93 lines
3.1 KiB
Python

import numpy as np
import scipy.integrate as spi
import logging
logger = logging.getLogger(__name__)
def ode_setup(particles: np.ndarray, force_function: callable) -> tuple[np.ndarray, callable]:
"""
Linearizes the ODE system for the particles interacting gravitationally.
Returns:
- the Y0 array corresponding to the initial conditions (x0 and v0)
- the function that computes the right hand side of the ODE with function signature f(t, y)
Assumes that the particles array has the following columns: x, y, z, vx, vy, vz, m.
"""
if particles.shape[1] != 7:
raise ValueError("Particles array must have 7 columns: x, y, z, vx, vy, vz, m")
# for the integrators we need to flatten array which contains 7 columns for now
# we don't really care how we reshape as long as we unflatten consistently
particles = particles.flatten()
logger.debug(f"Reshaped 7 columns into {particles.shape=}")
def f(y, t):
"""
Computes the right hand side of the ODE system.
The ODE system is linearized around the current positions and velocities.
"""
p = to_particles(y)
# this is explicitly a copy, which has shape (n, 7)
# columns x, y, z, vx, vy, vz, m
# (need to keep y intact since integrators make multiple function calls)
forces = force_function(p[:, [0, 1, 2, -1]])
# compute the accelerations
masses = p[:, -1]
a = forces / masses[:, None]
# the [:, None] is to force broadcasting in order to divide each row of forces by the corresponding mass
# the position columns become the velocities
# the velocity columns become the accelerations
p[:, 0:3] = p[:, 3:6]
p[:, 3:6] = a
# the masses remain unchanged
# p[:, -1] = p[:, -1]
# flatten the array again
# logger.debug(f"As particles: {y}")
p = p.reshape(-1, copy=False)
# logger.debug(f"As column: {y}")
return p
return particles, f
def to_particles(y: np.ndarray) -> np.ndarray:
"""
Converts the 1D array y into a 2D array, by creating a copy
The new shape is (n, 7) where n is the number of particles.
The columns are x, y, z, vx, vy, vz, m
"""
if y.size % 7 != 0:
raise ValueError("The array y should be inflatable to 7 columns")
y = y.reshape((-1, 7), copy=True)
# logger.debug(f"Unflattened array into {y.shape=}")
return y
def to_particles_3d(y: np.ndarray) -> np.ndarray:
"""
Converts the 2D sol array with one vector per timestep into a 3D array:
2d particles (nx7) x nsteps
"""
n_steps = y.shape[0]
n_particles = y.shape[1] // 7
y = y.reshape((n_steps, n_particles, 7))
# logger.debug(f"Unflattened array into {y.shape=}")
return y
def runge_kutta_4(y: np.ndarray, t: float, f: callable, dt: float):
"""
Runge-Kutta 4th order integrator.
"""
k1 = f(y, t)
k2 = f(y + k1/2 * dt, t + dt/2)
k3 = f(y + k2/2 * dt, t + dt/2)
k4 = f(y + k3 * dt, t + dt)
return y + (k1 + 2*k2 + 2*k3 + k4)/6 * dt