257 lines
5.7 KiB
Typst

#import "@preview/diatypst:0.2.0": *
#show: slides.with(
title: "N-Body project ",
subtitle: "Computational Astrophysics, HS24",
date: "04.02.2024",
authors: ("Rémy Moll"),
toc: false,
// layout: "large",
// ratio: 16/9,
)
#show footnote.entry: set text(size: 0.6em)
#set footnote.entry(gap: 3pt)
#set align(horizon)
#import "helpers.typ"
// Setup of code location
#let t1 = json("../task1.ipynb")
#let t2 = json("../task2-particle-mesh.ipynb")
// Finally - The real content
= N-body forces and analytical solutions
== Overview - the system
Get a feel for the particles and their distribution
#columns(2)[
#helpers.image_cell(t1, "plot_particle_distribution")
// Note: for visibility the outer particles are not shown.
#colbreak()
The system at hand is characterized by:
- $N ~ 10^4$ stars
- a _spherical_ distribution
$==>$ treat the system as a *globular cluster*
#footnote[Unit handling [#link(<task1:function_apply_units>)[code]]]
]
== Density
Compare the computed density
#footnote[Density sampling [#link(<task1:function_density_distribution>)[code]]]
with the analytical model provided by the _Hernquist_ model:
#grid(
columns: (3fr, 4fr),
inset: 0.5em,
block[
$
rho(r) = M/(2 pi) a / (r dot (r + a)^3)
$
where we infer $a$ from the half-mass radius:
$
r_"hm" = (1 + sqrt(2)) dot a
$
],
block[
#helpers.image_cell(t1, "plot_density_distribution")
]
)
// Having more bins means to have shells that are nearly empty
// => the error is large, NBINS = 30 is a good compromise
== Force computation
#grid(
columns: (3fr, 2fr),
inset: 0.5em,
block[
#helpers.image_cell(t1, "plot_force_radial")
],
block[
Discussion:
- the analytical
#footnote[Analytical force [#link(<task1:function_analytical_forces>)[code]]]
method replicates the behavior accurately
- at small softenings the $N^2$
#footnote[$N^2$ force [#link(<task1:function_n2_forces>)[code]]]
method has noisy artifacts
- a $1 dot epsilon$
#footnote[$epsilon$ computation [#link(<task1:function_interparticle_distance>)[code]]]
softening is a good compromise between accuracy and stability
]
)
== Relaxation
We express system relaxation in terms of the dynamical time of the system.
$
t_"relax" = overbrace(N / (8 log N), n_"relax") dot t_"crossing"
$
where the crossing time of the system can be estimated through the half-mass velocity $t_"crossing" = v(r_"hm")/r_"hm"$.
We find a relaxation of $approx 30 "Myr"$ ([#link(<task1:compute_relaxation_time>)[code]])
#grid(
columns: (1fr, 1fr),
inset: 0.5em,
block[
#image("relaxation.png")
],
block[
- Each star-star interaction contributes $delta v approx (2 G m )/b$
- Shifting by $epsilon$ *dampens* each contribution
- $=>$ relaxation time increases
]
)
= Particle Mesh
== Overview - the system
#page(
columns: 2
)[
#helpers.image_cell(t2, "plot_particle_distribution")
$==>$ use $M_"sys" approx 10^4 M_"sol" + M_"BH"$
]
== Force computation
#helpers.code_reference_cell(t2, "function_mesh_force")
#helpers.image_cell(t2, "plot_force_radial")
#grid(
columns: (2fr, 1fr),
inset: 0.5em,
block[
#helpers.image_cell(t2, "plot_force_radial_single")
],
block[
- using the (established) baseline of $N^2$
#footnote[$N^2$ force [#link(<task1:function_n2_forces>)[code]]]
with $1 dot epsilon$
#footnote[$epsilon$ computation [#link(<task1:function_interparticle_distance>)[code]]]
softening
- small grids
#footnote[Mesh force [#link(<task2:function_mesh_force>)[code]]]
are stable but inaccurate at the center
- very large grids have issues with overdiscretization
$==> 75 times 75 times 75$ as a good compromise
]
)
#helpers.image_cell(t2, "plot_force_computation_time")
== Time integration
*Integration step*
#helpers.code_reference_cell(t2, "function_runge_kutta")
*Timesteps*
Chosen such that displacement is small (compared to the inter-particle distance) [#link(<task2:integration_timestep>)[code]]:
$
op(d)t = 10^(-3) dot S / v_"part"
$
*Full integration*
[#link(<task2:function_time_integration>)[code]]
#pagebreak()
== First results
#helpers.image_cell(t2, "plot_system_evolution")
== Varying the softening
#helpers.image_cell(t2, "plot_second_system_evolution")
== Stability [#link("../task2_nsquare_integration.gif")[1 epsilon]]
#page(
columns: 2
)[
#helpers.image_cell(t2, "plot_integration_stability")
]
== Particle mesh solver
#helpers.image_cell(t2, "plot_pm_solver_integration")
#page(
columns: 2
)[
#helpers.image_cell(t2, "plot_pm_solver_stability")
]
= Appendix - Code <appendix>
== Code
#helpers.code_reference_cell(t1, "function_apply_units")
<task1:function_apply_units>
#pagebreak(weak: true)
#helpers.code_reference_cell(t1, "function_density_distribution")
<task1:function_density_distribution>
#pagebreak(weak: true)
#helpers.code_reference_cell(t1, "function_analytical_forces")
<task1:function_analytical_forces>
#pagebreak(weak: true)
#helpers.code_reference_cell(t1, "function_n2_forces")
<task1:function_n2_forces>
#pagebreak(weak: true)
#helpers.code_reference_cell(t1, "function_interparticle_distance")
<task1:function_interparticle_distance>
#pagebreak(weak: true)
#helpers.code_cell(t1, "compute_relaxation_time")
<task1:compute_relaxation_time>
#pagebreak(weak: true)
#helpers.code_reference_cell(t2, "function_mesh_force")
<task2:function_mesh_force>
#pagebreak(weak: true)
#helpers.code_cell(t2, "integration_timestep")
<task2:integration_timestep>
#pagebreak(weak: true)
#helpers.code_cell(t2, "function_time_integration")
<task2:function_time_integration>
#context {
counter(page).update(locate(<appendix>).page())
}