90 lines
3.7 KiB
Python

## Implementation of a mesh based full solver with boundary conditions etc.
import numpy as np
from . import mesh_forces
import logging
logger = logging.getLogger(__name__)
def mesh_solver(
particles: np.ndarray,
G: float,
mapping: callable,
n_grid: int,
bounds: tuple = (-1, 1),
boundary: str = "vanishing",
) -> np.ndarray:
"""
Computes the gravitational force acting on a set of particles using a mesh-based approach. The mesh is of fixed size: n_grid x n_grid x n_grid spanning the given bounds. Particles reaching the boundary are treated according to the boundary condition.
Args:
- particles: np.ndarray, shape=(n, 4). Assumes that the particles array has the following columns: x, y, z, m.
- G: float, the gravitational constant.
- mapping: callable, the mapping function to use.
- n_grid: int, the number of grid points in each direction.
- bounds: tuple, the bounds of the mesh.
- boundary: str, the boundary condition to apply.
"""
if particles.shape[1] != 4:
raise ValueError("Particles array must have 4 columns: x, y, z, m")
logger.debug(f"Computing forces for {particles.shape[0]} particles using mesh [mapping={mapping.__name__}, {n_grid=}]")
# the function is fine, let's abuse it somewhat
axis = np.linspace(bounds[0], bounds[1], n_grid)
mesh = np.zeros((n_grid, n_grid, n_grid))
spacing = np.abs(axis[1] - axis[0])
logger.debug(f"Using mesh spacing: {spacing}")
# Check that the boundary condition is fullfilled
if boundary == "periodic":
raise NotImplementedError("Periodic boundary conditions are not implemented yet")
elif boundary == "vanishing":
# remove the particles that are outside the mesh
outlier_mask = particles[:, :3] < bounds[0] | particles[:, :3] > bounds[1]
if np.any(outlier_mask):
logger.warning(f"Removing {np.sum(outlier_mask)} particles that are outside the mesh")
particles = particles[~outlier_mask]
logger.debug(f"New particles shape: {particles.shape}")
else:
raise ValueError(f"Unknown boundary condition: {boundary}")
if logger.isEnabledFor(logging.DEBUG):
mesh_forces.show_mesh_information(mesh, "Density mesh")
# compute the potential and its gradient
phi_grad = mesh_forces.mesh_poisson(rho, G, spacing)
if logger.isEnabledFor(logging.DEBUG):
logger.debug(f"Got phi_grad with: {phi_grad.shape}, {np.max(phi_grad)}")
mesh_forces.show_mesh_information(phi_grad[0], "Potential gradient (x-direction)")
# compute the particle forces from the mesh potential
forces = np.zeros_like(particles[:, :3])
for i, p in enumerate(particles):
ijk = np.digitize(p, axis) - 1
logger.debug(f"Particle {p} maps to cell {ijk}")
# this gives 4 entries since p[3] the mass is digitized as well -> this is meaningless and we discard it
# logger.debug(f"Particle {p} maps to cell {ijk}")
forces[i] = - p[3] * phi_grad[..., ijk[0], ijk[1], ijk[2]]
return forces
def particles_to_mesh(particles: np.ndarray, mesh: np.ndarray, axis: np.ndarray, mapping: callable) -> None:
"""
Maps a list of particles to an existing mesh, filling it inplace
"""
if particles.shape[1] < 4:
raise ValueError("Particles array must have at least 4 columns: x, y, z, m")
# axis provide an easy way to map the particles to the mesh
for p in particles:
m = p[-1]
# spread the star onto cells through the shape function, taking into account the mass
ijks, weights = mapping(p, axis)
for ijk, weight in zip(ijks, weights):
mesh[ijk[0], ijk[1], ijk[2]] += weight * m