230430334\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03632181661252154\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 568.4943341458436 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0023769612501366743\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03649518522504969\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 563.1059535538614 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002403616032016721\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.036495185224028615\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 563.1059535853707 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002403616006202652\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03666855901018096\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 557.7936634261977 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0024292907566586274\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03666856414275821\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 557.7935072750676 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0024293069173649323\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03684194314367417\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 552.5558833157955 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002458433818915873\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.03684194311630118\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 552.5558841368764 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0024584337889974875\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.0370153272434377\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 547.3915348133311 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002485512411242158\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.037015332439064075\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 547.391381145026 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0024855289479083567\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.037188721824631066\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 542.2989449869965 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:53 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00251404884942444\n", "09:38:53 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:53 - utils.forces_mesh - Using mesh spacing: 0.037188721803719016\n", "09:38:53 - utils.forces_mesh - Got k_square with: (50, 50, 50), 542.29894559689 0.0\n", "09:38:53 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002514048819737626\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03736211637386111\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 537.27709432545 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002541297860376326\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.037362121599069376\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 537.2769440457338 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002541314765597897\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.037535521450803966\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 532.3243792061463 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002566495030868746\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03753552143203198\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 532.3243797385903 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0025664950008819523\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.037708926451965774\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 527.4398343970948 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0025949977194238026\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.037708931562462356\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 527.4396914347155 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0025950149594037666\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03788234174998739\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 522.6219283217466 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002622309968076876\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03788234173097815\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 522.6219288462466 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002622309937429105\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03805575707520292\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 517.8697351009453 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002651320141805881\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03805576238133679\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 517.8695906872861 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002651337776676783\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.038229182771086\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 513.1817874143567 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0026796937934874705\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03822918285797827\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 513.1817850815038 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0026796937770398738\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03840260865287315\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 508.5572034233362 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0027071743020342293\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.038402613995365154\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 508.55706192449946 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002707192306718585\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.038576045165948813\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 503.9945734129858 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0027346543447897454\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.038576045154906424\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 503.99457370152254 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0027346543140078644\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03874948176768067\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 499.49306872564046 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002763975934293297\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03874948744239526\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 499.4929224279429 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002763994357260491\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.038922929441184806\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 495.051322986956 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002791175691604436\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03892292953744192\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 495.0513205384142 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0027911756755895412\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03909637727660897\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 490.66855820920625 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002822084248331423\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03909638285954076\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 490.6684180750714 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002822103038028579\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03926983873061052\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 486.34340144125224 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002848861190940198\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03926983788098337\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 486.3434224859311 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0028488610372300214\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03944330060255552\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 482.07517166032494 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002875557896251669\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03944331253708033\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 482.07487993344614 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0028755779608717873\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03961678737998908\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 477.86228351470885 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00290370929661196\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03961678731777196\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 477.862285015649 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0029037092564691345\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03979027282627634\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 473.7044117987012 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0029312118266197657\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.039790281140665074\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 473.7042138326601 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0029312317307360176\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.03996377249214289\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 469.60023711490715 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002962228859471317\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.039963773315979\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 469.60021775369074 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002962228949953849\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.04013727342266793\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 465.54914079828126 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00299175904367956\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.04013728058801547\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 465.5489745776979 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.002991779176830723\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:54 - utils.forces_mesh - Using mesh spacing: 0.0403107871390449\n", "09:38:54 - utils.forces_mesh - Got k_square with: (50, 50, 50), 461.5499478069713 0.0\n", "09:38:54 - utils.forces_mesh - Count of zeros: 1\n", "09:38:54 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0030195643581421815\n", "09:38:54 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.040310787379410296\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 461.5499423027059 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0030195643618921414\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.040484301227356245\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 457.6020571659818 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0030488099811527823\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.04048430806631442\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 457.6019025618294 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0030488304397391806\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.040657828140058916\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 453.7043172449052 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0030778320153044087\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.040657828344473956\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 453.7043126827342 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0030778320133704852\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.04083135532027171\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 449.85616012390295 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0031088687747177126\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.040831361735270244\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 449.8560187704795 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0031088895628316165\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.0410048951110189\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 446.0564798574642 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003136822164054653\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.041004895116062756\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 446.0564797477288 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003136822131313409\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.041178435053046636\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 442.30473443885774 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0031651195009779337\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.04117844189162401\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 442.3045875301957 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003165140721957535\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.0413519887152477\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 438.59983312642464 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003193905262875137\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.041351988699256825\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 438.599833465639 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0031939052262821596\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.0415255422556815\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 434.9412905005172 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0032258587997979126\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.041525548824902114\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 434.94115288764306 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0032258803772067892\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.041700561704319794\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 431.2980091994795 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0032560844359274667\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.04170056124835164\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 431.29801863139846 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00325608432993409\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.04188382930665557\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 427.5318768999715 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003287801763964494\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.04188383587240785\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 427.5317428593273 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0032878237462598114\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.042067110100922456\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 423.81459357484516 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003318272932373397\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.0420671102327973\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 423.8145909176394 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0033182729177265824\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.04225039110110518\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 420.1455775058073 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0033523311522681764\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.04225039749335546\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 420.14545037443594 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003352353529356292\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.042433684882457134\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 416.5237498004125 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003381717573826409\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.04243368483963739\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 416.5237506410391 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003381717530872104\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.042616978637428415\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 412.94855401043344 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0034150966309792804\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.04261698520745494\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 412.9484266864225 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0034151194466354095\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.04280028570408301\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 409.4189378475717 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0034496210226444696\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.04280028566117511\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 409.4189386684685 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003449620978873082\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.04298359248819539\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 405.93438767983446 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0034818198148757955\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.04298359846804267\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 405.93427473324266 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003481842971527453\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.04316691109745263\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 402.4939137487163 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0035122572569996615\n", "09:38:55 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:55 - utils.forces_mesh - Using mesh spacing: 0.04316691115663063\n", "09:38:55 - utils.forces_mesh - Got k_square with: (50, 50, 50), 402.4939126451495 0.0\n", "09:38:55 - utils.forces_mesh - Count of zeros: 1\n", "09:38:55 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003512257229105658\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.04335022980424852\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 399.096992697314 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003544250745924779\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.04335023572164354\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 399.0968837422249 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0035442742992353128\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.04353356028718269\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 395.74268018077544 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00357613058656368\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.04353356028703281\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 395.7426801835004 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003576130548332662\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.043716891526303536\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 392.43046532244324 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003610362367128101\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.043716899713157176\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 392.43031834173314 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0036103867263656666\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.0439002393407637\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 389.15936620111734 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0036469289715811105\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.043900239273639174\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 389.15936739118564 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0036469289214658427\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.044083587288017645\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 385.92899425318603 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003679657635020478\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.04408359627599934\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 385.92883688297695 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003679682584072768\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.0442669536598046\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 382.73835987332967 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0037122813059081473\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.044266953532696496\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 382.73836207131905 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003712281244928272\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.044450321310543384\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 379.58710814572163 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0037442059186650308\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.04445033489802852\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 379.586876082975 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003744232067644773\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.04463370769670316\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 376.4742991902858 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0037793018298847526\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.044633710552296924\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 376.47425101783443 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0037793022730952105\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.044817098385446785\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 373.39955207400425 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003810946702098358\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.04481710774712022\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 373.3993960780251 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0038109725794442163\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.04500050506534947\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 370.36205667742274 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0038470732616083273\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.045000505024255455\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 370.36205735384476 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003847073213481041\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.045183910780897785\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 367.36149046685455 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0038819453064260594\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.045183917496071535\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 367.36138127330986 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003881971197957995\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.04536732943061428\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 364.3970338906209 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003916749776949878\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.04536732960973344\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 364.39703101319816 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003916749766032604\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.045550748362097826\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 361.46831151924454 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003948798778199218\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.04555075484785753\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 361.4682085836751 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003948825066397169\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.04573418282631714\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 358.5745121916558 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003985209079550122\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.045734181912906235\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 358.57452651467895 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.003985208877786701\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.04591761596959354\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 355.71534498279306 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004018945123586203\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.04591762397298971\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 355.7152209811426 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004018972135287221\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.046101066236042376\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 352.8899770172652 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004054161708219571\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.046101066168421356\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 352.88997805250295 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00405416165301274\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.046284516017417454\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 350.098145095725 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004092552139568612\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.0462845229713178\n", "09:38:56 - utils.forces_mesh - Got k_square with: (50, 50, 50), 350.09803989652346 0.0\n", "09:38:56 - utils.forces_mesh - Count of zeros: 1\n", "09:38:56 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004092579449082457\n", "09:38:56 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:56 - utils.forces_mesh - Using mesh spacing: 0.04646797921334489\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 347.33911274077457 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004126962796183382\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.04646797940033043\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 347.33910994541344 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004126962785305562\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.046651442630536666\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 344.6125638888823 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0041634915406915055\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.04665144912631636\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 344.6124679207107 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004163519231970291\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.046834918792468594\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 341.91780776518425 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004200536009861196\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.046834918812441284\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 341.91780747356347 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004200535968566456\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.0470183953844423\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 339.2545304452408 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004234710598706227\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.04701840305051075\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 339.25441981841936 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004234738965262875\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.04720188749817544\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 336.62202830800646 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004271052530462094\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.04720188742834397\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 336.6220293040179 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0042710524721939775\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.047385379532351335\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 334.0200498412195 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0043088234827445004\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.04738538737873599\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 334.0199392227473 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004308852367663674\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.0475688850158702\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 331.44793643302756 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004345896069859544\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.04756888578698537\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 331.4479256871577 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0043458961643274415\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.047752391686007645\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 328.9054024381975 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0043815346769568685\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.047752398465557455\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 328.9053090468508 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004381563842378505\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.04793591069138259\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 326.3918442788715 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0044162450088847845\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.047935910842326734\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 326.3918422233378 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004416244989515239\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.048119430313795286\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 323.9069817375696 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0044526771618258396\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.04811943803879326\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 323.9068777388249 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004452706966132375\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.048302965244471086\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 321.45018416725884 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004490088231086842\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.048302965241434404\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 321.4501842076763 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00449008818255142\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.0484865001966901\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 319.0212324699361 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004528603343068513\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.0484865080045378\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 319.0211297251067 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004528633660060709\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.048670051028486316\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 316.61950108952396 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00456729350952105\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.04867005094157273\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 316.6195022203442 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0045672934444130646\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.048853601359860166\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 314.24479633180465 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0046075740602561175\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.04885360818792295\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 314.244708490471 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004607604709955599\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.04903716551334414\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 311.8965319876235 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0046458732996450475\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.049037165487016976\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 311.8965323225267 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004645873245021246\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.049220729454371615\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 309.57449419740783 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004683200317038647\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.04922073580302766\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 309.57441433749403 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004683231368812763\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.04940431026514713\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 307.2780813612818 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004721682613079793\n", "09:38:57 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:57 - utils.forces_mesh - Using mesh spacing: 0.049404308883147285\n", "09:38:57 - utils.forces_mesh - Got k_square with: (50, 50, 50), 307.27809855242475 0.0\n", "09:38:57 - utils.forces_mesh - Count of zeros: 1\n", "09:38:57 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004721682298472891\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.04958788898349953\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 305.00715188042665 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004758079446932899\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.04958789734688551\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 305.00704899676106 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004758111372740997\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.049771485861969555\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 302.7610836045174 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004799108476378508\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.04977148584489077\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 302.7610838122987 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0047991084218125864\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.049977997650030526\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 300.264202579169 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004845133954806579\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.04997799521900648\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 300.2642317900052 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004845164359027811\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.050310297853312536\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 296.3108036628225 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004922395317244512\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05031029133316833\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 296.3108804657684 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0049223939887840075\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05064258828001145\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 292.4350847912469 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004994604386625169\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.050642595640101984\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 292.43499978973705 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.004994637666482572\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.050974899050386435\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 288.63468228158604 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0050682085012926795\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05097489934929955\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 288.6346788965203 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.005068208506584557\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05130721027972318\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 284.9078795554035 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0051464140288577445\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05130721722322007\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 284.90780244122936 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.005146448217295593\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05163953127454546\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 281.25268699098905 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0052206221823183595\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05163953254876574\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 281.25267311100765 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.005220622384183379\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05197185493200429\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 277.6673582032621 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.005295545438992081\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05197186221808958\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 277.6672803492916 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.005295580669618131\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.052304192070665056\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 274.15001077832073 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.005372723060553249\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.052304192009613226\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 274.15001141832147 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0053727229906099915\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05263652914644301\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 270.6990770611762 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.005452517502932287\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.052636536610191076\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 270.69900029208384 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0054525537953769646\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05296888154377233\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 267.31274022245987 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.005533779290414563\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05296888143280443\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 267.3127413424811 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.005533779208107055\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05330123380354168\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 263.9895521401686 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.005615876048208252\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.053301241520417486\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 263.9894757001315 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.005615913461460528\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05363360151051344\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 260.727800847546 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.005694816872719718\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05363360154305252\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 260.727800531183 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00569481681878787\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05396596927406683\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 257.5261290405456 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00577621561410706\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05396597696545258\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 257.5260556338265 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.005776254069491029\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05429835236677216\n", "09:38:58 - utils.forces_mesh - Got k_square with: (50, 50, 50), 254.38292712599508 0.0\n", "09:38:58 - utils.forces_mesh - Count of zeros: 1\n", "09:38:58 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.005862551287474172\n", "09:38:58 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:58 - utils.forces_mesh - Using mesh spacing: 0.05429835237383229\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 254.3829270598429 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.005862551226364846\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.054630735447992684\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 251.29692200492758 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.005944130715747177\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.054630743062562326\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 251.29685195214512 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.005944170251698846\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05496313388214813\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 248.26659550107564 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006033189039123624\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.054963133838562994\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 248.2665958948208 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006033188965098196\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.0552955322531814\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 245.29075380722793 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006117046701101856\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.055295539939895555\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 245.29068561077733 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006117087382623201\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.0556279463125513\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 242.3679612774731 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006196851214177028\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05562794622214429\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 242.3679620652701 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006196851127829226\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05596036022882944\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 239.49710077352574 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006280908861791813\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05596036802871063\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 239.49703401024786 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0062809506377387424\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05629279006690968\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 236.67681414855275 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006372140618148097\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.056292789989733194\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 236.67681479751278 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006372140532597709\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.056625219792783454\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 233.90605369815466 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006458820184847846\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05662522771910394\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 233.9059882144722 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006458863151832698\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.056957666454543254\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 231.18352815840785 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006550840706041014\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.056957666119223704\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 231.18353088044196 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006550840558921798\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.057290112676134486\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 228.5082638074344 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00664210312632277\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05729012129386635\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 228.50819506180244 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006642147451330177\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05762257979183505\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 225.8790057656731 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006727278504998073\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05762257868410425\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 225.87901445022484 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006727278174476611\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05795504474346114\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 223.29488378882542 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0068168782299057335\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05795505351535413\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 223.2948161944205 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006816923733983116\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05828752775823198\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 220.75471732351036 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006911932841641988\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05828752795439285\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 220.7547158376544 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.006911932814319644\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05862001106054615\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 218.25764823887346 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.007004873781195903\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05862001951810347\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 218.25758525948675 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00700492044100415\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05895251126114798\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 215.80258548005176 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.007102077804204426\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.0589525112014071\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 215.8025859174288 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.007102077713933678\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05928501134643405\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 213.38871529002273 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.007192628790264821\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.059285019816488926\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 213.38865431630603 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0071926766804701805\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05961752804220888\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 211.0150028512461 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.007288587267753154\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05961752817203214\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 211.01500193223265 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.007288587221627186\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05995004496587275\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 208.68067702147584 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00738322607517377\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.05995005334065495\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 208.68061871777132 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0073832751875502756\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.06028257896794842\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 206.38475584450737 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:38:59 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0074787136960718596\n", "09:38:59 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:38:59 - utils.forces_mesh - Using mesh spacing: 0.06028257881509558\n", "09:38:59 - utils.forces_mesh - Got k_square with: (50, 50, 50), 206.38475689112806 0.0\n", "09:38:59 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.007478713578245218\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.060615112597860676\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 204.1265196441863 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.007580591895998461\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.060615120773269915\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 204.12646458143297 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.007580642248123612\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06094766922413486\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 201.90499332578707 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.007682047207112373\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06094766705995425\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 201.90500766460923 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.007682046579478452\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06128022262319255\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 199.7195572729021 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00778396951549932\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06128023410203576\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 199.71948245108382 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.007784022034944901\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.061612796267050074\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 197.56928330402687 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.007882128183596838\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06161279789277874\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 197.56927287781497 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.007882128515345463\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06194537243276277\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 195.45353367943903 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.007983923534216552\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06194538172279995\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 195.4534750545534 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0079839768064416\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06227796551117981\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 193.3714839661576 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.008080758675123666\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.062277965525100676\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 193.37148387970967 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.008080758592403623\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.0626105585057013\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 191.32252668098656 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.008180987311071848\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.0626105674605264\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 191.32247195349518 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.008181041784521077\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06294316958656831\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 189.3058549205543 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.008280733810789647\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06294316952306889\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 189.30585530251201 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.008280733705612754\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06327578144351298\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 187.32089699779354 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.008389438931372629\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06327579310756759\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 187.32082793754589 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00838949548598923\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06360841687666996\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 185.36685854929217 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.008497328162012152\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.0636084168151867\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 185.3668589076397 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.008497328054802186\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06394105222751012\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 183.44323719509993 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.008603036317727821\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06394106401351385\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 183.44316956837176 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.008603094312056001\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06427371161356366\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 181.5492686391455 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.008710571842355595\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.0642737114797085\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 181.5492693953272 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.008710571713013326\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06460637543106862\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 179.68445628414614 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.008819508126614507\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06460640131455775\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 179.6843123089473 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.008819571395689285\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06493909506042184\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 177.8479234326243 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00892932193973739\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.0649390937568759\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 177.84793057263593 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.008929321485855967\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06527181279659944\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 176.03941403882325 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.009038115137953827\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06527184082183646\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 176.03926286964577 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.009038180494567574\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06560458839143823\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 174.25804337064477 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.009150113507499887\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06560458822335269\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 174.25804426357803 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.009150113362855577\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06593736024713492\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 172.50359505032165 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00926360644804626\n", "09:39:00 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:00 - utils.forces_mesh - Using mesh spacing: 0.06593737806345823\n", "09:39:00 - utils.forces_mesh - Got k_square with: (50, 50, 50), 172.50350182916253 0.0\n", "09:39:00 - utils.forces_mesh - Count of zeros: 1\n", "09:39:00 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.009263670486402942\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.0662701682797997\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 170.77532346335983 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.009375650870731951\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06627016815446751\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 170.77532410931093 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.009375650735102041\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06660297617371924\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 169.07289576812323 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.009489673364579568\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.0666029943257993\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 169.07280360937415 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00948973901014144\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.0669358217232594\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 167.39561020342165 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.009603262822360938\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06693582131463316\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 167.3956122472373 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.009603262602511353\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06726866573189816\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 165.7431682246723 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00971825119146626\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06726868171303058\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 165.7430894729222 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.009718317738536986\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06760154165267318\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 164.11491914253588 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.009840675764078672\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.0676015418056608\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 164.1149183997259 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.009840675703484063\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06793441769823971\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 162.51054584022592 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.00995678574921616\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.0679344331358207\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 162.510471981674 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.009956853723990602\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06826732460444851\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 160.92943887983552 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.010070257811145416\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06826732455836093\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 160.92943909712392 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.010070257689960602\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06860023146318373\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 159.371294885057 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.010194582204980415\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06860024703487011\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 159.37122253314436 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.010194651798075518\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06893318007914706\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 157.83547989286313 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.010310976017362618\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06893317655664966\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 157.8354960237049 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.010310974853417726\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06926612416784339\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 156.32177914298265 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.010427979825140293\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06926614729271274\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 156.32167476529582 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.010428053240278012\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06959910879110676\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 154.82956951404063 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.010552755591857067\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06959911187041268\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 154.82955581364743 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.010552756412895353\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06993209808015721\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 153.35860429097576 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.010679088344447179\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.06993211672655364\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 153.3585225092399 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.010679162091741908\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.0702651229212623\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 151.90834865611768 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01080049826175362\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.07026512247515848\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 151.90835058500903 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01080049800922226\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.07059814611177373\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 150.47857500492762 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.010926726035880966\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.07059816248301098\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 150.47850521500447 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.010926800734056738\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.07093119641318935\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 149.0687785323998 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.011057410196110565\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.0709311984391392\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 149.06877001694062 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.011057410709623797\n", "09:39:01 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:01 - utils.forces_mesh - Using mesh spacing: 0.07126424975905832\n", "09:39:01 - utils.forces_mesh - Got k_square with: (50, 50, 50), 147.67868908250819 0.0\n", "09:39:01 - utils.forces_mesh - Count of zeros: 1\n", "09:39:01 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0111811190443734\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07126426310795586\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 147.678633757513 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.011181194484785089\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07159732795808904\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 146.30785198367056 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.011311105532765108\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07159732789770912\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 146.30785223044114 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.011311105392842472\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07193040592380129\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 144.9560149386702 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.011446131659435452\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07193041893502317\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 144.95596249758248 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.011446208740739917\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07226351022982902\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 143.62272280341057 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.011574600827182278\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07226351014405585\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 143.62272314435648 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.011574600676045502\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07259661548621166\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 142.3077379469106 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.011706907200237725\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.0725966318631368\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 142.30767374109692 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.011706987084319402\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07292975380199485\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 141.01060258037165 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.011840534031941978\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07292975372880828\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 141.01060286338597 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.011840533881676524\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07326289213703685\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 139.73112173698732 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.011977001755130482\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07326290901085697\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 139.7310573716059 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.011977083595570485\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07359606409523156\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 138.46885003496814 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.012116199706707128\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.0735960641611968\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 138.46884978674478 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.012116199598980854\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07392923669987139\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 137.2236032365678 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.012247407351156824\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07392925511723525\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 137.22353486588796 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01224749149988673\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07426244631542556\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 135.99494337178987 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.012385442160808793\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07426244623479006\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 135.99494366712136 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.012385442001589482\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07459565587892825\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 134.78271171165554 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.012524026602465523\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07459567462394912\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 134.7826439730249 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.012524112706049643\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07492890299746313\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 133.58648258184314 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.012661357764192027\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.0749289030027609\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 133.586482562953 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01266135763071199\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.0752621502008115\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 132.40610800369893 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01279880831024921\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07526216916848516\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 132.40604126537457 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01279889632174166\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07559543554318737\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 131.2411769025763 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01294398060008426\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07559543547361236\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 131.24117714415456 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.012943980437968102\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.07592872101174164\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 130.09155189803488 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:02 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01308784180190965\n", "09:39:02 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:02 - utils.forces_mesh - Using mesh spacing: 0.0759287407754008\n", "09:39:02 - utils.forces_mesh - Got k_square with: (50, 50, 50), 130.0914841744106 0.0\n", "09:39:02 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.013087932017448605\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07626204635450184\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 128.9568315925193 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.013232115340121685\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07626204626215238\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 128.95683190483967 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.013232115166706578\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.0765953704027238\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 127.83689747179872 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.013371506907244531\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07659538683686451\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 127.83684261498756 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.013371597855026361\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07692872675446338\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 126.73138303175426 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.013523230500748367\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07692872697357189\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 126.73138230984131 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.013523230433303673\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07726208483683839\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 125.64014168707047 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.013667229935083404\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07726210514823406\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 125.64007562813282 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.013667324215387093\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.0775954841057942\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 124.5628021359015 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01381317952468223\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07759548384491977\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 124.56280297345671 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01381317928422678\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07792888301621792\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 123.49926150616552 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.013961520300098302\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07792890381726325\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 123.4991955764971 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.013961616723136516\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.0782623239406457\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 122.4491525482047 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.014112378601117592\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.0782623238903919\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 122.4491527054588 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.014112378432221157\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07859576484831399\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 121.41238046836924 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.014265660214093291\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07859578590060412\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 121.41231542650252 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.014265758764212572\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07892924837711934\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 120.38859030378293 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.014415654372163873\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07892924822177916\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 120.38859077765511 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.014415654161408286\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07926273088479219\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 119.37769824465492 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.014564404393784073\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07926274980572479\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 119.37764125099478 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.014564504158763284\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07959623057013987\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 118.37943439174288 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.014719093476412867\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07959623751002076\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 118.37941374908024 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01471909588583141\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.07992974528052188\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 117.39359581879172 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.014875024099340384\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.079929767637273\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 117.39353014766282 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.014875127211603792\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.0802632981171385\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 116.41991033980145 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.015036641384449198\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.08026329799970067\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 116.4199106804827 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.015036641179799947\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.08059685082931245\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 115.45828907725792 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.015195972977454838\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.08059687351736233\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 115.45822407416442 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.015196078369072566\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.08093044937645244\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 114.50840348875371 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.015357943333708175\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.08093044926274451\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 114.50840381052413 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.015357943126472082\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.08126404770822715\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 113.5701926532087 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.015515264412552578\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.081264070432429\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 113.57012913702974 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01551537196070183\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.0815976933895386\n", "09:39:03 - utils.forces_mesh - Got k_square with: (50, 50, 50), 112.64333470382572 0.0\n", "09:39:03 - utils.forces_mesh - Count of zeros: 1\n", "09:39:03 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01567773017309061\n", "09:39:03 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:03 - utils.forces_mesh - Using mesh spacing: 0.08159769279383489\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 112.64333634853034 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01567772977668362\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08193133819810772\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 111.7277792819518 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.015842979306640814\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08193136187830397\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 111.72771469776089 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01584308942398942\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08226503131759055\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 110.82321083582562 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.016008920776235877\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08226503119942397\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 110.82321115420152 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.016008920559210146\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08260024112240161\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 109.92554644792821 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.016176274935064783\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.0826002479965875\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 109.92552815140667 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.016176380710718998\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08293771194451804\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 109.03279956332153 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.016344104631669805\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08293770607421269\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 109.03281499793812 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.016344102143392773\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08327517399346318\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 108.1509069702569 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.016504669347588874\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08327518976996595\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 108.15086599183522 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01650478077712948\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08361267411028583\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 107.27957312935462 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.016677109251195924\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08361267389550076\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 107.27957368051631 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.016677108987341635\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.0839501739338242\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 106.41872781539885 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0168524987445463\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08395019011918459\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 106.41868678094039 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01685261263523085\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08428769576224804\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 105.56814750423557 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.017025012526426395\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08428769928916902\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 105.56813866948248 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01702501376931973\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.0846252229422757\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 104.72771108001808 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.017204499976267173\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08462523402092081\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 104.7276836593301 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.017204614116461226\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.0849627688272423\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 103.89722527670088 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.017380357156555955\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08496276880243392\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 103.89722533737498 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01738035696071919\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08530031473034061\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 103.07657897296986 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01756079393257056\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08530032601223114\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 103.0765517069872 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.017560910483828872\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08563788295477082\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 102.26556407699134 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.017747336718217873\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08563788304390485\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 102.26556386411028 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01774733656555396\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08597545130364104\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 101.46408306382796 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.017931163668428972\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08597546242404608\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 101.46405681630114 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01793128257323031\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.086313040582362\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 100.67193855090113 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.018097778175473186\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08631304098968284\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 100.67193760073694 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.018097778152932398\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08665063073561452\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 99.88903251622165 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.018283143384837514\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08665064203569095\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 99.88900646324382 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.018283264662648097\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08698824327629495\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 99.115172840323 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.018462178364943908\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08698824321147924\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 99.11517298802619 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.018462178140186455\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:04 - utils.forces_mesh - Using mesh spacing: 0.08732585560540684\n", "09:39:04 - utils.forces_mesh - Got k_square with: (50, 50, 50), 98.35027179068373 0.0\n", "09:39:04 - utils.forces_mesh - Count of zeros: 1\n", "09:39:04 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.018644420680302594\n", "09:39:04 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.08732586665967235\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 98.35024689107517 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.018644544212013815\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.08766349049454059\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 97.59414091480082 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.018829739981935815\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.08766349036569787\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 97.59414120167725 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.018829739725414373\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.08800112520340564\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 96.84669689622234 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01901346595842207\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.08800113648992225\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 96.84667205422991 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01901359199872716\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.08833878281265228\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 96.10775695423598 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01920410867266939\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.08833878274653317\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 96.1077570981039 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.019204108438750537\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.0886764403338205\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 95.3772422137025 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.019393714627745293\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.08867645175281602\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 95.37721764997198 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.019393843208782083\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.08901412088729055\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 94.65497590531712 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.019588300879039698\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.08901412084460958\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 94.6549759960885 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.019588300650979086\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.08935179987749242\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 93.94088622101297 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0197821229947793\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.089351806862767\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 93.94087153294156 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.019782252149241134\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.08968948391463272\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 93.23483644850045 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01997511046073689\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.08968948690340728\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 93.23483023466397 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.01997511157861267\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.09002717257259052\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 92.53670725981326 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.020177424643232987\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.09002717548767025\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 92.53670126713665 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02017755453040746\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.09036489804101411\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 91.84631522467328 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.020377628583255737\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.09036488671807241\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 91.84633824181135 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.020377623258814218\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.09070260644713013\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 91.1636550141884 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.020577466323118077\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.09070262611293511\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 91.1636154826656 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.020577606375975305\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.09104036564121643\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 90.48847660187674 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.020783536575370895\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.09104036559683015\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 90.48847669011113 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02078353633305953\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.09137812480998964\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 89.82077134051802 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02097844655445471\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.09137814466617167\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 89.82073230498281 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.020978589356597882\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.09171590227760973\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 89.16039372041722 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.021176841666963972\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.09171590943028418\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 89.16037981366429 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02117684474376543\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.09205369074732195\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 88.50725107478794 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.021379272722486468\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.0920537006937332\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 88.50723194835493 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02137941358182499\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.0923914920993183\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 87.86123460357017 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02158119845765946\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.09239149205198283\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 87.86123469359906 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.021581198204978273\n", "09:39:05 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:05 - utils.forces_mesh - Using mesh spacing: 0.0927292934035826\n", "09:39:05 - utils.forces_mesh - Got k_square with: (50, 50, 50), 87.22226542922189 0.0\n", "09:39:05 - utils.forces_mesh - Count of zeros: 1\n", "09:39:05 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.021783805671106535\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09272930349080966\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 87.22224645289585 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.021783949227611253\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.0930671146067148\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 86.59020430215335 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.021992464801957698\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09306711471439799\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 86.59020410177519 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.021992464617888983\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09340493599426258\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 85.96498842526664 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.022203407142443503\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09340494598863547\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 85.96497002867972 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02220355338505775\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09374277753087279\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 85.3464829566756 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.022416863809131486\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09374277744158332\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 85.34648311925967 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02241686352693203\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09412832205739052\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 84.64876562018593 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.022645169716571243\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09412834758382216\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 84.64871970881723 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.022645326304990367\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.0945241024218193\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 83.94138665682891 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.022902986143369223\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09452411259783933\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 83.94136858336255 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02290299082993567\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09491989975935766\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 83.24280797903232 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.023149952441754072\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09491991514899878\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 83.24278098623877 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.023150107471427196\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09531571789274684\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 82.55287771734979 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.023398612559998828\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09531571782861814\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 82.55287782843342 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.023398612278529192\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09571153596340487\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 81.87148953759728 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.023654333860186956\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09571155154962385\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 81.87146287275193 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02365449230130536\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09610738533664254\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 81.198450006126 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.023909824434322158\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.0961073853147063\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 81.19845004319261 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02390982416796151\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09650323473659617\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 80.53367571191934 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.024169695519911022\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09650325053457998\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 80.5336493445256 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02416985745451311\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09689911552251607\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 79.87698017163446 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.024440027026339614\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09689911559989683\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 79.87698004405965 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.024440026804263288\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09729499821927368\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 79.22828122836012 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.024700474287718203\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09729501928548467\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 79.22824691952246 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02470064238760273\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09769092325206774\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 78.58738454663833 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0249632768274515\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09769092315849592\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 78.58738469718591 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.024963276512929337\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09808684818692592\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 77.9542332354383 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.025228881508143425\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09808686952076062\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 77.95419932544496 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.025229053253594185\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09848281496437794\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 77.32863712576537 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02550267099785087\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09848281527068536\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 77.32863664474061 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.025502670884027405\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09887878224981117\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 76.71054089514121 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.025773137956801057\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.09887880326974452\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 76.71050828046076 0.0\n", "09:39:06 - utils.forces_mesh - Count of zeros: 1\n", "09:39:06 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.025773313153840502\n", "09:39:06 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:06 - utils.forces_mesh - Using mesh spacing: 0.0992747915445178\n", "09:39:06 - utils.forces_mesh - Got k_square with: (50, 50, 50), 76.09976151599136 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.026046149316148903\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.09927479145270546\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 76.09976165675008 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0260461489897025\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.09967080074317813\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 75.49624800564945 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.026319706971757784\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.09967082202584487\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 75.49621576429168 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.026319885934024706\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10006684151989242\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 74.8998381558936 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.026593306556653956\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10006684521299203\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 74.89983262733803 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.026593308235460977\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10046288784578294\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 74.31045961436398 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02687083184637241\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.1004629036173812\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 74.31043628247568 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02687101151745258\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10085896205258704\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 73.72796967062303 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.027150515000916517\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10085896204238365\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 73.72796968554042 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.027150514705354567\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.1012550362761413\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 73.15230181429581 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0274308412572991\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10125505215921127\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 73.15227886466491 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.027431024665884346\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10165114250434648\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 72.58330424521665 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.027704879489568207\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10165114242831352\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 72.58330435379825 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.027704879152131552\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10204724880689753\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 72.02091956004014 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.027998829899088404\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10204726536920194\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 72.0208961820046 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.027999017409905153\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10244343140609402\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 71.46493933551884 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.028284956153554343\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10244341704092541\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 71.46495937791892 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.028284947918829163\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10283959253871\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 70.9154019590854 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.028572094787210785\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10283963089227832\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 70.91534906394796 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.028572298174465806\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10323584526164664\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 70.3720540205999 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02886968541289004\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10323584508914863\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 70.37205425577093 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.028869685007976913\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10363209782012062\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 69.83492709497453 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.029163894123411135\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10363213671528815\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 69.83487467415671 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.029164101861803144\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10402846934827092\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 69.30376783871961 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.029466237374673125\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10402845567959051\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 69.30378605087338 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.029466229316511546\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10442482050116508\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 68.77867239350772 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0297615665115541\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10442488028263908\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 68.77859364428193 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.02976179024312832\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10482130573787618\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 68.25934754222018 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.030067740335920502\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10482130545409207\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 68.25934791181905 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.030067739851879483\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.1052177906778784\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 67.74588281710868 0.0\n", "09:39:07 - utils.forces_mesh - Count of zeros: 1\n", "09:39:07 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03038410158874646\n", "09:39:07 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:07 - utils.forces_mesh - Using mesh spacing: 0.10521785127192906\n", "09:39:07 - utils.forces_mesh - Got k_square with: (50, 50, 50), 67.745804788595 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.030384330207325227\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10561439786264204\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 67.2380343495748 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.030700289313894496\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.105614397605299\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 67.23803467724301 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.030700288836290696\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10601100479623637\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 66.73587540043637 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03100312272416508\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.106011066180836\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 66.73579811503677 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.031003356195643345\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10640772318111935\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 66.2391822266407 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.031321211446767055\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10640772703979495\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 66.23917742256266 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03132121338374932\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10680444746983975\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 65.7480063051059 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03163001638105235\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10680450341390024\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 65.74793742768293 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.031630251078837546\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10720128048841726\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 65.2621410530486 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03195357765295971\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10720128025520559\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 65.26214133699841 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03195357717254929\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10759811328029922\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 64.78164191919407 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03226866246902424\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10759816994354221\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 64.78157368872226 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.032268902087642444\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10799506033595963\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 64.30629382305698 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0325867985628366\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10799506010152848\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 64.30629410224378 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03258679807321212\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10839200715466202\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 63.83615881604054 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.032905354414891674\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10839206451361783\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 63.8360912543706 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03290559892998451\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10878906966885582\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 63.37102588189143 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.033231941296740335\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10878906942140532\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 63.371026170177615 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.033231940790521414\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10918613193108584\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 62.91095846472352 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03355074408698709\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10918619001885288\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 62.910891526658766 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03355099358752019\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10958331132970134\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 62.45574946662849 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03388681958941518\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10958331109217001\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 62.45574973738499 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03388681908047253\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10998049084830441\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 62.00546319648983 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.034219179962688084\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.10998055072121993\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 62.005395685519495 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03421943528193913\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.11037779108804546\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 61.559894405679856 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.034551341905036725\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.11037779084239796\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 61.559894679684874 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.034551341382110655\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.110775091083533\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 61.119111444244695 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03488684335002639\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.11077515169757213\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 61.1190445578511 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03488710384525309\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.11117251329799371\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 60.682912324719055 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.035225296758380736\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.11117251304985931\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 60.682912595604705 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.035225296224799314\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:08 - utils.forces_mesh - Using mesh spacing: 0.11156993522360237\n", "09:39:08 - utils.forces_mesh - Got k_square with: (50, 50, 50), 60.25136655245775 0.0\n", "09:39:08 - utils.forces_mesh - Count of zeros: 1\n", "09:39:08 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0355712410575247\n", "09:39:08 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11156999645989085\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 60.25130041336718 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03557150678250319\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11196748061585415\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 59.82427592664804 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03591068122536842\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.1119674803674946\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 59.824276192045296 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03591068068239878\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.1123650257611124\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 59.401710654490856 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03625933607298609\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11236508774657716\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 59.40164511737963 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03625960714005199\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11276269589179666\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 58.98347601494248 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03661344541794877\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.1127626956367056\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 58.98347628180655 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.036613444861127435\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11316036576573962\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 58.569643191358 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03697078011158456\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11316042851152464\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 58.569578239373115 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.036971056707380885\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11355816214604753\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 58.16002078176163 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03732000929263368\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11355816189310408\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 58.16002104085699 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.037320008727661225\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.1139559582704961\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 57.75468085795867 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03768106125913655\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.1139560217663611\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 57.754616496596434 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.037681343373188944\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11435388201007335\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 57.353435664278024 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03804571357445415\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11435388188688211\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 57.35343578784952 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.038045713086012456\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11475179726654705\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 56.9563658324453 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.038412064955922004\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11475183605224615\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 56.95632733036689 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.038412335702949156\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11514979068788023\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 56.563328476502925 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.038777792861561924\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11514979053129837\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 56.56332863033371 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03877779234180987\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11554777789742587\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 56.174351501953424 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03915493392973796\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11554779898725354\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 56.17433099602785 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0391551977374808\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11594580769658647\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 55.78933218774886 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.039517572302712814\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11594580761222018\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 55.789332268937464 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03951757182300921\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11634383735124443\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 55.40825787502132 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03990037336695873\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.1163438585137615\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 55.40823771790927 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.03990064214732368\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11674196171037465\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 55.03098542973174 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04027164515291459\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11674194427889084\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 55.03100186378735 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.040271632696234225\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11714006000995125\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 54.65757747353272 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04063792443240766\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11714010758270232\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 54.65753307864776 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.040638216405100805\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.1175382715146771\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 54.28785268061196 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.041016365523573586\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.11753827130550576\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 54.28785287383349 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.041016364939380434\n", "09:39:09 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:09 - utils.forces_mesh - Using mesh spacing: 0.1179364827666145\n", "09:39:09 - utils.forces_mesh - Got k_square with: (50, 50, 50), 53.92186691019306 0.0\n", "09:39:09 - utils.forces_mesh - Count of zeros: 1\n", "09:39:09 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04140427876944476\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.11793653083602873\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 53.92182295448214 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.041404576369817495\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.11833479094135635\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 53.55948194865849 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.041792220790560594\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.11833479074997344\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 53.55948212190202 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04179222020888288\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.11873309892527883\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 53.20073806325337 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04217943191461227\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.11873314757053244\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 53.200694470323896 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04217973526497171\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.11913148972595966\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 52.845512995109566 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04258261763686655\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.11913149461452388\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 52.845508658075445 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0425826206766836\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.11952988961272792\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 52.49382589886794 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04296972568048653\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.11952993618485941\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 52.493784992816046 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04297003298931071\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.11992837829820413\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 52.145560654264955 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04335602552016281\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.1199283781174123\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 52.14556081148365 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04335602492624075\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.1203268667588202\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 51.80074993983637 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04375022160125047\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12032691374112314\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 51.80070948807085 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04375053456445084\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12072544750842829\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 51.45926934886521 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04415214294896324\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12072544812743802\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 51.45926882115893 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04415214293002685\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12112402927653454\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 51.121153461342224 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.044556500887125136\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.1211240756002736\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 51.121114358917545 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04455681890445229\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12152270361393569\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 50.78628169917879 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.044984756271065435\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.1215227034338704\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 50.78628184968313 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04498475565714913\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12192137794795821\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 50.45468958735928 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04539254205264095\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12192142534195316\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 50.454650361294924 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0453928666069933\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12232014755860598\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 50.12625634776016 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04579312112758914\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12232014745596365\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 50.12625643188492 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.045793120561495454\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12271891710593463\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 49.80101964204354 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04621684258330667\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12271896492582579\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 49.80098083013088 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.046217173118642776\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.1231177830236172\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 49.47886061305101 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04663563719997084\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12311778281452446\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 49.478860781112374 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04663563654332463\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12351664872070645\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 49.159817712097876 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.047047743581507255\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12351669713337454\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 49.159779175486584 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.047048080274085\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12391561202517387\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 48.843773757845085 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.047469376222074595\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12391561183441047\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 48.843773908231384 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04746937556877025\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12431457533588208\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 48.53076775707903 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:10 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.047897284472197765\n", "09:39:10 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:10 - utils.forces_mesh - Using mesh spacing: 0.12431462491185208\n", "09:39:10 - utils.forces_mesh - Got k_square with: (50, 50, 50), 48.530729049494795 0.0\n", "09:39:10 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.047897627899856667\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12471363857440476\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 48.220683628319 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04832715873442027\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12471363837959304\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 48.220683778967384 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04832715806712522\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12511270161155164\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 47.913562080201224 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04875440480818881\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12511275175226322\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 47.913523676128385 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04875475457355346\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12551186574612982\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 47.6092886426539 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04919145345182216\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12551186553929217\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 47.60928879956964 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04919145276414389\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12591102966523993\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 47.30790460767865 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04963637370032588\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12591108040057186\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 47.30786648265023 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.04963673000952637\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12631029583594122\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 47.009297235200314 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05007169303419738\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12631029564480833\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 47.00929737746936 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0500716923477082\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12670956182040527\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 46.71350831655862 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.050509243312482244\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12670961314382057\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 46.71347047418435 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0505096060998024\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.1271089312224718\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 46.420426819954095 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.050961249312224\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12710893102949194\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 46.420426960907314 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05096124861302688\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12750830060059837\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 46.13009491185321 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05142214869797762\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12750835301007202\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 46.130056990361155 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05142251865736375\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.1279077758935725\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 45.842402367770354 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05187229242007525\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12790777559283795\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 45.84240258333808 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05187229162196352\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12830725082951888\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 45.55739302137589 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05233563001177133\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.1283073039723166\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 45.557355283121765 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05233600687358844\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12870683294881902\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 45.27495794980793 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05279935929407173\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12870683275005268\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 45.274958089647235 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.052799358566898234\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12910641486184105\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 44.99514135675355 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.053261992213707504\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12910646857840025\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 44.995103915040545 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05326237594643383\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12950610501267112\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 44.7178360828093 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.053723743975307506\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12950610481094138\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 44.71783622212192 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05372374323396848\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.12990579209144526\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 44.44308858416383 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05419594446314248\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.1299058378022151\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 44.44305730724094 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05419632796714928\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.1303055713034067\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 44.17080294956087 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.054669584014668274\n", "09:39:11 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:11 - utils.forces_mesh - Using mesh spacing: 0.13030557113364027\n", "09:39:11 - utils.forces_mesh - Got k_square with: (50, 50, 50), 44.170803064655246 0.0\n", "09:39:11 - utils.forces_mesh - Count of zeros: 1\n", "09:39:11 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05466958328814281\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13070535074690692\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 43.90101179897097 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05514458248187913\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13070539817089122\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 43.900979941671345 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.055144973906903705\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13110522573960726\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 43.63362130932017 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.055623104268054585\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13110522556266613\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 43.63362142709706 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05562310352365349\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13150510055604148\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 43.36866643364866 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.056095910824084716\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13150514851287198\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 43.36863480259195 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05609630920882312\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13190507196068157\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 43.10605443582506 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.056580671491988324\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13190507179503008\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 43.10605454409355 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.056580670745383706\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13230504320666636\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 42.84582064602667 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05705958957514097\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13230509168143811\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 42.845789249789846 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05705999499890843\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13270511210214941\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 42.58787365692084 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05754980402004306\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13270511192426726\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 42.587873771093136 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.057549803250913634\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13310518083699074\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 42.33224917550873 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05805876264854421\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13310522989712803\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 42.33221796973904 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.058059175426620445\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13350534854797136\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 42.07885691013871 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05853604343634332\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13350534832219907\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 42.078857052458694 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.058536042612978595\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.1339055160668039\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 41.8277331063356 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05903632144447093\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13390556590513114\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 41.827701970604245 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0590367415987287\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13430578403952786\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 41.5787884501684 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05953331548537681\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13430578385593162\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 41.57878856384495 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.05953331468657505\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13470604051861734\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 41.33206670437474 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.060049244865040347\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13470605697761906\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 41.3320566040937 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.060049642202648516\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13510633027897212\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 41.08751422824431 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.060540789855786065\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13510633021915508\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 41.087514264626506 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.060540789155377236\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13550661997860036\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 40.84512582749334 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06104821151971555\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13550663661432472\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 40.84511579863823 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06104861553844497\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13590695548727894\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 40.60484863457221 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0615738952817413\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13590695132811614\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 40.60485111983401 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.061573890855209035\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.1363072847964255\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 40.36668909069807 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06210310215323374\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13630730778852973\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 40.36667547271882 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.062103518855800156\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13670766449984306\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 40.1305891470473 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06262676618117399\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13670766441631077\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 40.130589196089176 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06262676543555346\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13710804412023103\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 39.896554590849675 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0631601592475891\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13710806736444026\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 39.89654106336292 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06316058315067775\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.13750847071759376\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 39.66453425244085 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06370356970705725\n", "09:39:12 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:12 - utils.forces_mesh - Using mesh spacing: 0.1375084705826879\n", "09:39:12 - utils.forces_mesh - Got k_square with: (50, 50, 50), 39.66453433026847 0.0\n", "09:39:12 - utils.forces_mesh - Count of zeros: 1\n", "09:39:12 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06370356890147022\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.13790889715850563\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 39.43453212206537 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06423707466070053\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.1379089207427957\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 39.434518634390166 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0642375059819041\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.13830937115982778\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 39.206497807648056 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06477302909059697\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.13830937107428998\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 39.20649785614278 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06477302831846168\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.13870984509003303\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 38.98043577795446 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06531456014221336\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.1387098689741988\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 38.980422354034204 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06531499885162967\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.1391103671467846\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 38.75629649784425 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06585470521524675\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.13911036705599722\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 38.75629654843118 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06585470442571587\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.13951088938482092\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 38.53408479075623 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0663910377154251\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.13951091435756524\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 38.53407099539455 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06639148456020463\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.13991144691737567\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 38.31375938658872 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06694202356625702\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.13991145183137155\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 38.313756695262896 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06694202755336737\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.14031201185271902\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 38.09531419848661 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06748643652019498\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.140312029549853\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 38.09530458879257 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06748688360080249\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.14071260745719627\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 37.878715378538274 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0680510397497367\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.14071260739431946\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 37.87871541239016 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06805103896188151\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.141113203010244\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 37.66395862451675 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0686129984796708\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.1411132209303494\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 37.66394905855177 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06861345314202878\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.14151383431282794\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 37.451004158452136 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06917514081137678\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.14151383436408915\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 37.451004131320026 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06917514012244394\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.14191446572516497\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 37.239850629674194 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06972387966983422\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.1419144836669628\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 37.23984121344251 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.06972434161474961\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.1423151338850004\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 37.030458721962304 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.070299820607336\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.14231513358002523\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 37.03045888067163 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07029981955497322\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.142715805061298\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 36.82282635585646 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07087490797029417\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.14271583388233156\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 36.82281148333982 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.070875388246215\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.1431165344930263\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 36.61690561043883 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07145376279208054\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.14311653439035688\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 36.61690566297554 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07145376192616876\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.14351726384968577\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 36.41270741181326 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0720359507113374\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.14351729306152938\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 36.41269258876047 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07203643908477925\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.1439180520664678\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 36.21018294441459 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07262741865722025\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.14391805195534157\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 36.21018300033391 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07262741776913052\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.14431884016729724\n", "09:39:13 - utils.forces_mesh - Got k_square with: (50, 50, 50), 36.00934348453015 0.0\n", "09:39:13 - utils.forces_mesh - Count of zeros: 1\n", "09:39:13 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07322543316175799\n", "09:39:13 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:13 - utils.forces_mesh - Using mesh spacing: 0.14431886969804264\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 36.009328747958996 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0732259297574394\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.1447196877744803\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 35.81014088483224 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07384273222811426\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14471968766336474\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 35.81014093982218 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07384273132580627\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14512053526613222\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 35.612586755442166 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07444003798107604\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14512056511697713\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 35.61257210464897 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07444054297398807\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14552144288727042\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 35.41663363279698 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07504157241867124\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14552144278184187\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 35.41663368411482 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07504157150821442\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.1459223504033833\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 35.22229342824959 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07565841525167519\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14592238057172358\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 35.22227886436954 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0756589286681282\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14632331867963178\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 35.029519346540795 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07626754923869788\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14632331857375602\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 35.029519397233685 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07626754831350605\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.1467242868505978\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 34.83832359393001 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07687093733494477\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.1467243173383448\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 34.838309115867965 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07687145914050833\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14712531642933335\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 34.64866001398206 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07748757687577608\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14712531632066783\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 34.64866006516449 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07748757593345687\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.1475263458990237\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 34.4605411028803 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07810656628816226\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14752637671162727\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 34.46052670791033 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07810709664877925\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14792743741841052\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 34.273921328686264 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07874141493831693\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14792743731327196\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 34.27392137740625 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07874141398513543\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14832852884839998\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 34.08881344960014 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07938215793207504\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.1483285600236437\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 34.08879912023626 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.07938269716305975\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.1487296830629381\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 33.90517251192327 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0800109136762972\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14872968295343458\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 33.90517256184923 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08001091270366525\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14913083715888398\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 33.72301158757652 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0806259708990918\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14913086863537073\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 33.722997352001755 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08062651872250576\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.1495320546575032\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 33.54228631768453 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08127455739395273\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14953205454424356\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 33.54228636849619 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08127455640251871\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14993327211413243\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 33.36300997262215 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08193089636504322\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.14993330414420836\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 33.362995718022304 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08193145347485777\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.15033455415415276\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 33.1851385739718 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08258675521351597\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.1503345540176344\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 33.18513863424245 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0825867541811884\n", "09:39:14 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:14 - utils.forces_mesh - Using mesh spacing: 0.15073583665164003\n", "09:39:14 - utils.forces_mesh - Got k_square with: (50, 50, 50), 33.008685646519375 0.0\n", "09:39:14 - utils.forces_mesh - Count of zeros: 1\n", "09:39:14 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08322992149883786\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15073587087322737\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 33.00867065858737 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08323048967249952\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15113718807484577\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 32.833606399662884 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08388575687812592\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15113718795965525\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 32.83360644971172 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08388575585404513\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15153853938499662\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 32.65991645625941 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08455131302112386\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.1515385739585624\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 32.65990155352392 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08455189040475365\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15193996030937607\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 32.487571337628 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0852022103126783\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15193996019222666\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 32.487571387725396 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0852022092710155\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15234138114150708\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 32.31658685524697 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0858695012752933\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15234141614122265\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 32.31657200608451 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08587008793448284\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15274287245255058\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 32.146919018512015 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08654705946924982\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15274287233192796\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 32.14691906928552 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0865470584079108\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15314436364680928\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 31.978583910923877 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08719677689767133\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15314439901990617\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 31.978569138180966 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08719737283990042\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15354592615137008\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 31.811538014371372 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0878889979619032\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15354592600369799\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 31.811538075560577 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08788899685386777\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15394748849812023\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 31.645797663771617 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0885854409353678\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15394752428381597\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 31.645782951397912 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08858604662970875\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15434912290741698\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 31.48131982926401 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08927807109600666\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15434912279308088\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 31.481319875904386 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08927807000991662\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.1547507572079776\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 31.318121015304804 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0899658314837363\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15475079335348108\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 31.318106385213472 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.08996644681761376\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15515246419030015\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 31.156158760630817 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09065285355488353\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.1551524640983204\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 31.156158797571717 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09065285247888923\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.1555541710950754\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 30.995449682123244 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09137064927428684\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15555420755981642\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 30.99543515032844 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0913712743711926\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.1559559516828939\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 30.835951716206726 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09209030575650337\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.15595595146252883\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 30.83595180334884 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09209030451238961\n", "09:39:15 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:15 - utils.forces_mesh - Using mesh spacing: 0.1563577320030931\n", "09:39:15 - utils.forces_mesh - Got k_square with: (50, 50, 50), 30.677681824309026 0.0\n", "09:39:15 - utils.forces_mesh - Count of zeros: 1\n", "09:39:15 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09280830863962372\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.1563577689871667\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 30.677667311624237 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09280894396493206\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.1567595868929721\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 30.52059828964225 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.0935077672660433\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.15675958676608026\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 30.520598339053127 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09350776611564912\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.15716144165297719\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 30.36471823103217 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09422535746544095\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.1571614790087814\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 30.364703796218475 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09422600270903554\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.15756337163232947\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 30.21000049217094 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09494200189131274\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.157563371505546\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 30.21000054078793 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09494200072418849\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.15796530148511545\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 30.056462298807038 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.095653564553148\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.15796533922192157\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 30.05644793825477 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09565421980695063\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.15836730729745252\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 29.904062956689184 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09640640034931408\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.15836730717790104\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 29.904063001838338 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09640639917378035\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.15876931299558228\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 29.752819822094185 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09715647881580178\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.15876935110707358\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 29.75280553817618 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09715714458848476\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.15917139547239278\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 29.602692627600042 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09791056710178465\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.15917139532717917\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 29.602692681613696 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09791056587708571\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.15957347779467845\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 29.453698900907327 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09865184123673382\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.15957351631387562\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 29.453684681346022 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09865251752194085\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.15997563768438372\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 29.30579878455281 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09940095869168045\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.15997563755661703\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 29.30579883136375 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.09940095747093222\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.1603777974478242\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 29.159009931924068 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.10016023082213835\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.16037783635482716\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 29.158995784214195 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.10016091768965002\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.16078006161942016\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 29.01328351073581 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.100913837290688\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.16078005279752272\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 29.01328669461607 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.1009138251383996\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.16118231257092397\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 28.86865153526061 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.10167231190775355\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.1611823647490338\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 28.86863284448846 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.10167302564111118\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.1615846771123981\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 28.725057975527783 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.1024394838885194\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.16158467697534729\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 28.725058024255084 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.10243948262031256\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.16198704153635912\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 28.58253315701015 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.10322258422620487\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.16198709418423363\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 28.582514577636502 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.10322330910906889\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.16238951191496254\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 28.441029344763734 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:16 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.10399199068968129\n", "09:39:16 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:16 - utils.forces_mesh - Using mesh spacing: 0.16238951174125127\n", "09:39:16 - utils.forces_mesh - Got k_square with: (50, 50, 50), 28.44102940561161 0.0\n", "09:39:16 - utils.forces_mesh - Count of zeros: 1\n", "09:39:17 - utils.forces_mesh - Got phi with: (50, 50, 50), 0.10399198935617504\n", "09:39:17 - utils.forces_mesh - Computing forces for 202 particles using mesh [mapping=particle_to_cells_nn, n_grid=50]\n", "09:39:17 - utils.forces_mesh - Using mesh spacing: 0.16279198212356993\n" ] }, { "ename": "KeyboardInterrupt", "evalue": "", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[15], line 11\u001b[0m\n\u001b[1;32m 8\u001b[0m mesh_size \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m50\u001b[39m \u001b[38;5;66;03m# as per the previous discussion\u001b[39;00m\n\u001b[1;32m 9\u001b[0m force_function \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m x: utils\u001b[38;5;241m.\u001b[39mmesh_forces_v2(x, G, mesh_size, utils\u001b[38;5;241m.\u001b[39mparticle_to_cells_nn)\n\u001b[0;32m---> 11\u001b[0m sol \u001b[38;5;241m=\u001b[39m \u001b[43mintegrate\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrk4\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mforce_function\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mp0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mt_range\u001b[49m\u001b[43m)\u001b[49m\n", "Cell \u001b[0;32mIn[10], line 20\u001b[0m, in \u001b[0;36mintegrate\u001b[0;34m(method, force_function, p0, t_range)\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m1\u001b[39m, t_range\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m]):\n\u001b[1;32m 19\u001b[0m t \u001b[38;5;241m=\u001b[39m t_range[i]\n\u001b[0;32m---> 20\u001b[0m sol[i,\u001b[38;5;241m.\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;241m.\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[43mutils\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrunge_kutta_4\u001b[49m\u001b[43m(\u001b[49m\u001b[43msol\u001b[49m\u001b[43m[\u001b[49m\u001b[43mi\u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_prime\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdt\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 23\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIntegration done, shape: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00msol\u001b[38;5;241m.\u001b[39mshape\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 24\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m sol\n", "File \u001b[0;32m~/Documents/Uni/HS24/Computational Astrophysics/projects/nbody/utils/integrate.py:86\u001b[0m, in \u001b[0;36mrunge_kutta_4\u001b[0;34m(y0, t, f, dt)\u001b[0m\n\u001b[1;32m 84\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21mrunge_kutta_4\u001b[39m(y0 : np\u001b[38;5;241m.\u001b[39mndarray, t : \u001b[38;5;28mfloat\u001b[39m, f, dt : \u001b[38;5;28mfloat\u001b[39m):\n\u001b[1;32m 85\u001b[0m k1 \u001b[38;5;241m=\u001b[39m f(y0, t)\n\u001b[0;32m---> 86\u001b[0m k2 \u001b[38;5;241m=\u001b[39m \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[43my0\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mk1\u001b[49m\u001b[38;5;241;43m/\u001b[39;49m\u001b[38;5;241;43m2\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mdt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mt\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mdt\u001b[49m\u001b[38;5;241;43m/\u001b[39;49m\u001b[38;5;241;43m2\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 87\u001b[0m k3 \u001b[38;5;241m=\u001b[39m f(y0 \u001b[38;5;241m+\u001b[39m k2\u001b[38;5;241m/\u001b[39m\u001b[38;5;241m2\u001b[39m \u001b[38;5;241m*\u001b[39m dt, t \u001b[38;5;241m+\u001b[39m dt\u001b[38;5;241m/\u001b[39m\u001b[38;5;241m2\u001b[39m)\n\u001b[1;32m 88\u001b[0m k4 \u001b[38;5;241m=\u001b[39m f(y0 \u001b[38;5;241m+\u001b[39m k3 \u001b[38;5;241m*\u001b[39m dt, t \u001b[38;5;241m+\u001b[39m dt)\n", "File \u001b[0;32m~/Documents/Uni/HS24/Computational Astrophysics/projects/nbody/utils/integrate.py:32\u001b[0m, in \u001b[0;36mode_setup..f\u001b[0;34m(y, t)\u001b[0m\n\u001b[1;32m 29\u001b[0m y \u001b[38;5;241m=\u001b[39m to_particles(y)\n\u001b[1;32m 30\u001b[0m \u001b[38;5;66;03m# now y has shape (n, 7), with columns x, y, z, vx, vy, vz, m\u001b[39;00m\n\u001b[0;32m---> 32\u001b[0m forces \u001b[38;5;241m=\u001b[39m \u001b[43mforce_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43my\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m2\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 34\u001b[0m \u001b[38;5;66;03m# compute the accelerations\u001b[39;00m\n\u001b[1;32m 35\u001b[0m masses \u001b[38;5;241m=\u001b[39m y[:, \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\n", "Cell \u001b[0;32mIn[15], line 9\u001b[0m, in \u001b[0;36m\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 5\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIntegration range: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mt_range[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m -> \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mt_range[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m, n_steps: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mn_steps\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 8\u001b[0m mesh_size \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m50\u001b[39m \u001b[38;5;66;03m# as per the previous discussion\u001b[39;00m\n\u001b[0;32m----> 9\u001b[0m force_function \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m x: \u001b[43mutils\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmesh_forces_v2\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mG\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmesh_size\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mutils\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparticle_to_cells_nn\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 11\u001b[0m sol \u001b[38;5;241m=\u001b[39m integrate(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrk4\u001b[39m\u001b[38;5;124m\"\u001b[39m, force_function, p0, t_range)\n", "File \u001b[0;32m~/Documents/Uni/HS24/Computational Astrophysics/projects/nbody/utils/forces_mesh.py:72\u001b[0m, in \u001b[0;36mmesh_forces_v2\u001b[0;34m(particles, G, n_grid, mapping)\u001b[0m\n\u001b[1;32m 70\u001b[0m spacing \u001b[38;5;241m=\u001b[39m axis[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;241m-\u001b[39m axis[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 71\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUsing mesh spacing: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mspacing\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m---> 72\u001b[0m phi \u001b[38;5;241m=\u001b[39m \u001b[43mmesh_poisson_v2\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmesh\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mG\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mspacing\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 73\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mGot phi with: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mphi\u001b[38;5;241m.\u001b[39mshape\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m, \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnp\u001b[38;5;241m.\u001b[39mmax(phi)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 74\u001b[0m phi_grad \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mstack(np\u001b[38;5;241m.\u001b[39mgradient(phi, spacing), axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\n", "File \u001b[0;32m~/Documents/Uni/HS24/Computational Astrophysics/projects/nbody/utils/forces_mesh.py:96\u001b[0m, in \u001b[0;36mmesh_poisson_v2\u001b[0;34m(mesh, G, spacing)\u001b[0m\n\u001b[1;32m 91\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21mmesh_poisson_v2\u001b[39m(mesh: np\u001b[38;5;241m.\u001b[39mndarray, G: \u001b[38;5;28mfloat\u001b[39m, spacing: \u001b[38;5;28mfloat\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m np\u001b[38;5;241m.\u001b[39mndarray:\n\u001b[1;32m 92\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 93\u001b[0m \u001b[38;5;124;03m Solves the poisson equation for the mesh using the FFT.\u001b[39;00m\n\u001b[1;32m 94\u001b[0m \u001b[38;5;124;03m Returns the scalar potential.\u001b[39;00m\n\u001b[1;32m 95\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m---> 96\u001b[0m rho_hat \u001b[38;5;241m=\u001b[39m \u001b[43mfft\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfftn\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmesh\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 97\u001b[0m k \u001b[38;5;241m=\u001b[39m fft\u001b[38;5;241m.\u001b[39mfftfreq(mesh\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m], spacing)\n\u001b[1;32m 98\u001b[0m kx, ky, kz \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mmeshgrid(k, k, k)\n", "File \u001b[0;32m~/.local/share/virtualenvs/projects-X-9bmgL6/lib/python3.13/site-packages/scipy/fft/_backend.py:28\u001b[0m, in \u001b[0;36m_ScipyBackend.__ua_function__\u001b[0;34m(method, args, kwargs)\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m fn \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 27\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mNotImplemented\u001b[39m\n\u001b[0;32m---> 28\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/.local/share/virtualenvs/projects-X-9bmgL6/lib/python3.13/site-packages/scipy/fft/_basic_backend.py:115\u001b[0m, in \u001b[0;36mfftn\u001b[0;34m(x, s, axes, norm, overwrite_x, workers, plan)\u001b[0m\n\u001b[1;32m 113\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21mfftn\u001b[39m(x, s\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, axes\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, norm\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 114\u001b[0m overwrite_x\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, workers\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;241m*\u001b[39m, plan\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m):\n\u001b[0;32m--> 115\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_execute_nD\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mfftn\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m_pocketfft\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfftn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43ms\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43ms\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxes\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnorm\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnorm\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 116\u001b[0m \u001b[43m \u001b[49m\u001b[43moverwrite_x\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moverwrite_x\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mworkers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mworkers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mplan\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mplan\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/.local/share/virtualenvs/projects-X-9bmgL6/lib/python3.13/site-packages/scipy/fft/_basic_backend.py:57\u001b[0m, in \u001b[0;36m_execute_nD\u001b[0;34m(func_str, pocketfft_func, x, s, axes, norm, overwrite_x, workers, plan)\u001b[0m\n\u001b[1;32m 55\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_numpy(xp):\n\u001b[1;32m 56\u001b[0m x \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39masarray(x)\n\u001b[0;32m---> 57\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mpocketfft_func\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43ms\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43ms\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxes\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnorm\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnorm\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 58\u001b[0m \u001b[43m \u001b[49m\u001b[43moverwrite_x\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moverwrite_x\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mworkers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mworkers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mplan\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mplan\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 60\u001b[0m norm \u001b[38;5;241m=\u001b[39m _validate_fft_args(workers, plan, norm)\n\u001b[1;32m 61\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(xp, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfft\u001b[39m\u001b[38;5;124m'\u001b[39m):\n", "File \u001b[0;32m~/.local/share/virtualenvs/projects-X-9bmgL6/lib/python3.13/site-packages/scipy/fft/_pocketfft/basic.py:149\u001b[0m, in \u001b[0;36mc2cn\u001b[0;34m(forward, x, s, axes, norm, overwrite_x, workers, plan)\u001b[0m\n\u001b[1;32m 146\u001b[0m norm \u001b[38;5;241m=\u001b[39m _normalization(norm, forward)\n\u001b[1;32m 147\u001b[0m out \u001b[38;5;241m=\u001b[39m (tmp \u001b[38;5;28;01mif\u001b[39;00m overwrite_x \u001b[38;5;129;01mand\u001b[39;00m tmp\u001b[38;5;241m.\u001b[39mdtype\u001b[38;5;241m.\u001b[39mkind \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mc\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[0;32m--> 149\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mpfft\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mc2c\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtmp\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mforward\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnorm\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mout\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mworkers\u001b[49m\u001b[43m)\u001b[49m\n", "\u001b[0;31mKeyboardInterrupt\u001b[0m: " ] } ], "source": [ "## Integration setup - use the n_squared forces for a few timesteps only, to see if the orbits are stable\n", "t_orbit = 2 * np.pi * r_inter / v_mean\n", "n_steps = int(t_orbit / dt * 30)\n", "t_range = np.arange(0, n_steps*dt, dt)\n", "logger.info(f\"Integration range: {t_range[0]} -> {t_range[-1]}, n_steps: {n_steps}\")\n", "\n", "\n", "mesh_size = 50 # as per the previous discussion\n", "force_function = lambda x: utils.mesh_forces_v2(x, G, mesh_size, utils.particle_to_cells_nn)\n", "\n", "sol = integrate(\"rk4\", force_function, p0, t_range)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "## Show some results" ] } ], "metadata": { "kernelspec": { "display_name": "projects-X-9bmgL6", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.1" } }, "nbformat": 4, "nbformat_minor": 2 }